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Abstract. 
Some global existence and uniform asymptotic stability results for fractional functional differential equations are proved. It is worth mentioning that when 
	
		
			
				𝛼
				=
				1
			

		
	
 the initial value problem 
	
		
			

				𝐷
			

			

				𝛼
			

			
				[
				𝑦
				(
				𝑡
				)
				𝑒
			

			
				𝛽
				𝑡
			

			
				]
				=
				𝑓
				(
				𝑡
				,
				𝑦
			

			

				𝑡
			

			
				)
				𝑒
			

			
				𝛽
				𝑡
			

			
				,
				𝑡
				∈
				[
				𝑡
			

			

				0
			

			
				,
				∞
				)
				,
				𝑡
			

			

				0
			

			
				⩾
				0
				,
				0
				<
				𝛼
				<
				1
				,
				𝑦
				(
				𝑡
				)
				=
				𝜙
				(
				𝑡
				)
				,
				𝑡
			

			

				0
			

			
				−
				ℎ
				⩽
				𝑡
				⩽
				𝑡
			

			

				0
			

			

				,
			

		
	
 reduces to a classical dissipative differential equation with delays as in Caraballo et al.'s work (2005).


1. Introduction
Consider the initial value problem (IVP for short) of the following fractional functional differential equation:
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			

				𝐷
			

			

				𝛼
			

			
				
				𝑦
				(
				𝑡
				)
				𝑒
			

			
				𝛽
				𝑡
			

			
				
				
				=
				𝑓
				𝑡
				,
				𝑦
			

			

				𝑡
			

			
				
				𝑒
			

			
				𝛽
				𝑡
			

			
				
				𝑡
				,
				𝑡
				∈
			

			

				0
			

			
				
				,
				∞
				,
				𝑡
			

			

				0
			

			
				⩾
				0
				,
				0
				<
				𝛼
				<
				1
				,
				𝑦
				(
				𝑡
				)
				=
				𝜙
				(
				𝑡
				)
				,
				𝑡
			

			

				0
			

			
				−
				ℎ
				⩽
				𝑡
				⩽
				𝑡
			

			

				0
			

			

				,
			

		
	

					where 
	
		
			

				𝐷
			

			

				𝛼
			

		
	
 is the Caputo fractional derivative, 
	
		
			
				𝛽
				>
				0
			

		
	
, 
	
		
			
				𝑓
				∶
				𝐽
				×
				𝐶
				(
				[
				−
				ℎ
				,
				0
				]
				,
				ℝ
				)
				→
				ℝ
			

		
	
, where 
	
		
			
				𝐽
				=
				[
				𝑡
			

			

				0
			

			
				,
				∞
				)
			

		
	
, is a given function satisfying some assumptions that will be specified later, 
	
		
			
				ℎ
				>
				0
			

		
	
, and 
	
		
			
				𝜙
				∈
				𝐶
				(
				[
				𝑡
			

			

				0
			

			
				−
				ℎ
				,
				𝑡
			

			

				0
			

			
				]
				,
				ℝ
				)
			

		
	
. If 
	
		
			
				𝑦
				∈
				𝐶
				(
				[
				𝑡
			

			

				0
			

			
				−
				ℎ
				,
				∞
				)
				,
				ℝ
				)
			

		
	
, then for any 
	
		
			
				𝑡
				∈
				[
				𝑡
			

			

				0
			

			
				,
				∞
				)
			

		
	
, define 
	
		
			

				𝑦
			

			

				𝑡
			

		
	
 by
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			

				𝑦
			

			

				𝑡
			

			
				[
				]
				.
				(
				𝜃
				)
				=
				𝑦
				(
				𝑡
				+
				𝜃
				)
				,
				𝜃
				∈
				−
				ℎ
				,
				0
			

		
	

The study of retarded differential equations is an important area of applied mathematics due to physical reasons, noninstant transmission phenomena, memory processes, and specially biological motivations (see, e.g., [1–4]). Fractional differential equations have attracted much attention recently (see, e.g., [5–11] and the references cited therein for the applications in various sciences such as physics, mechanics, chemistry, and engineering).
Some attractive results for fractional functional differential equations and nonlinear functional integral equations are obtained by using the fixed point theory; see [12–16] and references therein. Global asymptotic stability of solutions of a functional integral equation is discussed in [17]; however, there is no work on uniform asymptotic stability of solutions of fractional functional differential equation. It is our intention here to show the global existence and uniform asymptotic stability of the fractional functional differential equation (1).
We organize the paper as follows. In Section 2, we recall some necessary concepts and results. In Section 3 we give the global existence and uniform asymptotic stability of fractional functional differential equations. Finally, two examples are given to illustrate our main results.
2. Preliminaries
In this section, we introduce notations, definitions, and preliminary facts which are used throughout this paper.
We consider 
	
		
			
				𝐵
				𝐶
				∶
				=
				𝐵
				𝐶
				(
				[
				𝑡
			

			

				0
			

			
				−
				ℎ
				,
				∞
				)
				,
				ℝ
				)
			

		
	
 the Banach space of all bounded and continuous functions from 
	
		
			
				[
				𝑡
			

			

				0
			

			
				−
				ℎ
				,
				∞
				)
			

		
	
 into 
	
		
			

				ℝ
			

		
	
 with the norm
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				‖
				𝑦
				‖
			

			

				∞
			

			
				
				|
				|
				|
				|
				
				𝑡
				∶
				=
				s
				u
				p
				𝑦
				(
				𝑡
				)
				∶
				𝑡
				∈
			

			

				0
			

			
				.
				−
				ℎ
				,
				∞
				
				
			

		
	

					Let 
	
		
			
				‖
				𝑦
			

			

				𝑡
			

			
				‖
				=
				s
				u
				p
			

			
				−
				ℎ
				⩽
				𝜃
				⩽
				0
			

			
				|
				𝑦
				(
				𝑡
				+
				𝜃
				)
				|
			

		
	
 for 
	
		
			
				𝑡
				∈
				𝐽
			

		
	
.
Throughout this paper, we always assume that 
	
		
			
				𝑓
				(
				𝑡
				,
				𝑥
			

			

				𝑡
			

			

				)
			

		
	
 satisfies the following condition:(H 0)
	
		
			
				𝑓
				(
				𝑡
				,
				𝑥
			

			

				𝑡
			

			

				)
			

		
	
 is Lebesgue measurable with respect to 
	
		
			

				𝑡
			

		
	
 on 
	
		
			
				[
				𝑡
			

			

				0
			

			
				,
				∞
				)
			

		
	
, and 
	
		
			
				𝑓
				(
				𝑡
				,
				𝜑
				)
			

		
	
 is continuous with respect to 
	
		
			

				𝜑
			

		
	
 on 
	
		
			
