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Abstract. 
This paper studies the construction of the exact solution for parabolic coupled systems of the type 
	
		
			

				𝑢
			

			

				𝑡
			

			
				=
				𝐴
				𝑢
			

			
				𝑥
				𝑥
			

		
	
, 
	
		
			

				𝐴
			

			

				1
			

			
				𝑢
				(
				0
				,
				𝑡
				)
				+
				𝐵
			

			

				1
			

			

				𝑢
			

			

				𝑥
			

			
				(
				0
				,
				𝑡
				)
				=
				0
			

		
	
, 
	
		
			

				𝐴
			

			

				2
			

			
				𝑢
				(
				𝑙
				,
				𝑡
				)
				+
				𝐵
			

			

				2
			

			

				𝑢
			

			

				𝑥
			

			
				(
				𝑙
				,
				𝑡
				)
				=
				0
			

		
	
, 
	
		
			
				0
				<
				𝑥
				<
				1
			

		
	
, 
	
		
			
				𝑡
				>
				0
			

		
	
, and 
	
		
			
				𝑢
				(
				𝑥
				,
				0
				)
				=
				𝑓
				(
				𝑥
				)
			

		
	
, where 
	
		
			

				𝐴
			

			

				1
			

		
	
, 
	
		
			

				𝐴
			

			

				2
			

		
	
, 
	
		
			

				𝐵
			

			

				1
			

		
	
, and 
	
		
			

				𝐵
			

			

				2
			

		
	
 are arbitrary matrices for which the block matrix 
	
		
			

				
			

			

				𝐴
			

			

				1
			

			

				𝐵
			

			

				1
			

			

				𝐴
			

			

				2
			

			

				𝐵
			

			

				2
			

			

				
			

		
	
 is nonsingular, and 
	
		
			

				𝐴
			

		
	
 is a positive stable matrix.


1. Introduction
Coupled partial differential systems with coupled boundary-value conditions are frequent in quantum mechanical scattering problems [1–3], chemical physics [4–6], thermoelastoplastic modelling [7], coupled diffusion problems [8–10], and other fields. In this paper, we consider systems of the type
						
	
 		
 			
				(
				1
				)
			
 			
				(
				2
				)
			
 			
				(
				3
				)
			
 			
				(
				4
				)
			
 		
	

	
		
			

				𝑢
			

			

				𝑡
			

			
				(
				𝑥
				,
				𝑡
				)
				−
				𝐴
				𝑢
			

			
				𝑥
				𝑥
			

			
				𝐴
				(
				𝑥
				,
				𝑡
				)
				=
				0
				,
				0
				<
				𝑥
				<
				1
				,
				𝑡
				>
				0
				,
			

			

				1
			

			
				𝑢
				(
				0
				,
				𝑡
				)
				+
				𝐵
			

			

				1
			

			

				𝑢
			

			

				𝑥
			

			
				(
				𝐴
				0
				,
				𝑡
				)
				=
				0
				,
				𝑡
				>
				0
				,
			

			

				2
			

			
				𝑢
				(
				1
				,
				𝑡
				)
				+
				𝐵
			

			

				2
			

			

				𝑢
			

			

				𝑥
			

			
				(
				1
				,
				𝑡
				)
				=
				0
				,
				𝑡
				>
				0
				,
				𝑢
				(
				𝑥
				,
				0
				)
				=
				𝑓
				(
				𝑥
				)
				,
				0
				≤
				𝑥
				≤
				1
				,
			

		
	

					where the unknown 
	
		
			
				𝑢
				=
				(
				𝑢
			

			

				1
			

			
				,
				𝑢
			

			

				2
			

			
				,
				…
				,
				𝑢
			

			

				𝑚
			

			

				)
			

			

				𝑇
			

		
	
 and the initial condition 
	
		
			
				𝑓
				=
				(
				𝑓
			

			

				1
			

			
				,
				𝑓
			

			

				2
			

			
				,
				…
				,
				𝑓
			

			

				𝑚
			

			

				)
			

			

				𝑇
			

		
	
 are 
	
		
			

				𝑚
			

		
	
-dimensional vectors, 
	
		
			

				𝐴
			

			

				𝑖
			

		
	
, 
	
		
			

				𝐵
			

			

				𝑖
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
			

		
	
, are 
	
		
			
				𝑚
				×
				𝑚
			

		
	
 complex matrices, elements of 
	
		
			

				ℂ
			

			
				𝑚
				×
				𝑚
			

		
	
, and 
	
		
			

				𝐴
			

		
	
 is a matrix which satisfies the condition
						
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			
				R
				e
				(
				𝑧
				)
				>
				0
				f
				o
				r
				a
				l
				l
				e
				i
				g
				e
				n
				v
				a
				l
				u
				e
				s
				𝑧
				o
				f
				𝐴
				,
			

		
	

					and we say that 
	
		
			

				𝐴
			

		
	
 is a positive stable matrix (where 
	
		
			
				R
				e
				(
				𝑧
				)
			

		
	
 denotes the real part of 
	
		
			
				𝑧
				∈
				ℂ
			

		
	
). We assume that the block matrix
						
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			
				⎛
				⎜
				⎜
				⎜
				⎝
				𝐴
			

			

				1
			

			

				𝐵
			

			

				1
			

			

				𝐴
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				i
				s
				r
				e
				g
				u
				l
				a
				r
			

		
	

					and also that
						
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				t
				h
				e
				m
				a
				t
				r
				i
				x
				p
				e
				n
				c
				i
				l
				𝐴
			

			

				1
			

			
				+
				𝜌
				𝐵
			

			

				1
			

			
				i
				s
				r
				e
				g
				u
				l
				a
				r
				.
			

		
	

					Condition (7) is well known from the literature of singular systems of differential equations, and it involves the existence of some 
	
		
			

				𝜌
			

			

				0
			

			
				∈
				ℂ
			

		
	
 such that matrix 
	
		
			

				𝐴
			

			

				1
			

			
				+
				𝜌
			

			

				0
			

			

				𝐵
			

			

				1
			

		
	
 is invertible [11]. 
Problem (1)–(4) with the less restrictive condition that (7) was solved in [12], but not with all of its blocks 
	
		
			

				𝐴
			

			

				1
			

		
	
, 
	
		
			

				𝐴
			

			

				2
			

		
	
, 
	
		
			

				𝐵
			

			

				1
			

		
	
, 
	
		
			

				𝐵
			

			

				2
			

		
	
, is singular (in particular 
	
		
			

				𝐴
			

			

				1
			

			
				=
				𝐼
			

		
	
). Mixed problems of the previously mentioned type, but with the Dirichlet conditions 
	
		
			
				𝑢
				(
				0
				,
				𝑡
				)
				=
				0
			

		
	
, 
	
		
			
				𝑢
				(
				1
				,
				𝑡
				)
				=
				0
			

		
	
 instead of (2) and (3), have been treated in [13, 14].
Throughout this paper, and as usual, matrix 
	
		
			

				𝐼
			

		
	
 denotes the identity matrix. The set of all the eigenvalues of a matrix 
	
		
			

				𝐶
			

		
	
 in 
	
		
			

				ℂ
			

			
				𝑚
				×
				𝑚
			

		
	
 is denoted by 
	
		
			
				𝜎
				(
				𝐶
				)
			

		
	
, and its 2-norm 
	
		
			
				‖
				𝐶
				‖
			

		
	
 is defined by [15, page 56]
						
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				‖
				𝐶
				‖
				=
				s
				u
				p
			

			
				𝑥
				≠
				0
			

			
				‖
				𝐶
				𝑥
				‖
			

			
				
			
			
				,
				‖
				𝑥
				‖
			

		
	

					where for vector 
	
		
			
				𝑦
				∈
				ℂ
			

			

				𝑚
			

		
	
, the Euclidean norm of 
	
		
			

				𝑦
			

		
	
 is 
	
		
			
				‖
				𝑦
				‖
			

		
	
. By [15, page 556], it follows that
						
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				‖
				‖
				𝑒
			

			
				𝐴
				𝑡
			

			
				‖
				‖
				≤
				𝑒
			

			
				𝑡
				𝛼
				(
				𝐴
				)
				𝑚
				−
				1
			

			

				
			

			
				𝑘
				=
				0
			

			
				‖
				‖
				√
			

			
				
			
			
				‖
				‖
				𝑚
				𝐴
			

			

				𝑘
			

			

				𝑡
			

			

				𝑘
			

			
				
			
			
				𝑘
				!
				,
				𝑡
				≥
				0
				,
			

		
	

					where 
	
		
			
				𝛼
				(
				𝐴
				)
				=
				m
				a
				x
				{
				R
				e
				(
				𝑤
				)
				;
				𝑤
				∈
				𝜎
				(
				𝐴
				)
				}
			

		
	
. We say that a subspace 
	
		
			

				𝐸
			

		
	
 of 
	
		
			

				ℂ
			

			

				𝑚
			

		
	
 is invariant by the matrix 
	
		
			
				𝐴
				∈
				ℂ
			

			
				𝑚
				×
				𝑚
			

		
	
, if 
	
		
			
				𝐴
				(
				𝐸
				)
				⊂
				𝐸
			

		
	
. If 
	
		
			

				𝐵
			

		
	
 is a matrix in 
	
		
			

				ℂ
			

			
				𝑛
				×
				𝑚
			

		
	
, we denote by 
	
		
			

				𝐵
			

			

				†
			

		
	
 its Moore-Penrose pseudoinverse. A collection of examples, properties, and applications of this concept may be found in [11, 16], and 
	
		
			

				𝐵
			

			

				†
			

		
	
 can be efficiently computed with the MATLAB and Mathematica computer algebra systems.
2. Preliminaries and Notation
In [17], eigenfunctions of problem (1)–(3) were constructed assuming other additional conditions besides (6) and (7). We recall in this section the notation and results needed. Let 
	
		
			

				∼
			

			

				𝐴
			

			

				1
			

		
	
 and 
	
		
			

				∼
			

			

				𝐵
			

			

				1
			

		
	
 be matrices defined by
						
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			

				∼
			

			

				𝐴
			

			

				1
			

			
				=
				
				𝐴
			

			

				1
			

			
				+
				𝜌
			

			

				0
			

			

				𝐵
			

			

				1
			

			

				
			

			
				−
				1
			

			

				𝐴
			

			

				1
			

			

				,
			

			

				∼
			

			

				𝐵
			

			

				1
			

			
				=
				
				𝐴
			

			

				1
			

			
				+
				𝜌
			

			

				0
			

			

				𝐵
			

			

				1
			

			

				
			

			
				−
				1
			

			

				𝐵
			

			

				1
			

			

				,
			

		
	

					fulfilling the relation: 
	
		
			

				∼
			

			

				𝐴
			

			

				1
			

			
				+
				𝜌
			

			
				0
				∼
			

			

				𝐵
			

			

				1
			

			
				=
				𝐼
			

		
	
. Under hypothesis (6), matrix 
	
		
			

				𝐵
			

			

				2
			

			
				−
				(
				𝐴
			

			

				2
			

			
				+
				𝜌
			

			

				0
			

			

				𝐵
			

			

				2
			

			

				)
			

			

				∼
			

			

				𝐵
			

			

				1
			

		
	
 is regular; see [17, page 431], and let 
	
		
			

				∼
			

			

				𝐴
			

			

				2
			

		
	
 and 
	
		
			

				∼
			

			

				𝐵
			

			

				2
			

		
	
 be the matrices defined by
						
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			

				∼
			

			

				𝐴
			

			

				2
			

			
				=
				
				𝐵
			

			

				2
			

			
				−
				
				𝐴
			

			

				2
			

			
				+
				𝜌
			

			

				0
			

			

				𝐵
			

			

				2
			

			

				
			

			

				∼
			

			

				𝐵
			

			

				1
			

			

				
			

			
				−
				1
			

			

				𝐴
			

			

				2
			

			

				,
			

			

				∼
			

			

				𝐵
			

			

				2
			

			
				=
				
				𝐵
			

			

				2
			

			
				−
				
				𝐴
			

			

				2
			

			
				+
				𝜌
			

			

				0
			

			

				𝐵
			

			

				2
			

			

				
			

			

				∼
			

			

				𝐵
			

			

				1
			

			

				
			

			
				−
				1
			

			

				𝐵
			

			

				2
			

			

				,
			

		
	

					so that they satisfy the relationships
						
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			

				∼
			

			

				𝐵
			

			

				2
			

			
				−
				
			

			

				∼
			

			

				𝐴
			

			

				2
			

			
				+
				𝜌
			

			
				0
				∼
			

			

				𝐵
			

			

				2
			

			

				
			

			

				∼
			

			

				𝐵
			

			

				1
			

			
				=
				𝐼
				,
			

			

				∼
			

			

				𝐵
			

			
				2
				∼
			

			

				𝐴
			

			

				1
			

			

				−
			

			

				∼
			

			

				𝐴
			

			
				2
				∼
			

			

				𝐵
			

			

				1
			

			
				=
				𝐼
				.
			

