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Abstract. 
In the present paper, we consider a subclass of 
	
		
			

				𝑝
			

		
	
-valent analytic functions and obtain certain simple sufficiency criteria by using three different methods for the functions belonging to this class. Many known results appear as special consequences of our work.


1. Introduction
Let 
	
		
			

				𝐴
			

			

				𝑝
			

			
				(
				𝑛
				)
			

		
	
 be the class of functions 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
 analytic and 
	
		
			

				𝑝
			

		
	
-valent in the open unit disk 
	
		
			
				𝕌
				=
				{
				𝑧
				∶
				|
				𝑧
				|
				<
				1
				}
			

		
	
 and of the form
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑧
				)
				=
				𝑧
			

			

				𝑝
			

			

				+
			

			

				∞
			

			

				
			

			
				𝑘
				=
				𝑝
				+
				𝑛
			

			

				𝑎
			

			

				𝑘
			

			

				𝑧
			

			

				𝑘
			

			
				(
				𝑝
				∈
				ℕ
				)
				.
			

		
	


				In particular, 
	
		
			

				𝐴
			

			

				𝑝
			

			
				(
				1
				)
				=
				𝐴
			

			

				𝑝
			

		
	
, 
	
		
			

				𝐴
			

			

				1
			

			
				(
				𝑛
				)
				=
				𝐴
				(
				𝑛
				)
			

		
	
, and 
	
		
			

				𝐴
			

			

				1
			

			
				(
				1
				)
				=
				𝐴
			

		
	
. By 
	
		
			

				𝒮
			

			
				∗
				𝑝
			

			
				(
				𝑛
				,
				𝑏
				)
			

		
	
 and 
	
		
			

				𝒞
			

			

				𝑝
			

			
				(
				𝑛
				,
				𝑏
				)
			

		
	
, 
	
		
			
				𝑛
				,
				𝑝
				∈
				ℕ
			

		
	
 and 
	
		
			
				𝑏
				∈
				ℂ
				⧵
				{
				0
				}
			

		
	
, we mean the subclasses of 
	
		
			

				𝐴
			

			

				𝑝
			

			
				(
				𝑛
				)
			

		
	
 which are defined, respectively, by
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				
				1
				R
				e
				1
				+
			

			
				
			
			
				
				𝑝
				+
				𝑏
				−
				1
				𝑧
				𝑓
			

			

				
			

			
				(
				𝑧
				)
			

			
				
			
			
				
				1
				𝑓
				(
				𝑧
				)
				−
				𝑝
				
				
				>
				0
				,
				(
				𝑧
				∈
				𝕌
				)
				,
				R
				e
				1
				+
			

			
				
			
			
				
				𝑝
				+
				𝑏
				−
				1
				𝑧
				𝑓
			

			
				
				
			

			
				(
				𝑧
				)
			

			
				
			
			

				𝑓
			

			

				
			

			
				(
				𝑧
				)
				−
				𝑝
				+
				1
				
				
				>
				0
				,
				(
				𝑧
				∈
				𝕌
				)
				.
			

		
	


				For 
	
		
			
				𝑏
				=
				1
			

		
	
, 
	
		
			
				𝑝
				=
				1
			

		
	
, 
	
		
			
				𝑛
				=
				1
			

		
	
, the previous two classes defined in (2) reduce to the well-known classes of starlike and convex, respectively.
For functions 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
, 
	
		
			
				𝑔
				(
				𝑧
				)
				∈
				𝐴
			

			

				𝑝
			

			
				(
				𝑛
				)
			

		
	
 of the form (1), we define the convolution (Hadamard product) of 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
 and 
	
		
			
				𝑔
				(
				𝑧
				)
			

		
	
 by
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				(
				𝑓
				⋆
				𝑔
				)
				(
				𝑧
				)
				=
				𝑧
			

			

				𝑝
			

			

				+
			

			

				∞
			

			

				
			

			
				𝑘
				=
				𝑝
				+
				𝑛
			

			

				𝑎
			

			

				𝑘
			

			

				𝑏
			

			

				𝑘
			

			

				𝑧
			

			

				𝑘
			

			
				,
				(
				𝑧
				∈
				𝕌
				)
				.
			

		
	


				Now we define the subclass 
	
		
			

				ℳ
			

			

				𝑝
			

			
				(
				𝑛
				,
				𝑏
				;
				𝑔
				(
				𝑧
				)
				)
			

		
	
 of 
	
		
			

				𝐴
			

			

				𝑝
			

			
				(
				𝑛
				)
			

		
	
 by
						
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				
				1
				R
				e
				1
				+
			

			
				
			
			
				
				𝑝
				+
				𝑏
				−
				1
				𝑧
				(
				𝑓
				(
				𝑧
				)
				⋆
				𝑔
				(
				𝑧
				)
				)
			

			

				
			

			
				
			
			
				𝑓
				(
				𝑧
				)
				⋆
				𝑔
				(
				𝑧
				)
				−
				𝑝
				
				
				>
				0
				,
				(
				𝑧
				∈
				𝕌
				)
				.
			

