Research Article

Double Lacunary Density and Some Inclusion Results in Locally Solid Riesz Spaces

S. A. Mohiuddine, 1 Bipan Hazarika, 2 and Abdullah Alotaibi 1

1 Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
2 Department of Mathematics, Rajiv Gandhi University, Rono Hills, Doimukh, Arunachal Pradesh 791 112, India

Correspondence should be addressed to S. A. Mohiuddine; mohiuddine@gmail.com

Received 21 February 2013; Accepted 13 June 2013

1. Introduction

Fast [1] and Steinhaus [2] independently introduced an extension of the usual concept of sequential limits which he called statistical convergence. Actually the idea of statistical convergence was formerly given under the name “almost convergence” by Zygmund in the first edition (Warsaw, 1935) of his celebrated monograph [3]. Schoenberg [4] and Šalát [5] gave some basic properties of statistical convergence. In 1985, Frigyes [6] introduced the notion of statistically Cauchy sequence and proved that it is equivalent to the concept of statistical convergence. The notion of statistical convergence is a very useful functional tool for studying the convergence problems of numerical sequences/matrices through the concept of density. Later on it was further investigated by various authors in different frameworks (see [7–18]). Mursaleen and Edely [19] extended these concepts from single to double sequences by using two dimensional analogue of natural density of subsets of \(\mathbb{N} \times \mathbb{N} \) and established relationship between statistical convergence and strongly Cesáro summable double sequences. Mohiuddine et al. [20] and Mursaleen and Mohiuddine [21] defined these notions for double sequences in fuzzy normed spaces and intuitionistic fuzzy normed spaces, respectively. Recently, Mohiuddine et al. [22] introduced these notions for double sequences in locally solid Riesz spaces and proved some interesting results. Frigyes and Orhan [23] presented an interesting generalization of statistical convergence with the help of lacunary sequence and called it lacunary statistical convergence. Savaş and Patterson [24, 25] extended the notion of lacunary statistical convergence from single sequences to double sequences with the help of double lacunary density and proved some interesting results related to this concept. For more details related to the concept of lacunary statistical convergence for single and double sequences and applications to approximation theorems, we refer to [26–42].

On the other hand, the concept of Riesz space was introduced by Riesz [43]. Since then, with a view to utilize this concept in topology and analysis, many authors have extensively developed the theory of Riesz spaces along with their applications (e.g., [7, 22, 44, 45]).

2. Definitions and Notations

In this section, we recall some of the basic concepts related to the notions of statistical convergence and lacunary sequence which we will use throughout the paper.

Let \(E \subseteq \mathbb{N} \). Then the natural density of \(E \) is denoted by \(\delta(E) \) and is defined by

\[
\delta(E) = \lim_{n \to \infty} \frac{1}{n} |\{k \leq n : k \in E\}| \quad \text{exists},
\] (1)
Abstract and Applied Analysis

where the vertical bar denotes the cardinality of the respective set.

Definition 1 (see [14]). A sequence $x = (x_k)$ in a topological space X is said to be statistically convergent to ℓ if for every neighborhood V of ℓ

$$\delta \left(\{ k \in \mathbb{N} : x_k \notin V \} \right) = 0.$$

(2)

In this case, we write $S\text{-lim } x = \ell$.

By a lacunary sequence $\theta = (k_r)$, where $k_0 = 0$, we will mean an increasing sequence of nonnegative integers with $h_r = k_r - k_{r-1} \to \infty$ as $r \to \infty$. The intervals determined by θ will be denoted by $I_r = (k_{r-1}, k_r]$ and the ratio k_r / k_{r-1} will be defined by q_r (see [46]).

Definition 2. Let θ be a lacunary sequence and let $I_r = \{ k : k_{r-1} < k \leq k_r \}$. Let $K \subseteq \mathbb{N}$. The number $\delta_\theta(K)$ is called the lacunary density or θ-density of K if

$$\delta_\theta(K) = \lim_{r \to \infty} \frac{1}{h_r} | \{ i \in I_r : i \in K \} |$$

exists.

(3)

The generalized lacunary mean is defined by

$$t_r(x) = \frac{1}{h_r} \sum_{k \in I_r} x_k.$$

(4)

Definition 3. A sequence $x = (x_k)$ is said to be θ-summable to number ℓ if $t_r(x) \to \ell$ as $r \to \infty$. In this case we write that ℓ is the θ-limit of x. If $\theta = (2^r)$, then θ-summable reduces to C_1-summable (see [46]).