		
	

					Assuming that the following condition
						
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				e
				x
				i
				s
				t
				s
				𝑏
			

			

				1
			

			
				
				∈
				𝜎
			

			

				∼
			

			

				𝐵
			

			

				1
			

			
				
				−
				{
				0
				}
				,
				𝑏
			

			

				2
			

			
				
				∈
				𝜎
			

			

				∼
			

			

				𝐵
			

			

				2
			

			
				
				,
				𝑣
				∈
				ℂ
			

			

				𝑚
			

			
				
				−
				{
				0
				}
				,
				s
				u
				c
				h
				t
				h
				a
				t
			

			

				∼
			

			

				𝐵
			

			

				1
			

			
				−
				𝑏
			

			

				1
			

			
				𝐼
				
				
				𝑣
				=
			

			

				∼
			

			

				𝐵
			

			

				2
			

			
				−
				𝑏
			

			

				2
			

			
				𝐼
				
				𝑣
				=
				0
				,
			

		
	

					and that values 
	
		
			

				𝑏
			

			

				1
			

		
	
, 
	
		
			

				𝑏
			

			

				2
			

		
	
 of condition (13) satisfy
						
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			

				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			
				∈
				ℝ
				,
				w
				h
				e
				r
				e
				𝑏
			

			

				1
			

			
				∈
				ℝ
				o
				r
				2
				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			
				
				
				𝑏
				R
				e
			

			
				1
				−
				1
			

			
				
				−
				𝜌
			

			

				0
			

			
				
				=
				1
				i
				f
				𝑏
			

			

				1
			

			
				∉
				ℝ
				,
			

		
	

					we can define the function
						
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				𝛼
				
				𝜌
			

			

				0
			

			
				,
				𝑏
			

			

				1
			

			
				,
				𝑏
			

			

				2
			

			
				
				=
				
				,
				𝜆
				1
				−
				𝑏
			

			

				2
			

			
				+
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			
				
				
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			

				
			

			
				
			
			

				𝑏
			

			

				1
			

			
				−
				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			

				𝜆
			

			

				2
			

			
				,
				𝜆
				>
				0
				.
			

		
	

					Note that under hypothesis (14) we have guaranteed the existence of the solutions for
						
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				
				𝜆
				c
				o
				t
				(
				𝜆
				)
				=
				1
				−
				𝑏
			

			

				2
			

			
				+
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			
				
				
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			

				
			

			
				
			
			

				𝑏
			

			

				1
			

			
				−
				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			

				𝜆
			

			

				2
			

			

				.
			

		
	

					Equation (16) has a unique solution 
	
		
			

				𝜆
			

			

				𝑘
			

		
	
 in each interval 
	
		
			
				(
				𝑘
				𝜋
				,
				(
				𝑘
				+
				1
				)
				𝜋
				)
			

		
	
 for 
	
		
			
				𝑘
				≥
				1
			

		
	
, as seen in Figure 1. Also, it is straightforward to prove the following lemma.











	










	





	
	


	
	


	
	


	
	


	
	


	
	


	
	


	
	


	
	


	
		
	


	
		
		
	


	
		
		
	


	
		
		
	


	
		
		
	


	
		
		
	


	
		
	
	
		
	
	
		
	


	
		
	
	
		
		
	


	
		
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	

Figure 1: Graphical representation of 
	
		
			
				𝑦
				=
				𝜆
				c
				o
				t
				(
				𝜆
				)
			

		
	
 and determination of the eigenvalues 
	
		
			

				𝜆
			

			

				𝑛
			

		
	
.


Lemma 1.  Under hypothesis (14), the roots 
	
		
			

				𝜆
			

			

				𝑘
			

		
	
 of (16) satisfy 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝜆
			

			

				𝑛
			

			
				=
				+
				∞
			

		
	
. Also, if 
	
		
			

				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			
				≠
				0
			

		
	
, then
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				
				𝜆
				s
				i
				n
			

			

				𝑛
			

			
				
				=
				0
				,
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				|
				|
				
				𝜆
				c
				o
				s
			

			

				𝑛
			

			
				
				|
				|
				=
				1
				.
			

		
	

						Otherwise, if 
	
		
			

				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			
				=
				0
			

		
	
, then
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				|
				|
				
				𝜆
				s
				i
				n
			

			

				𝑛
			

			
				
				|
				|
				=
				1
				,
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				
				𝜆
				c
				o
				s
			

			

				𝑛
			

			
				
				=
				0
				.
			

		
	

						However, in all cases it is
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				
				𝜆
			

			
				𝑛
				+
				1
			

			
				−
				𝜆
			

			

				𝑛
			

			
				
				=
				𝜋
				.
			

		
	

Proof.  Function 
	
		
			
				𝑓
				(
				𝜆
				)
				=
				𝜆
				c
				o
				t
				(
				𝜆
				)
			

		
	
 has vertical asymptotes at the points 
	
		
			
				𝜆
				=
				𝑘
				𝜋
			

		
	
, 
	
		
			
				𝑘
				∈
				ℕ
			

		
	
, and 
	
		
			
				𝑓
				(
				𝜆
				)
			

		
	
 has zeros at the points 
	
		
			
				𝜆
				=
				(
				𝜋
				/
				2
				)
				+
				𝑘
				𝜋
			

		
	
, 
	
		
			
				𝑘
				∈
				ℕ
			

		
	
. Thus, as we have stated, the real coefficient function 
	
		
			
				(
				(
				1
				−
				𝑏
			

			

				2
			

			
				+
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			
				)
				(
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				)
				/
				𝑏
			

			

				1
			

			
				)
				−
				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			

				𝜆
			

			

				2
			

		
	
 intersects the graph of the function 
	
		
			
				𝑓
				(
				𝜆
				)
			

		
	
 in each interval 
	
		
			
				(
				𝑘
				𝜋
				,
				(
				𝑘
				+
				1
				)
				𝜋
				)
			

		
	
, where 
	
		
			

				𝜆
			

			

				𝑘
			

			
				∈
				(
				𝑘
				𝜋
				,
				(
				𝑘
				+
				1
				)
				𝜋
				)
			

		
	
 is the point of intersection. Thus, the sequence 
	
		
			
				{
				𝜆
			

			

				𝑘
			

			

				}
			

			
				𝑘
				≥
				1
			

		
	
 is monotonicaly increasing with 
	
		
			
				l
				i
				m
			

			
				𝑘
				→
				∞
			

			

				𝜆
			

			

				𝑘
			

			
				=
				∞
			

		
	
. We have to consider two possibilities.(i) 
	
		
			

				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			
				>
				0
			

		
	
. Function 
	
		
			
				(
				(
				1
				−
				𝑏
			

			

				2
			

			
				+
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			
				)
				(
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				)
				/
				𝑏
			

			

				1
			

			
				)
				−
				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			

				𝜆
			

			

				2
			

		
	
 is therefore decreasing, and as seen in Figure 1, for large enough 
	
		
			

				𝑘
			

		
	
, then 
	
		
			

				𝜆
			

			

				𝑘
			

			
				∈
				(
				(
				𝜋
				/
				2
				)
				+
				𝑘
				𝜋
				,
				(
				𝑘
				+
				1
				)
				𝜋
				)
			

		
	
.(ii) 
	
		
			

				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			
				<
				0
			

		
	
. Function 
	
		
			
				(
				(
				1
				−
				𝑏
			

			

				2
			

			
				+
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			
				)
				(
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				)
				/
				𝑏
			

			

				1
			

			
				)
				−
				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			

				𝜆
			

			

				2
			

		
	
 is therefore increasing, and as seen in Figure 1, for large enough 
	
		
			

				𝑘
			

		
	
, then 
	
		
			

				𝜆
			

			

				𝑘
			

			
				∈
				(
				𝑘
				𝜋
				,
				(
				𝜋
				/
				2
				)
				+
				𝑘
				𝜋
				)
			

		
	
. Thus, observe that if 
	
		
			

				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			
				≠
				0
			

		
	
, then 
	
		
			
				(
				𝜋
				/
				2
				)
				<
				𝜆
			

			
				𝑘
				+
				1
			

			
				−
				𝜆
			

			

				𝑘
			

			
				<
				(
				3
				𝜋
				/
				2
				)
			

		
	
 for large sufficiently 
	
		
			

				𝑘
			

		
	
. For 
	
		
			

				𝜆
			

			

				𝑘
			

		
	
, reemploying in (16), one gets 
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			

				𝜆
			

			

				𝑘
			

			
				
				𝜆
				c
				o
				t
			

			

				𝑘
			

			
				
				=
				
				1
				−
				𝑏
			

			

				2
			

			
				+
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			
				
				
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			

				
			

			
				
			
			

				𝑏
			

			

				1
			

			
				−
				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			

				𝜆
			

			
				2
				𝑘
			

			

				,
			

		
	

						dividing by 
	
		
			

				𝜆
			

			
				2
				𝑘
			

		
	
 and taking limits where 
	
		
			
				𝑘
				→
				∞
			

		
	
: 
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑘
				→
				∞
			

			
				
				𝜆
				c
				o
				t
			

			

				𝑘
			

			

				
			

			
				
			
			

				𝜆
			

			

				𝑘
			

			
				=
				−
				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			
				≠
				0
				.
			

		
	

						This demonstrates that sequences 
	
		
			
				{
				𝜆
			

			

				𝑘
			

			

				}
			

			
				𝑘
				≥
				1
			

		
	
 and 
	
		
			
				{
				c
				o
				t
				(
				𝜆
			

			

				𝑘
			

			
				)
				}
			

			
				𝑘
				≥
				1
			

		
	
 are infinite equivalents and 
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑘
				→
				∞
			

			
				
				𝜆
				c
				o
				t
			

			

				𝑘
			

			
				
				=
				∞
				,
			

		
	

						where 
	
		
			
				l
				i
				m
			

			
				𝑘
				→
				∞
			

			
				t
				a
				n
				(
				𝜆
			

			

				𝑘
			

			
				)
				=
				0
			

		
	
. Moreover, as 
	
		
			
				{
				c
				o
				s
				(
				𝜆
			

			

				𝑘
			

			
				)
				}
			

			
				𝑘
				≥
				1
			

		
	
 is bounded, one gets that 
	
		
			
				l
				i
				m
			

			
				𝑘
				→
				∞
			

			
				s
				i
				n
				(
				𝜆
			

			

				𝑘
			

			
				)
				=
				0
			

		
	
 and 
	
		
			
				l
				i
				m
			

			
				𝑘
				→
				∞
			

			
				|
				c
				o
				s
				(
				𝜆
			

			

				𝑘
			

			
				)
				|
				=
				1
			

		
	
. Taking into account that 
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				
				𝜆
				t
				a
				n
			

			
				𝑘
				+
				1
			

			
				−
				𝜆
			

			

				𝑘
			

			
				
				=
				
				𝜆
				t
				a
				n
			

			
				𝑘
				+
				1
			

			
				
				
				𝜆
				−
				t
				a
				n
			

			

				𝑘
			

			

				
			

			
				
			
			
				
				𝜆
				1
				+
				t
				a
				n
			

			
				𝑘
				+
				1
			

			
				
				
				𝜆
				t
				a
				n
			

			

				𝑘
			

			
				
				,
			

		
	

						considering limits where 
	
		
			
				𝑘
				→
				∞
			

		
	
, one gets 
	
		
			
				l
				i
				m
			

			
				𝑘
				→
				∞
			

			
				t
				a
				n
				(
				𝜆
			

			
				𝑘
				+
				1
			

			
				−
				𝜆
			

			

				𝑘
			

			
				)
				=
				0
			

		
	
, and with 
	
		
			
				(
				𝜋
				/
				2
				)
				<
				𝜆
			

			
				𝑘
				+
				1
			

			
				−
				𝜆
			

			

				𝑘
			

			
				<
				(
				3
				𝜋
				/
				2
				)
			

		
	
, then 
	
		
			
				l
				i
				m
			

			
				𝑘
				→
				∞
			

			
				(
				𝜆
			

			
				𝑘
				+
				1
			

			
				−
				𝜆
			

			

				𝑘
			

			
				)
				=
				𝜋
			

		
	
.If 
	
		
			

				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			
				=
				0
			

		
	
, then one obtains two possibilities.(i)If 
	
		
			
				(
				(
				1
				−
				𝑏
			

			

				2
			

			
				+
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			
				)
				(
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				)
				/
				𝑏
			

			

				1
			

			
				)
				>
				0
			

		
	
, as one can see in Figure 1, for large enough 
	
		
			

				𝑘
			

		
	
, 
	
		
			

				𝜆
			

			

				𝑘
			

			
				∈
				(
				𝑘
				𝜋
				,
				(
				𝜋
				/
				2
				)
				+
				𝑘
				𝜋
				)
			

		
	
.(ii)If 
	
		
			
				(
				(
				1
				−
				𝑏
			

			

				2
			

			
				+
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			
				)
				(
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				)
				/
				𝑏
			

			

				1
			

			
				)
				<
				0
			

		
	
, as one can see in Figure 1, for large enough 
	
		
			

				𝑘
			

		
	
, 
	
		
			

				𝜆
			

			

				𝑘
			

			
				∈
				(
				(
				𝜋
				/
				2
				)
				+
				𝑘
				𝜋
				,
				(
				𝑘
				+
				1
				)
				𝜋
				)
			

		
	
.Thus, observe that if 
	
		
			

				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			
				=
				0
			

		
	