		
	


				Sufficient conditions were studied by various authors for different subclasses of analytic and multivalent functions, for some of the related work see [1–8]. The object of the present paper is to obtain sufficient conditions for the subclass 
	
		
			

				ℳ
			

			

				𝑝
			

			
				(
				𝑛
				,
				𝑏
				;
				𝑔
				(
				𝑧
				)
				)
			

		
	
 of 
	
		
			

				𝐴
			

			

				𝑝
			

			
				(
				𝑛
				)
			

		
	
. We also consider some special cases of our results which lead to various interesting corollaries and relevances of some of these with other known results also being mentioned.
We will assume throughout our discussion, unless otherwise stated, that 
	
		
			
				𝑛
				∈
				ℕ
			

		
	
, 
	
		
			
				𝑝
				∈
				ℕ
			

		
	
, 
	
		
			
				𝑏
				∈
				ℂ
				⧵
				{
				0
				}
			

		
	
.
2. Preliminary Results
To obtain our main results, we need the following Lemma's.
Lemma 1 (see [9]).  If 
	
		
			
				𝑞
				(
				𝑧
				)
				∈
				𝐴
				(
				𝑛
				)
			

		
	
 with 
	
		
			
				𝑛
				≥
				1
			

		
	
 and satisfies the condition
							
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			
				|
				|
				𝑞
			

			

				
			

			
				|
				|
				<
				(
				𝑧
				)
				−
				1
				𝑛
				+
				1
			

			
				
			
			

				√
			

			
				
			
			
				(
				𝑛
				+
				1
				)
			

			

				2
			

			
				+
				1
				(
				𝑧
				∈
				𝕌
				)
				,
			

		
	

						then
							
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			
				𝑞
				(
				𝑧
				)
				∈
				𝒮
			

			

				∗
			

			
				(
				𝑛
				,
				1
				)
				.
			

		
	

Lemma 2 (see [10]).  If 
	
		
			
				𝑞
				(
				𝑧
				)
				∈
				𝐴
				(
				𝑛
				)
			

		
	
 satisfing the condition
							
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				|
				|
				a
				r
				g
				𝑞
			

			

				
			

			
				|
				|
				<
				𝜋
				(
				𝑧
				)
			

			
				
			
			
				2
				𝛿
			

			

				𝑛
			

			
				(
				𝑧
				∈
				𝕌
				)
				,
			

		
	

						where 
	
		
			

				𝛿
			

			

				𝑛
			

		
	
 is the unique root of the equation
							
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				2
				t
				a
				n
			

			
				−
				1
			

			
				
				𝑛
				
				1
				−
				𝛿
			

			

				𝑛
			

			
				
				
				
				+
				𝜋
				1
				−
				2
				𝛿
			

			

				𝑛
			

			
				
				=
				0
				,
			

		
	

						then
							
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				𝑞
				(
				𝑧
				)
				∈
				𝒮
			

			

				∗
			

			
				(
				𝑛
				,
				1
				)
				.
			

		
	

Lemma 3 (see [11]).  Let 
	
		
			

				Ω
			

		
	
 be a set in the complex plane 
	
		
			

				ℂ
			

		
	
, and suppose that 
	
		
			

				Ψ
			

		
	
 is a mapping from 
	
		
			

				ℂ
			

			

				2
			

			

				×
			

		
	
 
	
		
			

				𝕌
			

		
	
 to 
	
		
			

				ℂ
			

		
	
 which satisfies 
	
		
			
				Ψ
				(
				𝑖
				𝑥
				,
				𝑦
				,
				𝑧
				)
				∉
				Ω
			

		
	
 for 
	
		
			
				𝑧
				∈
				𝕌
			

		
	
 and for all real 
	
		
			
				𝑥
				,
				𝑦
			

		
	
 such that 
	
		
			
				𝑦
				≤
				(
				−
				𝑛
				/
				2
				)
				(
				1
				+
				𝑥
			

			

				2
			

			

				)
			

		
	
. If 
	
		
			
				𝑞
				(
				𝑧
				)
				=
				1
				+
				𝑐
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

			
				+
				⋯
			

		
	
 is analytic in 
	
		
			

				𝕌
			

		
	
 and 
	
		
			
				Ψ
				(
				𝑞
				(
				𝑧
				)
				,
				𝑧
				𝑞
			

			

				
			