By the convergence of a double sequence we mean the convergence in the Pringsheim sense [47]. A double sequence $x = (x_{ij})$ has a Pringsheim limit L (denoted by $P\text{-lim } x = L$) provided that given an $\varepsilon > 0$ there exists an $n \in \mathbb{N}$ such that $|x_{ij} - L| < \varepsilon$ whenever $k,l > n$. We will describe such an $x = (x_{ij})$ more briefly as “$P\text{-convergent}.”$

Let $K \subseteq \mathbb{N} \times \mathbb{N}$, and let $K(m,n)$ denote the number of (i,j) in K such that $i \leq m$ and $j \leq n$ (see [19]). Then the lower natural density of K is defined by

$$\delta_\theta(K) = \lim_{m,n \to \infty} \frac{\inf_{m,n \to \infty} |K(m,n)|/mn}{mn}.$$

In case that the sequence $(K(m,n))/mn$ has a limit in Pringsheim’s sense, then we say that K has a double natural density and is defined by

$$P\text{-lim}_{m,n \to \infty} \frac{|K(m,n)|}{mn} = \delta_\theta(K).$$

(5)

For example, let $K = \{(i^2, j^3) : i,j \in \mathbb{N} \}$. Then

$$\delta_\theta(K) = P\text{-lim}_{m,n \to \infty} \frac{|K(m,n)|}{mn} \leq P\text{-lim}_{m,n \to \infty} \frac{\sqrt{m} \sqrt{n}}{mn} = 0;$$

(6)

that is, the set K has double natural density zero, while the set $\{(i,3j) : i,j \in \mathbb{N} \}$ has double natural density $1/3$.

The double sequence $\overline{\theta} = \theta_{rs} = \{(k_r,l_s)\}$ is called double lacunary sequence if there exist two increasing sequences of integers such that (see [25])

$$k_0 = 0, \quad h_r = k_r - k_{r-1} \to \infty \quad \text{as } r \to \infty;$$

$$l_0 = 0, \quad \overline{h}_s = l_s - l_{s-1} \to \infty \quad \text{as } s \to \infty.$$

(7)

Notations. $k_{rs} = k_r l_s$, $h_{rs} = h_r \overline{h}_s$, and θ_{rs} is determined by

$$I_{rs} = \{ (k,l) : k_{r-1} < k \leq k_r, l_{s-1} < l \leq l_s \},$$

$$q_r = \frac{k_r}{k_{r-1}}, \quad \overline{q}_s = \frac{l_s}{l_{s-1}}, \quad q_{rs} = q_r \overline{q}_s.$$

(8)

Definition 4 (see [26]). Let $\overline{\theta} = \{(k_r,l_s)\}$ be a double lacunary sequence. Let $K \subseteq \mathbb{N} \times \mathbb{N}$. The number

$$\delta_\overline{\theta}(K) = P\text{-lim}_{rs \to \infty} \frac{1}{h_{rs}} \inf \{|(i,j) \in I_{rs} : (i,j) \in K\}$$

(9)

is said to be double lacunary density, that is, $\overline{\theta}$-density of K, provided the limit exists.

We define the generalized double lacunary mean by

$$t_{rs}(x) = \frac{1}{h_{rs}} \sum_{k,l \in I_{rs}} x_{kl}.$$

3. Locally Solid Riesz Spaces

Let X be a real vector space and let α be a partial order on this space. Then X is said to be an ordered vector space if it satisfies the following properties:

(i) if $x, y \in X$ and $y \preceq x$, then $y + z \preceq x + z$ for each $z \in X$;

(ii) if $x, y \in X$ and $y \preceq x$, then $ay \preceq ax$ for each $a \geq 0$.

If, in addition, X is a lattice with respect to the partial order, then X is said to be a Riesz space (or a vector lattice) (see [45]).

For an element x of a Riesz space X, the positive part of x is defined by $x^+ = x \vee 0 = \sup \{|x|, 0\}$, the negative part of x by $x^- = (-x) \vee 0$, and the absolute value of x by $|x| = x \vee (-x)$, where θ is the zero element of X.

A subset S of a Riesz space X is said to be solid if $y \in S$ and $\|y\| \leq \|x\|$ implies $x \in S$.

A topological vector space (X, τ) is a vector space X which has a topology (linear) τ, such that the algebraic operations of addition and scalar multiplication in X are continuous. Continuity of addition means that the function $f : X \times X \to X$ defined by $f(x, y) = x + y$ is continuous on $X \times X$, and continuity of scalar multiplication means that the function $f : \mathbb{R} \times X \to X$ defined by $f(a, x) = ax$ is continuous on $\mathbb{R} \times X$.

Every linear topology τ on a vector space X has a base N for the neighborhoods of 0 satisfying the following properties.

(1) Each $Y \in N$ is a balanced set; that is, $ax \in Y$ holds for all $x \in Y$ and for every $a \in \mathbb{R}$ with $|a| \leq 1$.

(2) Each $Y \in N$ is an absorbing set; that is, for every $x \in X$, there exists $a > 0$ such that $ax \in Y$.

(3) For each $Y \in N$ there exists some $E \in N$ with $E + E \subseteq Y$.

