Research Article

New Types of Nonlinear Waves and Bifurcation Phenomena in Schamel-Korteweg-de Vries Equation

Yun Wu and Zhengrong Liu

1 Department of Mathematics, South China University of Technology, Guangzhou, Guangdong 510640, China
2 Department of Mathematics and Computer Science, Guizhou Normal University, Guiyang, Guizhou 550001, China

Correspondence should be addressed to Zhengrong Liu; liuzhr@scut.edu.cn

Received 26 April 2013; Accepted 3 July 2013

Academic Editor: Chuanzhi Bai

Copyright © 2013 Y. Wu and Z. Liu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study the nonlinear waves described by Schamel-Korteweg-de Vries equation

\[u_t + (au^{1/2} + bu)u_x + \delta u_{xxx} = 0, \]

where \(a, b,\) and \(\delta\) are constants.

Equation (1) arises in plasma physics in the study of ion acoustic solitons when electron trapping is present and also it governs the electrostatic potential for a certain electron distribution in velocity space. Tagare and Chakraborti [1] showed that (1) has solitary wave solution by applying direct integral method. Lee and Sakthivel [3] gave some exact traveling wave solutions of (1) by using exp-function method.

When \(b = 0\), (1) becomes the Schamel equation [4]:

\[u_t + au^{1/2} u_x + \delta u_{xxx} = 0. \]

When \(a = 0\), (1) becomes a well-known KdV equation

\[u_t + bu u_x + \delta u_{xxx} = 0, \]

which has been studied successively by many authors (e.g., [5–8]).

The concept of compacton, soliton with compact support or strict localization of solitary waves, appeared in the work of Rosenau and Hyman [9] where a genuinely nonlinear dispersive equation \(K(n; n)\) is defined by

\[u_t + a(u^n)_x + (u^n)_{xxx} = 0. \]

They found certain solitary wave solutions which vanish identically outside a finite core region. These solutions are called compactons.

Several studies have been conducted in [10–20]. The aim of these studies was to examine if other nonlinear dispersive equations may generate compactons structures.

In order to investigate the nonlinear waves of (1), letting \(c > 0\) be wave speed and substituting \(u = \varphi(\xi)\) with \(\xi = x - ct\) into (1), it follows that

\[-c\varphi' + a\varphi^{1/2}\varphi' + b\varphi\varphi' + \delta\varphi''' = 0. \]

Integrating (5), we get

\[-c\varphi + \frac{2}{3} a\varphi^{3/2} + \frac{b}{2} \varphi^2 + \delta\varphi'' = 0. \]

Setting \(\varphi' = y\) yields the following planar system:

\[\varphi' = y, \quad y' = \frac{c}{\delta} \varphi - \frac{2a}{3\delta} \varphi^{3/2} - \frac{b}{2\delta} \varphi^2. \]
Obviously, system (7) is a Hamiltonian system with Hamiltonian function

\[H(\varphi,y) = y^2 - \frac{c}{\delta} \varphi^2 + \frac{8a}{15\delta} \varphi^{5/2} + \frac{b}{3\delta} \varphi^3. \] (8)

If one puts

\[f(\varphi) = \frac{c}{\delta} \varphi - \frac{2a}{3\delta} \varphi^{3/2} - \frac{b}{2\delta} \varphi, \] (9)

\[\Delta = 4a^2 + 18bc, \]

then one can see the following facts.

When \(\Delta > 0 \), \(f(\varphi) \) has three points \(\varphi_0, \varphi_1, \) and \(\varphi_2 \) which possess expressions

\[\varphi_0 = 0, \quad \varphi_1 = \left(\frac{-2a - \sqrt{\Delta}}{3b}\right)^2, \quad \varphi_2 = \left(\frac{-2a + \sqrt{\Delta}}{3b}\right)^2. \] (10)

When \(\Delta = 0 \), \(f(\varphi) \) has two zero points \(\varphi_0 \) and \(\varphi^* \) which are denoted by

\[\varphi_0 = 0, \quad \varphi^* = \frac{4a^2}{9b^2}. \] (11)

When \(\Delta < 0 \), \(f(\varphi) \) has one zero point \(\varphi_0 = 0. \)
Letting \((\bar{\varphi}, 0)\) be one of the singular points of system (7), then the characteristic values at \((\bar{\varphi}, 0)\) are

\[
\lambda = \pm \sqrt{f'(\bar{\varphi})}.
\] (12)

From the qualitative theory of dynamical systems, we get the following conclusions:

1. if \(f'(\bar{\varphi}) > 0\), then \((\bar{\varphi}, 0)\) is a saddle point,
2. if \(f'(\bar{\varphi}) < 0\), then \((\bar{\varphi}, 0)\) is a center point,
3. if \(f'(\bar{\varphi}) = 0\), then \((\bar{\varphi}, 0)\) is a degenerate saddle point.