			
				(
				𝑧
				)
				,
				𝑧
				)
				∈
				Ω
			

		
	
 for all 
	
		
			
				𝑧
				∈
				𝕌
			

		
	
, then 
	
		
			
				R
				e
				𝑞
				(
				𝑧
				)
				>
				0
			

		
	
.
3. Main Results
Theorem 4.  If 
	
		
			
				𝑓
				(
				𝑧
				)
				∈
				𝐴
			

			

				𝑝
			

			
				(
				𝑛
				)
			

		
	
 satisfies
							
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
			

			
				
			
			

				𝑧
			

			

				𝑝
			

			

				
			

			
				1
				/
				(
				𝑝
				+
				𝑏
				−
				1
				)
			

			
				
				𝑧
				(
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
				)
			

			

				
			

			
				
			
			
				
				|
				|
				|
				|
				<
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
				+
				𝑏
				−
				1
				−
				(
				𝑝
				+
				𝑏
				−
				1
				)
				𝑛
				+
				1
			

			
				
			
			

				√
			

			
				
			
			
				(
				𝑛
				+
				1
				)
			

			

				2
			

			
				|
				|
				|
				|
				+
				1
				𝑝
				+
				𝑏
				−
				1
				(
				𝑧
				∈
				𝕌
				)
				,
			

		
	

						then 
	
		
			
				𝑓
				(
				𝑧
				)
				∈
				ℳ
			

			

				𝑝
			

			
				(
				𝑛
				,
				𝑏
				;
				𝑔
				(
				𝑧
				)
				)
			

		
	
.
Proof. Let us set a function 
	
		
			
				𝑝
				(
				𝑧
				)
			

		
	
 by
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				
				𝑝
				(
				𝑧
				)
				=
				𝑧
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
			

			
				
			
			

				𝑧
			

			

				𝑝
			

			

				
			

			
				1
				/
				(
				𝑝
				+
				𝑏
				−
				1
				)
			

			
				𝑎
				=
				𝑧
				+
			

			
				𝑛
				+
				𝑝
			

			

				𝑏
			

			
				𝑛
				+
				𝑝
			

			
				
			
			
				𝑧
				(
				𝑝
				+
				𝑏
				−
				1
				)
			

			

				𝑛
			

			
				+
				⋯
			

		
	

						for 
	
		
			
				𝑓
				(
				𝑧
				)
				∈
				𝐴
			

			

				𝑝
			

			
				(
				𝑛
				)
			

		
	
. Then clearly (11) shows that 
	
		
			
				𝑝
				(
				𝑧
				)
				∈
				𝐴
				(
				𝑛
				)
			

		
	
.Differentiating (11) logarithmically, we have
							
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			

				𝑝
			

			

				
			

			
				(
				𝑧
				)
			

			
				
			
			
				=
				1
				𝑝
				(
				𝑧
				)
			

			
				
			
			
				
				𝑝
				+
				𝑏
				−
				1
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
			

			

				
			

			
				
			
			
				−
				𝑝
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
			

			
				
			
			
				𝑧
				
				+
				1
			

			
				
			
			

				𝑧
			

		
	

						which gives
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				|
				|
				𝑝
			

			

				
			

			
				|
				|
				=
				|
				|
				|
				|
				
				(
				𝑧
				)
				−
				1
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
			

			
				
			
			

				𝑧
			

			

				𝑝
			

			

				
			

			
				1
				/
				(
				𝑝
				+
				𝑏
				−
				1
				)
			

			

				1
			

			
				
			
			
				×
				
				𝑝
				+
				𝑏
				−
				1
				𝑧
				(
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
				)
			

			

				
			

			
				
			
			
				
				|
				|
				|
				|
				.
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
				+
				𝑏
				−
				1
				−
				1
			

		
	

					Thus using (10), we have
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				|
				|
				𝑝
			

			

				
			

			
				|
				|
				≤
				(
				𝑧
				)
				−
				1
				𝑛
				+
				1
			

			
				
			
			

				√
			

			
				
			
			
				(
				𝑛
				+
				1
				)
			

			

				2
			

			
				+
				1
				,
				(
				𝑧
				∈
				𝕌
				)
				.
			

		
	
Hence, using Lemma 1, we have 
	
		
			
				𝑝
				(
				𝑧
				)
				∈
				𝒮
			

			

				∗
			

			
				(
				𝑛
				,
				1
				)
			

		
	
.From (12), we can write
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				𝑧
				𝑝
			

			

				
			

			
				(
				𝑧
				)
			

			
				
			
			
				=
				1
				𝑝
				(
				𝑧
				)
			

			
				
			
			
				
				𝑝
				+
				𝑏
				−
				1
				𝑧
				(
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
				)
			

			

				
			

			
				
			
			
				
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
				−
				𝑝
				+
				1
				.
			