				𝐶
				(
				[
				−
				ℎ
				,
				0
				]
				,
				ℝ
				)
			

		
	
. By condition 
	
		
			
				(
				𝐻
			

			

				0
			

			

				)
			

		
	
 and the technique used in [7], we get the equivalent form of IVP (1) as
						
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				𝑦
				=
				⎧
				⎪
				⎪
				⎨
				⎪
				⎪
				⎩
				𝑦
				
				𝑡
				(
				𝑡
				)
			

			

				0
			

			
				
				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑡
			

			

				0
			

			

				)
			

			
				+
				1
			

			
				
			
			
				∫
				Γ
				(
				𝛼
				)
			

			
				𝑡
				𝑡
			

			

				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑠
				)
			

			
				
				×
				𝑓
				𝑠
				,
				𝑦
			

			

				𝑠
			

			
				
				𝑑
				𝑠
				,
				𝑡
				⩾
				𝑡
			

			

				0
			

			
				,
				
				𝑡
				𝜙
				(
				𝑡
				)
				,
				𝑡
				∈
			

			

				0
			

			
				−
				ℎ
				,
				𝑡
			

			

				0
			

			
				
				,
			

		
	

					where 
	
		
			
				Γ
				(
				⋅
				)
			

		
	
 is the gamma function.
Definition 1. We say that the solutions 
	
		
			

				𝑦
			

		
	
 and 
	
		
			

				𝑥
			

		
	
 of IVP (1) are uniformly asymptotically stable if for any bounded subset 
	
		
			

				𝐵
			

		
	
 of 
	
		
			
				𝐶
				(
				[
				−
				ℎ
				,
				0
				]
				,
				ℝ
				)
			

		
	
 and 
	
		
			
				𝜀
				>
				0
			

		
	
, there exists a 
	
		
			
				𝑇
				>
				0
			

		
	
 such that
							
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			
				|
				|
				𝑦
				
				𝑡
				,
				𝑡
			

			

				0
			

			
				
				
				,
				𝜙
				−
				𝑥
				𝑡
				,
				𝑡
			

			

				0
			

			
				
				|
				|
				,
				𝜓
				⩽
				𝜀
				∀
				𝑡
				⩾
				𝑇
				,
				𝜙
				,
				𝜓
				∈
				𝐵
				.
			

		
	
We recall the following generalization of Gronwall’s lemma for singular kernels [18], which will be used in the sequel.
Lemma 2.  Let 
	
		
			
				𝑣
				∶
				[
				𝑡
			

			

				0
			

			
				,
				𝑏
				]
				→
				[
				0
				,
				+
				∞
				)
			

		
	
 be a real function and 
	
		
			
				𝑤
				(
				⋅
				)
			

		
	
 is a nonnegative, locally integrable function on 
	
		
			
				[
				𝑡
			

			

				0
			

			
				,
				𝑏
				]
			

		
	
 and there are constants 
	
		
			
				𝑎
				>
				0
			

		
	
 and 
	
		
			
				0
				<
				𝛼
				<
				1
			

		
	
 such that
							
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			
				
				𝑣
				(
				𝑡
				)
				⩽
				𝑤
				(
				𝑡
				)
				+
				𝑎
			

			
				𝑡
				𝑡
			

			

				0
			

			
				𝑣
				(
				𝑠
				)
			

			
				
			
			
				(
				𝑡
				−
				𝑠
				)
			

			

				𝛼
			

			
				𝑑
				𝑠
				.
			

		
	

						Then there exists a constant 
	
		
			
				𝐾
				=
				𝐾
				(
				𝛼
				)
			

		
	
 such that
							
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				
				𝑣
				(
				𝑡
				)
				⩽
				𝑤
				(
				𝑡
				)
				+
				𝐾
				𝑎
			

			
				𝑡
				𝑡
			

			

				0
			

			
				𝑤
				(
				𝑠
				)
			

			
				
			
			
				(
				𝑡
				−
				𝑠
				)
			

			

				𝛼
			

			
				𝑑
				𝑠
				,
			

		
	

						for every 
	
		
			
				𝑡
				∈
				[
				𝑡
			

			

				0
			

			
				,
				𝑏
				]
			

		
	
.
Theorem 3 (Leray-Schauder fixed-point theorem).  Let 
	
		
			

				𝑃
			

		
	
 be a continuous and compact mapping of a Banach space 
	
		
			

				𝑋
			

		
	
 into itself, such that the set
							
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				{
				𝑥
				∈
				𝑋
				∶
				𝑥
				=
				𝜆
				𝑃
				𝑥
				𝑓
				𝑜
				𝑟
				𝑠
				𝑜
				𝑚
				𝑒
				0
				⩽
				𝜆
				⩽
				1
				}
				,
			

		
	

						is bounded. Then, 
	
		
			

				𝑃
			

		
	
 has a fixed point.
3. FDEs of Fractional Order
In this section, we will investigate the IVP (1). Our first global existence and uniform asymptotic stability result for the IVP (1) is based on the Banach contradiction principle and Lemma 2.
Theorem 4.  Assume that 
	
		
			
				𝑓
				(
				𝑡
				,
				𝑦
			

			

				𝑡
			

			

				)
			

		
	
 satisfies conditions 
	
		
			
				(
				𝐻
			

			

				0
			

			

				)
			

		
	
 and (H 1)there exists 
	
		
			
				𝑙
				>
				0
			

		
	
 such that 
										
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				|
				|
				𝑓
				
				𝑡
				,
				𝑢
			

			

				𝑡
			

			
				
				
				−
				𝑓
				𝑡
				,
				𝑣
			

			

				𝑡
			

			
				
				|
				|
				‖
				‖
				𝑢
				⩽
				𝑙
			

			

				𝑡
			

			
				−
				𝑣
			

			

				𝑡
			

			
				‖
				‖
				,
			

		
	
for 
	
		
			
				𝑡
				∈
				𝐽
			

		
	
 and every 
	
		
			

				𝑢
			

			

				𝑡
			

			
				,
				𝑣
			

			

				𝑡
			

			
				∈
				𝐶
				(
				[
				−
				ℎ
				,
				0
				]
				,
				ℝ
				)
			

		
	
. Moreover, the function 
	
		
			
				𝑡
				↦
				𝑓
				(
				𝑡
				,
				0
				)
			

		
	
 is bounded with 
	
		
			

				𝑓
			

			

				0
			

			
				=
				s
				u
				p
			

			
				𝑡
				⩾
				𝑡
			

			

				0
			

			
				|
				𝑓
				(
				𝑡
				,
				0
				)
				|
			

		
	
. If 
							
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				𝑙
				
				
				𝑡
			

			

				0
			

			
				
				+
				ℎ
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
			

			

				0
			

			
				+
				ℎ
				)
			

			
				
			
			