, then also 
	
		
			
				(
				𝜋
				/
				2
				)
				<
				𝜆
			

			
				𝑘
				+
				1
			

			
				−
				𝜆
			

			

				𝑘
			

			
				<
				(
				3
				𝜋
				/
				2
				)
			

		
	
 for 
	
		
			

				𝑘
			

		
	
 sufficiently large. For 
	
		
			

				𝜆
			

			

				𝑘
			

		
	
, reemploying in (16), one gets 
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			

				𝜆
			

			

				𝑘
			

			
				
				𝜆
				c
				o
				t
			

			

				𝑘
			

			
				
				=
				
				1
				−
				𝑏
			

			

				2
			

			
				+
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			
				
				
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			

				
			

			
				
			
			

				𝑏
			

			

				1
			

			

				,
			

		
	

						dividing by 
	
		
			

				𝜆
			

			

				𝑘
			

		
	
 and taking limits where 
	
		
			
				𝑘
				→
				∞
			

		
	
, one gets that 
	
		
			
				l
				i
				m
			

			
				𝑘
				→
				∞
			

			
				c
				o
				t
				(
				𝜆
			

			

				𝑘
			

			
				)
				=
				0
			

		
	
, and as the sequence 
	
		
			
				{
				s
				i
				n
				(
				𝜆
			

			

				𝑘
			

			
				)
				}
			

			
				𝑘
				≥
				1
			

		
	
 is bounded, one gets that 
	
		
			
				l
				i
				m
			

			
				𝑘
				→
				∞
			

			
				c
				o
				s
				(
				𝜆
			

			

				𝑘
			

			
				)
				=
				0
			

		
	
 and 
	
		
			
				l
				i
				m
			

			
				𝑘
				→
				∞
			

			
				|
				s
				i
				n
				(
				𝜆
			

			

				𝑘
			

			
				)
				|
				=
				1
			

		
	
. Moreover, one gets that 
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				
				𝜆
				c
				o
				t
			

			
				𝑘
				+
				1
			

			
				−
				𝜆
			

			

				𝑘
			

			
				
				=
				
				𝜆
				c
				o
				t
			

			
				𝑘
				+
				1
			

			
				
				
				𝜆
				c
				o
				t
			

			

				𝑘
			

			
				
				+
				1
			

			
				
			
			
				
				𝜆
				c
				o
				t
			

			

				𝑘
			

			
				
				
				𝜆
				−
				c
				o
				t
			

			
				𝑘
				+
				1
			

			
				
				,
			

		
	

						considering limits where 
	
		
			
				𝑘
				→
				∞
			

		
	
, one gets 
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑘
				→
				∞
			

			
				
				𝜆
				c
				o
				t
			

			
				𝑘
				+
				1
			

			
				−
				𝜆
			

			

				𝑘
			

			
				
				=
				∞
				,
			

		
	

						as the sequence 
	
		
			
				{
				c
				o
				s
				(
				𝜆
			

			
				𝑘
				+
				1
			

			
				−
				𝜆
			

			

				𝑘
			

			
				)
				}
			

			
				𝑘
				≥
				1
			

		
	
 is bounded, we have that 
	
		
			
				l
				i
				m
			

			
				𝑘
				→
				∞
			

			
				s
				i
				n
				(
				𝜆
			

			
				𝑘
				+
				1
			

			
				−
				𝜆
			

			

				𝑘
			

			
				)
				=
				0
			

		
	
, and with 
	
		
			
				(
				𝜋
				/
				2
				)
				<
				𝜆
			

			
				𝑘
				+
				1
			

			
				−
				𝜆
			

			

				𝑘
			

			
				<
				(
				3
				𝜋
				/
				2
				)
			

		
	
, one gets that 
	
		
			
				l
				i
				m
			

			
				𝑘
				→
				∞
			

			
				(
				𝜆
			

			
				𝑘
				+
				1
			

			
				−
				𝜆
			

			

				𝑘
			

			
				)
				=
				𝜋
			

		
	
.If 
	
		
			

				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			
				=
				0
			

		
	
 and 
	
		
			
				(
				(
				1
				−
				𝑏
			

			

				2
			

			
				+
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			
				)
				(
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				)
				/
				𝑏
			

			

				1
			

			
				)
				=
				0
			

		
	
, (16) reduces to 
	
		
			
				𝜆
				c
				o
				t
				(
				𝜆
				)
				=
				0
			

		
	
, whose roots are 
	
		
			

				𝜆
			

			

				𝑘
			

			
				=
				(
				𝜋
				/
				2
				)
				+
				𝑘
				𝜋
			

		
	
, 
	
		
			
				𝑘
				∈
				ℕ
			

		
	
, and trivially 
	
		
			

				𝜆
			

			
				𝑘
				+
				1
			

			
				−
				𝜆
			

			

				𝑘
			

			
				=
				𝜋
			

		
	
. Then 
	
		
			
				l
				i
				m
			

			
				𝑘
				→
				∞
			

			
				(
				𝜆
			

			
				𝑘
				+
				1
			

			
				−
				𝜆
			

			

				𝑘
			

			
				)
				=
				𝜋
			

		
	
. 
Under hypothesis 
	
		
			
				𝛼
				(
				𝜌
			

			

				0
			

			
				,
				𝑏
			

			

				1
			

			
				,
				𝑏
			

			

				2
			

			
				,
				𝜆
			

			

				0
			

			
				)
				<
				1
			

		
	
 there is a root 
	
		
			

				𝜆
			

			

				0
			

			
				∈
				(
				0
				,
				𝜋
				)
			

		
	
, and we can define the set of eigenvalues of the problem (1)–(3) as
						
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				
				𝜆
				ℱ
				=
			

			

				𝑘
			

			
				𝜆
				∈
				(
				𝑘
				𝜋
				,
				(
				𝑘
				+
				1
				)
				𝜋
				)
				;
			

			

				𝑘
			

			
				
				𝜆
				c
				o
				t
			

			

				𝑘
			

			
				
				
				𝜌
				=
				𝛼
			

			

				0
			

			
				,
				𝑏
			

			

				1
			

			
				,
				𝑏
			

			

				2
			

			
				,
				𝜆
			

			

				𝑘
			

			
				
				
				,
				𝑘
				≥
				1
				∪
				ℱ
			

			

				0
			

			

				,
			

		
	

					where
						
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			

				ℱ
			

			

				0
			

			
				=
				
				
				𝜌
				∅
				,
				i
				f
				𝛼
			

			

				0
			

			
				,
				𝑏
			

			

				1
			

			
				,
				𝑏
			

			

				2
			

			
				,
				𝜆
			

			

				0
			

			
				
				𝜆
				≥
				1
			

			

				0
			

			
				
				𝜌
				∈
				(
				0
				,
				𝜋
				)
				,
				i
				f
				𝛼
			

			

				0
			

			
				,
				𝑏
			

			

				1
			

			
				,
				𝑏
			

			

				2
			

			
				,
				𝜆
			

			

				0
			

			
				
				<
				1
				.
			

		
	

					Thus, by [17, page 433] a set of solutions of problem (1) is given by
						
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				𝑢
				
				𝑥
				,
				𝑡
				,
				𝜆
			

			

				𝑘
			

			
				
				=
				𝑒
			

			
				−
				𝜆
			

			

				𝑘
			

			
				𝐴
				𝑡
			

			
				
				
				𝜆
				s
				i
				n
			

			

				𝑘
			

			
				𝑥
				
			

			

				∼
			

			

				𝐴
			

			

				1
			

			
				−
				𝜆
			

			

				𝑘
			

			
				
				𝜆
				c
				o
				s
			

			

				𝑘
			

			
				𝑥
				
			

			

				∼
			

			

				𝐵
			

			

				1
			

			
				
				𝐶
				
				𝜆
			

			

				𝑘
			

			
				
				,
				𝜆
			

			

				𝑘
			

			
				∈
				ℱ
				,
			

		
	

					where 
	
		
			
				𝐶
				(
				𝜆
			

			

				𝑘
			

			

				)
			

		
	
 satisfies
						
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				𝐺
				
				𝜌
			

			

				0
			

			
				,
				𝑏
			

			

				1
			

			
				,
				𝑏
			

			

				2
			

			
				,
				𝜆
			

			

				𝑘
			

			
				
				𝐶
				
				𝜆
			

			

				𝑘
			

			
				
				=
				0
				.
			

		
	

					Observe that if 
	
		
			

				𝑝
			

		
	
 is the degree of minimal polynomial of 
	
		
			

				𝐴
			

		
	
, the matrix 
	
		
			
				𝐺
				(
				𝜌
			

			

				0
			

			
				,
				𝑏
			

			

				1
			

			
				,
				𝑏
			

			

				2
			

			
				,
				𝜆
			

			

				𝑘
			

			

				)
			

		
	
 is defined by
						
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			
				𝐺
				
				𝜌
			

			

				0
			

			
				,
				𝑏
			

			

				1
			

			
				,
				𝑏
			

			

				2
			

			
				,
				𝜆
			

			

				𝑘
			

			
				
				=
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
			

			

				∼
			

			

				𝐵
			

			

				1
			

			
				𝐴
				−
				𝐴
			

			

				∼
			

			

				𝐵
			

			

				1
			

			

				⋮
			

			

				∼
			

			

				𝐵
			

			

				1
			

			

				𝐴
			

			
				𝑝
				−
				1
			

			
				−
				𝐴
			

			
				∼
				𝑝
				−
				1
			

			

				𝐵
			

			

				1
			

			

				
			

			

				∼
			

			

				𝐴
			

			
				2
				∼
			

			

				𝐴
			

			

				1
			

			
				+
				𝜆
			

			
				2
				𝑘
				∼
			

			

				𝐵
			

			
				2
				∼
			

			

				𝐵
			

			

				1
			

			
				
				
				𝜌
				+
				𝛼
			

			

				0
			

			
				,
				𝑏
			

			

				1
			

			
				,
				𝑏
			

			

				2
			

			
				,
				𝜆
			

			

				𝑘
			

			
				
				𝐼
				
				
			

			

				∼
			

			

				𝐴
			

			
				2
				∼
			

			

				𝐴
			

			

				1
			

			
				+
				𝜆
			

			
				2
				𝑘
				∼
			

			

				𝐵
			

			
				2
				∼
			

			

				𝐵
			

			

				1
			

			
				
				
				𝜌
				+
				𝛼
			

			

				0
			

			
				,
				𝑏
			

			

				1
			

			
				,
				𝑏
			

			

				2
			

			
				,
				𝜆
			

			

				𝑘
			

			
				
				𝐼
				
				𝐴
				⋮
				
				
			

			

				∼
			

			

				𝐴
			

			
				2
				∼
			

			

				𝐴
			

			

				1
			

			
				+
				𝜆
			

			
				2
				𝑘
				∼
			

			

				𝐵
			

			
				2
				∼
			

			

				𝐵
			

			

				1
			

			
				
				
				𝜌
				+
				𝛼
			

			

				0
			

			
				,
				𝑏
			

			

				1
			

			
				,
				𝑏
			

			

				2
			

			
				,
				𝜆
			

			

				𝑘
			

			
				
				𝐼
				
				𝐴
			

			
				𝑝
				−
				1
			

			
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				.
			

		
	

					In order to ensure that 
	
		
			
				𝐶
				(
				𝜆
			

			

				𝑘
			

			
				)
				≠
				0
			

		
	
 satisfies (30) we have
						
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			
				
				𝜌
				r
				a
				n
				k
				𝐺
			

			

				0
			

			
				,
				𝑏
			

			

				1
			

			
				,
				𝑏
			

			

				2
			

			
				,
				𝜆
			

			

				𝑘
			

			
				
				<
				𝑚
				,
			

		
	

					and under condition (32), the solution of (30) is given by
						
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			
				𝐶
				
				𝜆
			

			

				𝑘
			

			
				
				=
				
				
				𝜌
				𝐼
				−
				𝐺
			

			

				0
			

			
				,
				𝑏
			

			

				1
			

			
				,
				𝑏
			

			

				2
			

			
				,
				𝜆
			

			

				𝑘
			

			

				
			

			

				†
			

			
				𝐺
				
				𝜌
			

			

				0
			

			
				,
				𝑏
			

			

				1
			

			
				,
				𝑏
			

			

				2
			

			
				,
				𝜆
			

			

				𝑘
			

			
				
				
				𝑆
				,
				𝑆
				∈
				ℂ
			

			

				𝑚
			

			

				.
			

		
	

					The eigenfunctions associated to the problem (1) are then given by
						
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				𝑢
				
				𝑥
				,
				𝑡
				,
				𝜆
			

			

				𝑘
			

			
				
				=
				𝑒
			

			
				−
				𝜆
			

			

				𝑘
			

			
				𝐴
				𝑡
			

			
				
				
				𝜆
				s
				i
				n
			

			

				𝑘
			

			
				𝑥
				
			

			

				∼
			

			

				𝐴
			

			

				1
			

			
				−
				𝜆
			

			

				𝑘
			

			
				
				𝜆
				c
				o
				s
			

			

				𝑘
			

			
				𝑥
				
			

			

				∼
			

			

				𝐵
			

			

				1
			

			
				
				𝐶
				
				𝜆
			

			

				𝑘
			

			
				
				,
				𝜆
			

			

				𝑘
			

			
				∈
				ℱ
				.
			

