Research Article

Approximate Controllability of Fractional Sobolev-Type Evolution Equations in Banach Spaces

N. I. Mahmudov

Eastern Mediterranean University, Gazimagusa, T.R. North Cyprus, Mersin 10, Turkey

Correspondence should be addressed to N. I. Mahmudov; nazim.mahmudov@emu.edu.tr

Received 3 January 2013; Accepted 1 February 2013

Academic Editor: Jen-Chih Yao

Copyright © 2013 N. I. Mahmudov. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We discuss the approximate controllability of semilinear fractional Sobolev-type differential system under the assumption that the corresponding linear system is approximately controllable. Using Schauder fixed point theorem, fractional calculus and methods of controllability theory, a new set of sufficient conditions for approximate controllability of fractional Sobolev-type differential equations, are formulated and proved. We show that our result has no analogue for the concept of complete controllability. The results of the paper are generalization and continuation of the recent results on this issue.

1. Introduction

Many social, physical, biological, and engineering problems can be described by fractional partial differential equations. In fact, fractional differential equations are considered as an alternative model to nonlinear differential equations. In the last two decades, fractional differential equations (see Samko et al. [1] and the references therein) have attracted many scientists, and notable contributions have been made to both theory and applications of fractional differential equations.

Recently, the existence of mild solutions and stability (and (approximate) controllability of (fractional) semilinear evolution system in Banach spaces have been reported by many researchers; see [2–36]. We refer the reader to El-Borai [3, 4], Balachandran and Park [5], Zhou and Jiao [6, 7], Hernández et al. [8], Wang and Zhou [9], Sakthivel et al. [12, 13], Debboche and Baleanu [14], Wang et al. [15–21], Kumar and Sukavanam [22], Li and Yong [37], Dauer and Mahmudov [28], Mahmudov [27, 29], and the references therein. Complete controllability of evolution systems of Sobolev type in Banach spaces has been studied by Balachandran and Dauer [23], Ahmed [24], and Feckan et al. [2]. However, the approximate controllability of fractional evolution equations of Sobolev type has not been studied.

Motivated by the above-mentioned papers, we study the approximate controllability of a class of fractional evolution equations of Sobolev type:

\[
\frac{d^\alpha}{dt^\alpha} (Ex(t)) = Ax(t) + Bu(t) + f(t, x(t)), \quad t \in [0, b],
\]

\[x(0) = x_0.\]

(1)

where \(A : D(A) \subset X \to X \) and \(E : D(E) \subset X \to X \) are linear operators from a Banach space \(X \) to \(X \). The control function \(u \) takes values in a Hilbert space \(U \) and \(u \in L^2([0, b], U) \). \(B : U \to X \) is a linear bounded operator. The function \(f \in C ([0, b] \times X, X) \) will be specified in the sequel. The fractional derivative \(\frac{d^\alpha}{dt^\alpha} \), \(0 < \alpha < 1 \), is understood in the Caputo sense.

Our aim in this paper is to provide a sufficient condition for the approximate controllability for a class of fractional evolution equations of Sobolev type. It is assumed that \(E^{-1} \) is compact, and, consequently, the associated linear control system (35) is not exactly controllable. Therefore, our approximate controllability results have no analogue for the concept of complete controllability. In Section 5, we give an
example of the system which is not completely controllable, but approximately controllable.

2. Preliminaries

Throughout this paper, unless otherwise specified, the following notations will be used. Let \(X \) be a separable reflexive Banach space and let \(X^* \) stand for its dual space with respect to the continuous pairing \(\langle \cdot, \cdot \rangle \). We may assume, without loss of generality, that \(X \) and \(X^* \) are smooth and strictly convex, by virtue of a renorming theorem (see, e.g., [37, 38]). In particular, this implies that the duality mapping \(J \) of \(X \) into \(X^* \) given by the relations

\[
\| J(z) \| = \| z \|, \quad \langle J(z), z \rangle = \| z \|^2, \quad \forall z \in X
\]

(2)
is bijective, homogeneous, demicontinuous, that is, continuous from \(X \) with a strong topology, into \(X^* \) with weak topology, and strictly monotonic. Moreover, \(J^{-1} : X^* \to X \) is also duality mapping.