				+
				
				𝑡
				𝛽
				Γ
				(
				𝛼
				)
			

			

				0
			

			
				
				+
				ℎ
			

			

				𝛼
			

			
				
			
			
				
				Γ
				(
				𝛼
				+
				1
				)
				<
				1
				,
			

		
	

						then the IVP (1) has a unique solution in the space 
	
		
			
				𝐵
				𝐶
			

		
	
. Moreover, solutions of IVP (1) are uniformly asymptotically stable.
Proof. We divide the proof into two steps.Step 1. We define the operator 
	
		
			
				𝑃
				∶
				𝐶
				(
				[
				𝑡
			

			

				0
			

			
				−
				ℎ
				,
				∞
				)
				,
				ℝ
				)
				→
				𝐶
				(
				[
				𝑡
			

			

				0
			

			
				−
				ℎ
				,
				∞
				)
				,
				ℝ
				)
			

		
	
 by
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				=
				⎧
				⎪
				⎪
				⎨
				⎪
				⎪
				⎩
				𝑦
				
				𝑡
				(
				𝑃
				𝑦
				)
				(
				𝑡
				)
			

			

				0
			

			
				
				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑡
			

			

				0
			

			

				)
			

			
				+
				1
			

			
				
			
			
				∫
				Γ
				(
				𝛼
				)
			

			
				𝑡
				𝑡
			

			

				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑠
				)
			

			
				
				×
				𝑓
				𝑠
				,
				𝑦
			

			

				𝑠
			

			
				
				𝑑
				𝑠
				,
				𝑡
				⩾
				𝑡
			

			

				0
			

			
				,
				
				𝑡
				𝜙
				(
				𝑡
				)
				,
				𝑡
				∈
			

			

				0
			

			
				−
				ℎ
				,
				𝑡
			

			

				0
			

			
				
				.
			

		
	

						The operator 
	
		
			

				𝑃
			

		
	
 maps 
	
		
			
				𝐵
				𝐶
			

		
	
 into itself. Indeed for each 
	
		
			
				𝑦
				∈
				𝐵
				𝐶
			

		
	
, and for each 
	
		
			
				𝑡
				⩾
				2
				𝑡
			

			

				0
			

			
				+
				ℎ
			

		
	
, it follows from 
	
		
			
				(
				𝐻
			

			

				1
			

			

				)
			

		
	
 that
							
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				⩽
				|
				|
				𝑦
				
				𝑡
				(
				𝑃
				𝑦
				)
				(
				𝑡
				)
			

			

				0
			

			
				
				|
				|
				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑡
			

			

				0
			

			

				)
			

			
				+
				1
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			
				𝑡
				𝑡
			

			

				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑠
				)
			

			
				
				𝑓
			

			

				0
			

			
				‖
				‖
				𝑦
				+
				𝑙
			

			

				𝑠
			

			
				‖
				‖
				
				𝑑
				𝑠
				⩽
				‖
				𝜙
				‖
				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑡
			

			

				0
			

			

				)
			

			
				+
				𝑓
			

			

				0
			

			
				+
				𝑙
				‖
				𝑦
				‖
			

			

				∞
			

			
				
			
			
				×
				
				
				Γ
				(
				𝛼
				)
			

			
				𝑡
				−
				(
				𝑡
			

			

				0
			

			
				𝑡
				+
				ℎ
				)
			

			

				0
			

			
				
				𝑡
			

			

				0
			

			
				
				+
				ℎ
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑠
				)
			

			
				
				𝑑
				𝑠
				+
			

			
				𝑡
				
				𝑡
				𝑡
				−
			

			

				0
			

			
				
				+
				ℎ
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			
				
				
				𝑓
				𝑑
				𝑠
				⩽
				‖
				𝜙
				‖
				+
			

			

				0
			

			
				+
				𝑙
				‖
				𝑦
				‖
			

			

				∞
			

			
				
				
				
				𝑡
			

			

				0
			

			
				
				+
				ℎ
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
			

			

				0
			

			
				+
				ℎ
				)
			

			
				
			
			
				+
				
				𝑡
				𝛽
				Γ
				(
				𝛼
				)
			

			

				0
			

			
				
				+
				ℎ
			

			

				𝛼
			

			
				
			
			
				
				.
				Γ
				(
				𝛼
				+
				1
				)
			

		
	

						For each 
	
		
			
				𝑡
				∈
				[
				𝑡
			

			

				0
			

			
				,
				2
				𝑡
			

			

				0
			

			
				+
				ℎ
				]
			

		
	
, we have
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
				𝑓
				(
				𝑃
				𝑦
				)
				(
				𝑡
				)
				⩽
				‖
				𝜙
				‖
				+
			

			

				0
			

			
				+
				𝑙
				‖
				𝑦
				‖
			

			

				∞
			

			
				𝑡
				
				
			

			

				0
			

			
				
				+
				ℎ
			

			

				𝛼
			

			
				
			
			
				,
				Γ
				(
				𝛼
				+
				1
				)
			

		
	

						and consequently 
	
		
			
				𝑃
				(
				𝑦
				)
				∈
				𝐵
				𝐶
			

		
	
.Since 
	
		
			
				𝐵
				𝐶
				∶
				=
				𝐵
				𝐶
				(
				[
				𝑡
			

			

				0
			

			
				−
				ℎ
				,
				∞
				)
				,
				ℝ
				)
			

		
	
 is a Banach space with norm 
	
		
			
				‖
				⋅
				‖
			

			

				∞
			

		
	
, we will show that 
	
		
			
				𝑃
				∶
				𝐵
				𝐶
				→
				𝐵
				𝐶
			

		
	
 is a contraction map. Let 
	
		
			

				𝑦
			

			

				1
			

			
				,
				𝑦
			

			

				2
			

			
				∈
				𝐵
				𝐶
			

		
	
. Then, we have for each 
	
		
			
				𝑡
				⩾
				𝑡
			

			

				0
			

		
	
,
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				|
				|
				
				𝑃
				𝑦
			

			

				1
			

			
				
				
				(
				𝑡
				)
				−
				𝑃
				𝑦
			

			

				2
			

			
				
				|
				|
				⩽
				1
				(
				𝑡
				)
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			
				𝑡
				𝑡
			

			

				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑠
				)
			

			
				×
				|
				|
				𝑓
				
				𝑠
				,
				𝑦
			

			
				1
				𝑠
			

			
				
				
				−
				𝑓
				𝑠
				,
				𝑦
			

			
				2
				𝑠
			

			
				
				|
				|
				⩽
				𝑙
				𝑑
				𝑠
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			
				𝑡
				𝑡
			

			

				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑠
				)
			

			
				‖
				‖
				𝑦
			

			
				1
				𝑠
			

			
				−
				𝑦
			

			
				2
				𝑠
			

			
				‖
				‖
				𝑑
				𝑠
				.
			