On \(a - b\) parametric plane, let \(l_1, l_2, \text{ and } l_3\), respectively, represent the following three curves:

\[
l_1 : b = 0,
\]

\[
l_2 : b = -\frac{16a^2}{75c},
\]

\[
l_3 : b = -\frac{2a^2}{9c}.
\] (13)

Let \(A_i\) \((i = 1, 2, \ldots, 6)\) represent the regions surrounded by \(l_1, l_2, l_3\), and the coordinate axes (see Figures 1 and 2).

According to the previous analysis, we obtain the bifurcation phase portraits of system (7) as in Figures 1 and 2.
In this paper, we study the nonlinear waves and their bifurcations in (1) by using the bifurcation method of dynamical systems [21–23]. We point out that there are two new types of nonlinear waves, kink-like waves and compacton-like waves [24–33]. Furthermore, we reveal two kinds of new bifurcation phenomena which are introduced in the abstract.

This paper is organized as follows. In Section 2, we display the two new types of nonlinear waves. We show the two kinds of new bifurcation phenomena in Sections 3 and 4. A brief conclusion is given in Section 5.

2. Two New Types of Nonlinear Waves

In this section, we display two new types of nonlinear waves defined by (1).

2.1. Kink-Like Waves

Proposition 1. (1) When the parameters satisfy $\delta > 0$, $a > 0$, and $-16a^2/75c < b < 0$, (1) has a kink-like wave solution $u_x^+ = \phi(\xi)$ and an antikink-like wave solution $u_x^- = \phi(\xi)$, respectively, which are hidden in the following equations:

\[
\int_{\varphi_{1/2}}^{\varphi} \frac{ds}{\sqrt{(c/\delta)s^2 - (8a/15\delta)s^{5/2} - (b/3\delta)s^3 + h_1}} = \xi,
\]

$\xi \in (-\xi_1^0, \infty)$,

(14)

\[
\int_{\varphi_{1/2}}^{\varphi} \frac{ds}{\sqrt{(c/\delta)s^2 - (8a/15\delta)s^{5/2} - (b/3\delta)s^3 + h_1}} = -\xi,
\]

$\xi \in (-\infty, \xi_1^0)$,

(15)
Figure 7: (The kink wave is bifurcated from the bell-shape solitary wave). The varying process for the graph of u_d when $c > 0$, $\delta > 0$, $a > 0$, $\lambda > 0$ and $b \rightarrow -16a^2/75c + 0$. Where $c = 1$, $\delta = 1$, $a = 1$, $\lambda = 50$ and (a) $b = -16a^2/75c + 10^{-1}$, (b) $b = -16a^2/75c + 10^{-3}$, (c) $b = -16a^2/75c + 10^{-4}$, (d) $b = -16a^2/75c + 10^{-7}$.

Figure 8: (The anti-kink wave is bifurcated from the bell-shape solitary wave). The varying process for the graph of u_e when $c > 0$, $\delta > 0$, $a > 0$, $\lambda > 0$ and $b \rightarrow -16a^2/75c + 0$. Where $c = 1$, $\delta = 1$, $a = 1$, $\lambda = 50$ and (a) $b = -16a^2/75c + 10^{-1}$, (b) $b = -16a^2/75c + 10^{-3}$, (c) $b = -16a^2/75c + 10^{-4}$, (d) $b = -16a^2/75c + 10^{-7}$.
Figure 9: (The kink wave is bifurcated from the blow-up wave). The varying process for the graph of u_d when $c > 0, \delta > 0, a > 0, \lambda > 0$, and $b \to -16a^2/75c - 0$, where $c = 1, \delta = 1, a = 1, \lambda = 1$, and (a) $b = -16a^2/75c - 10^{-2}$, (b) $b = -16a^2/75c - 10^{-4}$, (c) $b = -16a^2/75c - 10^{-5}$, (d) $b = -16a^2/75c - 10^{-9}$.

\[\xi_0 = \int_0^{\xi_{1/2}} \frac{ds}{\sqrt{(c/\delta)s^2 - (8a/15\delta)s^{5/2} - (b/3\delta)s^3 + h_1}} \quad (16) \]

and $h_1 = H(\varphi_1, 0)$.

(2) When the parameters satisfy one of the following Cases.

Case 1. $\delta < 0, a > 0$, and $-2a^2/9c < b < 0$,

Case 2. $\delta < 0$, and $b > 0$,

Case 3. $\delta < 0, a > 0$, and $b = 0$,

Case 4. $\delta < 0, a > 0$, and $b = -2a^2/9c$.