The operators \(A : D(A) \subset X \to X \) and \(E : D(E) \subset X \to X \) satisfy the following hypotheses:

(S1) \(A \) and \(E \) are linear operators, and \(A \) is closed;

(S2) \(D(E) \subset D(A) \) and \(E \) is bijective;

(S3) \(E^{-1} : X \to D(E) \) is compact.

The hypotheses (S1)–(S3) and the closed graph theorem imply the boundedness of the linear operator \(AE^{-1} : X \to X \). Consequently, \(\overline{AE^{-1}} \) generates a semigroup \(\{ S(t); t \geq 0 \} \) in \(X \). Assume that \(\max_{t \in [0, T]} \| S(t) \| = M \).

Let us recall the following known definitions in fractional calculus. For more details, see [1].

Definition 1. The fractional integral of order \(\alpha > 0 \) with the lower limit 0 for a function \(f \) is defined as

\[
I_0^\alpha f(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} f(s) ds, \quad t > 0, \quad \alpha > 0,
\]

(3)

provided the right-hand side is pointwise defined on \([0, \infty)\), where \(\Gamma \) is the gamma function.

Definition 2. The Caputo derivative of order \(\alpha \) for a function \(f \) can be written as

\[
D^\alpha f(t) = \frac{1}{\Gamma(n-\alpha)} \int_0^t \frac{f^{(n)}(s)}{(t-s)^{\alpha-n}} ds
\]

(4)

\[
= I_0^{n-\alpha} f^{(n)}(t), \quad t > 0, \quad n-1 \leq \alpha < n.
\]

If \(f \) is an abstract function with values in \(X \), then integrals which appear in the above definitions are taken in Bochner’s sense.

For \(x \in X \) and \(0 < \alpha < 1 \), we define two families \(\{ \mathcal{S}_E(t) : t \geq 0 \} \) and \(\{ \mathcal{F}_E(t) : t \geq 0 \} \) of operators by

\[
\mathcal{S}_E(t) = \int_0^\infty \Psi_\alpha(\theta) S(t^{\alpha}\theta) d\theta, \quad \mathcal{F}_E(t) = \int_0^\infty \Psi_\alpha(\theta) S(t^{\alpha}\theta) d\theta,
\]

\[
\mathcal{S}_E(t) = \mathcal{F}_E(t) = E^{-1}\mathcal{F}_E(t),
\]

(5)

where

\[
\Psi_\alpha(\theta) = \frac{1}{\pi \alpha} \sum_{n=0}^{\infty} (-1)^n \frac{\Gamma(n\alpha + 1)}{n!} \sin(n\alpha), \quad \theta \in (0, \infty),
\]

(6)
is the function of Wright type defined on \((0, \infty)\), which satisfies

\[
\Psi_\alpha(\theta) \geq 0, \quad \int_0^\infty \Psi_\alpha(\theta) d\theta = 1,
\]

(7)

\[
\int_0^\infty \theta^\zeta \Psi_\alpha(\theta) d\theta = \frac{(1+\zeta)}{(1+\alpha \zeta)} , \quad \zeta \in (-1, \infty).
\]

Lemma 3 (see [2]). The operators \(\mathcal{S}_E \) and \(\mathcal{F}_E \) have the following properties.

(i) For any fixed \(t \geq 0 \), \(\mathcal{S}_E(t) \) and \(\mathcal{F}_E(t) \) are linear and bounded operators, and

\[
\| \mathcal{S}_E(t) x \| \leq M \| E^{-1} \| \| x \|,
\]

\[
\| \mathcal{F}_E(t) x \| \leq M \| E^{-1} \| \| x \|.
\]

(8)

(ii) \(\{ \mathcal{S}_E(t) : t \geq 0 \} \) and \(\{ \mathcal{F}_E(t) : t \geq 0 \} \) are compact.

In this paper, we adopt the following definition of mild solution of (1).

Definition 4. A solution \(x(\cdot ; u) \in C([0, b], X) \) is said to be a mild solution of (1) if for any \(u \in L^r([0, b], U) \), the integral equation

\[
x(t) = \mathcal{S}_E(t) E x_0 + \int_0^t (t-s)^\alpha \mathcal{F}_E(t-s) [B u(s) + f (s, x(s))] ds
\]

(9)
is satisfied.

Let \(x(b; u) \) be the state value of (9) at terminal time \(b \) corresponding to the control \(u \). Introduce the set \(\mathcal{R}(b) = \{ x(b; u) : u \in L^r([0, b], U) \} \), which is called the reachable set of system (9) at terminal time \(b \); its closure in \(X \) is denoted by \(\overline{\mathcal{R}(b)} \).