		
	
Therefore, for any 
	
		
			
				𝑡
				⩾
				2
				𝑡
			

			

				0
			

			
				+
				ℎ
			

		
	
,
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				|
				|
				
				𝑃
				𝑦
			

			

				1
			

			
				
				
				(
				𝑡
				)
				−
				𝑃
				𝑦
			

			

				2
			

			
				
				|
				|
				⩽
				𝑙
				(
				𝑡
				)
			

			
				
			
			
				Γ
				‖
				‖
				𝑦
				(
				𝛼
				)
			

			

				1
			

			
				(
				⋅
				)
				−
				𝑦
			

			

				2
			

			
				‖
				‖
				(
				⋅
				)
			

			

				∞
			

			
				×
				
				
			

			
				𝑡
				−
				(
				𝑡
			

			

				0
			

			
				𝑡
				+
				ℎ
				)
			

			

				0
			

			
				
				𝑡
			

			

				0
			

			
				
				+
				ℎ
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑠
				)
			

			
				+
				
				𝑑
				𝑠
			

			
				𝑡
				
				𝑡
				𝑡
				−
			

			

				0
			

			
				
				+
				ℎ
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			
				
				
				
				𝑡
				𝑑
				𝑠
				⩽
				𝑙
			

			

				0
			

			
				
				+
				ℎ
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
			

			

				0
			

			
				+
				ℎ
				)
			

			
				
			
			
				+
				
				𝑡
				𝛽
				Γ
				(
				𝛼
				)
			

			

				0
			

			
				
				+
				ℎ
			

			

				𝛼
			

			
				
			
			
				
				×
				‖
				‖
				𝑦
				Γ
				(
				𝛼
				+
				1
				)
			

			

				1
			

			
				(
				⋅
				)
				−
				𝑦
			

			

				2
			

			
				‖
				‖
				(
				⋅
				)
			

			

				∞
			

			

				,
			

		
	

						and for 
	
		
			

				𝑡
			

			

				0
			

			
				−
				ℎ
				⩽
				𝑡
				⩽
				2
				𝑡
			

			

				0
			

			
				+
				ℎ
			

		
	
,
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				|
				|
				
				𝑃
				𝑦
			

			

				1
			

			
				
				
				(
				𝑡
				)
				−
				𝑃
				𝑦
			

			

				2
			

			
				
				|
				|
				⩽
				𝑙
				(
				𝑡
				)
			

			
				
			
			
				‖
				‖
				𝑦
				Γ
				(
				𝛼
				)
			

			

				1
			

			
				(
				⋅
				)
				−
				𝑦
			

			

				2
			

			
				‖
				‖
				(
				⋅
				)
			

			

				∞
			

			

				
			

			
				𝑡
				𝑡
			

			

				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			
				⩽
				𝑙
				
				𝑡
				𝑑
				𝑠
			

			

				0
			

			
				
				+
				ℎ
			

			

				𝛼
			

			
				
			
			
				‖
				‖
				𝑦
				Γ
				(
				𝛼
				+
				1
				)
			

			

				1
			

			
				(
				⋅
				)
				−
				𝑦
			

			

				2
			

			
				‖
				‖
				(
				⋅
				)
			

			

				∞
			

			

				,
			

		
	

						and thus
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				‖
				‖
				
				𝑃
				𝑦
			

			

				1
			

			
				
				
				(
				⋅
				)
				−
				𝑃
				𝑦
			

			

				2
			

			
				
				‖
				‖
				(
				⋅
				)
			

			

				∞
			

			
				
				
				𝑡
				⩽
				𝑙
			

			

				0
			

			
				
				+
				ℎ
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
			

			

				0
			

			
				+
				ℎ
				)
			

			
				
			
			
				+
				
				𝑡
				𝛽
				Γ
				(
				𝛼
				)
			

			

				0
			

			
				
				+
				ℎ
			

			

				𝛼
			

			
				
			
			
				
				×
				‖
				‖
				𝑦
				Γ
				(
				𝛼
				+
				1
				)
			

			

				1
			

			
				(
				⋅
				)
				−
				𝑦
			

			

				2
			

			
				‖
				‖
				(
				⋅
				)
			

			

				∞
			

			

				.
			

		
	

						Hence, (10) and (17) imply that the operator 
	
		
			

				𝑃
			

		
	
 is a contraction. Therefore, 
	
		
			

				𝑃
			

		
	
 has a unique fixed point by Banach’s contraction principle.Step 2. For any two solutions 
	
		
			
				𝑥
				=
				𝑥
				(
				𝑡
				)
			

		
	
 and 
	
		
			
				𝑦
				=
				𝑦
				(
				𝑡
				)
			

		
	
 of IVP (1) corresponding to initial values 
	
		
			

				𝜓
			

		
	
 and 
	
		
			

				𝜙
			

		
	
, by (4) we can deduce that for all 
	
		
			
				𝑡
				⩾
				𝑡
			

			

				0
			

			
				+
				ℎ
			

		
	
 and all 
	
		
			
				𝜃
				∈
				[
				−
				ℎ
				,
				0
				]
			

		
	
,
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				⩽
				|
				|
				𝑥
				
				𝑡
				𝑥
				(
				𝑡
				+
				𝜃
				)
				−
				𝑦
				(
				𝑡
				+
				𝜃
				)
			

			

				0
			

			
				
				
				𝑡
				−
				𝑦
			

			

				0
			

			
				
				|
				|
				𝑒
			

			
				−
				𝛽
				(
				𝑡
				+
				𝜃
				−
				𝑡
			

			

				0
			

			

				)
			

			
				+
				1
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			
				𝑡
				𝑡
				+
				𝜃
			

			

				0
			

			
				(
				𝑡
				+
				𝜃
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
				+
				𝜃
				−
				𝑠
				)
			

			
				×
				|
				|
				𝑓
				
				𝑠
				,
				𝑥
			

			

				𝑠
			

			
				
				
				−
				𝑓
				𝑠
				,
				𝑦
			

			

				𝑠
			

			
				
				|
				|
				⩽
				|
				|
				𝑥
				
				𝑡
				𝑑
				𝑠
			

			

				0
			

			
				
				
				𝑡
				−
				𝑦
			

			

				0
			

			
				
				|
				|
				𝑒
			

			
				−
				𝛽
				(
				𝑡
				+
				𝜃
				−
				𝑡
			

			

				0
			

			

				)
			

			
				+
				𝑙
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			
				𝑡
				𝑡
				+
				𝜃
			

			

				0
			

			
				(
				𝑡
				+
				𝜃
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
				+
				𝜃
				−
				𝑠
				)
			

			
				‖
				‖
				𝑥
			

			

				𝑠
			

			
				−
				𝑦
			

			

				𝑠
			

			
				‖
				‖
				𝑑
				𝑠
				.
			