Abstract and Applied Analysis
A linear topology \(\tau \) on a Riesz space \(X \) is said to be locally solid [48] if \(\tau \) has a base at zero consisting of solid sets. A locally solid Riesz space \((X, \tau)\) is a Riesz space equipped with a locally solid topology \(\tau \).

Recall [49] that a topological space is first countable if each point has a countable (decreasing) local base.

The purpose of this paper is to give certain characterizations of lacunary statistically convergent double sequences in locally solid Riesz spaces and obtain extensions of a decomposition theorem and some inclusion results related to the notions statistically convergence and lacunary statistically convergence in locally solid Riesz spaces.

Throughout the paper, the symbol \(N_{\text{odd}} \) will denote any base at zero consisting of solid sets and satisfying the conditions (1), (2), and (3) in a locally solid topology.

4. Double Lacunary Statistical Convergence in Locally Solid Riesz Spaces

Throughout the paper \(X \) will denote the Hausdorff locally solid Riesz space which is first countable.

The idea of lacunary statistical convergence for single sequences in locally solid Riesz spaces has been recently studied by Mohiuddine and Alghamdi [50] as follows.

Definition 5 (see [50]). Let \((X, \tau)\) be a locally solid Riesz space. A sequence \((x_k)\) of points in \(X \) is said to be \(S_0(\tau)\)-convergent to an element \(x_0 \) of \(X \) if for each \(\tau \)-neighborhood \(V \) of zero,

\[
\delta_0 \left(\left\{ k \in \mathbb{N} : x_k - x_0 \notin V \right\} \right) = 0;
\]

that is,

\[
\lim_{r \to \infty} \frac{1}{h_r} \left| \left\{ k \in I_r : x_k - x_0 \notin V \right\} \right| = 0.
\]

In this case, we write \(S_0(\tau)\)-lim \(k \to \infty \) \(x_k = x_0 \) or \((x_k) \xrightarrow{S_0(\tau)} x_0 \).

Albayrak and Pehlivan [7] introduced the notion of statistical convergence in locally solid Riesz spaces. Afterward, Mohiuddine et al. [22] defined and studied the concept of statistical convergence in this setup as follows.

Definition 6 (see [22]). Let \((X, \tau)\) be a locally solid Riesz space. Then, a double sequence \(x = (z_{k,l}) \) in \(X \) is said to be statistically \(\tau \)-convergent to the number \(x_0 \in X \) if for every \(\tau \)-neighborhood \(V \) of zero,

\[
P \lim_{m,n \to \infty} \frac{1}{mn} \left| \left\{ (j,k) : j \leq m, k \leq n : z_{j,k} - x_0 \notin V \right\} \right| = 0.
\]

In this case we write \(S(\tau)\)-lim \(x = x_0 \) or \((z_{j,k}) \xrightarrow{S(\tau)} x_0 \).

Now we recall the definition of lacunary statistical convergence of double sequences in the framework of locally solid Riesz spaces as follows.

Definition 7. Let \((X, \tau)\) be a locally solid Riesz space. A double sequence \((z_{k,l})\) of points in \(X \) is said to be double lacunary statistical \(\tau \)-convergent or \(S_\tau(\tau)\)-convergent to an element \(x_0 \) of \(X \) if for each \(\tau \)-neighborhood \(V \) of zero,

\[
\delta_\tau \left(\left\{ (k,l) \in \mathbb{N} \times \mathbb{N} : z_{k,l} - x_0 \notin V \right\} \right) = 0;
\]

that is,

\[
P \lim_{r,s \to \infty} \frac{1}{h_{r,s}} \left| \left\{ (k,l) \in I_{r,s} : z_{k,l} - x_0 \notin V \right\} \right| = 0.
\]

In this case, we write \(S_\tau(\tau)\)-lim \(k,l \to \infty \) \(z_{k,l} = x_0 \) or \((z_{k,l}) \xrightarrow{S_\tau(\tau)} x_0 \).

Now we prove our results.

Theorem 8. Let \((X, \tau)\) be a locally solid Riesz space. If a double sequence \((z_{k,l})\) of points in \(X \) is \(S_\tau(\tau)\)-convergent to \(x_0 \) in \(X \), then there are double sequences \((y_{k,j})\) and \((z_{k})\) such that \(S_\tau(\tau)\)-lim \(k,l \to \infty \) \(y_{k,j} = x_0 \) and \(z_{k,j} = x_0 + x_{k,j} \), for all \((k,l) \in \mathbb{N} \times \mathbb{N} \) and \(\delta_\tau \left(\left\{ (k,l) \in \mathbb{N} \times \mathbb{N} : z_{k,j} \neq y_{k,j} \right\} \right) = 0 \) and \((z_{k,j})\) is a \(S_\tau(\tau)\)-null sequence.