Definition 5. System (1) is said to be approximately controllable on \([0, b]\) if \(\overline{\mathcal{R}(b)} = X \); that is, given an arbitrary \(\varepsilon > 0 \), it is possible to steer from the point \(x_0 \) to within a distance \(\varepsilon \) from all points in the state space \(X \) at time \(b \).
To investigate the approximate controllability of system (9), we assume the following conditions.

(H4) The function $f : [0, b] \times X \to X$ satisfies the following:

(a) $f(t, x) : X \to X$ is continuous for each $t \in [0, b]$ and for each $x \in X$, $f(t, x) : [0, b] \to X$ is strongly measurable;

(b) there is a positive integrable function $n \in L^1([0, b], [0, +\infty))$ and a continuous nondecreasing function $\Lambda_f : [0, \infty) \to [0, \infty)$ such that for every $(t, x) \in [0, b] \times X$, we have

$$
\|f(t, x)\| \leq n(t) \Lambda_f(\|x\|),
$$

$$
\liminf_{r \to \infty} \frac{\Lambda_f(r)}{r} = \sigma_f < \infty.
$$

(H5) The following relationship holds:

$$
\left(1 + \frac{1}{\varepsilon} M_B M_T \frac{b^{\alpha-1}}{2\alpha-1}\right) M \left\| E_{\gamma} \right\| \frac{b^\alpha}{\Gamma(\alpha)} \times \sigma_f \sup_{s \in [0, b]} n(s) < 1,
$$

where $M_B := \|B\|$, $M_T := \|T\|$.

(H6) For every $h \in X$, $z_h(t) = \varepsilon(e^1 + \Gamma_{0}^b f)^{-1}(h)$ converges to zero as $\varepsilon \to 0^+$ in strong topology, where

$$
\Gamma_{0}^b := \int_0^b (b-s)^{2(\alpha-1)} T_E (b-s) B B^* T_E^* (b-s) ds,
$$

and $z_h(t)$ is a solution of

$$
\varepsilon z_h + \Gamma_{0}^b I_0 (z_h) = \varepsilon h.
$$

3. Existence Theorem

In order to formulate the controllability problem in the form suitable for application of fixed point theorem, it is assumed that the corresponding linear system is approximately controllable. Then it will be shown that system (1) is approximately controllable if for all $\varepsilon > 0$, there exists a continuous function $x : C ([0, b], X)$ such that

$$
u_\varepsilon(t, x) = (b-t)^{\alpha-1} B^* T_E^* (b-t) \left((e^1 + \Gamma_{0}^b f)^{-1} p(x) \right),
$$

$$
0 \leq t < b,
$$

$$
x(t) = \delta_E(t) Ex_0 + \int_0^t (t-s)^{\alpha-1} T_E (t-s) \left[B u(s) + f(s, x(s)) \right] ds,
$$

where

$$
p(x) = h - \delta_E(b) E x_0 - \int_0^b (b-s)^{\alpha-1} T_E (b-s) f(s, x(s)) ds.
$$

Having noticed this fact, our goal, in this section, is to find conditions for the solvability of (14). It will be shown that the control in (14) drives system (1) from x_0 to

$$
\begin{align*}
&h - \varepsilon f \left(\left(e^1 + \Gamma_{0}^b f \right)^{-1} p(x) \right),
\end{align*}
$$

provided that system (14) has a solution.

Theorem 6. Assume that assumptions (S1)–(S3), (H4), (H5) hold and $1/2 < \alpha \leq 1$. Then there exists a solution to (14).

Proof. The proof of Theorem 6 follows from Lemmas 7–9, infinite dimensional analogue of Arzela-Ascoli theorem, and the Schauder fixed point theorem.

For all $\varepsilon > 0$, consider the operator $\Phi_\varepsilon : C ([0, b], X) \to C ([0, b], X)$ defined as follows:

$$
(\Phi_\varepsilon x)(t) := \delta_E(t) Ex_0 + \int_0^t (t-s)^{\alpha-1} T_E (t-s) \times \left\{ B u(s, x) + f(s, x(s)) \right\} ds,
$$

where

$$
u_\varepsilon(t, x) = (b-t)^{\alpha-1} B^* T_E^* (b-t) \left((e^1 + \Gamma_{0}^b f)^{-1} p(x) \right),
$$

$$
p(x) = h - \delta_E(b) E x_0 - \int_0^b (b-s)^{\alpha-1} T_E (b-s) f(s, x(s)) ds.
$$

It will be shown that for all $\varepsilon > 0$, the operator $\Phi_\varepsilon : C ([0, b], X) \to C ([0, b], X)$ has a fixed point. To prove this we will employ the Schauder fixed point theorem.