		
	

						Then, it follows that
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			

				𝑒
			

			
				𝛽
				𝑡
			

			
				‖
				‖
				𝑥
			

			

				𝑡
			

			
				−
				𝑦
			

			

				𝑡
			

			
				‖
				‖
				⩽
				|
				|
				𝑥
				
				𝑡
			

			

				0
			

			
				
				
				𝑡
				−
				𝑦
			

			

				0
			

			
				
				|
				|
				𝑒
			

			
				𝛽
				(
				ℎ
				+
				𝑡
			

			

				0
			

			

				)
			

			
				+
				𝑙
				𝑒
			

			
				𝛽
				ℎ
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			
				𝑡
				𝑡
			

			

				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				𝛽
				𝑠
			

			
				‖
				‖
				𝑥
			

			

				𝑠
			

			
				−
				𝑦
			

			

				𝑠
			

			
				‖
				‖
				𝑑
				𝑠
				.
			

		
	

						Let 
	
		
			
				𝑤
				(
				𝑡
				)
				=
				𝑒
			

			
				𝛽
				𝑡
			

			
				‖
				𝑥
			

			

				𝑡
			

			
				−
				𝑦
			

			

				𝑡
			

			

				‖
			

		
	
. Then, we have
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				|
				|
				𝑥
				
				𝑡
				𝑤
				(
				𝑡
				)
				⩽
			

			

				0
			

			
				
				
				𝑡
				−
				𝑦
			

			

				0
			

			
				
				|
				|
				𝑒
			

			
				𝛽
				(
				ℎ
				+
				𝑡
			

			

				0
			

			

				)
			

			
				+
				𝑙
				𝑒
			

			
				𝛽
				ℎ
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			
				𝑡
				𝑡
			

			

				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			
				𝑤
				(
				𝑠
				)
				𝑑
				𝑠
				.
			

		
	

						Applying Lemma 2, one can see that there exists a constant 
	
		
			

				𝐾
			

		
	
 such that
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				𝑤
				⩽
				|
				|
				𝑥
				
				𝑡
				(
				𝑡
				)
			

			

				0
			

			
				
				
				𝑡
				−
				𝑦
			

			

				0
			

			
				
				|
				|
				𝑒
			

			
				𝛽
				(
				ℎ
				+
				𝑡
			

			

				0
			

			

				)
			

			
				+
				𝐾
				𝑙
				𝑒
			

			
				𝛽
				ℎ
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			
				𝑡
				𝑡
			

			

				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			
				|
				|
				𝑥
				
				𝑡
			

			

				0
			

			
				
				
				𝑡
				−
				𝑦
			

			

				0
			

			
				
				|
				|
				𝑒
			

			
				𝛽
				(
				ℎ
				+
				𝑡
			

			

				0
			

			

				)
			

			
				⩽
				|
				|
				𝑥
				
				𝑡
				𝑑
				𝑠
			

			

				0
			

			
				
				
				𝑡
				−
				𝑦
			

			

				0
			

			
				
				|
				|
				𝑒
			

			
				𝛽
				(
				ℎ
				+
				𝑡
			

			

				0
			

			

				)
			

			
				
				1
				+
				𝐾
				𝑙
				𝑒
			

			
				𝛽
				ℎ
			

			
				
			
			
				
				Γ
				(
				𝛼
				+
				1
				)
				𝑡
				−
				𝑡
			

			

				0
			

			

				
			

			

				𝛼
			

			
				
				.
			

		
	

						Hence, we obtain
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			

				𝑒
			

			
				𝛽
				𝑡
			

			
				‖
				‖
				𝑥
			

			

				𝑡
			

			
				−
				𝑦
			

			

				𝑡
			

			
				‖
				‖
				⩽
				|
				|
				𝑥
				
				𝑡
				=
				𝑤
				(
				𝑡
				)
			

			

				0
			

			
				
				
				𝑡
				−
				𝑦
			

			

				0
			

			
				
				|
				|
				𝑒
			

			
				𝛽
				(
				ℎ
				+
				𝑡
			

			

				0
			

			

				)
			

			
				×
				
				1
				+
				𝐾
				𝑙
				𝑒
			

			
				𝛽
				ℎ
			

			
				
			
			
				Γ
				
				(
				𝛼
				+
				1
				)
				𝑡
				−
				𝑡
			

			

				0
			

			

				
			

			

				𝛼
			

			
				
				,
			

		
	

						and thus for all 
	
		
			
				𝑡
				⩾
				𝑡
			

			

				0
			

			
				+
				ℎ
			

		
	
,
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				⩽
				|
				|
				𝑥
				
				𝑡
				𝑥
				(
				𝑡
				)
				−
				𝑦
				(
				𝑡
				)
			

			

				0
			

			
				
				
				𝑡
				−
				𝑦
			

			

				0
			

			
				
				|
				|
				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				ℎ
				−
				𝑡
			

			

				0
			

			

				)
			

			
				
				1
				+
				𝐾
				𝑙
				𝑒
			

			
				𝛽
				ℎ
			

			
				
			
			
				
				Γ
				(
				𝛼
				+
				1
				)
				𝑡
				−
				𝑡
			

			

				0
			

			

				
			

			

				𝛼
			

			
				
				,
			

		
	

						which implies that the solutions of IVP (1) are uniformly asymptotically stable.
Now we give global existence and uniform asymptotic stability results based on the nonlinear alternative of Leray-Schauder type.
Theorem 5.  Assume that the following hypotheses hold: (H2)
	
		
			

				𝑓
			

		
	
 is a continuous function;(H3)there exist positive functions 
	
		
			

				𝑘
			

			

				1
			

		
	
, 
	
		
			

				𝑘
			

			

				2
			

			
				∈
				𝐵
				𝐶
				(
				[
				𝑡
			

			

				0
			

			
				,
				∞
				)
				,
				ℝ
			

			

				+
			

			

				)
			

		
	
 such that 
										
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				|
				|
				𝑓
				
				𝑡
				,
				𝑢
			

			

				𝑡
			

			
				
				|
				|
				⩽
				𝑘
			

			

				1
			

			
				(
				𝑡
				)
				+
				𝑘
			

			

				2
			

			
				‖
				‖
				𝑢
				(
				𝑡
				)
			

			

				𝑡
			

			
				‖
				‖
			

		
	
for 
	
		
			
				𝑡
				∈
				𝐽
			

		
	
 and every 
	
		
			

				𝑢
			

			

				𝑡
			

			
				∈
				𝐶
				(
				[
				−
				ℎ
				,
				0
				]
				,
				ℝ
				)
			

		
	
; (H4)moreover, assume that
										
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑡
				→
				∞
			

			

				
			

			
				𝑡
				𝑡
			

			

				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑠
				)
			

			

				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				=
				0
				,
				l
				i
				m
			

			
				𝑡
				→
				∞
			

			

				
			

			
				𝑡
				𝑡
			

			

				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑠
				)
			

			

				𝑘
			

			

				2
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				=
				0
				.
			