Proof. Let \(\{ V_i \} \) be a nested base of \(\tau \)-neighborhoods of zero. Take \(n_0 = 0 \) and choose an increasing sequence \((n_i)\) of positive integers such that

\[
\delta_\tau \left(\left\{ (k,l) \in \mathbb{N} \times \mathbb{N} : z_{k,j} - x_0 \notin V_{n_i} \right\} \right) < \frac{1}{i} \quad \text{for} \quad k,l > n_i.
\]

Let us define the sequences \((y_{k,j})\) and \((z_{k,j})\) as follows:

\[
y_{k,j} = x_{k,j}, \quad z_{k,j} = 0, \quad \text{if} \quad 0 < k, l \leq n_1
\]

and suppose \(n_i < n_{i+1} \), for \(i \geq 1 \),

\[
y_{k,j} = x_{k,j}, \quad z_{k,j} = 0, \quad \text{if} \quad x_{k,j} - x_0 \in V_{n_i},
\]

\[
y_{k,j} = x_{0}, \quad z_{k,j} = x_{k,j} - x_0, \quad \text{if} \quad x_{k,j} - x_0 \notin V_{n_i}.
\]

To show that, (i) \(P \)-lim \(k,l \to \infty \) \(y_{k,j} = x_0 \) and (ii) \((z_{k,j})\) is a \(S_\tau(\tau)\)-null sequence.

(i) Let \(V \) be an arbitrary \(\tau \)-neighborhood of zero. Since \(X \) is first countable, we may choose a positive integer \(i \) such that \(V_i \subseteq V \). Then \(y_{k,j} - x_0 = x_{k,j} - x_0 \in V_i \), for \(k,l > n_i \).

If \(x_{k,j} - x_0 \notin V_i \), then \(y_{k,j} - x_0 = x_{k,j} - x_0 = 0 \in V \). Hence \(P \)-lim \(k,l \to \infty \) \(y_{k,j} = x_0 \).

(ii) It is enough to show that \(\delta_\tau \left(\left\{ (k,l) \in \mathbb{N} \times \mathbb{N} : z_{k,j} \neq 0 \right\} \right) = 0 \). For any \(\tau \)-neighborhood \(V \) of zero, we have

\[
\delta_\tau \left(\left\{ (k,l) \in \mathbb{N} \times \mathbb{N} : z_{k,j} \notin V \right\} \right) \leq \delta_\tau \left(\left\{ (k,l) \in \mathbb{N} \times \mathbb{N} : z_{k,j} \neq 0 \right\} \right).
\]

If \(n_p < k,l \leq n_{p+1} \), then

\[
\left\{ (k,l) \in \mathbb{N} \times \mathbb{N} : z_{k,j} \neq 0 \right\} \subseteq \left\{ (k,l) \in \mathbb{N} \times \mathbb{N} : x_{k,j} - x_0 \notin V_{p} \right\}.
\]
If $p > i$ and $n_p < k, l \leq n_{p+1}$, then
\[
\delta_\Theta\left(\{(k, l) \in \mathbb{N} \times \mathbb{N} : z_{k, l} \neq 0\}\right)
\leq \delta_\Theta\left(\{(k, l) \in \mathbb{N} \times \mathbb{N} : x_{k, l} - x_0 \notin V_p\}\right)
\leq \frac{1}{p} < \frac{1}{i} < e.
\]
This implies that $\delta_\Theta((k, l) \in \mathbb{N} \times \mathbb{N} : z_{k, l} \neq 0) = 0$. Hence $(z_{k, l})$ is a $S(p)\tau$-null sequence.

Theorem 9. Let (X, τ) be a locally solid Riesz space and let $x = (x_{k, l})$ be a double sequence of points in X. If there is a $S_\tau\tau$-convergent sequence $y = (y_{k, l})$ in X such that $\delta_\Theta((k, l) \in \mathbb{N} \times \mathbb{N} : y_{k, l} \neq x_{k, l} \notin V) = 0$, then x is also $S(p)\tau$-convergent.

Proof. Suppose that $\delta_\Theta((k, l) \in \mathbb{N} \times \mathbb{N} : y_{k, l} \neq x_{k, l} \notin V) = 0$ and $S_\tau\tau\lim x_{k, l} = x_0$. Then for an arbitrary τ-neighborhood V of zero, we have
\[
\delta_\Theta((k, l) \in \mathbb{N} \times \mathbb{N} : y_{k, l} - x_0 \notin V) = 0.
\]
Now,
\[
\{(k, l) \in \mathbb{N} \times \mathbb{N} : x_{k, l} - x_0 \notin V\}
\subseteq \{(k, l) \in \mathbb{N} \times \mathbb{N} : y_{k, l} \neq x_{k, l} \notin V\}
\cup \{(k, l) \in \mathbb{N} \times \mathbb{N} : y_{k, l} - x_0 \notin V\}
\implies \delta_\Theta((k, l) \in \mathbb{N} \times \mathbb{N} : x_{k, l} - x_0 \notin V)
\leq \delta_\Theta((k, l) \in \mathbb{N} \times \mathbb{N} : y_{k, l} \neq x_{k, l} \notin V)
+ \delta_\Theta((k, l) \in \mathbb{N} \times \mathbb{N} : y_{k, l} - x_0 \notin V).
\]
Therefore, we have
\[
\delta_\Theta((k, l) \in \mathbb{N} \times \mathbb{N} : x_{k, l} - x_0 \notin V) = 0.
\]
This completes the proof of the theorem. \qed

5. Some Inclusions Relations in Locally Solid Riesz Spaces

Here, we prove some inclusion type results. We begin with the following interesting result.