		
	

					Since 
	
		
			
				𝑝
				(
				𝑧
				)
				∈
				𝒮
			

			

				∗
			

			
				(
				𝑛
				,
				1
				)
			

		
	
, it implies that 
	
		
			
				R
				e
				(
				𝑧
				𝑝
			

			

				
			

			
				(
				𝑧
				)
				/
				𝑝
				(
				𝑧
				)
				)
				>
				0
			

		
	
. Therefore, we get
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				
				1
				R
				e
				1
				+
			

			
				
			
			
				
				𝑝
				+
				𝑏
				−
				1
				𝑧
				(
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
				)
			

			

				
			

			
				
			
			
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
				−
				𝑝
				
				
				=
				R
				e
				𝑧
				𝑝
			

			

				
			

			
				(
				𝑧
				)
			

			
				
			
			
				𝑝
				(
				𝑧
				)
				>
				0
				,
			

		
	

						and this implies that 
	
		
			
				𝑓
				(
				𝑧
				)
				∈
				ℳ
			

			

				𝑝
			

			
				(
				𝑛
				,
				𝑏
				;
				𝑔
				(
				𝑧
				)
				)
			

		
	
.Setting 
	
		
			
				𝑛
				=
				𝑝
				=
				1
			

		
	
 and 
	
		
			
				𝑔
				(
				𝑧
				)
				=
				𝑧
				/
				(
				1
				−
				𝑧
				)
			

		
	
 in Theorem 4, we get the following.
Corollary 5.  If 
	
		
			
				𝑓
				(
				𝑧
				)
				∈
				𝐴
			

		
	
 satisfies
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
				𝑓
				(
				𝑧
				)
			

			
				
			
			
				𝑧
				
			

			
				1
				/
				𝑏
			

			
				
				𝑧
				𝑓
			

			

				
			

			
				(
				𝑧
				)
			

			
				
			
			
				
				|
				|
				|
				|
				<
				2
				|
				|
				𝑏
				|
				|
				𝑓
				(
				𝑧
				)
				+
				𝑏
				−
				1
				−
				𝑏
			

			
				
			
			

				√
			

			
				
			
			
				5
				(
				𝑧
				∈
				𝕌
				)
				,
			

		
	

						then 
	
		
			
				𝑓
				(
				𝑧
				)
				∈
				𝒮
			

			

				∗
			

			
				(
				𝑏
				)
			

		
	
, the class of starlike functions of complex order 
	
		
			

				𝑏
			

		
	
.
Putting 
	
		
			
				𝑛
				=
				𝑝
				=
				1
			

		
	
 and 
	
		
			
				𝑔
				(
				𝑧
				)
				=
				𝑧
				/
				(
				1
				−
				𝑧
				)
			

			

				2
			

		
	
 in Theorem 4, we have the following.
Corollary 6.  If 
	
		
			
				𝑓
				(
				𝑧
				)
				∈
				𝐴
			

		
	
 satisfies
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				|
				|
				|
				
				𝑓
			

			

				
			

			
				
				(
				𝑧
				)
			

			
				(
				1
				−
				𝑏
				)
				/
				𝑏
			

			
				
				𝑧
				𝑓
			

			
				
				
			

			
				(
				𝑧
				)
				+
				𝑏
				𝑓
			

			

				
			

			
				
				|
				|
				|
				<
				2
				|
				|
				𝑏
				|
				|
				(
				𝑧
				)
				−
				𝑏
			

			
				
			
			

				√
			

			
				
			
			
				5
				(
				𝑧
				∈
				𝕌
				)
				,
			

		
	

						then 
	
		
			
				𝑓
				(
				𝑧
				)
				∈
				𝒞
				(
				𝑏
				)
			

		
	
, the class of convex functions of complex order 
	
		
			

				𝑏
			

		
	
.
Remark 7. If we put 
	
		
			
				𝑏
				=
				1
				−
				𝛼
			

		
	
 in Corollaries 5 and 6, we get the results proved by Uyanık et al. [1]. Furthermore, for 
	
		
			
				𝑏
				=
				1
			

		
	
, we obtain the results studied by Mocanu [2] and Nunokawa et al. [3], respectively. Also if we set 
	
		
			
				𝑏
				=
				1
				−
				𝛼
			

		
	
 with 
	
		
			
				𝑔
				(
				𝑧
				)
				=
				𝑧
			

			

				𝑝
			

			
				/
				(
				1
				−
				𝑧
			

			

				𝑛
			

			

				)
			

		
	
 and 
	
		
			
				𝑔
				(
				𝑧
				)
				=
				𝑧
			

			

				𝑝
			

			
				/
				(
				1
				−
				𝑧
			

			

				𝑛
			

			