		
	
Then the IVP (1) admits a solution in the space 
	
		
			
				𝐵
				𝐶
			

		
	
. Moreover, solutions of IVP (1) are uniformly asymptotically stable.
Proof. Let 
	
		
			
				𝑃
				∶
				𝐶
				(
				[
				𝑡
			

			

				0
			

			
				−
				ℎ
				,
				∞
				)
				,
				ℝ
				)
				→
				𝐶
				(
				[
				𝑡
			

			

				0
			

			
				−
				ℎ
				,
				∞
				)
				,
				ℝ
				)
			

		
	
 be defined as in (11). First, we show that 
	
		
			

				𝑃
			

		
	
 maps 
	
		
			
				𝐵
				𝐶
			

		
	
 into itself. Let 
	
		
			

				𝐾
			

			

				1
			

			
				=
				s
				u
				p
			

			
				𝑡
				⩾
				𝑡
			

			

				0
			

			

				𝑘
			

			

				1
			

			
				(
				𝑡
				)
			

		
	
, 
	
		
			

				𝐾
			

			

				2
			

			
				=
				s
				u
				p
			

			
				𝑡
				⩾
				𝑡
			

			

				0
			

			

				𝑘
			

			

				2
			

			
				(
				𝑡
				)
			

		
	
. Indeed, the map 
	
		
			
				𝑃
				(
				𝑦
				)
			

		
	
 is continuous on 
	
		
			
				[
				𝑡
			

			

				0
			

			
				−
				ℎ
				,
				+
				∞
				)
			

		
	
 for each 
	
		
			
				𝑦
				∈
				𝐵
				𝐶
			

		
	
, and for each 
	
		
			
				𝑡
				⩾
				2
				𝑡
			

			

				0
			

			
				+
				ℎ
			

		
	
, 
	
		
			
				(
				𝐻
			

			

				2
			

			

				)
			

		
	
 implies that
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				⩽
				|
				|
				𝑦
				
				𝑡
				(
				𝑃
				𝑦
				)
				(
				𝑡
				)
			

			

				0
			

			
				
				|
				|
				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑡
			

			

				0
			

			

				)
			

			
				+
				1
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			
				𝑡
				𝑡
			

			

				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑠
				)
			

			
				
				𝐾
			

			

				1
			

			
				+
				𝐾
			

			

				2
			

			
				‖
				‖
				𝑦
			

			

				𝑠
			

			
				‖
				‖
				
				𝑑
				𝑠
				⩽
				‖
				𝜙
				‖
				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑡
			

			

				0
			

			

				)
			

			
				+
				𝐾
			

			

				1
			

			
				+
				𝐾
			

			

				2
			

			
				‖
				𝑦
				‖
			

			

				∞
			

			
				
			
			
				×
				
				
				Γ
				(
				𝛼
				)
			

			
				𝑡
				−
				(
				𝑡
			

			

				0
			

			
				𝑡
				+
				ℎ
				)
			

			

				0
			

			
				
				𝑡
			

			

				0
			

			
				
				+
				ℎ
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑠
				)
			

			
				+
				
				𝑑
				𝑠
			

			
				𝑡
				
				𝑡
				𝑡
				−
			

			

				0
			

			
				
				+
				ℎ
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			
				
				⩽
				
				𝐾
				𝑑
				𝑠
				‖
				𝜙
				‖
				+
			

			

				1
			

			
				+
				𝐾
			

			

				2
			

			
				‖
				𝑦
				‖
			

			

				∞
			

			
				
				×
				
				
				𝑡
			

			

				0
			

			
				
				+
				ℎ
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
			

			

				0
			

			
				+
				ℎ
				)
			

			
				
			
			
				+
				
				𝑡
				𝛽
				Γ
				(
				𝛼
				)
			

			

				0
			

			
				
				+
				ℎ
			

			

				𝛼
			

			
				
			
			
				
				,
				Γ
				(
				𝛼
				+
				1
				)
			

		
	

						for each 
	
		
			
				𝑡
				∈
				[
				𝑡
			

			

				0
			

			
				,
				2
				𝑡
			

			

				0
			

			
				+
				ℎ
				]
			

		
	
, we have 
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
				𝐾
				(
				𝑃
				𝑦
				)
				(
				𝑡
				)
				⩽
				‖
				𝜙
				‖
				+
			

			

				1
			

			
				+
				𝐾
			

			

				2
			

			
				‖
				𝑦
				‖
			

			

				∞
			

			
				𝑡
				
				
			

			

				0
			

			
				
				+
				ℎ
			

			

				𝛼
			

			
				
			
			
				,
				Γ
				(
				𝛼
				+
				1
				)
			

		
	

						and for any 
	
		
			
				𝑡
				∈
				[
				𝑡
			

			

				0
			

			
				−
				ℎ
				,
				𝑡
			

			

				0
			

			

				]
			

		
	
,
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				(
				𝑃
				𝑦
				)
				(
				𝑡
				)
				⩽
				‖
				𝜙
				‖
				.
			

		
	

						Thus,
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				‖
				‖
				𝑃
				(
				𝑦
				)
			

			

				∞
			

			
				
				𝐾
				⩽
				‖
				𝜙
				‖
				+
			

			

				1
			

			
				+
				𝐾
			

			

				2
			

			
				‖
				𝑦
				‖
			

			

				∞
			

			
				
				×
				
				
				𝑡
			

			

				0
			

			
				
				+
				ℎ
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
			

			

				0
			

			
				+
				ℎ
				)
			

			
				
			
			
				+
				
				𝑡
				𝛽
				Γ
				(
				𝛼
				)
			

			

				0
			

			
				
				+
				ℎ
			

			

				𝛼
			

			
				
			
			
				
				,
				Γ
				(
				𝛼
				+
				1
				)
			

		
	

						and consequently 
	
		
			
				𝑃
				(
				𝑦
				)
				∈
				𝐵
				𝐶
			

		
	
.Next, we show that the operator 
	
		
			

				𝑃
			

		
	
 is continuous and completely continuous, and there exists an open set 
	
		
			
				𝑈
				⊂
				𝐵
				𝐶
			

		
	
 with 
	
		
			
				𝑦
				≠
				𝜆
				𝑃
				(
				𝑦
				)
			

		
	
 for 
	
		
			
				𝜆
				∈
				(
				0
				,
				1
				)
			

		
	
 and 
	
		
			
				𝑦
				∈
				𝜕
				𝑈
			

		
	
.Step 1 ( 
	
		
			

				𝑃
			

		
	
 is continuous). Let 
	
		
			
				{
				𝑦
			

			

				𝑛
			

			

				}
			

		
	
 be a sequence such that 
	
		
			

				𝑦
			

			

				𝑛
			

			
				→
				𝑦
			

		
	
 in 
	
		
			
				𝐵
				𝐶
			

		
	
. Then, there exist 
	
		
			
				𝑅
				>
				0
			

		
	
 and 
	
		
			
				𝑁
				>
				0
			

		
	
 such that 
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				‖
				‖
			

			

				∞
			

			
				+
				‖
				𝑦
				‖
			

			

				∞
			

			
				<
				𝑅
				,
				∀
				𝑛
				⩾
				𝑁
				.
			