Lemma 7. Under assumptions (S1)–(S3), (H4), (H5), for any $\varepsilon > 0$ there exists a positive number $r := r(\varepsilon)$ such that $\Phi_\varepsilon(B_r) \subset B_r$.

Proof. Let $\varepsilon > 0$ be fixed. If it is not true, then for each $r > 0$, there exists a function $z_\varepsilon \in B_r$, but $\Phi_\varepsilon(z_\varepsilon) \notin B_r$. So for some $t = t(r) \in [0, b]$, one can show that

$$
r \leq \| \Phi_\varepsilon z_\varepsilon(t) \| \leq \| \delta_E(t) Ex_0 \|
$$

$$
+ \left\| \int_0^t (t-s)^{\alpha-1} T_E (t-s) f(s, x(s)) ds \right\|
$$

$$
+ \left\| \int_0^t (t-s)^{\alpha-1} T_E (t-s) B u_\varepsilon(s, x(s)) ds \right\|
$$

$$
= I_1 + I_2 + I_3.
$$
Let us estimate $I_i, i = 1, 2, 3$. By the assumption (H4), we have
\begin{equation}
I_1 \leq \|S_E(t)E_0\| \leq M\|E^{-1}\|\|E_0\|, \tag{20}
\end{equation}
\begin{align*}
I_2 & \leq \int_0^t \|(t-s)^{\alpha-1}\mathcal{T}_E(t-s)(t-s)f(s,x(s))\| ds \\
& \leq \frac{M\|E^{-1}\|}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1}\|f(s,x(s))\| ds \\
& \leq \frac{M\|E^{-1}\|}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1}n(s)\Lambda_f(\|x(s)\|) ds \\
& \leq \frac{M\|E^{-1}\|}{\Gamma(\alpha)} \frac{b^\alpha}{\alpha} \Lambda_f(r) \sup_{s \in [0,b]} n(s).
\end{align*}
\begin{equation}
(21)
\end{equation}
Combining the estimates (19)–(21) yields
\begin{equation}
I_1 + I_2 < M\|E^{-1}\|\|E_0\| + \frac{M\|E^{-1}\|}{\Gamma(\alpha)} \frac{b^\alpha}{\alpha} \Lambda_f(r) \sup_{s \in [0,b]} n(s) = \Delta.
\end{equation}
\begin{equation}
(22)
\end{equation}
On the other hand,
\begin{align*}
I_3 & \leq \int_0^t \|(t-s)^{\alpha-1}\mathcal{T}_E(t-s)Bu_\varepsilon(s,x)\| ds \\
& = \int_0^t \|(t-s)^{\alpha-1}(b-s)^{\alpha-1}\mathcal{T}_E(t-s) \\
& \times BB^*\mathcal{T}_E^* (b-t) J\left((\varepsilon I + t_0^b I)^{-1} p(x)\right)\| ds \\
& \leq \int_0^t \|(t-s)^{\alpha-1}(b-s)^{\alpha-1}\mathcal{T}_E(t-s)BB^*\mathcal{T}_E^* (b-t)\| ds \\
& \times \left\|J\left((\varepsilon I + t_0^b I)^{-1} p(x)\right)\right\| \\
& \leq M_B^2 M_2^2 \frac{b^{2\alpha-2}}{2\alpha-1} \left\|\left((\varepsilon I + t_0^b I)^{-1} p(x)\right)\right\| \\
& = M_B^2 M_2^2 \frac{b^{2\alpha-2}}{2\alpha-1} \|p(x)\| \\
& \leq \frac{1}{\varepsilon} M_B^2 M_2^2 \frac{b^{2\alpha-2}}{2\alpha-1} \Delta \\
& \leq \frac{1}{\varepsilon} M_B^2 M_2^2 \frac{b^{2\alpha-2}}{2\alpha-1} \Delta.
\end{align*}
\begin{equation}
(23)
\end{equation}
Thus,
\begin{align*}
r \leq \|(\Phi_\varepsilon z_r)(t)\| & \leq \Delta + \frac{1}{\varepsilon} M_B^2 M_2^2 \frac{b^{2\alpha-2}}{2\alpha-1} \Delta \\
& = \left(1 + \frac{1}{\varepsilon} M_B^2 M_2^2 \frac{b^{2\alpha-2}}{2\alpha-1}\right) \Delta.
\end{align*}
\begin{equation}
(24)
\end{equation}
Dividing both sides by r and taking $r \to \infty$, we obtain that
\begin{equation}
\left(1 + \frac{1}{\varepsilon} M_B^2 M_2^2 \frac{b^{2\alpha-2}}{2\alpha-1}\right) M\|E^{-1}\| \frac{b^\alpha}{\alpha} \sup_{s \in [0,b]} n(s) \geq 1,
\end{equation}
\begin{equation}
(25)
\end{equation}
which is a contradiction by assumption (H5). Thus, $\Phi_\varepsilon(B_r) \subset B_r$ for some $r > 0$.