				)
			

			
				2
				𝑝
			

		
	
 in Theorem 4, we obtain the results due to Goyal et al. [4].
Theorem 8.  If 
	
		
			
				𝑓
				(
				𝑧
				)
				∈
				𝐴
			

			

				𝑝
			

			
				(
				𝑛
				)
			

		
	
 satisfies
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
				a
				r
				g
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
			

			
				
			
			

				𝑧
			

			

				𝑝
			

			

				
			

			
				1
				/
				(
				𝑝
				+
				𝑏
				−
				1
				)
			

			
				
				1
				+
				a
				r
				g
			

			
				
			
			
				
				𝑧
				𝑝
				+
				𝑏
				−
				1
				(
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
				)
			

			

				
			

			
				
			
			
				|
				|
				|
				|
				<
				𝜋
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
				+
				𝑏
				−
				1
				
				
			

			
				
			
			
				2
				𝛿
			

			

				𝑛
			

			
				(
				𝑧
				∈
				𝕌
				)
				,
			

		
	

						where 
	
		
			

				𝛿
			

			

				𝑛
			

		
	
 is the unique root of (8), then 
	
		
			
				𝑓
				(
				𝑧
				)
				∈
				ℳ
			

			

				𝑝
			

			
				(
				𝑛
				,
				𝑏
				;
				𝑔
				(
				𝑧
				)
				)
			

		
	
.
Proof. Let 
	
		
			
				𝑝
				(
				𝑧
				)
			

		
	
 be given by (11), which clearly belongs to the class 
	
		
			
				𝐴
				(
				𝑛
				)
			

		
	
.Now differentiating (11), we have
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			

				𝑝
			

			

				
			

			
				
				(
				𝑧
				)
				=
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
			

			
				
			
			

				𝑧
			

			

				𝑝
			

			

				
			

			
				1
				/
				(
				𝑝
				+
				𝑏
				−
				1
				)
			

			
				×
				1
			

			
				
			
			
				
				𝑝
				+
				𝑏
				−
				1
				𝑧
				(
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
				)
			

			

				
			

			
				
			
			
				
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
				+
				𝑏
				−
				1
			

		
	

						which gives
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				|
				|
				a
				r
				g
				𝑝
			

			

				
			

			
				|
				|
				=
				|
				|
				|
				|
				
				(
				𝑧
				)
				a
				r
				g
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
			

			
				
			
			

				𝑧
			

			

				𝑝
			

			

				
			

			
				1
				/
				(
				𝑝
				+
				𝑏
				−
				1
				)
			

			
				
				1
				+
				a
				r
				g
			

			
				
			
			
				
				𝑝
				+
				𝑏
				−
				1
				𝑧
				(
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
				)
			

			

				
			

			
				
			
			
				|
				|
				|
				|
				.
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
				+
				𝑏
				−
				1
				
				
			

		
	

					Thus using (19), we have
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				|
				|
				a
				r
				g
				𝑝
			

			

				
			

			
				|
				|
				≤
				𝜋
				(
				𝑧
				)
			

			
				
			
			
				2
				𝛿
			

			

				𝑛
			

			
				(
				𝑧
				∈
				𝕌
				)
				,
			

		
	

						where 
	
		
			

				𝛿
			

			

				𝑛
			

		
	
 is the root of (8). Hence, using Lemma 2, we have 
	
		
			
				𝑝
				(
				𝑧
				)
				∈
				𝒮
			

			

				∗
			

			
				(
				𝑛
				,
				1
				)
			

		
	
.From (20), we can write
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				𝑧
				𝑝
			

			

				
			

			
				(
				𝑧
				)
			

			
				
			
			
				=
				1
				𝑝
				(
				𝑧
				)
			

			
				
			
			
				
				𝑝
				+
				𝑏
				−
				1
				𝑧
				(
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
				)
			

			

				
			

			
				
			
			
				
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
				−
				𝑝
				+
				1
				.
			

		
	

					Since 
	
		
			
				𝑝
				(
				𝑧
				)
				∈
				𝒮
			

			

				∗
			

			
				(
				𝑛
				,
				1
				)
			

		
	
, it implies that 
	
		
			
				R
				e
				(
				𝑧
				𝑝
			

			

				
			

			
				(
				𝑧
				)
				/
				𝑝
				(
				𝑧
				)
				)
				>
				0
			

		
	
. Therefore, we get (16), and hence 
	
		
			
				𝑓
				(
				𝑧
				)
				∈
				ℳ
			

			

				𝑝
			

			
				(
				𝑛
				,
				𝑏
				;
				𝑔
				(
				𝑧
				)
				)
			

		
	
.Making 
	
		
			
				𝑛
				=
				1
			

		
	
, 
	
		
			