		
	

					Also 
	
		
			
				𝜆
				=
				0
			

		
	
 is an eigenvalue of problem (1), if
						
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				
				−
				1
				∈
				𝜎
			

			

				∼
			

			

				𝐴
			

			
				2
				∼
			

			

				𝐴
			

			

				1
			

			
				
				.
			

		
	

					Under hypothesis (35), if 
	
		
			
				𝐺
				(
				𝜌
			

			

				0
			

			
				,
				0
				)
				=
			

			

				∼
			

			

				𝐴
			

			
				2
				∼
			

			

				𝐴
			

			

				1
			

			
				+
				𝐼
			

		
	
, then, if we denote by
						
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			
				
				
				𝜌
				𝐶
				(
				0
				)
				=
				𝐼
				−
				𝐺
			

			

				0
			

			
				
				,
				0
			

			

				†
			

			
				𝐺
				
				𝜌
			

			

				0
			

			
				
				
				,
				0
				𝑆
				,
				𝑆
				∈
				ℂ
			

			

				𝑚
			

			

				,
			

		
	

					one gets that function
						
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			
				
				𝑥
				𝑢
				(
				𝑥
				,
				0
				)
				=
			

			

				∼
			

			

				𝐴
			

			

				1
			

			

				−
			

			

				∼
			

			

				𝐵
			

			

				1
			

			
				
				𝐶
				(
				0
				)
			

		
	

					is an eigenfunction of problem (1) associated to eigenvalue 
	
		
			
				𝜆
				=
				0
			

		
	
.
All these results are summarized in Theorem 2.1 of [17, page 434]. Our goal is to find the exact solution of the problem (1)–(4). We provide conditions for the function 
	
		
			
				𝑓
				(
				𝑥
				)
			

		
	
 and the matrix coefficients in order to ensure the existence of a series solution of the problem. The paper is organized as follows. In Section 3 a series solution for the problem is presented. In Section 4 we proceed with an algorithm and give an illustrative example.
3. A Series Solution
By the superposition principle, a possible candidate to the series solution of problem (1)–(4) is given by
						
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			
				⎧
				⎪
				⎨
				⎪
				⎩
				∑
				𝑢
				(
				𝑥
				,
				𝑡
				)
				=
				𝑢
				(
				𝑥
				,
				0
				)
				+
			

			

				𝜆
			

			

				𝑛
			

			
				∈
				ℱ
			

			
				𝑢
				
				𝑥
				,
				𝑡
				,
				𝜆
			

			

				𝑘
			

			
				
				∑
				,
				0
				∈
				ℱ
				,
			

			

				𝜆
			

			

				𝑛
			

			
				∈
				ℱ
			

			
				𝑢
				
				𝑥
				,
				𝑡
				,
				𝜆
			

			

				𝑘
			

			
				
				,
				0
				∉
				ℱ
				,
			

		
	

					where 
	
		
			
				𝑢
				(
				𝑥
				,
				𝑡
				,
				𝜆
			

			

				𝑘
			

			

				)
			

		
	
 and 
	
		
			
				𝑢
				(
				𝑥
				,
				0
				)
			

		
	
 are defined by (34) and (37), respectively, for suitable vectors 
	
		
			
				𝐶
				(
				𝜆
			

			

				𝑛
			

			

				)
			

		
	
 and 
	
		
			
				𝐶
				(
				0
				)
			

		
	
.
Assuming that series (38) and the corresponding derivatives 
	
		
			

				𝑢
			

			

				𝑥
			

			
				(
				𝑥
				,
				𝑡
				)
			

		
	
, 
	
		
			

				𝑢
			

			
				𝑥
				𝑥
			

			
				(
				𝑥
				,
				𝑡
				)
			

		
	
, and  
	
		
			

				𝑢
			

			

				𝑡
			

			
				(
				𝑥
				,
				𝑡
				)
			

		
	
 are convergent (we will demonstrate this later), (38) will be a solution of (1)–(3). Now, we need to determine vectors 
	
		
			
				𝐶
				(
				𝜆
				)
			

		
	
 and 
	
		
			
				𝐶
				(
				0
				)
			

		
	
 so that (38) satisfies (4).
Note that, taking 
	
		
			

				𝑣
			

		
	
 to satisfy (13), from (12) one gets
						
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			

				∼
			

			

				𝐴
			

			

				2
			

			
				
				𝑏
				𝑣
				=
			

			

				2
			

			
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			
				
			
			

				𝑏
			

			

				1
			

			
				
				𝑣
				,
			

			

				∼
			

			

				𝐴
			

			

				1
			

			
				
				𝑣
				=
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				
				𝑣
				.
			

		
	

					Under condition (39), we will consider the scalar Sturm-Liouville problem:
						
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			

				𝑋
			

			
				
				
			

			
				(
				𝑥
				)
				+
				𝜆
			

			

				2
			

			
				
				𝑋
				(
				𝑥
				)
				=
				0
				,
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				
				𝑋
				(
				0
				)
				+
				𝑏
			

			

				1
			

			

				𝑋
			

			

				
			

			
				−
				
				(
				0
				)
				=
				0
				,
				1
				−
				𝑏
			

			

				2
			

			
				+
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			
				
			
			

				𝑏
			

			

				1
			

			
				
				𝑋
				(
				1
				)
				+
				𝑏
			

			

				2
			

			

				𝑋
			

			

				
			

			
				(
				1
				)
				=
				0
				,
			

		
	

					which provides a family of eigenvalues 
	
		
			

				ℱ
			

		
	
 given in (27). Then, the associated eigenfunctions are 
						
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			

				𝑋
			

			

				𝜆
			

			

				𝑛
			

			
				
				(
				𝑥
				)
				=
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				
				
				𝜆
				s
				i
				n
			

			

				𝑛
			

			
				𝑥
				
				−
				𝑏
			

			

				1
			

			

				𝜆
			

			

				𝑛
			

			
				
				𝜆
				c
				o
				s
			

			

				𝑛
			

			
				𝑥
				
				,
				𝜆
			

			

				𝑛
			

			
				𝑋
				>
				0
				,
			

			

				0
			

			
				
				(
				𝑥
				)
				=
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				
				𝑥
				−
				𝑏
			

			

				1
			

			
				,
				i
				f
				𝜆
			

			

				0
			

			
				=
				0
				.
			

		
	

By the theorem of convergence of the Sturm-Liouville for functional series [18, chapter 11], with the initial condition 
	
		
			
				𝑓
				(
				𝑥
				)
				=
				(
				𝑓
			

			

				1
			

			
				(
				𝑥
				)
				,
				…
				,
				𝑓
			

			

				𝑚
			

			
				(
				𝑥
				)
				)
			

			

				𝑡
			

		
	
 given in (4) satisfying the following properties:
						
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			
				𝑓
				∈
				𝒞
			

			

				2
			

			
				(
				[
				]
				
				0
				,
				1
				)
				,
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				
				𝑓
				(
				0
				)
				+
				𝑏
			

			

				1
			

			

				𝑓
			

			

				
			

			
				−
				
				(
				0
				)
				=
				0
				,
				1
				−
				𝑏
			

			

				2
			

			
				+
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			
				
			
			

				𝑏
			

			

				1
			

			
				
				𝑓
				(
				1
				)
				+
				𝑏
			

			

				2
			

			

				𝑓
			

			

				
			

			
				(
				1
				)
				=
				0
				,
			

		
	

					each component 
	
		
			

				𝑓
			

			

				𝑖
			

		
	
 of 
	
		
			

				𝑓
			

		
	
, for 
	
		
			
				1
				≤
				𝑖
				≤
				𝑚
			

		
	
, has a series expansion which converges absolutely and uniformly on the interval 
	
		
			
				[
				0
				,
				1
				]
			

		
	
; namely,  
						
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			

				𝑓
			

			

				𝑖
			

			
				(
				𝑥
				)
				=
				𝛼
				
				
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				
				𝑥
				−
				𝑏
			

			

				1
			

			
				
				𝑒
			

			
				0
				𝑖
			

			
				+
				
			

			

				𝜆
			

			

				𝑛
			

			
				∈
				ℱ
			

			
				
				
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				
				
				𝜆
				s
				i
				n
			

			

				𝑛
			

			
				𝑥
				
				−
				𝑏
			

			

				1
			

			

				𝜆
			

			

				𝑛
			

			
				
				𝜆
				c
				o
				s
			

			

				𝑛
			

			
				𝑥
				𝑒
				
				
			

			

				𝜆
			

			

				𝑛
			

			

				𝑖
			

			

				,
			

		
	

					where
						
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			
				⎧
				⎪
				⎪
				⎨
				⎪
				⎪
				⎩
				
				𝛼
				=
				1
				i
				f
				1
				−
				𝑏
			

			

				2
			

			
				+
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			
				
				
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			

				
			

			
				
			
			

				𝑏
			

			

				1
			

			
				
				=
				1
				0
				i
				f
				1
				−
				𝑏
			

			

				2
			

			
				+
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			
				
				
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			

				
			

			
				
			
			

				𝑏
			

			

				1
			

			
				𝑒
				≠
				1
				,
			

			
				0
				𝑖
			

			
				=
				𝑏
			

			

				1
			

			

				∫
			

			
				1
				0
			

			
				
				
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				
				𝑥
				−
				𝑏
			

			

				1
			

			
				
				𝑓
			

			

				𝑖
			

			
				(
				𝑥
				)
				𝑑
				𝑥
			

			
				
			
			

				∫
			

			
				1
				0
			

			
				
				
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				
				𝑥
				−
				𝑏
			

			

				1
			

			

				
			

			

				2
			

			
				𝑑
				𝑥
				i
				f
				𝜆
			

			

				0
			

			
				𝑒
				=
				0
				,
			

			

				𝜆
			

			

				𝑛
			

			

				𝑖
			

			
				=
				𝑏
			

			

				1
			

			

				𝜆
			

			

				𝑛
			

			

				∫
			

			
				1
				0
			

			
				
				
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				
				
				𝜆
				s
				i
				n
			

			

				𝑛
			

			
				𝑥
				
				−
				𝑏
			

			

				1
			

			

				𝜆
			

			

				𝑛
			

			
				
				𝜆
				c
				o
				s
			

			

				𝑛
			

			
				𝑥
				𝑓
				
				
			

			

				𝑖
			

			
				(
				𝑥
				)
				𝑑
				𝑥
			

			
				
			
			

				∫
			

			
				1
				0
			

			
				
				
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				
				
				𝜆
				s
				i
				n
			

			

				𝑛
			

			
				𝑥
				
				−
				𝑏
			

			

				1
			

			

				𝜆
			

			

				𝑛
			

			
				
				𝜆
				c
				o
				s
			

			

				𝑛
			

			
				𝑥
				
				
			

			

				2
			

			
				𝑑
				𝑥
				i
				f
				𝜆
			

			

				𝑛
			

			
				>
				0
				.
			

		
	

					Thus, 
						
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑥
				)
				=
				𝛼
				
				
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				
				𝑥
				−
				𝑏
			

			

				1
			

			
				
				+
				
				𝐸
				(
				0
				)
			

			

				𝜆
			

			

				𝑛
			

			
				∈
				ℱ
			

			
				
				
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				
				
				𝜆
				s
				i
				n
			

			

				𝑛
			

			
				𝑥
				
				−
				𝑏
			

			

				1
			

			

				𝜆
			

			

				𝑛
			

			
				
				𝜆
				c
				o
				s
			

			

				𝑛
			

			
				𝑥
				𝐸
				
				𝜆
				
				
			

			

				𝑛
			

			
				
				,
			

		
	

					where 
	
		
			
				
				𝐸
				(
				0
				)
				=
			

			

				𝑒
			

			
				0
				1
			

			
				⋮
				𝑒
			

			
				0
				𝑚
			

			

				
			

		
	
 and 
	
		
			
				𝐸
				(
				𝜆
			

			

				𝑛
			

			
				
				)
				=
			

			

				𝑒
			

			
				𝜆
				𝑛
				1
			

			
				⋮
				𝑒
			

			
				𝜆
				𝑛
				𝑚
			

			

				
			

		
	
. On the other hand, from (38) and taking into account (34) and (37), one gets 
						
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			
				
				𝑥
				𝑓
				(
				𝑥
				)
				=
				𝑢
				(
				𝑥
				,
				0
				)
				=
				𝛼
			

			

				∼
			

			

				𝐴
			

			

				1
			

			

				−
			

			

				∼
			

			

				𝐵
			

			

				1
			

			
				
				+
				
				𝐶
				(
				0
				)
			

			

				𝜆
			

			

				𝑛
			

			
				∈
				ℱ
			

			
				
				
				𝜆
				s
				i
				n
			

			

				𝑛
			

			
				𝑥
				
			

			

				∼
			

			

				𝐴
			

			

				1
			

			
				−
				𝜆
			

			

				𝑛
			

			
				
				𝜆
				c
				o
				s
			

			

				𝑛
			

			
				𝑥
				
			

			

				∼
			

			

				𝐵
			

			

				1
			

			
				
				𝐶
				
				𝜆
			

			

				𝑛
			

			
				
				.
			