Equation (1) has a kink-like wave solution $u_\varphi^k = \varphi(\xi)$ and an antikink-like wave solution $u_\varphi^- = \varphi(\xi)$, respectively, which are hidden in the following equations:

\[\int_{\varphi_{1/2}}^{\varphi} \frac{ds}{\sqrt{(c/\delta)s^2 - (8a/15\delta)s^{5/2} - (b/3\delta)s^3 + h_2}} = \xi, \quad \xi \in (-\xi_0, \infty), \quad (17) \]

\[\int_{\varphi_{1/2}}^{\varphi} \frac{ds}{\sqrt{(c/\delta)s^2 - (8a/15\delta)s^{5/2} - (b/3\delta)s^3 + h_2}} = -\xi, \quad \xi \in (-\infty, \xi_0^0), \quad (18) \]

where

\[\xi_0^0 = \int_0^{\varphi_{1/2}} \frac{ds}{\sqrt{(c/\delta)s^2 - (8a/15\delta)s^{5/2} - (b/3\delta)s^3 + h_2}} \]

and $h_2 = H(\varphi_2, 0)$.

Proof. (1) Under the condition $\delta > 0, a > 0$, and $-16a^2/75c < b < 0, (\varphi_1, 0)$ is a saddle point and on its left side there are two orbits Γ_{11}^\pm connecting with it (see Figure 3(a1)).
In (8), letting $h_1 = H(\varphi_1, 0)$, it follows that
\begin{equation}
\Gamma_1^+: y = \pm \frac{\xi}{\delta} \varphi^2 - \frac{8a}{15\delta} \varphi^{5/2} - \frac{b}{3\delta} \varphi^3 + h_1 \quad (0 < \varphi < \varphi_1).
\end{equation}

On Γ_1^+ suppose $\varphi(0) = \varphi_1/2$. Substituting (19) into (7) and integrating them along Γ_1^+ and Γ_1^-, respectively, we get (14)–(16).

(2) Under one of Cases 1–4, $(\varphi_2, 0)$ is a saddle point and on its left side there are two orbits Γ_2^\pm connecting with it (see Figures 3(a2)–3(a4)).

In (8), letting $h_2 = H(\varphi_2, 0)$, it follows that
\begin{equation}
\Gamma_2^+: y = \pm \frac{\xi}{\delta} \varphi^2 - \frac{8a}{15\delta} \varphi^{5/2} - \frac{b}{3\delta} \varphi^3 + h_2 \quad (0 < \varphi < \varphi_2).
\end{equation}

Similar to the proof of (1), we get the results of (2).

Next, we simulate the planar graphs of the kink-like waves for those data given in Example 2.

Example 2 (Corresponding to Proposition 1 (1)). Giving $a = 1/2, b = -2/45, c = 1$, and $\delta = 1$, we get $\varphi_1 = 117.81152949$ and $\varphi(0) = \varphi_1/2 = 58.90576474$. Note that orbits Γ_1^+ have expressions (19). From (19) we get $y_1'(0) = 38.27939786$ and $y_1''(0) = -38.27939786$. These imply that Γ_1^+ passes point $(\varphi(0), y_1'(0))$ and Γ_1^- passes point $(\varphi(0), y_1''(0))$. Thus letting $\varphi(0) = \varphi_1/2$ and $\varphi'(0) = y_1'(0)$ as the initial conditions of (6), we get the simulation of the integral curve which corresponds to Γ_1^+ as Figure 4(a1). Meanwhile, choosing $\varphi(0) = \varphi_1/2$ and $\varphi'(0) = y_1''(0)$ as the initial conditions of (6), we get the simulation of the integral curve which corresponds to Γ_1^- as in Figure 4(a2).

2.2. Compacton-Like Waves

Proposition 3. Let φ_k be an initial value when parameters and initial value satisfy one of the following Cases.

Case 1. $\delta > 0$, $b > 0$, and $\varphi_k > \gamma_1$.

Case 2. $\delta > 0$, $a > 0$, $b = 0$, and $\varphi_k > \gamma_1$.

Case 3. $\delta > 0$, $a > 0$, $-16a^2/75c < b < 0$, and $\gamma_1 < \varphi_k < \varphi_1$.

Case 4. $\delta < 0$, $b > 0$, and $0 < \varphi_k < \varphi_2$.

Case 5. $\delta < 0$, $a > 0$, $b = 0$, and $0 < \varphi_k < \varphi_2$.

Case 6. $\delta < 0$, $a < 0$, $b \leq 0$, and $\varphi_k > 0$.
Figure 11: (The kink wave is bifurcated from the valley-shape solitary wave). The varying process for the graph of u_f when $c > 0$, $\delta > 0$, $a > 0$, and $b \to -16a^2/75c - 10^{-5}$. (b) $b = -16a^2/75c - 10^{-7}$. (c) $b = -16a^2/75c - 10^{-8}$. (d) $b = -16a^2/75c - 10^{-10}$.