				𝑏
				=
				1
				−
				𝛼
			

		
	
 with 
	
		
			
				0
				≤
				𝛼
				<
				𝑝
			

		
	
 and 
	
		
			
				𝑔
				(
				𝑧
				)
				=
				𝑧
			

			

				𝑝
			

			
				/
				(
				1
				−
				𝑧
				)
			

		
	
, we have the following.
Corollary 9.  If 
	
		
			
				𝑓
				(
				𝑧
				)
				∈
				𝐴
			

			

				𝑝
			

		
	
 satisfies
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
				a
				r
				g
				𝑓
				(
				𝑧
				)
			

			
				
			
			

				𝑧
			

			

				𝑝
			

			
				
				
				+
				(
				𝑝
				−
				𝛼
				)
				a
				r
				g
				𝑧
				𝑓
			

			

				
			

			
				(
				𝑧
				)
			

			
				
			
			
				
				|
				|
				|
				|
				<
				𝜋
				𝑓
				(
				𝑧
				)
				−
				𝛼
			

			
				
			
			
				2
				𝛿
			

			

				1
			

			
				(
				𝑝
				−
				𝛼
				)
				(
				𝑧
				∈
				𝕌
				)
				,
			

		
	

						where 
	
		
			

				𝛿
			

			

				1
			

		
	
 is the unique root of (8) with 
	
		
			
				𝑛
				=
				1
			

		
	
, then 
	
		
			
				𝑓
				(
				𝑧
				)
				∈
				𝒮
			

			
				∗
				𝑝
			

			
				(
				𝛼
				)
			

		
	
, the class of 
	
		
			

				𝑝
			

		
	
-valent starlike functions of order 
	
		
			

				𝛼
			

		
	
.
Also if we take 
	
		
			
				𝑛
				=
				1
			

		
	
, 
	
		
			
				𝑏
				=
				1
				−
				𝛼
			

		
	
 with 
	
		
			
				0
				≤
				𝛼
				<
				𝑝
			

		
	
 and 
	
		
			
				𝑔
				(
				𝑧
				)
				=
				𝑧
			

			

				𝑝
			

			
				/
				(
				1
				−
				𝑧
				)
			

			
				2
				𝑝
			

		
	
 in Theorem 8, we obtain the following result.
Corollary 10.  If 
	
		
			
				𝑓
				(
				𝑧
				)
				∈
				𝐴
			

			

				𝑝
			

		
	
 satisfies
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
				𝑓
				a
				r
				g
			

			

				
			

			
				(
				𝑧
				)
			

			
				
			
			
				𝑝
				𝑧
			

			
				𝑝
				−
				1
			

			
				
				
				+
				(
				𝑝
				−
				𝛼
				)
				a
				r
				g
				𝑧
				𝑓
			

			
				
				
			

			
				(
				𝑧
				)
			

			
				
			
			

				𝑓
			

			

				
			

			
				
				|
				|
				|
				|
				<
				𝜋
				(
				𝑧
				)
				+
				1
				−
				𝛼
			

			
				
			
			
				2
				𝛿
			

			

				1
			

			
				(
				𝑝
				−
				𝛼
				)
				(
				𝑧
				∈
				𝕌
				)
				,
			

		
	

						where 
	
		
			

				𝛿
			

			

				1
			

		
	
 is the unique root of (8) with 
	
		
			
				𝑛
				=
				1
			

		
	
, then 
	
		
			
				𝑓
				(
				𝑧
				)
				∈
				𝒞
			

			

				𝑝
			

			
				(
				𝛼
				)
			

		
	
, the class of 
	
		
			

				𝑝
			

		
	
-valent convex functions of order 
	
		
			

				𝛼
			

		
	
.
Remark 11. For putting 
	
		
			
				𝑝
				=
				1
				,
				𝛼
				=
				0
			

		
	
 in Corollary 10 and 
	
		
			
				𝑝
				=
				1
			

		
	
 in Corollary 9, we obtain the results proved by Mocanu [10] and Uyanık et al. [1], respectively.
Theorem 12.  If 
	
		
			
				𝑓
				(
				𝑧
				)
				∈
				𝐴
			

			

				𝑝
			

			
				(
				𝑛
				)
			

		
	
 satisfies
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				
				1
				R
				e
			

			
				
			
			
				
				𝑝
				+
				𝑏
				−
				1
				𝑧
				(
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
				)
			

			

				
			

			
				
			
			
				
				𝜌
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
				𝑧
				(
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
				)
			

			
				
				
			

			
				
			
			
				(
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
				)
			

			

				
			

			
				
				>
				𝑀
				+
				1
				
				
				+
				𝑏
				−
				1
			

			

				2
			

			
				
			
			