		
	

We can equate the two expressions; if 
	
		
			
				𝐶
				(
				0
				)
			

		
	
 and 
	
		
			
				𝐶
				(
				𝜆
			

			

				𝑛
			

			

				)
			

		
	
, apart from conditions (33) and (36), satisfy 
	
		
			
				{
				𝐶
				(
				0
				)
				,
				𝐶
				(
				𝜆
				)
				}
				⊂
				K
				e
				r
				(
			

			

				∼
			

			

				𝐵
			

			

				1
			

			
				−
				𝑏
			

			

				1
			

			
				𝐼
				)
			

		
	
. Then, we have
						
	
 		
 			
				(
				4
				7
				)
			
 		
	

	
		
			
				𝐶
				
				𝜆
			

			

				𝑛
			

			
				
				
				𝜆
				=
				𝐸
			

			

				𝑛
			

			
				
				=
				∫
			

			
				1
				0
			

			
				
				
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				
				
				𝜆
				s
				i
				n
			

			

				𝑛
			

			
				𝑥
				
				−
				𝑏
			

			

				1
			

			

				𝜆
			

			

				𝑛
			

			
				
				𝜆
				c
				o
				s
			

			

				𝑛
			

			
				𝑥
				
				
				𝑓
				(
				𝑥
				)
				𝑑
				𝑥
			

			
				
			
			

				∫
			

			
				1
				0
			

			
				
				
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				
				
				𝜆
				s
				i
				n
			

			

				𝑛
			

			
				𝑥
				
				−
				𝑏
			

			

				1
			

			

				𝜆
			

			

				𝑛
			

			
				
				𝜆
				c
				o
				s
			

			

				𝑛
			

			
				𝑥
				
				
			

			

				2
			

			
				,
				𝑑
				𝑥
				i
				f
				𝜆
			

			

				𝑛
			

			
				𝐶
				=
				∫
				>
				0
				,
				(
				0
				)
				=
				𝐸
				(
				0
				)
			

			
				1
				0
			

			
				
				
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				
				𝑥
				−
				𝑏
			

			

				1
			

			
				
				𝑓
				(
				𝑥
				)
				𝑑
				𝑥
			

			
				
			
			

				∫
			

			
				1
				0
			

			
				
				
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				
				𝑥
				−
				𝑏
			

			

				1
			

			

				
			

			

				2
			

			
				𝑑
				𝑥
				i
				f
				𝜆
			

			

				0
			

			
				=
				0
				.
			

		
	

					Note that 
	
		
			
				𝐶
				(
				0
				)
			

		
	
 and 
	
		
			
				𝐶
				(
				𝜆
				)
				∈
				K
				e
				r
				(
			

			

				∼
			

			

				𝐵
			

			

				1
			

			
				−
				𝑏
			

			

				1
			

			
				𝐼
				)
			

		
	
, if
						
	
 		
 			
				(
				4
				8
				)
			
 		
	

	
		
			
				
				𝑓
				(
				𝑥
				)
				∈
				K
				e
				r
			

			

				∼
			

			

				𝐵
			

			

				1
			

			
				−
				𝑏
			

			

				1
			

			
				𝐼
				
				.
			

		
	

					Then 
	
		
			
				𝑢
				(
				𝑥
				,
				𝑡
				)
			

		
	
 defined by
						
	
 		
 			
				(
				4
				9
				)
			
 		
	

	
		
			
				𝑢
				(
				𝑥
				,
				𝑡
				)
				=
				𝛼
				
				
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				
				𝑥
				−
				𝑏
			

			

				1
			

			
				
				+
				
				𝐶
				(
				0
				)
			

			

				𝜆
			

			

				𝑛
			

			
				∈
				ℱ
			

			

				𝑒
			

			
				−
				𝜆
			

			
				2
				𝑛
			

			
				𝐴
				𝑡
			

			
				
				
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				
				
				𝜆
				s
				i
				n
			

			

				𝑛
			

			
				𝑥
				
				−
				𝑏
			

			

				1
			

			

				𝜆
			

			

				𝑛
			

			
				
				𝜆
				c
				o
				s
			

			

				𝑛
			

			
				𝑥
				𝐶
				
				𝜆
				
				
			

			

				𝑛
			

			
				
				,
			

		
	

					where 
	
		
			

				𝛼
			

		
	
 and 
	
		
			
				𝐶
				(
				𝜆
			

			

				𝑛
			

			

				)
			

		
	
 are defined by (44) and (47), satisfies the initial condition (4). Note that conditions (30)–(32) hold if
						
	
 		
 			
				(
				5
				0
				)
			
 		
	

	
		
			
				𝐺
				
				𝜌
			

			

				0
			

			
				,
				𝑏
			

			

				1
			

			
				,
				𝑏
			

			

				2
			

			
				,
				𝜆
			

			

				𝑘
			

			
				
				𝑓
				(
				𝑥
				)
				=
				0
				,
			

		
	

					and then
						
	
 		
 			
				(
				5
				1
				)
			
 		
	

	
		
			

				
			

			

				∼
			

			

				𝐵
			

			

				1
			

			
				−
				𝑏
			

			

				1
			

			
				𝐼
				
				𝐴
			

			

				𝑗
			

			
				
				𝑓
				(
				𝑥
				)
				=
				0
				,
				0
				≤
				𝑗
				<
				𝑝
				,
			

			

				∼
			

			

				𝐴
			

			
				2
				∼
			

			

				𝐴
			

			

				1
			

			
				+
				𝜆
			

			
				2
				𝑛
				∼
			

			

				𝐵
			

			
				2
				∼
			

			

				𝐵
			

			

				1
			

			
				
				𝜌
				+
				𝛼
			

			

				0
			

			
				,
				𝑏
			

			

				1
			

			
				,
				𝑏
			

			

				2
			

			
				
				𝐼
				
				𝐴
				,
				𝜆
			

			

				𝑗
			

			
				𝑓
				(
				𝑥
				)
				=
				0
				,
				0
				≤
				𝑗
				<
				𝑝
				.
			

		
	

					It is easy to check that conditions (48), (51) are equivalent to the condition
						
	
 		
 			
				(
				5
				2
				)
			
 		
	

	
		
			

				𝐴
			

			

				𝑗
			

			
				
				𝑓
				(
				𝑥
				)
				∈
				K
				e
				r
			

			

				∼
			

			

				𝐵
			

			

				1
			

			
				−
				𝑏
			

			

				1
			

			
				𝐼
				
				
				∩
				K
				e
				r
			

			

				∼
			

			

				𝐵
			

			

				2
			

			
				−
				𝑏
			

			

				2
			

			
				𝐼
				
				,
				0
				≤
				𝑗
				<
				𝑝
				.
			

		
	

					Condition (52) holds if 
						
	
 		
 			
				(
				5
				3
				)
			
 		
	

	
		
			
				
				𝑓
				(
				𝑥
				)
				∈
				K
				e
				r
			

			

				∼
			

			

				𝐵
			

			

				1
			

			
				−
				𝑏
			

			

				1
			

			
				𝐼
				
				
				∩
				K
				e
				r
			

			

				∼
			

			

				𝐵
			

			

				2
			

			
				−
				𝑏
			

			

				2
			

			
				𝐼
				
				
				,
				0
				≤
				𝑥
				≤
				1
				,
				K
				e
				r
			

			

				∼
			

			

				𝐵
			

			

				1
			

			
				−
				𝑏
			

			

				1
			

			
				𝐼
				
				
				∩
				K
				e
				r
			

			

				∼
			

			

				𝐵
			

			

				2
			

			
				−
				𝑏
			

			

				2
			

			
				𝐼
				
				,
				i
				s
				a
				n
				i
				n
				v
				a
				r
				i
				a
				n
				t
				s
				u
				b
				s
				p
				a
				c
				e
				w
				i
				t
				h
				r
				e
				s
				p
				e
				c
				t
				t
				o
				m
				a
				t
				r
				i
				x
				𝐴
				.
			

		
	

					Now we study the convergence of the solution given by (49) with 
	
		
			

				𝛼
			

		
	
 defined by (44) and 
	
		
			
				𝐶
				(
				𝜆
			

			

				𝑛
			

			

				)
			

		
	
 by (47). Using Parseval's identity for scalar Sturm-Liouville problems [19], there exists a positive constant 
	
		
			

				𝑀
			

			

				1
			

			
				>
				0
			

		
	
 so that 
	
		
			
				‖
				𝐶
				(
				𝜆
			

			

				𝑛
			

			
				)
				‖
				≤
				𝑀
			

			

				1
			

		
	
. Taking formal derivatives in (49), one gets
						
	
 		
 			
				(
				5
				4
				)
			
 		
	

	
		
			

				𝑢
			

			

				𝑡
			

			
				
				(
				𝑥
				,
				𝑡
				)
				=
			

			

				𝜆
			

			

				𝑛
			

			
				∈
				ℱ
			

			
				
				−
				𝜆
			

			
				2
				𝑛
			

			
				
				𝑒
			

			
				−
				𝜆
			

			
				2
				𝑛
			

			
				𝐴
				𝑡
			

			
				𝐴
				
				
				𝜆
				s
				i
				n
			

			

				𝑛
			

			
				𝑥
				
				
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				
				−
				𝜆
			

			

				𝑛
			

			
				
				𝜆
				c
				o
				s
			

			

				𝑛
			

			
				𝑥
				
				𝑏
			

			

				1
			

			
				
				𝐶
				
				𝜆
			

			

				𝑛
			

			
				
				,
				𝑢
			

			

				𝑥
			

			
				
				(
				𝑥
				,
				𝑡
				)
				=
			

			

				𝜆
			

			

				𝑛
			

			
				∈
				ℱ
			

			

				𝜆
			

			

				𝑛
			

			

				𝑒
			

			
				−
				𝜆
			

			
				2
				𝑛
			

			
				𝐴
				𝑡
			

			
				
				
				𝜆
				c
				o
				s
			

			

				𝑛
			

			
				𝑥
				
				
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				
				+
				𝜆
			

			

				𝑛
			

			
				
				𝜆
				s
				i
				n
			

			

				𝑛
			

			
				𝑥
				
				𝑏
			

			

				1
			

			
				
				𝐶
				
				𝜆
			

			

				𝑛
			

			
				
				
				+
				𝛼
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				
				𝑢
				𝐶
				(
				0
				)
				,
			

			
				𝑥
				𝑥
			

			
				
				(
				𝑥
				,
				𝑡
				)
				=
			

			

				𝜆
			

			

				𝑛
			

			
				∈
				ℱ
			

			

				𝜆
			

			
				2
				𝑛
			

			

				𝑒
			

			
				−
				𝜆
			

			
				2
				𝑛
			

			
				𝐴
				𝑡
			

			
				
				
				𝜆
				−
				s
				i
				n
			

			

				𝑛
			

			
				𝑥
				
				
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				
				+
				𝜆
			

			

				𝑛
			

			
				
				𝜆
				c
				o
				s
			

			

				𝑛
			

			
				𝑥
				
				𝑏
			

			

				1
			

			
				
				𝐶
				
				𝜆
			

			

				𝑛
			

			
				
				.
			

		
	

					These series are all bounded in their respective norms: 
						
	
 		
 			
				(
				5
				5
				)
			
 		
	

	
		
			
				‖
				≤
				
				‖
				𝑢
				(
				𝑥
				,
				𝑡
				)
			

			

				𝜆
			

			

				𝑛
			

			
				∈
				ℱ
			

			
				
				‖
				‖
				𝑒
			

			
				−
				𝜆
			

			
				2
				𝑛
			

			
				𝐴
				𝑡
			

			
				‖
				‖
				|
				|
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				|
				|
				𝑀
			

			

				1
			

			
				+
				‖
				‖
				𝜆
			

			

				𝑛
			

			

				𝑒
			

			
				−
				𝜆
			

			
				2
				𝑛
			

			
				𝐴
				𝑡
			

			
				‖
				‖
				|
				|
				𝑏
			

			

				1
			

			
				|
				|
				𝑀
			

			

				1
			

			
				
				
				|
				|
				+
				𝛼
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				|
				|
				|
				|
				𝑏
				𝑥
				+
			

			

				1
			

			
				|
				|
				
				‖
				‖
				𝑢
				‖
				𝐶
				(
				0
				)
				‖
				,
			

			

				𝑡
			

			
				‖
				‖
				≤
				
				(
				𝑥
				,
				𝑡
				)
			

			

				𝜆
			

			

				𝑛
			

			
				∈
				ℱ
			

			
				
				‖
				‖
				𝜆
			

			
				2
				𝑛
			

			

				𝑒
			

			
				−
				𝜆
			

			
				2
				𝑛
			

			
				𝐴
				𝑡
			

			
				𝐴
				‖
				‖
				|
				|
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				|
				|
				𝑀
			

			

				1
			

			
				+
				‖
				‖
				𝜆
			

			
				2
				𝑛
			

			

				𝑒
			

			
				−
				𝜆
			

			
				2
				𝑛
			

			
				𝐴
				𝑡
			

			
				‖
				‖
				|
				|
				𝑏
			

			

				1
			

			
				|
				|
				𝑀
			

			

				1
			

			
				
				,
				‖
				‖
				𝑢
			

			

				𝑥
			

			
				‖
				‖
				≤
				
				(
				𝑥
				,
				𝑡
				)
			

			

				𝜆
			

			

				𝑛
			

			
				∈
				ℱ
			

			
				
				‖
				‖
				𝜆
			

			
				2
				𝑛
			

			

				𝑒
			

			
				−
				𝜆
			

			
				2
				𝑛
			

			
				𝐴
				𝑡
			

			
				‖
				‖
				|
				|
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				|
				|
				𝑀
			

			

				1
			

			
				+
				‖
				‖
				𝜆
			

			
				2
				𝑛
			

			

				𝑒
			

			
				−
				𝜆
			

			
				2
				𝑛
			

			
				𝐴
				𝑡
			

			
				‖
				‖
				|
				|
				𝑏
			

			

				1
			

			
				|
				|
				𝑀
			

			

				1
			

			
				
				|
				|
				+
				𝛼
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				|
				|
				‖
				‖
				𝑢
				‖
				𝐶
				(
				0
				)
				‖
				,
			

			
				𝑥
				𝑥
			

			
				‖
				‖
				≤
				
				(
				𝑥
				,
				𝑡
				)
			

			

				𝜆
			

			

				𝑛
			

			
				∈
				ℱ
			

			
				
				‖
				‖
				𝜆
			

			
				2
				𝑛
			

			

				𝑒
			

			
				−
				𝜆
			

			
				2
				𝑛
			

			
				𝐴
				𝑡
			

			
				‖
				‖
				|
				|
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				|
				|
				𝑀
			

			

				1
			

			
				+
				‖
				‖
				𝜆
			

			
				3
				𝑛
			

			

				𝑒
			

			
				−
				𝜆
			

			
				2
				𝑛
			

			
				𝐴
				𝑡
			

			
				‖
				‖
				|
				|
				𝑏
			

			

				1
			

			
				|
				|
				𝑀
			

			

				1
			

			
				
				.
			