Case 7. $\delta < 0$, $a > 0$, $b < -2a^2/9c$, and $\varphi_k > 0$.

Case 8. $\delta < 0$, $a > 0$, $b = -2a^2/9c$, and $\varphi_k \neq \gamma_2 (= \varphi_2)$.

Case 9. $\delta < 0$, $a > 0$, $-2a^2/9c < b < 0$, and $\varphi_k > \gamma_2$ or $0 < \varphi_k < \varphi_2$.

Equation (1) has compacton-like wave solutions $u^c(\xi) = \varphi(\xi)$ and $u^s(\xi) = \varphi(\xi)$, respectively, which are hidden in the following equations:

\[
\int_{\varphi_k/2}^{\varphi} \frac{ds}{\sqrt{(c/\delta)s^2 - (8a/15\delta)s^{5/2} - (b/3\delta)s^3 + h_{\varphi_k}}} = \xi,
\]

where

\[
\xi^0_3 = \int_0^{\varphi_k/2} \frac{ds}{\sqrt{(c/\delta)s^2 - (8a/15\delta)s^{5/2} - (b/3\delta)s^3 + h_{\varphi_k}}},
\]

\[
\xi^0_4 = 2 \int_{\varphi_k/2}^{\varphi} \frac{ds}{\sqrt{(c/\delta)s^2 - (8a/15\delta)s^{5/2} - (b/3\delta)s^3 + h_{\varphi_k}}} + \xi^0_3,
\]

and $h_{\varphi_k} = H(\varphi_k, 0)$.

Proof. Under one of Cases 1–9, there is an orbit Γ_{φ_k} passing point $(\varphi_k, 0)$ (see Figure 5 (a1)–5(a6)).

In (8), letting $h_{\varphi_k} = H(\varphi_k, 0)$, it follows that

\[
\Gamma_{\varphi_k}: \quad y' = \frac{c}{\delta} \varphi^2 - \frac{8a}{15\delta} \varphi^{5/2} - \frac{b}{3\delta} \varphi^3 + h_{\varphi_k} \quad (0 < \varphi < \varphi_k).
\]

On Γ_{φ_k}, suppose $\varphi(0) = \varphi_k/2$. Substituting (24) into (7) and integrating it along Γ_{φ_k}, respectively, we obtain (21)–(23).
Figure 12: (The antikink wave is bifurcated from the valley-shape solitary wave). The varying process for the graph of u_g when $c > 0, \delta > 0, a > 0,$ and $b \to -16a^2/75c - 0$, where $c = 1, \delta = 1, a = 1/2,$ and (a) $b = -16a^2/75c - 10^{-3}$. (b) $b = -16a^2/75c - 10^{-7}$. (c) $b = -16a^2/75c - 10^{-8}$. (d) $b = -16a^2/75c - 10^{-10}$.

Figure 13: The graph of orbit Γ_1 when $\delta > 0$ and $(a, b) \in A_3$.

Next, we simulate the planar graphs of the compacton-like waves for those data given in Example 4.

Example 4 (Corresponding to Proposition 3 Case (3)). Given $a = 1/2, b = -157/3000, c = 1,$ and $\delta = 1,$ we get $\varphi_1 = 62.46353941$ and $\gamma_1 = 43.51656288$. Note that orbit Γ_{φ} has expression (24). Letting $\varphi_k = (\varphi_1 + \gamma_1)/2$, it follows that $\varphi(0) = 26.49502557$. From (24) we get $y(0) = \pm 10.49025102$. Thus letting $\varphi(0) = 26.49502557$ and $\varphi'(0) = 10.49025102$ as the initial conditions of (6), we get the simulation of...
the integral curve as in Figure 6(a). Meanwhile, choosing $\varphi(0) = 26.49502557$ and $\varphi'(0) = -10.49025102$ as the initial conditions of (6), we get the simulation of the integral curve as Figure 6(a2).

3. Bifurcation of the Kink Waves

In this section, we show that the kink waves can be bifurcated from five other waves.