\textbf{Lemma 8.} Let assumptions (S1)–(S3), (H4), (H5) hold. Then the set $\{\Phi_\varepsilon z : z \in B_r\}$ is an equicontinuous family of functions on $[0,b]$.

\textit{Proof.} Let $0 < \eta < t < b$ and $\delta > 0$ such that
\begin{equation}
\|\mathcal{T}_E(s_1) - \mathcal{T}_E(s_2)\| < \eta
\end{equation}
\begin{equation}
(26)
\end{equation}
for every $s_1, s_2 \in [0,b]$ with $|s_1 - s_2| < \delta$. For $z \in B_r, 0 < |h| < \delta, t + h \in [0,b]$, we have
\begin{align*}
\|\Phi_\varepsilon z(t+h) - (\Phi_\varepsilon z)(t)\| & \leq \int_0^t \left|(t+h-s)^{\alpha-1} - (t-s)^{\alpha-1}\right| \\
& \times \mathcal{T}_E(t+h-s) \left[Bu_\varepsilon(s,z) + f(s,z(s))\right] ds \\
& + \int_t^{t+h} (t+h-s)^{\alpha-1} \mathcal{T}_E(t+h-s) \\
& \times \left[Bu_\varepsilon(s,z) + f(s,z(s))\right] ds \\
& + \int_0^t (t-s)^{\alpha-1} \mathcal{T}_E(t+h-s) - \mathcal{T}_E(t-s) \\
& \times \left[Bu_\varepsilon(s,z) + f(s,z(s))\right] ds.
\end{align*}
\begin{equation}
(27)
\end{equation}
Applying Lemma 3 and the H"older inequality, we obtain
\begin{align*}
\|\Phi_\varepsilon z(t+h) - (\Phi_\varepsilon z)(t)\| & \leq \frac{M\|E^{-1}\|}{\Gamma(\alpha)} \Delta_f(r) \\
& \times \int_0^t \left|(t+h-s)^{\alpha-1} - (t-s)^{\alpha-1}\right| n(s) ds \\
& + \frac{M\|E^{-1}\|}{\Gamma(\alpha)} \frac{b^\alpha}{\alpha} \sup_{s \in [0,b]} n(s) \geq 1.
\end{align*}
\begin{equation}
(28)
\end{equation}
A similar argument, as before, is as follows:

\[J_1 \leq \alpha M \int_0^t (t-s)^{\alpha-1} \left(\| B_{u_\epsilon} (s, z) \| + \| f (s, z (s)) \| \right) ds \times \left(\int_0^\delta \theta \Psi_a (\theta) d\theta \right) \]

\[J_2 \leq \alpha M \int_{t-\lambda}^t (t-s)^{\alpha-1} \left(\| B_{u_\epsilon} (s, z) \| + \| f (s, z (s)) \| \right) ds \times \left(\int_0^\delta \theta \Psi_a (\theta) d\theta \right), \]

where we have used the equality

\[\int_0^\infty \theta^\beta \Psi_a (\theta) d\theta = \frac{\Gamma (1+\beta)}{\Gamma (1+\alpha\beta)}. \]

From (30)–(32), one can see that for each \(z \in B_r \),

\[\left\| (\Phi_{\epsilon}z) (t) - \left(\Phi_{\epsilon}^{\lambda, \delta} z \right) (t) \right\| \rightarrow 0 \quad \text{as} \ \lambda \rightarrow 0^+, \ \delta \rightarrow 0^+. \]

Therefore, there are relatively compact sets arbitrary close to the set \(\{ (\Phi_{\epsilon}z) (t) : z \in B_r \} \); hence, the set \(\{ (\Phi_{\epsilon}z) (t) : z \in B_r \} \) is also precompact in \(X \).