		
	

					To check that the series is uniformly convergent in each domain 
	
		
			
				[
				0
				,
				1
				]
				×
				[
				𝑐
				,
				𝑑
				]
			

		
	
, it is sufficient to verify that the series
						
	
 		
 			
				(
				5
				6
				)
			
 		
	

	
		
			

				
			

			

				𝜆
			

			

				𝑛
			

			
				∈
				ℱ
			

			

				𝜆
			

			
				3
				𝑛
			

			

				𝑒
			

			
				−
				𝜆
			

			
				2
				𝑛
			

			
				𝐴
				𝑡
			

		
	

					is uniformly convergent in this domain. This is trivial because, using (9), one gets 
						
	
 		
 			
				(
				5
				7
				)
			
 		
	

	
		
			
				‖
				‖
				𝜆
			

			
				3
				𝑛
			

			

				𝑒
			

			
				−
				𝜆
			

			
				2
				𝑛
			

			
				𝐴
				𝑡
			

			
				‖
				‖
				≤
				𝑒
			

			
				−
				𝜆
			

			
				2
				𝑛
			

			
				𝛼
				(
				𝐴
				)
				𝑡
				𝑚
				−
				1
			

			

				
			

			
				𝑘
				=
				0
			

			
				
				√
			

			
				
			
			
				
				𝑚
				‖
				𝐴
				‖
				𝑡
			

			

				𝑘
			

			

				𝜆
			

			
				𝑛
				2
				𝑘
				+
				3
			

			
				
			
			
				,
				𝑘
				!
			

		
	

					and from the d'Alembert test series applied to each summand, taking into account (5) and the relation (19), 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				(
				𝜆
			

			
				𝑛
				+
				1
			

			
				−
				𝜆
			

			

				𝑛
			

			
				)
				=
				𝜋
			

		
	
, given in Lemma 1, one gets for 
	
		
			
				3
				≤
				𝑟
				≤
				2
				(
				𝑚
				−
				1
				)
				+
				3
			

		
	
 that 
						
	
 		
 			
				(
				5
				8
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝑒
			

			
				(
				𝜆
			

			
				2
				𝑛
			

			
				−
				𝜆
			

			
				2
				𝑛
				+
				1
			

			
				)
				𝛼
				(
				𝐴
				)
				𝑡
			

			
				
				𝜆
			

			
				𝑛
				+
				1
			

			
				
			
			

				𝜆
			

			

				𝑛
			

			

				
			

			

				𝑟
			

			
				≤
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝑒
			

			
				(
				𝜆
			

			
				2
				𝑛
			

			
				−
				𝜆
			

			
				2
				𝑛
				+
				1
			

			
				)
				𝛼
				(
				𝐴
				)
				𝑡
			

			
				
				𝑛
				+
				2
			

			
				
			
			
				𝑛
				
			

			

				𝑟
			

			
				=
				𝑒
			

			
				−
				𝛼
				(
				𝐴
				)
				𝑡
				𝜋
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				(
				𝜆
			

			

				𝑛
			

			
				+
				𝜆
			

			
				𝑛
				+
				1
			

			

				)
			

			
				=
				0
				<
				1
				.
			

		
	

					Thus, the series (56) is convergent.
Independence of the series solution (49) with respect to the chosen 
	
		
			

				𝜌
			

			

				0
			

			
				∈
				ℝ
			

		
	
 can be demonstrated using the same technique as given in [20].
We can summarize the results in the following theorem.
Theorem 2.  Consider the homogeneous problem with homogeneous conditions (1)–(4) under hypotheses (5), (6), and (7) verifying conditions (13) and (14). Let 
	
		
			
				𝑓
				(
				𝑥
				)
			

		
	
 be a vectorial function satisfying (42). Let 
	
		
			

				ℱ
			

		
	
 be the set defined by (27), and let 
	
		
			
				𝐺
				(
				𝜌
			

			

				0
			

			
				,
				𝑏
			

			

				1
			

			
				,
				𝑏
			

			

				2
			

			
				,
				𝜆
			

			

				𝑘
			

			

				)
			

		
	
 be the matrix defined by (31), taking as eigenvalues of problems 
	
		
			
				𝜆
				∈
				ℱ
			

		
	
 satisfying 
							
	
 		
 			
				(
				5
				9
				)
			
 		
	

	
		
			
				
				𝐺
				
				𝜌
				r
				a
				n
				k
			

			

				0
			

			
				,
				𝑏
			

			

				1
			

			
				,
				𝑏
			

			

				2
			

			
				,
				𝜆
			

			

				𝑘
			

			
				
				
				<
				𝑚
				,
			

		
	

						including the eigenvalue 
	
		
			
				𝜆
				=
				0
			

		
	
 if 
	
		
			
				1
				∈
				𝜎
				(
				−
			

			

				∼
			

			

				𝐴
			

			
				2
				∼
			

			

				𝐴
			

			

				1
			

			

				)
			

		
	
, and taking as eigenfunctions 
	
		
			
				𝑢
				(
				𝑥
				,
				𝑡
				,
				𝜆
			

			

				𝑘
			

			

				)
			

		
	
 defined by (34). Let 
	
		
			

				𝛼
			

		
	
 be given by (44) and vectors 
	
		
			
				𝐶
				(
				𝜆
			

			

				𝑛
			

			

				)
			

		
	
 defined by (47). Then, 
	
		
			
				𝑢
				(
				𝑥
				,
				𝑡
				)
			

		
	
, as defined in (49), is a series solution of problem (1)–(4).
4. Algorithm and Example
We can summarize the process to calculate the solution of the homogeneous problem with homogeneous conditions (1)–(4) in Algorithm 1.
		Input data: 
	
		
			
				𝐴
				,
				𝐴
			

			

				1
			

			
				,
				𝐴
			

			

				2
			

			
				,
				𝐵
			

			

				1
			

			
				,
				𝐵
			

			

				2
			

			
				∈
				ℂ
			

			
				𝑚
				×
				𝑚
			

		
	
, 
	
		
			
				𝑓
				(
				𝑥
				)
				∈
				ℂ
			

			

				𝑚
			

		
	
.
	Result: 
	
		
			
				𝑢
				(
				𝑥
				,
				𝑡
				)
			

		
	
.
	(1) Check that matrix 
	
		
			

				𝐴
			

		
	
 satisfies (5).
	(2) Check that matrices 
	
		
			

				𝐴
			

			

				𝑖
			

			
				,
				𝐵
			

			

				𝑖
			

			
				∈
				ℂ
			

			
				𝑚
				×
				𝑚
			

			
				,
				𝑖
				∈
				{
				1
				,
				2
				}
			

		
	
 are singular, and check that the block matrix 
	       
	
		
			
				⎛
				⎜
				⎜
				⎜
				⎝
				𝐴
			

			

				1
			

			

				𝐵
			

			

				1
			

			

				𝐴
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
			

		
	
 is regular.
	(3) Determine a number 
	
		
			

				𝜌
			

			

				0
			

			
				∈
				ℝ
			

		
	
 so that the matrix pencil 
	
		
			

				𝐴
			

			

				1
			

			
				+
				𝜌
			

			

				0
			

			

				𝐵
			

			

				1
			

		
	
 is regular.
	(4) Determine matrices 
	
		
			

				∼
			

			

				𝐴
			

			

				1
			

		
	
 and 
	
		
			

				∼
			

			

				𝐵
			

			

				1
			

		
	
 defined by (10).
	(5) Determine matrices 
	
		
			

				∼
			

			

				𝐴
			

			

				2
			

		
	
 and 
	
		
			

				∼
			

			

				𝐵
			

			

				2
			

		
	
 defined by (11).
	(6) Consider the following cases:
	     (i) Case  1. Condition (13) holds, that is, matrices 
	
		
			

				∼
			

			

				𝐵
			

			

				1
			

		
	
 and 
	
		
			

				∼
			

			

				𝐵
			

			

				2
			

		
	
 have a common eigenvector 
	
		
			
				𝑣
				≠
				0
			

		
	
 associated
	            with eigenvalues 
	
		
			

				𝑏
			

			

				1
			

			
				
				∈
				𝜎
			

			

				∼
			

			

				𝐵
			

			

				1
			

			
				
				−
				{
				0
				}
			

		
	
 and 
	
		
			

				𝑏
			

			

				2
			

			
				
				∈
				𝜎
			

			

				∼
			

			

				𝐵
			

			

				2
			

			

				
			

		
	
. In this case continue with step (7).
	     (ii) Case  2. Condition (13) does not hold. In this case the algorithm stops because it is not possible to 
	            find the solution of (1)–(4) for the given data.
	(7) Determine 
	
		
			

				𝑏
			

			

				1
			

			
				
				∈
				𝜎
			

			

				∼
			

			

				𝐵
			

			

				1
			

			

				
			

		
	
, 
	
		
			

				𝑏
			

			

				1
			

			
				≠
				0
			

		
	
, 
	
		
			

				𝑏
			

			

				2
			

			
				
				∈
				𝜎
			

			

				∼
			

			

				𝐵
			

			

				2
			

			

				
			

		
	
 and vector 
	
		
			
				𝑣
				≠
				0
			

		
	
 verifying
	      
	
		
			
				
				𝑣
				∈
				K
				e
				r
			

			

				∼
			

			

				𝐵
			

			

				1
			

			
				−
				𝑏
			

			

				1
			

			
				𝐼
				
				
				∩
				K
				e
				r
			

			

				∼
			

			

				𝐵
			

			

				2
			

			
				−
				𝑏
			

			

				2
			

			
				𝐼
				
			

		
	
 such that:
	     (i) Conditions (53) hold, that is: 
	     1.1: 
	
		
			
				
				K
				e
				r
			

			

				∼
			

			

				𝐵
			

			

				1
			

			
				−
				𝑏
			

			

				1
			

			
				𝐼
				
				
				∩
				K
				e
				r
			

			

				∼
			

			

				𝐵
			

			

				2
			

			
				−
				𝑏
			

			

				2
			

			
				𝐼
				
			

		
	
 is an invariant subspace respect matrix 
	
		
			

				𝐴
			

		
	
. 
	     1.2: 
	
		
			
				
				𝑓
				(
				𝑥
				)
				∈
				K
				e
				r
			

			

				∼
			

			

				𝐵
			

			

				1
			

			
				−
				𝑏
			

			

				1
			

			
				𝐼
				
				
				∩
				K
				e
				r
			

			

				∼
			

			

				𝐵
			

			

				2
			

			
				−
				𝑏
			

			

				2
			

			
				𝐼
				
			

		
	
, 
	
		
			
				∀
				𝑥
				∈
				[
				0
				,
				1
				]
			

		
	
.
	       (ii) Conditions (14) hold, that is:
	     1.3: 
	
		
			
				
				1
				−
				𝑏
			

			

				2
			

			
				+
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			
				
				
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			

				
			

			
				
			
			

				𝑏
			

			

				1
			

			
				∈
				ℝ
			

		
	
, 
	
		
			

				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			
				∈
				ℝ
			

		
	
.
	       (iii) The vectorial function 
	
		
			
				𝑓
				(
				𝑥
				)
			

		
	
 satisfies (42), that is:
	     1.4: 
	
		
			
				𝑓
				∈
				𝒞
			

			