3.1. Bifurcation from Bell-Shape Solitary Waves

Proposition 5. For $ab \neq 0$ and $\delta > 0$, (1) has two nonlinear wave solutions

\[
\begin{align*}
 u_d &= \left(\frac{4\alpha \lambda}{\lambda^2 e^{-\tau_1 \xi} - 2\lambda \beta + (\beta^2 - 4\alpha) e^{\tau_1 \xi}} \right)^2, \\
 u_e &= \left(\frac{4\alpha \lambda}{\lambda^2 e^{\tau_1 \xi} - 2\lambda \beta + (\beta^2 - 4\alpha) e^{-\tau_1 \xi}} \right)^2,
\end{align*}
\]

where

\[
\begin{align*}
 \alpha &= pq, \\
 \beta &= -(p + q), \\
 \tau_1 &= \frac{1}{2} \sqrt{\frac{c}{\delta}},
\end{align*}
\]

\[
\begin{align*}
 p &= \sqrt{16a^2 + 75bc}, \\
 q &= -4a - \sqrt{16a^2 + 75bc},
\end{align*}
\]

and $\lambda \neq 0$ is an arbitrary real number. These solutions possess the following properties.

1. If $\lambda > 0$, $a > 0$, and $b = -16a^2/75c$, then u_d and u_e become

\[
\begin{align*}
 u_d^* &= \left(\frac{4\alpha}{\lambda e^{\tau_1 \xi} - 2\beta} \right)^2, \\
 u_e^* &= \left(\frac{4\alpha}{\lambda e^{-\tau_1 \xi} - 2\beta} \right)^2,
\end{align*}
\]

which represent a kink wave and an antikink wave.
In particular, when \(\alpha = pq = -3c/b, \beta = -(p+q) = 8a/5b, c = -16a^2/75b, \lambda = \alpha_0, \) and \(\xi = x - ct, u_d^* \) and \(u_e^* \) become

\[
u_1 = \frac{16a_0^2 a^2}{4a \exp \left(\pm (2/5) \sqrt{1/3b6a} \left(x + (16a^2/75b) t \right) \right) - 5a_0 b}^2, \tag{30}\]

which was given by Lee and Sakthivel [3]. This implies that \(u_1 \) is the special case of \(u_d \) or \(u_e \).

(2) If \(\lambda = \sqrt{\beta^2 - 4\alpha}, \) then \(u_d = u_e \) and become

\[
u_{de}^* = \left(\frac{2\alpha}{\sqrt{\beta^2 - 4\alpha \cosh (\tau_1 \xi) - \beta}} \right)^2. \tag{31}\]

When \((a,b) \) belongs to one of the regions \(A_2, A_6, u_{de}^* \) represents a hyperbolic solitary wave.

In particular, when \(\alpha = pq = -3c/b, \beta = -(p+q) = 8a/5b, u_{de}^* \) becomes

\[
u_2 = \left(\frac{15c}{4a + \sqrt{16a^2 + 75bc} \cosh \left((1/2) \sqrt{c/\delta} \xi \right)} \right)^2, \tag{32}\]

which was obtained by Tagare and Chakraborti [3]. This implies that \(u_2 \) is the special case of \(u_d \) or \(u_e \).

(3) Under one of the following Cases.

Case 1. \(\lambda > 0, \lambda \neq \sqrt{\beta^2 - 4\alpha}, \) and \((a,b) \) belongs to one of the regions \(A_2, A_6, \)

Case 2. \(\lambda < 0, \lambda \neq -\sqrt{\beta^2 - 4\alpha}, \) and \((a,b) \in A_1, u_d \neq u_e \) and they represent two bell-shape solitary waves.

In particular, when \((a,b) \in A_2 \) in Case 1 and \(b \to 0 - 0, u_d \) and \(u_e \) become

\[
u_d^* = \frac{225c^2}{4a^2(1 + e^{-\tau_1 \xi})^2}, \tag{33}\]

\[
u_e^* = \frac{225c^2}{4a^2(1 + e^{\tau_1 \xi})^2}, \tag{34}\]

which are the solutions of the Schamel equation.
Figure 16: (The kink wave is bifurcated from the compacton-like wave). The varying process for the graph of \(u_0^+ \) when \(c > 0, \delta > 0, a > 0, \) and \(b \to -16a^2/75c + 0 \), where \(c = 1, \delta = 1, a = 1/2, \) and (a) \(b = -16a^2/75c + 10^{-4} \), (b) \(b = -16a^2/75c + 10^{-4} \), (c) \(b = -16a^2/75c + 10^{-6} \), (d) \(b = -16a^2/75c + 10^{-8} \).

When \((a, b) \in A_2\) in Case 1 and \(b \to -16a^2/75c + 0 \), the two bell-shape solitary waves \(u_d \) and \(u_e \) become a kink wave and an antikink wave with the expressions (29). For the varying process, see Figures 7 and 8.