Theorem 10. Let (X, τ) be a locally solid Riesz space and let $x = (x_{k, l})$ be a double sequence of points in X. For any double lacunary sequence $\overrightarrow{a} = (a_{k, l})$, $S(\tau) \subseteq S(\tau)$ if and only if $P(\lim \inf_{r,s} a_{r,s} > 1$.

Proof. Suppose first that $P(\lim \inf_{r,s} a_{r,s} > 1$, and $P(\lim \inf_{r,s} a_{r,s} = a$ (say). Write $b = (a - 1)/2$. Then there exists an integer $n_0, m_0 \in \mathbb{N}$ such that $a_{r,s} \geq 1 + b$ for $r \geq n_0, s \geq m_0$. Hence for $r \geq n_0, s \geq m_0$,
\[
h_{r,s} = 1 - \frac{k_{r-1} l_{s-1}}{k_r l_s} = 1 - \frac{1}{a_{r,s}} \geq 1 - \frac{1}{1 + b} = \frac{b}{1 + b}.
\]
Suppose that $S(\tau)\lim_{k,l} x_{k,l} = x_0$. We prove that $S_{\tau}(\tau)\lim_{k,l} x_{k,l} = x_0$. Let V be an arbitrary τ-neighborhood of zero. Then for all $r \geq n_0, s \geq m_0$, we have
\[
\frac{1}{k_r l_s} \left|\{k, l \leq n : x_{k,l} - x_0 \notin V\}\right| \geq \frac{1}{k_r l_s} \left|\{(k, l) \in I_{r,s} : x_{k,l} - x_0 \notin V\}\right|
\geq \frac{b}{1 + b} \frac{1}{h_{r,s} h_{r,s}} \left|\{(k, l) \in I_{r,s} : x_{k,l} - x_0 \notin V\}\right|.
\]
Since $(x_{k,l}) \overset{S(\tau)}{\longrightarrow} x_0$. Therefore this inequality implies that $S_{\tau}(\tau)\lim_{k,l} x_{k,l} = x_0$. Hence $S(\tau) \subseteq S_{\tau}(\tau)$.

Next, we suppose that $P(\lim \inf_{r,s} a_{r,s} < 1$. We can select a subsequence $\{k_{r,j}, l_{s,j}\}$ of the double lacunary sequence \overrightarrow{a} such that
\[
k_{r,j} l_{s,j} < 1 + \frac{1}{i j} \quad k_{r,j} l_{s,j} > i j,
\]
where $r_j > r_{j-1} + 2, s_j > s_{j-1} + 2$. Take $a(\neq 0) \in X$. Now we define a sequence $(x_{k,j})$ by
\[
x_{k,j} = \begin{cases} a, & \text{if } (k, l) \in I_{r,j}, \text{ for some } i, j = 1, 2, 3, \ldots \\ 0, & \text{otherwise.}
\end{cases}
\]
Then $S(\tau)\lim_{k,l} x_{k,l} = 0$. To see this, let V be an arbitrary τ-neighborhood of zero. We choose $W \in \mathbb{N}$ such that $W \subseteq V$ and $a \notin W$. On the other hand, for each m, n we can find a positive number (i_m, j_m) such that $k_{r,m} < m \leq k_{r+1,m}, l_{s,n} < n \leq l_{s+1,n}$. Then
\[
\frac{1}{m n} \left|\{k, l \leq n : x_{k,l} \notin V\}\right|
\leq \frac{1}{k_{r,m} l_{s,n}} \left|\{k, l \leq n : x_{k,l} \notin W\}\right|
\leq \frac{1}{k_{r,m} l_{s,n}} \left|\{k, l \leq n : x_{k,l} \notin W\}\right|
\leq \frac{1}{k_{r,m} l_{s,n}} \left|\{k, l \leq n : x_{k,l} \notin W\}\right|
+ \frac{1}{k_{r,m} l_{s,n}} \left|\{k, l \leq n : x_{k,l} \notin W\}\right|
\leq \frac{1}{k_{r,m} l_{s,n}} \left|\{k, l \leq n : x_{k,l} \notin W\}\right|
+ \frac{1}{k_{r,m} l_{s,n}} \left|\{k, l \leq n : x_{k,l} \notin W\}\right|
< \frac{1}{i_m j_m} + \frac{1}{i_m j_m} - 1
\leq \frac{1}{(i_m + 1)(j_m + 1) + \frac{1}{i_m j_m}} \text{ for each } m, n.
\]
Therefore \(S(\tau) - \lim_{k, l} x_{k, l} = 0 \). No let us see that \((x_{k, l}) \notin S_{\theta}(\tau)\). Let \(V \) be a \(\tau \)-neighborhood of zero such that \(a \notin V \). Thus