				4
				𝐿
				+
				𝑁
				,
			

		
	

						where 
	
		
			
				0
				≤
				𝜌
				≤
				1
			

		
	
 and
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				
				𝑛
				𝐿
				=
				𝜌
				𝑝
				+
				R
				e
				𝑏
				−
				1
				+
			

			
				
			
			
				2
				
				,
				
				𝑀
				=
				2
				𝜌
				I
				m
				𝑏
				,
				𝑁
				=
				𝜌
				
				
				(
				R
				e
				𝑏
				)
			

			

				2
			

			
				−
				(
				I
				m
				𝑏
				)
			

			

				2
			

			
				
				−
				R
				e
				𝑏
				×
				(
				𝑝
				+
				R
				e
				𝑏
				−
				1
				)
				+
				(
				I
				m
				𝑏
				)
			

			

				2
			

			
				×
				
				(
				2
				R
				e
				𝑏
				−
				1
				)
				(
				𝑝
				+
				R
				e
				𝑏
				−
				1
				)
			

			

				2
			

			
				+
				(
				I
				m
				𝑏
				)
			

			

				2
			

			

				
			

			
				−
				1
			

			
				
				−
				𝑛
			

			
				
			
			
				2
				
				,
			

		
	
 
					then 
	
		
			
				𝑓
				(
				𝑧
				)
				∈
				ℳ
			

			

				𝑝
			

			
				(
				𝑛
				,
				𝑏
				;
				𝑔
				(
				𝑧
				)
				)
			

		
	
.
Proof. Let us set
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			
				𝑧
				(
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
				)
			

			

				
			

			
				
			
			
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
				=
				(
				𝑝
				+
				𝑏
				−
				1
				)
				𝑝
				(
				𝑧
				)
				−
				𝑏
				+
				1
				.
			

		
	

					Then 
	
		
			
				𝑝
				(
				𝑧
				)
			

		
	
 is analytic in 
	
		
			

				𝕌
			

		
	
 with 
	
		
			
				𝑝
				(
				0
				)
				=
				1
			

		
	
.Taking logarithmic differentiation of (28) and then by simple computation, we obtain
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				
				𝑝
				+
				𝑏
				−
				1
				𝑧
				(
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
				)
			

			

				
			

			
				
			
			
				×
				
				𝜌
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
				𝑧
				(
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
				)
			

			
				
				
			

			
				
			
			
				(
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
				)
			

			

				
			

			
				
				
				+
				1
				+
				𝑏
				−
				1
				=
				𝐴
				𝑧
				𝑝
			

			

				
			

			
				(
				𝑧
				)
				+
				𝐵
				𝑝
			

			

				2
			

			
				
				(
				𝑧
				)
				+
				𝐶
				𝑝
				(
				𝑧
				)
				+
				𝐷
				=
				Ψ
				𝑝
				(
				𝑧
				)
				,
				𝑧
				𝑝
			

			

				
			

			
				
				(
				𝑧
				)
				,
				𝑧
			

		
	

						with
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				𝐴
				=
				𝜌
				,
				𝐵
				=
				𝜌
				(
				𝑝
				+
				𝑏
				−
				1
				)
				,
				𝐶
				=
				−
				2
				𝜌
				𝑏
				+
				𝜌
				+
				1
				,
				𝐷
				=
				𝜌
				𝑏
			

			

				2
			

			
				−
				𝜌
				𝑏
			

			
				
			
			
				.
				𝑝
				+
				𝑏
				−
				1
			

		
	

					Now for all real 
	
		
			

				𝑥
			

		
	
 and 
	
		
			

				𝑦
			

		
	
 satisfying 
	
		
			
				𝑦
				≤
				−
				(
				𝑛
				/
				2
				)
				(
				1
				+
				𝑥
			

			

				2
			

			

				)
			

		
	
, we have
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			
				Ψ
				(
				𝑖
				𝑥
				,
				𝑦
				,
				𝑧
				)
				=
				𝐴
				𝑦
				−
				𝐵
				𝑥
			

			

				2
			

			
				+
				𝐶
				(
				𝑖
				𝑥
				)
				+
				𝐷
				.
			