				2
			

			
				(
				[
				0
				,
				1
				]
				)
			

		
	
.
	     1.5: 
	
		
			
				
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				
				𝑓
				(
				0
				)
				+
				𝑏
			

			

				1
			

			

				𝑓
			

			

				
			

			
				(
				0
				)
				=
				0
			

		
	
.
	     1.6: 
	
		
			
				−
				
				1
				−
				𝑏
			

			

				2
			

			
				+
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			
				
			
			

				𝑏
			

			

				1
			

			
				
				𝑓
				(
				1
				)
				+
				𝑏
			

			

				2
			

			

				𝑓
			

			

				
			

			
				(
				1
				)
				=
				0
			

		
	
.
	If these conditions are not satisfied, return to step (6) of Algorithm 1 discarding the values    
	  taken for   
	
		
			

				𝑏
			

			

				1
			

		
	
 and   
	
		
			

				𝑏
			

			

				2
			

		
	
.  
	(8) Determine the positive solutions of (16) and determine 
	
		
			

				ℱ
			

		
	
 defined by (27).
	(9) Determine degree 
	
		
			

				𝑝
			

		
	
 of minimal polynomial of matrix 
	
		
			

				𝐴
			

		
	
.  
	(10) Building block matrix 
	
		
			
				𝐺
				
				𝜌
			

			

				0
			

			
				,
				𝑏
			

			

				1
			

			
				,
				𝑏
			

			

				2
			

			
				,
				𝜆
			

			

				𝑘
			

			

				
			

		
	
 defined by (31).
	(11) Determine 
	
		
			
				𝜆
				∈
				ℱ
			

		
	
 so that rank 
	
		
			
				𝐺
				
				𝜌
			

			

				0
			

			
				,
				𝑏
			

			

				1
			

			
				,
				𝑏
			

			

				2
			

			
				,
				𝜆
			

			

				𝑘
			

			
				
				<
				𝑚
			

		
	
.  
	(12) Include the eigenvalue 
	
		
			
				𝜆
				=
				0
			

		
	
 if 
	
		
			
				
				−
				1
				∈
				𝜎
			

			

				∼
			

			

				𝐴
			

			
				2
				∼
			

			

				𝐴
			

			

				1
			

			

				
			

		
	
.
	(13) Determine 
	
		
			

				𝛼
			

		
	
 given by (44).
	(14) Determine vectors 
	
		
			
				𝐶
				(
				𝜆
			

			

				𝑛
			

			

				)
			

		
	
 defined by (47).
	(15) Determine functions 
	
		
			
				𝑢
				(
				𝑥
				,
				𝑡
				,
				𝜆
			

			

				𝑛
			

			

				)
			

		
	
 defined by (34).
	(16) Determine the series solution 
	
		
			
				𝑢
				(
				𝑥
				,
				𝑡
				)
			

		
	
 of problem (1)–(4) defined by (49).


	Algorithm 1: Solution of the homogeneous problem with homogeneous conditions (1)–(4).


Example 1. We will consider the homogeneous parabolic problem with homogeneous conditions (1)–(4), where the matrix 
	
		
			
				𝐴
				∈
				ℂ
			

			
				4
				×
				4
			

		
	
 is chosen as
							
	
 		
 			
				(
				6
				0
				)
			
 		
	

	
		
			
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				,
				𝐴
				=
				2
				0
				0
				−
				1
				1
				2
				1
				−
				2
				−
				1
				0
				2
				1
				0
				0
				0
				1
			

		
	

						and the 
	
		
			
				4
				×
				4
			

		
	
 matrices 
	
		
			

				𝐴
			

			

				𝑖
			

		
	
, 
	
		
			

				𝐵
			

			

				𝑖
			

		
	
, 
	
		
			
				𝑖
				∈
				{
				1
				,
				2
				}
			

		
	
, are
							
	
 		
 			
				(
				6
				1
				)
			
 		
	

	
		
			

				𝐴
			

			

				1
			

			
				=
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				0
				0
				0
				0
				0
				0
				0
				0
				0
				0
				1
				0
				0
				0
				0
				1
				,
				𝐴
			

			

				2
			

			
				=
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				,
				𝐵
				0
				1
				0
				0
				1
				0
				0
				0
				0
				0
				0
				1
				0
				0
				0
				0
			

			

				1
			

			
				=
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				1
				0
				0
				0
				0
				1
				0
				0
				0
				0
				0
				0
				0
				0
				0
				0
				,
				𝐵
			

			

				2
			

			
				=
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				.
				1
				0
				0
				0
				1
				0
				0
				0
				0
				0
				1
				0
				0
				0
				0
				1
			

		
	

						Also, the vectorial valued function 
	
		
			
				𝑓
				(
				𝑥
				)
			

		
	
 will be defined as
							
	
 		
 			
				(
				6
				2
				)
			
 		
	

	
		
			
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				0
				𝑥
				𝑓
				(
				𝑥
				)
				=
			

			

				2
			

			
				0
				0
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				.
				−
				1
			

		
	

						Observe that the method proposed in [12] cannot be applied to solve this problem.
We will follow Algorithm 1 step to step.(1)Matrix 
	
		
			

				𝐴
			

		
	
 satisfies the condition (5), because 
	
		
			
				𝜎
				(
				𝐴
				)
				=
				{
				1
				,
				2
				}
			

		
	
. That is, 
	
		
			

				𝐴
			

		
	
 is positive stable.(2)Each of the matrices 
	
		
			

				𝐴
			

			

				𝑖
			

			
				,
				𝐵
			

			

				𝑖
			

		
	
, 
	
		
			
				𝑖
				∈
				{
				1
				,
				2
				}
			

		
	
, is singular, and the block matrix
									
	
 		
 			
				(
				6
				3
				)
			
 		
	

	
		
			
				⎛
				⎜
				⎜
				⎜
				⎝
				𝐴
			

			

				1
			

			

				𝐵
			

			

				1
			

			

				𝐴
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				=
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				0
				0
				0
				0
			

			
				
			
			
				1
				0
				0
				0
				0
				0
				0
				0
			

			
				
			
			
				0
				1
				0
				0
				0
				0
				1
				0
			

			
				
			
			
				0
				0
				0
				0
				0
				0
				0
				1
			

			
				
			
			
				0
				0
				0
				0
			

			
				
			
			
				0
				1
				0
				0
			

			
				
			
			
				1
				0
				0
				0
				1
				0
				0
				0
			

			
				
			
			
				1
				0
				0
				0
				0
				0
				0
				1
			

			
				
			
			
				0
				0
				1
				0
				0
				0
				0
				0
			

			
				
			
			
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				0
				0
				0
				1
			

		
	

								is regular.(3)Note that although 
	
		
			

				𝐴
			

			

				1
			

		
	
 is singular, taking 
	
		
			

				𝜌
			

			

				0
			

			
				=
				1
				∈
				ℝ
			

		
	
, the matrix pencil
									
	
 		
 			
				(
				6
				4
				)
			
 		
	

	
		
			

				𝐴
			

			

				1
			

			
				+
				𝜌
			

			

				0
			

			

				𝐵
			

			

				1
			

			
				=
				𝐼
			

			
				4
				×
				4
			

		
	

								is regular. Therefore, we take 
	
		
			

				𝜌
			

			

				0
			

			
				=
				1
			

		
	
.(4)By (10) we have
									
	
 		
 			
				(
				6
				5
				)
			
 		
	

	
		
			

				∼
			

			

				𝐴
			

			

				1
			

			
				=
				
				𝐴
			

			

				1
			

			
				+
				𝜌
			

			

				0
			

			

				𝐵
			

			

				1
			

			

				
			

			
				−
				1
			

			

				𝐴
			

			

				1
			

			
				=
				𝐴
			

			

				1
			

			

				,
			

			

				∼
			

			

				𝐵
			

			

				1
			

			
				=
				
				𝐴
			

			

				1
			

			
				+
				𝜌
			

			

				0
			

			

				𝐵
			

			

				1
			

			

				
			

			
				−
				1
			

			

				𝐵
			

			

				1
			

			
				=
				𝐵
			

			

				1
			

			

				.
			

		
	
(5)By (11) we have
									
	
 		
 			
				(
				6
				6
				)
			
 		
	

	
		
			

				∼
			

			

				𝐴
			

			

				2
			

			
				=
				
				𝐵
			

			

				2
			

			
				−
				
				𝐴
			

			

				2
			

			
				+
				𝜌
			

			

				0
			

			

				𝐵
			

			

				2
			

			

				
			

			

				∼
			

			

				𝐵
			

			

				1
			

			

				
			

			
				−
				1
			

			

				𝐴
			

			

				2
			

			
				=
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				,
				−
				1
				0
				0
				0
				0
				−
				1
				0
				0
				0
				0
				0
				1
				0
				0
				0
				0
			

			

				∼
			

			

				𝐵
			

			

				2
			

			
				=
				
				𝐵
			

			

				2
			

			
				−
				
				𝐴
			

			

				2
			

			
				+
				𝜌
			

			

				0
			

			

				𝐵
			

			

				2
			

			

				
			

			

				∼
			

			

				𝐵
			

			

				1
			

			

				
			

			
				−
				1
			

			

				𝐵
			

			

				2
			

			
				=
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				.
				−
				1
				0
				0
				0
				−
				1
				0
				0
				0
				0
				0
				1
				0
				0
				0
				0
				1
			

		
	
(6)We have 
	
		
			
				𝜎
				(
			

			

				∼
			

			

				𝐵
			

			

				1
			

			
				)
				=
				{
				0
				,
				1
				}
			

		
	
 and 
	
		
			
				𝜎
				(
			

			

				∼
			

			

				𝐵
			

			

				2
			

			
				)
				=
				{
				0
				,
				1
				,
				−
				1
				}
			

		
	
. Note that in this case the condition (13) holds because with 
	
		
			

				𝑏
			

			

				1
			

			
				=
				1
			

		
	
 and 
	
		
			

				𝑏
			

			

				2
			

			
				=
				0
				∈
				𝜎
				(
			

			

				∼
			

			

				𝐵
			

			

				2
			

			

				)
			

		
	
 there exists a common eigenvector 
	
		
			
				𝑣
				∈
				ℂ
			

			

				4
			

		
	
, 
	
		
			
				𝑣
				=
				(
				0
				,
				1
				,
				0
				,
				0
				)
			

			

				𝑡
			

		
	
, and thus 
	
		
			
				K
				e
				r
				(
			

			

				∼
			

			

				𝐵
			

			

				1
			

			
				−
				𝐼
				)
				∩
				K
				e
				r
				(
			

			

				∼
			

			

				𝐵
			

			

				2
			

			
				)
				≠
				(
				0
				,
				0
				,
				0
				,
				0
				)
			

			

				𝑡
			

		
	
. We are therefore in case 1 of Algorithm 1.(7)We take the values 
	
		
			

				𝑏
			

			

				1
			

			
				=
				1
			

		
	
 and 
	
		
			

				𝑏
			

			

				2
			

			
				=
				0
			

		
	
 and will check the conditions given in step 7 of the algorithm.(1.1) One gets that 
												
	
 		
 			
				(
				6
				7
				)
			
 		
	

	
		
			
				
				K
				e
				r
			

			

				∼
			

			

				𝐵
			

			

				1
			

			
				
				
				−
				𝐼
				∩
				K
				e
				r
			

			

				∼
			

			

				𝐵
			

			

				2
			

			
				
				=
				
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				0
				1
				0
				0
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				
				.
			

		
	

											Let 
	
		
			
				𝑥
				∈
				K
				e
				r
				(
			

			

				∼
			

			

				𝐵
			

			

				1
			

			
				−
				𝐼
				)
				∩
				K
				e
				r
				(
			

			

				∼
			

			

				𝐵
			

			

				2
			

			

				)
			

		
	
. Then 
	
		
			
				
				𝑥
				=
			

			
				0
				𝜆
				0
				0
			

			

				
			

		
	
, 
	
		
			
				𝜆
				∈
				ℂ
			

		
	
. In this case one gets
												
	
 		
 			
				(
				6
				8
				)
			
 		
	

	
		
			
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				0
				0
				0
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				
				𝐴
				𝑥
				=
				2
				𝜆
				∈
				K
				e
				r
			

			

				∼
			

			

				𝐵
			

			

				1
			

			
				
				
				−
				𝐼
				∩
				K
				e
				r
			

			

				∼
			

			

				𝐵
			

			

				2
			

			
				
				,
			

		
	

											and then the subspace 
	
		
			
				K
				e
				r
				(
			

			

				∼
			

			

				𝐵
			

			

				1
			

			
				−
				𝐼
				)
				∩
				K
				e
				r
				(
			

			

				∼
			

			

				𝐵
			

			

				2
			

			

				)
			

		
	
 is invariant by matrix 
	
		
			

				𝐴
			

		
	
.(1.2) It is trivial to check that
												
	
 		
 			
				(
				6
				9
				)
			
 		
	

	
		
			
				
				𝑓
				(
				𝑥
				)
				∈
				K
				e
				r
			

			

				∼
			

			

				𝐵
			

			

				1
			

			
				
				
				−
				𝐼
				∩
				K
				e
				r
			

			

				∼
			

			

				𝐵
			

			

				2
			

			
				
				[
				]
				.
				,
				∀
				𝑥
				∈
				0
				,
				1
			

		
	
(1.3) With these values 
	
		
			

				𝜌
			

			

				0
			

		
	
, 
	
		
			

				𝑏
			

			

				1
			

		
	
, and 
	
		
			

				𝑏
			

			

				2
			

		
	
, one gets that 
												
	
 		
 			
				(
				7
				0
				)
			
 		
	

	
		
			
				
				1
				−
				𝑏
			

			

				2
			

			
				+
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			
				
				
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			

				
			

			
				
			
			

				𝑏
			

			

				1
			

			
				=
				0
				∈
				ℝ
				.
			