\[
P_{k, l} \lim_{i, j \to \infty} h_{r, s} \left[\left| k_{r, l} - k_{i, j} \right| \right] = \left| h_{r, s} \right| = 1
\]

and for \(r \neq r \), \(s \neq s \), \(i, j = 1, 2, 3, \ldots \),

\[
P_{r, s} \lim_{i \to \infty} h_{r, s} \left[\left| k_{r, s} - k_{r, i} \right| \right] = \left| h_{r, s} \right| = 1
\]

Hence neither \(a \) nor \(0 \) can be double lacunary statistical limit of \((x_{k, l})\). No other point of \(X \) can be double lacunary statistical limit of the sequence \((x_{k, l})\) as well. Thus \((x_{k, l}) \notin S_{\theta}(\tau)\). This completes the proof of the theorem.

Theorem 11. Let \((X, \tau)\) be a locally solid Riesz space and let \(x = (x_{k, l}) \) be sequence in \(X \). For any double lacunary sequence \(\theta = \{(k_{r, s}), S_{\theta}(\tau) \subseteq S(\tau) \) if and only if \(P_{r, s} \lim_{i \to \infty} g_{r, s} < \infty \).

Proof. Suppose that \(P_{r, s} \lim_{i \to \infty} g_{r, s} < \infty \). Then there exists an \(H > 0 \) such that \(g_{r, s} < H \) for all \(r, s \). Let \(S_{\theta}(\tau) \)-lim \(x \in S_{\theta}(\tau) \). Let \(V \) be an arbitrary \(\tau \)-neighborhood of zero. Let \(\varepsilon > 0 \). We write

\[
M_{r, s} = \{ (k, l) \in I_{r, s} : x_{k, l} \notin V \}
\]

By the definition of double lacunary statistical convergence, there are positive numbers \(r_0, s_0 \) such that

\[
\frac{M_{r, s}}{h_{r, s}} < \frac{\varepsilon}{2H} \quad \forall r > r_0, \quad s > s_0.
\]

Let \(M = \max\{M_{r, s} : 1 \leq r \leq r_0, 1 \leq s \leq s_0\} \) and let \(m, n \) be two integers satisfying \(k_{r, l} \leq m \leq k_{r, l} - 1 \), then we can write

\[
\frac{1}{mn} \left[\left| k \leq m, l \leq n : x_{k, l} \notin V \right| \right] \leq \frac{1}{2H} \frac{M}{k_{r, l} - 1} + \frac{1}{2H} g_{r, s},
\]

Since \(P_{r, s} \lim_{i \to \infty} k_{r, s} = \infty \), there exist positive integers \(r_1 \geq r_0, \quad s_1 \geq s_0 \) such that

\[
\frac{1}{k_{r, l} - 1} < \frac{\varepsilon}{2r_0 s_0 M} \quad \text{for } r > r_1, \quad s > s_1.
\]

Hence for \(r > r_1, \quad s > s_1 \)

\[
\frac{1}{mn} \left[\left| k \leq m, l \leq n : x_{k, l} - x_0 \notin V \right| \right] < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
\]

It follows that \(S(\tau) \)-lim \(x_{k, l} = x_0 \).

Next we suppose that \(P_{r, s} \lim_{i \to \infty} g_{r, s} = \infty \). Take an element \(a \neq 0 \in X \). Let \(\{(k_{r, s}, l_{r, s})\} \) be a subsequence of the double lacunary sequence \(\theta = \{(k_{r, s}, l_{r, s})\} \) such that \(q_{r, s} \geq i_j, \quad k_{r, s} \geq i_j + 3, \quad l_{r, s} \geq i_j + 3 \). Define a sequence \((x_{k, l})\) by

\[
x_{k, l} = \begin{cases} a, & \text{if } k_{r, s} < k \leq 2k_{r, s} - 1; \quad l_{r, s} < l \leq 2l_{r, s} - 1, \quad \text{for some } i, j = 1, 2, 3, \ldots \vphantom{\iota} \\ 0, & \text{otherwise.} \end{cases}
\]

Let \(V \) be a \(\tau \)-neighborhood of zero such that \(a \notin V \). Then for \(i, j > 1 \)

\[
\frac{1}{h_{r, s}} \left[\left| k \leq m, l \leq n : x_{k, l} \notin V \right| \right] \leq \frac{1}{h_{r, s}} \left[\left| k \leq 2k_{r, s} - 1, l \leq 2l_{r, s} - 1 : x_{k, l} \notin V \right| \right]
\]

\[
= \frac{1}{2k_{r, s} - 1} \left[\left| k \leq k_{r, s} - 1, l \leq l_{r, s} : x_{k, l} \notin V \right| \right] + \cdots + \frac{1}{2k_{r, s} - 1} \left[\left| k \leq k_{r, s} - 1, l \leq l_{r, s} : x_{k, l} \notin V \right| \right] > \frac{1}{2}.
\]

This completes the proof of the theorem.