		
	

					Reputing the values of 
	
		
			

				𝐴
			

		
	
, 
	
		
			

				𝐵
			

		
	
, 
	
		
			

				𝐶
			

		
	
, 
	
		
			

				𝐷
			

		
	
 and then taking real part, we obtain
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			
				R
				e
				Ψ
				(
				𝑖
				𝑥
				,
				𝑦
				,
				𝑧
				)
				≤
				−
				𝐿
				𝑥
			

			

				2
			

			
				
				√
				+
				𝑀
				𝑥
				+
				𝑁
				=
				−
			

			
				
			
			
				𝑀
				𝐿
				𝑥
				−
			

			
				
			
			
				2
				√
			

			
				
			
			
				𝐿
				
			

			

				2
			

			
				+
				𝑀
			

			

				2
			

			
				
			
			
				<
				𝑀
				4
				𝐿
				+
				𝑁
			

			

				2
			

			
				
			
			
				4
				𝐿
				+
				𝑁
				,
			

		
	

						where 
	
		
			

				𝐿
			

		
	
, 
	
		
			

				𝑀
			

		
	
, 
	
		
			

				𝑁
			

		
	
 are given in (27).Let 
	
		
			
				Ω
				=
				{
				𝑤
				∶
				R
				e
				𝑤
				>
				(
				𝑀
			

			

				2
			

			
				/
				4
				𝐿
				)
				+
				𝑁
				}
			

		
	
. Then 
	
		
			
				Ψ
				(
				ℎ
				(
				𝑧
				)
				,
				𝑧
				ℎ
			

			

				
			

			
				(
				𝑧
				)
				,
				𝑧
				)
				∈
				Ω
			

		
	
 and 
	
		
			
				Ψ
				(
				𝑖
				𝑥
				,
				𝑦
				,
				𝑧
				)
				∉
				Ω
			

		
	
, for all real 
	
		
			

				𝑥
			

		
	
 and 
	
		
			

				𝑦
			

		
	
 satisfying 
	
		
			
				𝑦
				≤
				−
				(
				𝑛
				/
				2
				)
				(
				1
				+
				𝑥
			

			

				2
			

			

				)
			

		
	
, 
	
		
			
				𝑧
				∈
				𝕌
			

		
	
. Using Lemma 3, we have 
	
		
			
				R
				e
				𝑝
				(
				𝑧
				)
				>
				0
			

		
	
. This implies that
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			
				
				1
				R
				e
				1
				+
			

			
				
			
			
				
				𝑝
				+
				𝑏
				−
				1
				𝑧
				(
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
				)
			

			

				
			

			
				
			
			
				𝑓
				(
				𝑧
				)
				∗
				𝑔
				(
				𝑧
				)
				−
				𝑝
				
				
				>
				0
				,
			

		
	

						and hence 
	
		
			
				𝑓
				(
				𝑧
				)
				∈
				ℳ
			

			

				𝑝
			

			
				(
				𝑛
				,
				𝑏
				;
				𝑔
				(
				𝑧
				)
				)
			

		
	
.If we put 
	
		
			
				𝑝
				=
				𝑛
				=
				1
				,
				𝑏
				=
				1
				−
				𝛼
			

		
	
 and 
	
		
			
				𝑔
				(
				𝑧
				)
				=
				𝑧
				/
				(
				1
				−
				𝑧
				)
			

			
				2
				(
				1
				−
				𝛼
				)
			

		
	
 in Theorem 12, we obtain the following result proved in [12].
Corollary 13.  If 
	
		
			
				𝑓
				(
				𝑧
				)
				∈
				𝐴
			

		
	
 satisfies
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				
				R
				e
				𝑧
				𝑓
			

			

				
			

			
				(
				𝑧
				)
			

			
				
			
			
				
				𝜌
				𝑓
				(
				𝑧
				)
				𝑧
				𝑓
			

			
				
				
			

			
				(
				𝑧
				)
			

			
				
			
			

				𝑓
			

			

				
			

			
				
				1
				(
				𝑧
				)
				+
				1
				
				
				>
				𝛼
				𝜌
				𝛼
				−
			

			
				
			
			
				2
				
				+
				
				𝜌
				𝛼
				−
			

			
				
			
			
				2
				
				,
			

		
	

						then 
	
		
			
				𝑓
				(
				𝑧
				)
				∈
				𝒮
			

			

				∗
			

			
				(
				𝛼
				)
			

		
	
.
Furthermore, for 
	
		
			
				𝛼
				=
				0
			

		
	
 in Corollary 13, we have the following result proved in [13].
Corollary 14.  If 
	
		
			
				𝑓
				(
				𝑧
				)
				∈
				𝐴
			

		
	
 satisfies
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				
				R
				e
				𝑧
				𝑓
			

			

				
			

			
				(
				𝑧
				)
			

			
				
			
			
				
				𝜌
				𝑓
				(
				𝑧
				)
				𝑧
				𝑓
			

			
				
				
			

			
				(
				𝑧
				)
			

			
				
			
			

				𝑓
			

			

				
			

			
				𝜌
				(
				𝑧
				)
				+
				1
				
				
				>
				−
			

			
				
			
			
				2
				,
			

		
	

						then 
	
		
			
				𝑓
				(
				𝑧
				)
				∈
				𝒮
			

			

				∗
			

		
	
.
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