Proof. In (8), letting \(h_0 = H(0, 0) \), it follows that

\[
y = \pm \sqrt{\frac{c}{\delta} q^2 - \frac{8a}{15\delta} q^{5/2} - \frac{b}{3\delta} q^3}. \tag{35}
\]

Substituting (35) into \(d\varphi/d\xi = y \), we have

\[
d\varphi/d\xi = \pm \sqrt{\frac{c}{\delta} \varphi^2 - \frac{8a}{15\delta} \varphi^{5/2} - \frac{b}{3\delta} \varphi^3}. \tag{36}
\]

Let \(\varphi = w^2 \), (36) becomes

\[
2wdw/d\xi = \pm \sqrt{\frac{c}{\delta} w^4 - \frac{8a}{15\delta} w^{5/2} - \frac{b}{3\delta} w^3}. \tag{37}
\]

Integrating (37), we have

\[
\int_{\gamma}^{-w} ds \left(s \sqrt{c/\delta - (8a/15\delta) s - (b/3\delta) s^2} \right) = \pm \frac{1}{2} \xi, \tag{38}
\]

where \(\gamma \) is an arbitrary constant.

Completing the previous integral and solving the equation for \(\varphi \), it follows that

\[
\varphi = \left(\frac{4\alpha \lambda \varepsilon^{-\tau_1 \xi}}{\lambda^2 \varepsilon^{2\tau_1 \xi} - 2\lambda \beta \varepsilon^{\tau_1 \xi} + (\beta^2 - 4\alpha)} \right)^2, \tag{39}
\]

where \(\lambda = \lambda(v) \) is an arbitrary real number. From (39) we obtain the solutions \(u_d \) and \(u_e \) as (25).

In (25) letting \(b = -16a^2/75c \), we get (29). From (25) and (29), we get the result (1) of Proposition 5.

When \(\lambda = \sqrt{\beta^2 - 4\alpha} \), via (25) it follows that

\[
u_d = u_e = \left(\frac{4\alpha}{\lambda \left(\varepsilon^{\tau_1 \xi} + \varepsilon^{-\tau_1 \xi} - 2\beta \right)} \right)^2 = \left(\frac{2\alpha}{\lambda \cosh \tau_1 \xi - \beta} \right)^2, \tag{40}
\]

(see (31)).

Thus, we get the result (2) of Proposition 5.
In (38), letting \(v = p \) (see (27)), it follows that

\[
\lambda = \beta p + 2\alpha \rho
\]

\[
= -\frac{2\sqrt{16a^2 + 75bc}}{5b}.
\]

Letting \(b \to 0^- \), then

\[
\lim_{b \to 0^-} \frac{\alpha}{\lambda} = \lim_{b \to 0^-} \frac{3c}{b} \cdot \frac{5b}{2\sqrt{16a^2 + 75bc}}
\]

\[
= \lim_{b \to 0^-} \frac{15c}{2\sqrt{16a^2 + 75bc}}
\]

\[
= \frac{15c}{8a},
\]

\[
\lim_{b \to 0^-} \frac{\beta}{\lambda} = \lim_{b \to 0^-} \frac{8a}{5b} \cdot \frac{5b}{2\sqrt{16a^2 + 75bc}}
\]

\[
= -1,
\]

\[
\lim_{b \to 0^-} u_d = \lim_{b \to 0^-} \left(\frac{4\alpha\lambda}{\lambda^2 e^{-\tau_1^2} - 2\beta + ((\beta^2 - 4\alpha) e^{\tau_1^2})^2} \right)
\]

\[
= \lim_{b \to 0^-} \left(\frac{4\alpha\lambda}{e^{-\tau_1^2} - 2(\beta/\lambda) + ((\beta^2 - 4\alpha)/\lambda^2) e^{\tau_1^2}} \right)^2
\]

\[
= u_d^r
\]

(see (33)).

Similarly, we have

\[
\lim_{b \to 0^-} u_e = u_e^r
\]

(see (34)).

From (41)–(46), we get result (3) of Proposition 5. \(\Box \)
3.2. Bifurcation from Blow-Up Waves

Proposition 6. For \(ab \neq 0 \) and \(\delta > 0 \), (1) has two nonlinear wave solutions as \(u_d \) and \(u_e \). These solutions possess the following properties.

(1) Under one of the following Cases.

Case 1. \(\lambda > 0 \), \(\lambda \neq \sqrt{\beta^2 - 4\alpha} \), and \((a,b) \) belongs to one of the regions \(A_1 \), \(A_3 \). \(u_d \neq u_e \) and they represent two blow-up waves.

Case 2. \(\lambda < 0 \), \(\lambda \neq -\sqrt{\beta^2 - 4\alpha} \), and \((a,b) \) belongs to any one of the regions \(A_2 \), \(A_3 \), and \(A_6 \). \(u_d \neq u_e \) and they represent two blow-up waves.

In particular, when \((a,b) \in A_3 \) in Case 1 and \(b \to -16a^2/75c \), the two blow-up waves become a kink wave and an antikink wave with the expressions (29). For the varying process, see Figures 9 and 10.