Corollary 12. Let \((X, \tau)\) be a locally solid Riesz space and let \(x = (x_{k, l}) \) be a double sequence in \(X \). For any double lacunary sequence \(\theta = \{(k_{r, s}, l_{r, s})\} \), \(S_{\theta}(\tau) \) is an \(S(\tau) \) if and only if \(P_{r, s} \lim_{i \to \infty} g_{r, s} < \infty \).

Theorem 13. Let \((X, \tau)\) be a locally solid Riesz space, let \(x = (x_{k, l}) \) be a double sequence in \(X \). For any double lacunary sequence \(\theta = \{(k_{r, s}, l_{r, s})\} \), \(S_{\theta}(\tau) \) is an \(S(\tau) \) if and only if \(P_{r, s} \lim_{i \to \infty} x_{k, l} = x_0 \).
It follows from this inequality that
\[
1 \leq \frac{1}{k_m n} \left| \{ k \leq k_m, l \leq l_n : x_{k,l} - x_0 \notin W \} \right| + \frac{1}{k_m n} \left| \{ k \leq k_m, l \leq l_n : y_0 - x_{k,l} \notin W \} \right|.
\] (40)

We write
\[
\frac{1}{k_m n} \left| \{ k \leq k_m, l \leq l_n : y_0 - x_{k,l} \notin W \} \right| = \frac{1}{k_m n} \left| \{ (k, l) \in I_{m,n} : y_0 - x_{k,l} \notin W \} \right| = \frac{1}{k_m n} \sum_{r,s=1}^{m,n} \left| \{ (k, l) \in I_{r,s} : y_0 - x_{k,l} \notin W \} \right| = \frac{1}{h_{r,s}} \left| \{ (k, l) \in I_{r,s} : y_0 - x_{k,l} \notin W \} \right|,
\] (41)
where
\[
T_{r,s} = \frac{1}{h_{r,s}} \left| \{ (k, l) \in I_{r,s} : y_0 - x_{k,l} \notin W \} \right|.
\] (42)

Since \(S_{\theta}(r) \lim_{k_m \to \infty} x_{k,l} = y_0 \), we have \(P \lim_{r,s \to \infty} T_{r,s} = 0 \). Therefore the regular weighted mean transform of \((T_{r,s}) \) also tends to 0; that is,
\[
P \lim_{m,n \to \infty} \frac{1}{k_m n} \left| \{ k \leq k_m, l \leq l_n : y_0 - x_{k,l} \notin W \} \right| = 0. \tag{43}
\]

Also since \(S(r) \lim_{k_m \to \infty} x_{k,l} = x_0 \), we have
\[
P \lim_{m,n \to \infty} \frac{1}{k_m n} \left| \{ k \leq k_m, l \leq l_n : x_{k,l} - x_0 \notin W \} \right| = 0. \tag{44}
\]

From (39), (43), and (44), we have
\[
\frac{1}{k_m n} \left| \{ k \leq k_m, l \leq l_n : x_0 - y_0 \notin W \} \right| = 0. \tag{45}
\]

This contradiction completes the proof of the theorem. \(\square \)

6. Double Statistical Lacunary Summable in Locally Solid Riesz Spaces

In this section, we introduce some new concepts by using the notions of statistical lacunary summable for double sequences.

Definition 14. Let \((X, \tau) \) be a locally solid Riesz space. A sequence \(x = (x_{k,j}) \) is said to be double lacunary summable (or shortly, \(\theta \)-summable) in \((X, \tau) \) or simply \(\theta \)-summable to an element \(x_0 \) in \(X \) if for each \(\tau \)-neighborhood \(V \) of zero value that \(t_{r,s}(x) - x_0 \in V \), where \(t_{r,s}(x) = (1/h_{r,s}) \sum_{(k,j) \in I_{r,s}} x_{k,j} \). In this case, we write \(\theta_{r,s}(x) \rightarrow x_0 \).

Definition 15. Let \((X, \tau) \) be a locally solid Riesz space. A sequence \((x_{k,j}) \) of points in \(X \) is said to be double statistical lacunary \(\tau \)-summable or simply \(S_{\theta}(r) \)-summable to an element \(x_0 \) of \(X \) if for each \(\tau \)-neighborhood \(V \) of zero value, the set \(K(\delta) = \{ (r, s) \in \mathbb{N} \times \mathbb{N} : t_{r,s}(x) - x_0 \notin V \} \) has double natural density zero; that is, \(\delta_2(\delta) = 0 \).