4. Main Results

Consider the following linear fractional differential system:

\[D_{\epsilon}^{\alpha} E(t) = Ax (t) + B u (t), \quad t \in (0, b], \]

\[x (0) = x_0. \]
It is convenient at this point to introduce the controllability and resolvent operators associated with (35) as

\[
L_0^b = \int_0^b (b-s)^{\alpha-1} \mathcal{T}_E (b-s) Bu(s) \, ds : L^2([0,b],U) \to X,
\]

\[
L_0^b(B_0^b) = \int_0^b (b-s)^{2(\alpha-1)} \mathcal{T}_E (b-s) \times BB^* \mathcal{T}_E^*(b-s) ds : X \to X,
\]

\[
\Gamma_0^b = (L_0^b(B_0^b))^* = \int_0^b (b-s)^{2(\alpha-1)} \mathcal{T}_E (b-s) \times BB^* \mathcal{T}_E^*(b-s) ds : X \to X,
\]

respectively, where \(B^*\) denotes the adjoint of \(B\) and \(\mathcal{T}_E^*(t)\) is the adjoint of \(\mathcal{T}_a(t)\). It is straightforward that the operator \(L_0^b\) is a linear bounded operator for \(1/2 < \alpha \leq 1\).

Theorem 10 (see [27]). The following three conditions are equivalent.

(i) \(\Gamma\) is positive; that is, \(\langle z^*, \Gamma z^* \rangle > 0\) for all nonzero \(z^* \in X^*\).

(ii) For all \(h \in X\), \(J(z_\varepsilon(h))\) converges to zero as \(\varepsilon \to 0^+\) in the weak topology, where \(z_\varepsilon(h) = \varepsilon(\varepsilon I + \Gamma J)(h)\) is a solution of (13).

(iii) For all \(h \in X\), \(z_\varepsilon(h) = \varepsilon(\varepsilon I + \Gamma J)^{-1}(h)\) converges to zero as \(\varepsilon \to 0^+\) in the strong topology.

Remark 11. It is known that Theorem 10 (i) holds if and only if \(\text{Im } L_0^b = X\). In other words, Theorem 10 (i) holds if and only if the corresponding linear system is approximately controllable on \([0,b]\). Consequently, assumption (H6) is equivalent to the approximate controllability of the linear system (35).

Theorem 12 (see [27]). Let \(p : X \to X\) be a nonlinear operator. Assume that \(z_\varepsilon\) is a solution of the following equation:

\[
eq \varepsilon z_\varepsilon + (\varepsilon I + \Gamma J)(z_\varepsilon) = q,
\]

\[
\|p(z_\varepsilon) - q\| \to 0 \quad \text{as } \varepsilon \to 0^+, \quad q \in X.
\]

Then there exists a subsequence of the sequence \(\{z_\varepsilon\}\) strongly converging to zero as \(\varepsilon \to 0^+\).

We are now in a position to state and prove the main result of the paper.

Theorem 13. Let \(1/2 < \alpha \leq 1\). Suppose that conditions (S1)–(S3), (H4)–(H5) are satisfied. Besides, assume additionally that there exists \(N \in L^\infty([0,b], [0,\infty))\) such that

\[
\sup_{t \in [0,b]} \|f(t,x)\| \leq N(t), \quad \text{for a.e. } t \in [0,b].
\]

Then system (1) is approximately controllable on \([0,b]\).