Similar to the proof of Proposition 5, we get the results of Proposition 6.

3.3. Bifurcation from Valley-Shape Solitary Waves

Proposition 7. When the parameters satisfy \(\delta > 0 \) and \((a,b) \in A_3 \), (1) has two valley-shape solitary wave solutions \(u_f = \varphi(\xi) \) and \(u_g = \varphi(\xi) \), respectively, which are hidden in the following equations:

\[
\int_{\varphi}^{\varphi_1} \frac{ds}{\sqrt{(c/\delta)s^2 - (8a/15\delta)s^{5/2} - (b/3\delta)s^3 + h_1}} = \xi \quad (0 < \varphi < \varphi_1),
\]

\[
\int_{\varphi}^{\varphi_1} \frac{ds}{\sqrt{(c/\delta)s^2 - (8a/15\delta)s^{5/2} - (b/3\delta)s^3 + h_1}} = -\xi \quad (0 < \varphi < \varphi_1).
\]

In particular, when \(b \to -\frac{16a^2}{75c} \), the two valley-shape solitary waves become a kink wave and an antikink wave with the expressions (29). For the varying process, see Figures 11 and 12.

Proof. When \(\delta > 0 \) and \((a,b) \in A_3 \), \((\varphi_1,0) \) is a saddle point and on its left side there is an orbit \(\Gamma_3 \) connecting with it (see Figure 13).

In (8), letting \(h_1 = H(\varphi_1,0) \), it follows that

\[
\Gamma_3 : y^2 = \frac{c}{\delta} \varphi^2 - \frac{8a}{15\delta} \varphi^{5/2} - \frac{b}{3\delta} \varphi^3 + h_1 \quad (0 < \varphi < \varphi_1).
\]
Figure 19: (The periodic wave become the trivial wave). The varying process for the graph of u_h when $c > 0, \delta < 0, a > 0, \eta < 0$, and $b \to -16a^2/75c + 0$, where $c = 1, \delta = -1, a = 1, \eta = -4.7$, and (a) $b = -16a^2/75c + 10^{-2}$, (b) $b = -16a^2/75c + 10^{-3}$, (c) $b = -16a^2/75c + 10^{-4}$, (d) $b = -16a^2/75c + 10^{-7}$.

Substituting (49) into (7) and integrating it along the orbit Γ_3, we get (47) and (48).

Letting $b \to -16a^2/75c - 0$, it follows that

$$
\lim_{b \to -16a^2/75c - 0} h_1 = \lim_{b \to -16a^2/75c - 0} H(\varphi_1, 0)
= \lim_{b \to -16a^2/75c - 0} \frac{c}{\delta} \varphi_1^2 + \frac{8a}{15\delta} \varphi_1^{5/2} + \frac{b}{3\delta} \varphi_1^3
= 0.
$$

When $h_1 \to 0$, completing the integrals in (47) and (48), we get the kink wave solution and the antikink wave solution as (29).

Here, we have completed the proof for the Proposition 7.

3.4. Bifurcation from Kink-Like Waves

Proposition 8. When the parameters satisfy $\delta > 0$, $(a, b) \in A_2$, and $b \to -16a^2/75c + 0$, the kink-like wave and the antikink-like wave, respectively, become a kink wave and an anti-kink wave with the expressions (29).

For the varying process, see Figures 14 and 15.

Proof. Letting $b \to -16a^2/75c + 0$, it follows that $h_1 \to 0$ (see (50)) and

$$
\lim_{b \to -16a^2/75c + 0} \xi_1^0 = \lim_{r \to 0} \int_0^{\varphi_1/r} \frac{ds}{\sqrt{(c/\delta) s^2 - (8a/15\delta) s^{5/2} + (16a^2/225\delta) s^3}}
\to \infty.
$$

(51)

When $h_1 \to 0$, and $\xi_1^0 \to \infty$, completing the integrals in (17), we get the kink wave solution and the antikink wave solution as (29).

Here, we have completed the proof for the Proposition 8.
3.5. Bifurcation from Compacton-Like Waves

Proposition 9. When the parameters satisfy $\delta > 0$, $(a, b) \in A_2$, and $b \to -16a^2/75c + 0$, the two compacton-like waves become a kink wave and an anti-kink wave with the expressions (29).

For the varying process, see Figures 16 and 17.