		
	

						Let 
	
		
			
				𝜀
				>
				0
			

		
	
 be given. Since 
	
		
			
				(
				𝐻
			

			

				4
			

			

				)
			

		
	
 holds, there is a real number 
	
		
			
				𝑇
				>
				0
			

		
	
 such that
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			

				2
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			
				𝑡
				𝑡
			

			

				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑠
				)
			

			
				
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				+
				𝑘
			

			

				2
			

			
				
				(
				𝑠
				)
				𝑅
				𝑑
				𝑠
				<
				𝜀
				,
			

		
	

						for all 
	
		
			
				𝑡
				⩾
				𝑇
			

		
	
. Now we consider the following two cases.Case 1. If 
	
		
			
				𝑡
				⩾
				𝑇
			

		
	
, then it follows from 
	
		
			
				(
				𝐻
			

			

				3
			

			

				)
			

		
	
 and (30)-(31) that for 
	
		
			

				𝑛
			

		
	
 sufficiently large
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			
				|
				|
				𝑃
				𝑦
			

			

				𝑛
			

			
				|
				|
				⩽
				|
				|
				𝑦
				(
				𝑡
				)
				−
				𝑃
				𝑦
				(
				𝑡
				)
			

			

				𝑛
			

			
				
				𝑡
			

			

				0
			

			
				
				
				𝑡
				−
				𝑦
			

			

				0
			

			
				
				|
				|
				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑡
			

			

				0
			

			

				)
			

			
				+
				1
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			
				𝑡
				𝑡
			

			

				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑠
				)
			

			
				|
				|
				𝑓
				
				𝑠
				,
				𝑦
			

			
				𝑛
				𝑠
			

			
				
				
				−
				𝑓
				𝑠
				,
				𝑦
			

			

				𝑠
			

			
				
				|
				|
				⩽
				|
				|
				𝑦
				𝑑
				𝑠
			

			

				𝑛
			

			
				
				𝑡
			

			

				0
			

			
				
				
				𝑡
				−
				𝑦
			

			

				0
			

			
				
				|
				|
				+
				2
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			
				𝑡
				𝑡
			

			

				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑠
				)
			

			
				×
				
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				+
				𝑘
			

			

				2
			

			
				
				(
				𝑠
				)
				𝑅
				𝑑
				𝑠
				<
				2
				𝜀
				.
			

		
	
Case  2. If 
	
		
			

				𝑡
			

			

				0
			

			
				⩽
				𝑡
				⩽
				𝑇
			

		
	
, since 
	
		
			

				𝑓
			

		
	
 is a continuous function, one has 
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			
				|
				|
				𝑃
				𝑦
			

			

				𝑛
			

			
				|
				|
				⩽
				|
				|
				𝑦
				(
				𝑡
				)
				−
				𝑃
				𝑦
				(
				𝑡
				)
			

			

				𝑛
			

			
				
				𝑡
			

			

				0
			

			
				
				
				𝑡
				−
				𝑦
			

			

				0
			

			
				
				|
				|
				+
				1
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			
				𝑡
				𝑡
			

			

				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑠
				)
			

			
				|
				|
				𝑓
				
				𝑠
				,
				𝑦
			

			
				𝑛
				𝑠
			

			
				
				
				−
				𝑓
				𝑠
				,
				𝑦
			

			

				𝑠
			

			
				
				|
				|
				⩽
				|
				|
				𝑦
				𝑑
				𝑠
			

			

				𝑛
			

			
				
				𝑡
			

			

				0
			

			
				
				
				𝑡
				−
				𝑦
			

			

				0
			

			
				
				|
				|
				+
				
				𝑇
				−
				𝑡
			

			

				0
			

			

				
			

			

				𝛼
			

			
				
			
			
				Γ
				(
				𝛼
				+
				1
				)
				s
				u
				p
			

			
				𝑠
				∈
				[
				𝑡
			

			

				0
			

			
				,
				𝑇
				]
			

			
				|
				|
				𝑓
				
				𝑠
				,
				𝑦
			

			
				𝑛
				𝑠
			

			
				
				
				−
				𝑓
				𝑠
				,
				𝑦
			

			

				𝑠
			

			
				
				|
				|
				.
			

		
	

						Note that 
	
		
			

				𝑦
			

			

				𝑛
			

			
				→
				𝑦
			

		
	
 in 
	
		
			
				𝐵
				𝐶
			

		
	
. Hence, (32) and (33) imply that
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				‖
				‖
				𝑃
				(
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				)
				−
				𝑃
				(
				𝑦
				)
			

			

				∞
			

			
				⟶
				0
				a
				s
				𝑛
				⟶
				∞
				.
			

		
	
Step 2 (P maps bounded sets into bounded sets in  
	
		
			
				𝐵
				𝐶
			

		
	
). Indeed, it is enough to show that for any 
	
		
			
				𝜂
				>
				0
			

		
	
, there exists a positive constant 
	
		
			

				ℓ
			

		
	
 such that for each 
	
		
			
				𝑦
				∈
				𝐵
			

			

				𝜂
			

			
				=
				{
				𝑦
				∈
				𝐵
				𝐶
				∶
				‖
				𝑦
				‖
			

			

				∞
			

			
				⩽
				𝜂
				}
			

		
	
 one has 
	
		
			
				‖
				𝑃
				(
				𝑦
				)
				‖
			

			

				∞
			

			
				⩽
				ℓ
			

		
	
. Let 
	
		
			
				𝑦
				∈
				𝐵
			

			

				𝜂
			

		
	
. Then, we have for each 
	
		
			
				𝑡
				⩾
				2
				𝑡
			

			

				0
			

			
				+
				ℎ
			

		
	
,
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				⩽
				|
				|
				𝑦
				
				𝑡
				(
				𝑃
				𝑦
				)
				(
				𝑡
				)
			

			

				0
			

			
				
				|
				|
				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑡
			

			

				0
			

			

				)
			

			
				+
				1
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			
				𝑡
				𝑡
			

			

				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑠
				)
			

			
				|
				|
				𝑓
				
				𝑠
				,
				𝑦
			

			