Proof. Let \(x^*\) be a fixed point of \(\Phi_\varepsilon\) in \(B_{\varepsilon(t)}\). Then \(x^*\) is a mild solution of (1) on \([0,b]\) under the control

\[
u_\varepsilon(t, x^*) = (b-t)^{\alpha-1} B^* \mathcal{T}_E (b-t) f \left(\left(\varepsilon I + \Gamma J\right)^{-1} p(x^*)\right),
\]

\[
p(x^*) = h - \mathcal{D}_E(b) x_0
\]

and satisfies the following equality:

\[
x^* = \mathcal{D}_E(b) x_0 + \int_0^b (b-s)^{\alpha-1} \mathcal{T}_E (b-s) f (s, x^*(s)) ds
\]

\[
+ \int_0^b (b-s)^{\alpha-1} \mathcal{T}_E (b-s) \times BB^* \mathcal{T}_E^*(b-s) f (s, x^*(s)) ds
\]

\[
= h - \varepsilon \left(\varepsilon I + \Gamma J\right)^{-1} p(x^*)
\]

In other words, \(z_\varepsilon = h - x^*(b)\) is a solution of

\[
(\varepsilon I + \Gamma J)(z_\varepsilon) = q
\]

By our assumption,

\[
\int_0^b \|f(s, x^*(s))\|^2 ds \leq \int_0^T N^2(s) ds
\]

Consequently, the sequence \(\{f(s, x^*(s))\}\) is bounded. Then there is a subsequence still denoted by \(f(s, x^*(s))\) and weakly converges to, say, \(f(\cdot)\) in \(L^2([0,b], X)\). Then

\[
\|p(x^*) - q\| = \left\|\int_0^b (b-s)^{\alpha-1} \mathcal{T}_E (b-s) f (s, x^*(s)) - f (s) ds\right\|
\]

\[
\leq \sup_{0 \leq t \leq b} \left\|\int_0^t (t-s)^{\alpha-1} \mathcal{T}_E (t-s) f (s, x^*(s)) - f (s) ds\right\| \to 0,
\]

where

\[
q = h - \mathcal{D}_E x_0 - \int_0^b (b-s)^{\alpha-1} \mathcal{T}_E (b-s) f (s) ds
\]

as \(\varepsilon \to 0^+\) because of the compactness of an operator \(f(\cdot) \to \int_0^\cdot (t-s)^{\alpha-1} \mathcal{T}_E (t-s) f(s) ds : L_2([0,b], X) \to C([0,b], X)\). Then by Theorem 12 for any \(h \in X\),

\[
\|x^*(b) - h\| = \|z_\varepsilon\| \to 0
\]

as \(\varepsilon \to 0^+\). This gives the approximate controllability. The theorem is proved.
Remark 14. Theorem 13 assumes that the operator E^{-1} is compact and, consequently, the associated linear control system (35) is not exactly controllable. Therefore, Theorem 13 has no analogue for the concept of exact controllability.

Remark 15. In order to describe various real-world problems in physical and engineering sciences subject to abrupt changes at certain instants during the evolution process, fractional impulsive differential equations have been used for the system model. Our result can be extended to study the complete and approximate controllability of nonlinear fractional impulsive differential equations of Sobolev type; see [35, 36].

5. Applications

Example 16. Let $X = U = L^2[0, \pi]$. Consider the following fractional partial differential equation with control:

\[c D^{3/4}_t (x(t, \theta) - x_{q_0}(t, \theta)) = \phi (t, x(t, \theta)) + g(t, x(t, \theta)) + u(t, \theta), \quad x(t, 0) = x(t, \pi) = 0, \quad x(0, \theta) = \phi (\theta), \quad 0 \leq t \leq b, \quad 0 \leq \theta \leq \pi. \]

(47)

Define $A : D(A) \subset X \rightarrow X$ by $A := x_{q_0}$ and $E : D(E) \subset X \rightarrow X$ by $E(x) := x - x_{q_0}$, where each domain, $D(A)$ and $D(E)$, is given by

\[\{ x \in X : x, x_{q_0} \text{ are absolutely continuous}, \quad x_{q_0} \in X, \quad x(t, 0) = x(t, \pi) = 0 \}. \]

(48)

A and E can be written as follows:

\[Ax := \sum_{n=1}^{\infty} - n^2 \langle x, e_n \rangle e_n, \quad x \in D(A), \]