Proof. Letting $b \to -16a^2/75c + 0$, it follows that

$$\lim_{b \to -16a^2/75c + 0} h_{q_k} = \lim_{b \to -16a^2/75c + 0} H(q_k, 0) = \lim_{b \to -16a^2/75c + 0} \left(-\frac{c}{\delta} q_k + \frac{8a}{15\delta} q_k^{5/2} + \frac{b}{3\delta} q_k \right) = 0,$$

(52)

$$\lim_{b \to -16a^2/75c + 0} \xi_3^0 = \int_0^{q_k/2} ds \sqrt{(c/\delta) s^2 - (8a/15\delta) s^{5/2} + (16a^2/225c\delta) s^3}$$

$$\lim_{v \to 0} \int_v^{q_k} ds \sqrt{(c/\delta) s^2 - (8a/15\delta) s^{5/2} + (16a^2/225c\delta) s^3} = \infty,$$

(53)

$$\lim_{b \to -16a^2/75c + 0} \xi_4^0 = \lim_{b \to -16a^2/75c + 0} \left(2 \int_{q_k/2}^{q_k} (ds) \left((c/\delta) s^2 - (8a/15\delta) s^{5/2} + (b/3\delta) s^3 + h_{q_k} \right)^{-1/2} \right) + \xi_3^0 = \infty.$$

(54)

When $h_{q_k} \to 0$, $\xi_4^0 \to \infty$, and $\xi_7^0 \to \infty$, completing the integrals in (21), we get the kink wave solution and the antikink wave solution as (29).

Hereby, we have completed the proof for the Proposition 9. \qed

4. Bifurcation of Smooth Periodic Wave

Proposition 10. For $ab \neq 0$ and $\delta < 0$, (1) has a nonlinear wave solution

$$u_h = \left(\frac{-2\alpha}{\sqrt{\beta^2 - 4\alpha \sin (\tau_2 \xi + \eta) + \beta}} \right)^2,$$

(55)

where

$$\tau_2 = \frac{1}{2\sqrt{\delta}},$$

(56)

and η is an arbitrary real number. The solution possesses the following properties.

(1) if (a, b) belongs to any one of the regions A_1, A_6, then u_h represents periodic blow-up wave solution,

(2) if (a, b) belongs to A_2, then u_h represents periodic wave solution.

In particular, when $b \to 0 - 0$, the periodic wave becomes a periodic blow-up wave. For the varying process, see Figure 18.

When $b \to -16a^2/75c + 0$, the periodic wave tends to a trivial wave $u = 225c^2/16a^2$. For the varying process, see Figure 19.

Proof. Completing the integral in (38), we get u_h as (55). $\eta = \eta(v)$ is an arbitrary real number.

For the varying process, see Figure 18.

When $b \to 0 - 0$, then

$$\lim_{b \to 0 - 0} \sqrt{\beta^2 - 4\alpha} = \lim_{b \to 0 - 0} \sqrt{75bc/16a^2} = 1,$$

$$\lim_{b \to 0 - 0} \eta = \lim_{b \to 0 - 0} \arcsin \left(\frac{-\beta q - 2\alpha}{q \sqrt{\beta^2 - 4\alpha}} \right) = \lim_{b \to 0 - 0} \arcsin \left(\frac{1}{\sqrt{\beta^2 - 4\alpha} / \beta^2} \right) + \frac{2}{q \sqrt{\beta^2 - 4\alpha / \alpha^2}} = \arcsin 1 = \frac{\pi}{2}.$$

(58)
We have
\[
\lim_{b \to 0^-} u_h = \lim_{b \to 0^-} \left(\frac{-2\alpha}{\sqrt{\beta^2 - 4\alpha \sin (\tau_2 \xi + \eta) + \beta}} \right)^2 = \lim_{b \to 0^-} \left(\frac{2\alpha / \beta}{\sqrt{(\beta^2 - 4\alpha) / \beta^2 \sin (\tau_2 \xi + \eta) - 1}} \right)^2 = \frac{225c^2}{16\alpha^2[\cos (\tau_2 \xi) - 1]^2}.
\]

(59)

Obviously, \(u_h \) will blow up when \(\xi = 2\pi r_2 \) (\(k \in \mathbb{Z} \)). Hereto, we have completed the proofs for all propositions.

5. Conclusion

In this paper, we have studied the bifurcation behavior of S-KdV equation. Two new types of nonlinear waves called kink-like waves and compacton-like waves have been displayed in Propositions 1–3. Furthermore, two kinds of new bifurcation phenomena have been revealed. The first phenomenon is that the kink waves can be bifurcated from five types of nonlinear waves which have been stated in Propositions 5–9. The second phenomenon is that the periodic blow-up wave can be bifurcated from the periodic wave which has been explained in Proposition 10. At the same time, we have got three new explicit expressions for traveling waves which were given in (25) and (55). Two previous results are our some special cases (see (30) and (32)).

Acknowledgments

This work is supported by the National Natural Science Foundation of China (no. 11171115) and the Science and Technology Foundation of Guizhou (no. LKS[2012]14).

References