That is
\[
P \lim_{m,n \to \infty} \frac{1}{k_m n} \left| \{ r \leq m, s \leq n : t_{r,s}(x) - x_0 \notin V \} \right| = 0. \tag{46}
\]

In this case, we write \(S_{\theta}(r) \lim_{r,s \to \infty} x_{k,j} = x_0 \) or \((x_{k,j}) \rightarrow \infty \).

Theorem 16. Let \((X, \tau) \) be a locally solid Riesz space. A double sequence \(x = (x_{k,j}) \) in \(X \) is \(S_{\theta}(r) \)-summable to \(x_0 \) if and only if there exists a set \(K = \{ (r, s) \} \subseteq \mathbb{N} \times \mathbb{N} \), \(r = 1, 2, \ldots \), such that \(\delta_2(K) = 1 \) and \(\theta_{r,s}(\tau) \lim_{r,s \to \infty} x_{k,j} = x_0 \).

Proof. Let \(V \) be an arbitrary \(\tau \)-neighborhood of zero. Suppose that \(\theta_{r,s}(\tau) \lim_{r,s \to \infty} x_{k,j} = x_0 \); there exists a set \(K = \{ (r, s) \} \subseteq \mathbb{N} \times \mathbb{N} \), \(r = 1, 2, \ldots \), with \(\delta_2(K) = 1 \) and \(N = N(V) \), \(M = M(V) \) such that \(t_{r,s}(x) \rightarrow x_0 \) \((r, s) \in V \) for \(r > N \) and \(s > M \). Write \(K_V = \{ (r, s) \in \mathbb{N} \times \mathbb{N} : t_{r,s}(x) - x_0 \notin V \} \) and \(K_1 = \{ (r, s) \in \mathbb{N} \times \mathbb{N} : t_{r,s}(x) - x_0 \notin V \} \). Then \(\delta_2(K_V) = 1 \) and \(K_V \subseteq \mathbb{N} \times \mathbb{N} \), which implies that \(\delta_2(K_1) = 0 \). Hence \(x = (x_{k,j}) \rightarrow \infty \).

Conversely suppose that \(x = (x_{k,j}) \) is \(S_{\theta}(r) \)-convergent to \(x_0 \). Fix a countable local base \(V_1 \supset V_2 \supset \cdots \) at \(x_0 \). For each \(i \in \mathbb{N} \), put
\[
K_i = \{ (r, s) \in \mathbb{N} \times \mathbb{N} : t_{r,s}(x) - x_0 \notin V_i \}.
\] (47)

By hypothesis \(\delta_2(K_i) = 0 \) for each \(i \). Since the ideal \(\mathcal{I} \) of all subsets of \(\mathbb{N} \times \mathbb{N} \) having double density zero is a \(P \)-ideal (see e.g., [51]), then there exists a sequence of sets \((J_i) \) such that the symmetric difference \(K_i \Delta J_i \) is a finite set for any \(i \in \mathbb{N} \) and \(J = \bigcup_{i=1}^{\infty} J_i \in \mathcal{I} \).

Let \(K = \mathbb{N} \times \mathbb{N} \setminus J \), then \(\delta(K) = 1 \). In order to prove the theorem, it is enough to check that \(\lim_{r,s \to \infty} t_{r,s}(x) = x_0 \).

Let \(i \in \mathbb{N} \). Since \(K_i \Delta J_i \) is a finite, there is \((r_i, s_i) \in \mathbb{N} \times \mathbb{N} \), without loss of generality with \((r_i, s_i) \in K_i \), \(r_i, s_i > i \), such that
\[
(\mathbb{N} \times \mathbb{N} \setminus J_i) \cap \{ (r, s) \in \mathbb{N} \times \mathbb{N} : r \geq r_i, s \geq s_i \}
= (\mathbb{N} \times \mathbb{N} \setminus K_i) \cap \{ (r, s) \in \mathbb{N} \times \mathbb{N} : r \geq r_i, s \geq s_i \}.
\] (48)

If \((r, s) \in K \) and \(r \geq r_i, s \geq s_i \) then \((r, s) \notin J_i \), and by (48) \((r, s) \notin K_i \). Thus \(t_{r,s}(x) \rightarrow x_0 \). So we have proved that for all \(i \in \mathbb{N} \) there is \((r_i, s_i) \in K_i \), \(r_i, s_i > i \), with \(t_{r,s}(x) \rightarrow x_0 \) for every \(r \geq r_i, s \geq s_i \), without loss of generality, we can suppose \(r_i+1 > r_i \) and \(s_i+1 > s_i \) for every \(i \in \mathbb{N} \). The assertion follows taking into account that the \(V_i \)’s form a countable local base at \(x_0 \). \(\square \)

Acknowledgment

The authors gratefully acknowledge the financial support from King Abdulaziz University, Jeddah, Saudi Arabia.
References

Submit your manuscripts at http://www.hindawi.com