		
	

											With these values 
	
		
			

				𝑏
			

			

				1
			

		
	
 and 
	
		
			

				𝑏
			

			

				2
			

		
	
, one gets
												
	
 		
 			
				(
				7
				1
				)
			
 		
	

	
		
			

				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			
				=
				0
				∈
				ℝ
				.
			

		
	
(1.4) It is trivial to check that 
	
		
			
				𝑓
				(
				𝑥
				)
				∈
				𝒞
			

			

				2
			

			
				(
				[
				0
				,
				1
				]
				)
			

		
	
.(1.5) It is trivial to check that 
	
		
			
				(
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				)
				𝑓
				(
				0
				)
				+
				𝑏
			

			

				1
			

			

				𝑓
			

			

				
			

			
				(
				0
				)
				=
				(
				0
				,
				0
				,
				0
				,
				0
				)
			

			

				𝑡
			

		
	
.(1.6) It is trivial to check that 
	
		
			
				−
				(
				(
				1
				−
				𝑏
			

			

				2
			

			
				+
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			
				)
				/
				𝑏
			

			

				1
			

			
				)
				𝑓
				(
				1
				)
				+
				𝑏
			

			

				2
			

			

				𝑓
			

			

				
			

			
				(
				1
				)
				=
				(
				0
				,
				0
				,
				0
				,
				0
				)
			

			

				𝑡
			

		
	
.(8)Equation (16) is of the form
									
	
 		
 			
				(
				7
				2
				)
			
 		
	

	
		
			
				𝜆
				c
				o
				t
				(
				𝜆
				)
				=
				0
			

		
	

								We can solve (72) exactly, 
	
		
			

				𝜆
			

			

				𝑘
			

			
				=
				(
				𝜋
				/
				2
				)
				+
				𝑘
				𝜋
			

		
	
, with an additional solution 
	
		
			

				𝜆
			

			

				0
			

			
				∈
				]
				0
				,
				𝜋
				[
			

		
	
, because 
									
	
 		
 			
				(
				7
				3
				)
			
 		
	

	
		
			
				
				1
				−
				𝑏
			

			

				2
			

			
				+
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			
				
				
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			

				
			

			
				
			
			

				𝑏
			

			

				1
			

			
				=
				0
				<
				1
				,
			

		
	

								and then 
	
		
			

				𝜆
			

			

				0
			

			
				=
				(
				𝜋
				/
				2
				)
			

		
	
. Thus, we have a numerable family of solutions of (72) which we denote by 
	
		
			

				ℱ
			

		
	
, given by. 									
	
 		
 			
				(
				7
				4
				)
			
 		
	

	
		
			
				
				𝜆
				ℱ
				=
			

			

				𝑘
			

			
				=
				𝜋
			

			
				
			
			
				2
				+
				𝑘
				𝜋
				;
				𝜆
			

			

				𝑘
			

			
				
				∈
				(
				𝑘
				𝜋
				,
				(
				𝑘
				+
				1
				)
				𝜋
				)
				,
				𝑘
				≥
				1
				∪
				ℱ
			

			

				0
			

			
				,
				ℱ
			

			

				0
			

			
				=
				
				𝜆
			

			

				0
			

			
				=
				𝜋
			

			
				
			
			
				2
				
				.
			

		
	
(9)The minimal polynomial of matrix 
	
		
			

				𝐴
			

		
	
 is given by 
	
		
			
				𝑝
				(
				𝑥
				)
				=
				(
				𝑥
				−
				2
				)
			

			

				3
			

			
				(
				𝑥
				−
				1
				)
			

		
	
. Then 
	
		
			
				𝑝
				=
				4
			

		
	
.(10)If 
	
		
			

				𝜆
			

			

				𝑘
			

		
	
 is a positive solution of (72), the matrix 
	
		
			
				𝐺
				(
				𝜌
			

			

				0
			

			
				,
				𝑏
			

			

				1
			

			
				,
				𝑏
			

			

				2
			

			
				,
				𝜆
			

			

				𝑘
			

			

				)
			

		
	
 given by (31) takes the form
									
	
 		
 			
				(
				7
				5
				)
			
 		
	

	
		
			
				𝐺
				
				1
				,
				1
				,
				0
				,
				𝜆
			

			

				𝑘
			

			
				
				=
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				0
				0
				0
				−
				1
				0
				0
				1
				−
				2
				1
				0
				0
				0
				0
				0
				0
				0
			

			
				
			
			
				0
				0
				0
				−
				3
				0
				0
				4
				−
				6
				4
				0
				0
				0
				0
				0
				0
				0
			

			
				
			
			
				0
				0
				0
				−
				7
				0
				0
				1
				2
				−
				1
				3
				1
				2
				0
				0
				0
				0
				0
				0
				0
			

			
				
			
			
				−
				𝜆
			

			
				2
				𝑘
			

			
				0
				0
				0
				−
				𝜆
			

			
				2
				𝑘
			

			
				0
				0
				0
				0
				0
				0
				1
				0
				0
				0
				0
			

			
				
			
			
				−
				2
				𝜆
			

			
				2
				𝑘
			

			
				0
				0
				𝜆
			

			
				2
				𝑘
			

			
				−
				2
				𝜆
			

			
				2
				𝑘
			

			
				0
				0
				𝜆
			

			
				2
				𝑘
			

			
				0
				0
				0
				1
				0
				0
				0
				0
			

			
				
			
			
				−
				4
				𝜆
			

			
				2
				𝑘
			

			
				0
				0
				3
				𝜆
			

			
				2
				𝑘
			

			
				−
				4
				𝜆
			

			
				2
				𝑘
			

			
				0
				0
				3
				𝜆
			

			
				2
				𝑘
			

			
				0
				0
				0
				1
				0
				0
				0
				0
			

			
				
			
			
				−
				8
				𝜆
			

			
				2
				𝑘
			

			
				0
				0
				7
				𝜆
			

			
				2
				𝑘
			

			
				−
				8
				𝜆
			

			
				2
				𝑘
			

			
				0
				0
				7
				𝜆
			

			
				2
				𝑘
			

			
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				.
				0
				0
				0
				1
				0
				0
				0
				0
			

		
	
(11)Since the second column 
	
		
			
				𝐺
				(
				1
				,
				1
				,
				0
				,
				𝜆
			

			

				𝑘
			

			

				)
			

		
	
 is zero, we have that 
	
		
			
				r
				a
				n
				k
				(
				𝐺
				(
				1
				,
				1
				,
				0
				,
				𝜆
			

			

				𝑘
			

			
				)
				)
				<
				4
			

		
	
. Thus, each one of the positive solutions given by (74) is an eigenvalue.(12)It is trivial to check that 
	
		
			
				1
				∉
				𝜎
				(
				−
			

			

				∼
			

			

				𝐴
			

			
				2
				∼
			

			

				𝐴
			

			

				1
			

			

				)
			

		
	
, because
									
	
 		
 			
				(
				7
				6
				)
			
 		
	

	
		
			

				−
			

			

				∼
			

			

				𝐴
			

			
				2
				∼
			

			

				𝐴
			

			

				1
			

			
				=
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				
				−
				0
				0
				0
				0
				0
				0
				0
				0
				0
				0
				0
				−
				1
				0
				0
				0
				0
				,
				𝜎
			

			

				∼
			

			

				𝐴
			

			
				2
				∼
			

			

				𝐴
			

			

				1
			

			
				
				=
				{
				0
				}
				.
			

		
	

								Then we do not include 
	
		
			

				0
			

		
	
 as an eigenvalue.(13)Taking into account that 
	
		
			
				(
				(
				1
				−
				𝑏
			

			

				2
			

			
				+
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			

				𝑏
			

			

				2
			

			
				)
				(
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				)
				/
				𝑏
			

			

				1
			

			
				)
				=
				0
				<
				1
			

		
	
, one gets 
	
		
			
				𝛼
				=
				0
			

		
	
.(14)Vectors 
	
		
			
				𝐶
				(
				𝜆
			

			

				𝑛
			

			

				)
			

		
	
 defined by (47) take the values
									
	
 		
 			
				(
				7
				7
				)
			
 		
	

	
		
			
				𝐶
				
				𝜆
			

			

				𝑛
			

			
				
				=
				6
				4
				(
				−
				1
				)
			

			

				𝑛
			

			
				
			
			

				𝜋
			

			

				4
			

			
				(
				2
				𝑛
				+
				1
				)
			

			

				4
			

			
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				0
				1
				0
				0
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				.
			

		
	
(15)Using the minimal theorem [21, page 571], one gets that
									
	
 		
 			
				(
				7
				8
				)
			
 		
	

	
		
			

				𝑒
			

			
				𝐴
				𝑢
			

			
				=
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
			

			

				𝑒
			

			
				2
				𝑢
			

			
				0
				0
				−
				𝑒
			

			

				𝑢
			

			
				
				𝑒
			

			

				𝑢
			

			
				
				−
				1
				−
				1
			

			
				
			
			
				2
				𝑒
			

			
				2
				𝑢
			

			
				(
				𝑢
				−
				2
				)
				𝑢
				𝑒
			

			
				2
				𝑢
			

			

				𝑒
			

			
				2
				𝑢
			

			
				𝑢
				1
			

			
				
			
			
				2
				𝑒
			

			

				𝑢
			

			
				
				2
				+
				𝑒
			

			

				𝑢
			

			
				
				(
				−
				2
				+
				(
				−
				2
				+
				𝑢
				)
				𝑢
				)
				−
				𝑒
			

			
				2
				𝑢
			

			
				𝑢
				0
				𝑒
			

			
				2
				𝑢
			

			

				𝑒
			

			
				2
				𝑢
			

			
				𝑢
				0
				0
				0
				𝑒
			

			

				𝑢
			

			
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				.
			

		
	

								Next, by considering (78) with 
	
		
			
				𝑢
				=
				−
				(
				(
				𝜋
				/
				2
				)
				+
				𝑛
				𝜋
				)
			

			

				2
			

			

				𝑡
			

		
	
 and simplifying, we obtain the value of 
	
		
			

				𝑒
			

			
				−
				(
				(
				𝜋
				/
				2
				)
				+
				𝑛
				𝜋
				)
			

			

				2
			

			
				𝐴
				𝑡
			

		
	
. Taking into account that all eigenvalues 
	
		
			

				𝜆
			

			

				𝑛
			

		
	
 are positive, the associated eigenfunctions are
									
	
 		
 			
				(
				7
				9
				)
			
 		
	

	
		
			
				𝑢
				
				𝑥
				,
				𝑡
				,
				𝜆
			

			

				𝑛
			

			
				
				=
				𝑒
			

			
				−
				𝜆
			

			
				2
				𝑛
			

			
				𝐴
				𝑡
			

			
				
				
				1
				−
				𝜌
			

			

				0
			

			

				𝑏
			

			

				1
			

			
				
				
				𝜆
				s
				i
				n
			

			

				𝑛
			

			
				𝑥
				
				−
				𝑏
			

			

				1
			

			

				𝜆
			

			

				𝑛
			

			
				
				𝜆
				c
				o
				s
			

			

				𝑛
			

			
				𝑥
				𝐶
				
				𝜆
				
				
			

			

				𝑛
			

			
				
				.
			

		
	
(16)We replace the values of 
	
		
			
				𝐶
				(
				𝜆
			

			

				𝑛
			

			

				)
			

		
	
 given by (77) in (79) and take into account the value of the matrix 
	
		
			

				𝑒
			

			
				−
				(
				(
				𝜋
				/
				2
				)
				+
				𝑛
				𝜋
				)
			

			

				2
			

			
				𝐴
				𝑡
			

		
	
. After simplification, we finally obtain the solution of (1)–(4) given by
									
	
 		
 			
				(
				8
				0
				)
			
 		
	

	
		
			
				𝑢
				=
				
				
				(
				𝑥
				,
				𝑡
				)
			

			
				𝑛
				≥
				0
			

			
				−
				3
				2
				(
				−
				1
				)
			

			

				𝑛
			

			

				𝑒
			

			
				−
				(
				1
				/
				2
				)
				(
				𝜋
				+
				2
				𝑛
				𝜋
				)
			

			

				2
			

			

				𝑡
			

			
				c
				o
				s
				(
				(
				1
				/
				2
				)
				(
				𝜋
				+
				2
				𝑛
				𝜋
				)
				𝑥
				)
			

			
				
			
			

				𝜋
			

			

				3
			

			
				(
				2
				𝑛
				+
				1
				)
			

			

				3
			

			
				
				×
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				0
				1
				0
				0
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				.
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