(49)

\[Ex = \sum_{n=1}^{\infty} (1 + n^2) \langle x, e_n \rangle e_n, \quad x \in D(E), \]

respectively, where $e_n(\theta) := \sqrt{2/n} \sin n\theta$, $n = 1, 2, \ldots$, is the orthonormal set of eigenvalues of A. Moreover, for any $x \in X$, we have

\[E^{-1}x = \sum_{n=1}^{\infty} \frac{1 + n^2}{1 + n^2} \langle x, e_n \rangle e_n, \]

\[AE^{-1}x = \sum_{n=1}^{\infty} - n^2 \frac{1}{1 + n^2} \langle x, e_n \rangle e_n, \]

\[S(t)x = \sum_{n=1}^{\infty} \exp \left(\frac{-t^2}{1 + n^2} \right) \langle x, e_n \rangle e_n, \]

\[\mathcal{T}_E(t)x = \frac{3}{4} \sum_{n=1}^{\infty} \int_0^{\infty} E^{-1} \theta \xi_{3/4}(\theta) S(\theta^{1/4} \theta) d\theta, \]

\[\mathcal{T}_E(t)x = \frac{3}{4} \sum_{n=1}^{\infty} \frac{1}{1 + n^2} \]

\[\times \int_0^{\infty} \theta \xi_{3/4}(\theta) \exp \left(\frac{-\theta^2}{1 + n^2} \right) d\theta \]

\[\times \langle x, e_n \rangle e_n \]

\[= - \sum_{n=1}^{\infty} \frac{1}{n^2} \}^{1/4} \]

\[\times \int_0^{\infty} \xi_{3/4}(\theta) \frac{d}{d\theta} \exp \left(\frac{-\theta^2}{1 + n^2} \right) d\theta \]

\[\times \langle x, e_n \rangle e_n, \]

\[\mathcal{F}_E(t)x = \frac{3}{4} \sum_{n=1}^{\infty} \frac{1}{n^2} \]

\[\times \int_0^{\infty} \theta \xi_{3/4}(\theta) \exp \left(\frac{-\theta^2}{1 + n^2} \right) d\theta \]

\[\times \langle x, e_n \rangle e_n \]

It is clear that E^{-1} is compact. The linear system corresponding to (47) is completely controllable if and only if there exists $\gamma > 0$ such that $\langle 1_b^b x, x \rangle \geq \gamma \|x\|^2$ for all $x \in X$. Assume

\[\langle 1_b^b x, x \rangle \]

\[= \frac{9}{16} \sum_{n=1}^{\infty} \frac{1}{1 + n^2} \]

\[\times \int_0^{b} \xi_{3/4}(\theta) \exp \left(\frac{-\theta^2}{1 + n^2} \right) d\theta \]

\[\times \langle x, e_n \rangle e_n \]

\[\geq \gamma \sum_{n=1}^{\infty} \langle x, e_n \rangle^2 \]

(51)

Then

\[\frac{9}{16} \frac{1}{1 + n^2} \]

\[\times \int_0^{b} \xi_{3/4}(\theta) \exp \left(\frac{-\theta^2}{1 + n^2} \right) d\theta \]

\[\geq \gamma, \]

\[\gamma' = \frac{9}{16} \frac{1}{1 + n^2} \]

\[\times \int_0^{b} s^{-1/2} \left(\int_0^{\infty} \theta \xi_{3/4}(\theta) \exp \left(\frac{-\theta^2}{1 + n^2} \right) d\theta \right)^2 d\theta \]

\[ds \]
and no such $\gamma > 0$ exists which satisfies (51), and hence the linear system corresponding to (47) is never completely controllable. We show that the associated linear system is approximately controllable on $[0, b]$. We need to show that $(b-s)^{\alpha-1} B^{\alpha} \mathcal{E}_{\alpha}^\alpha (b-s)x = 0$, $0 \leq s < b \Rightarrow x = 0$. Indeed,

$$(b-s)^{\alpha-1} B^{\alpha} \mathcal{E}_{\alpha}^\alpha (b-s)x = (b-s)^{\alpha-1} \frac{3}{4} \int_0^\infty \theta \xi_{\alpha/4} (\theta) \left(\sum_{n=1}^\infty \frac{1}{1+\frac{n^2}{2}} \exp \left(-\frac{n^2}{1+\frac{n^4}{2}} \frac{3}{4} \right) \right) dx = 0$$

Moreover, $\sup_{t \in [0, b]} \|g(t, \cdot)\| \leq N(t)$, for a.e. $t \in [0, b]$.

Define $f : [0, b] \times X \to X$ by $f(t, x)(\theta) = g(t, x(t, \theta))$. Now, system (47) can be written in the abstract form (1). Clearly, all the assumptions in Theorem 13 are satisfied if (H6) holds. Then system (47) is approximately controllable on $[0, b]$.

References