				𝑠
			

			
				
				|
				|
				𝐾
				𝑑
				𝑠
				⩽
				𝜂
				+
			

			

				1
			

			
				+
				𝐾
			

			

				2
			

			
				‖
				𝑦
				‖
			

			

				∞
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			
				𝑡
				𝑡
			

			

				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑠
				)
			

			
				
				𝐾
				𝑑
				𝑠
				⩽
				𝜂
				+
			

			

				1
			

			
				+
				𝐾
			

			

				2
			

			
				𝜂
				
				×
				
				
				𝑡
			

			

				0
			

			
				
				+
				ℎ
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
			

			

				0
			

			
				+
				ℎ
				)
			

			
				
			
			
				+
				
				𝑡
				𝛽
				Γ
				(
				𝛼
				)
			

			

				0
			

			
				
				+
				ℎ
			

			

				𝛼
			

			
				
			
			
				
				Γ
				(
				𝛼
				+
				1
				)
				=
				∶
				ℓ
				,
			

		
	

						and for each 
	
		
			

				𝑡
			

		
	
 with 
	
		
			

				𝑡
			

			

				0
			

			
				⩽
				𝑡
				⩽
				2
				𝑡
			

			

				0
			

			
				+
				ℎ
			

		
	
, 
							
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
				𝐾
				(
				𝑃
				𝑦
				)
				(
				𝑡
				)
				⩽
				𝜂
				+
			

			

				1
			

			
				+
				𝐾
			

			

				2
			

			
				𝜂
				
				
				𝑡
			

			

				0
			

			
				
				+
				ℎ
			

			

				𝛼
			

			
				
			
			
				.
				Γ
				(
				𝛼
				+
				1
				)
			

		
	
Hence, 
	
		
			
				‖
				𝑃
				(
				𝑦
				)
				‖
			

			

				∞
			

			
				⩽
				ℓ
			

		
	
.Step 3 (
	
		
			

				𝑃
			

		
	
 maps bounded sets into equicontinuous sets on every compact subset  
	
		
			
				[
				𝑡
			

			

				0
			

			
				−
				ℎ
				,
				𝑏
				]
			

		
	
 of  
	
		
			
				[
				𝑡
			

			

				0
			

			
				−
				ℎ
				,
				∞
				)
			

		
	
). Let 
	
		
			

				𝑡
			

			

				1
			

			
				,
				𝑡
			

			

				2
			

			
				∈
				[
				𝑡
			

			

				0
			

			
				,
				𝑏
				]
			

		
	
, 
	
		
			

				𝑡
			

			

				1
			

			
				<
				𝑡
			

			

				2
			

		
	
, and let 
	
		
			

				𝐵
			

			

				𝜂
			

		
	
 be a bounded set of 
	
		
			
				𝐵
				𝐶
			

		
	
 as in Step 2. Let 
	
		
			
				𝑦
				∈
				𝐵
			

			

				𝜂
			

		
	
. Then, we have
							
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			
				|
				|
				
				𝑡
				(
				𝑃
				𝑦
				)
			

			

				2
			

			
				
				
				𝑡
				−
				(
				𝑃
				𝑦
				)
			

			

				1
			

			
				
				|
				|
				⩽
				|
				|
				𝑦
				
				𝑡
			

			

				0
			

			
				
				𝑒
			

			
				−
				𝛽
				(
				𝑡
			

			

				2
			

			
				−
				𝑡
			

			

				0
			

			

				)
			

			
				
				𝑡
				−
				𝑦
			

			

				0
			

			
				
				𝑒
			

			
				−
				𝛽
				(
				𝑡
			

			

				1
			

			
				−
				𝑡
			

			

				0
			

			

				)
			

			
				|
				|
				+
				1
			

			
				
			
			
				Γ
				
				(
				𝛼
				)
			

			

				𝑡
			

			

				1
			

			

				𝑡
			

			

				0
			

			
				|
				|
				|
				
				
				𝑡
			

			

				2
			

			
				
				−
				𝑠
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
			

			

				2
			

			
				−
				𝑠
				)
			

			
				−
				
				𝑡
			

			

				1
			

			
				
				−
				𝑠
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
			

			

				1
			

			
				−
				𝑠
				)
			

			
				
				𝑓
				
				𝑠
				,
				𝑦
			

			

				𝑠
			

			
				
				|
				|
				|
				+
				1
				𝑑
				𝑠
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			

				𝑡
			

			

				2
			

			

				𝑡
			

			

				1
			

			
				|
				|
				|
				
				𝑡
			

			

				2
			

			
				
				−
				𝑠
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
			

			

				2
			

			
				−
				𝑠
				)
			

			
				𝑓
				
				𝑠
				,
				𝑦
			

			

				𝑠
			

			
				
				|
				|
				|
				⩽
				|
				|
				𝑦
				
				𝑡
				𝑑
				𝑠
			

			

				0
			

			
				
				|
				|
				𝑒
			

			
				𝛽
				𝑡
			

			

				0
			

			
				|
				|
				𝑒
			

			
				−
				𝛽
				𝑡
			

			

				2
			

			
				−
				𝑒
			

			
				−
				𝛽
				𝑡
			

			

				1
			

			
				|
				|
				+
				𝐾
			

			

				1
			

			
				+
				𝐾
			

			

				2
			

			

				𝜂
			

			
				
			
			
				
				𝑡
				Γ
				(
				𝛼
				+
				1
				)
			

			

				2
			

			
				−
				𝑡
			

			

				1
			

			

				
			

			

				𝛼
			

			
				+
				𝐾
			

			

				1
			

			
				+
				𝐾
			

			

				2
			

			

				𝜂
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			

				𝑡
			

			

				1
			

			

				𝑡
			

			

				0
			

			
				
				
				𝑡
			

			

				1
			

			
				
				−
				𝑠
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
			

			

				1
			

			
				−
				𝑠
				)
			

			
				−
				
				𝑡
			

			

				2
			

			
				
				−
				𝑠
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
			

			

				2
			

			
				−
				𝑠
				)
			

			
				
				⩽
				|
				|
				𝑦
				
				𝑡
				𝑑
				𝑠
			

			

				0
			

			
				
				|
				|
				𝑒
			

			
				𝛽
				𝑡
			

			

				0
			

			
				|
				|
				𝑒
			

			
				−
				𝛽
				𝑡
			

			

				2
			

			
				−
				𝑒
			

			
				−
				𝛽
				𝑡
			

			

				1
			

			
				|
				|
				+
				𝐾
			

			

				1
			

			
				+
				𝐾
			

			

				2
			

			

				𝜂
			

			
				
			
			
				
				𝑡
				Γ
				(
				𝛼
				+
				1
				)
			

			

				2
			

			
				−
				𝑡
			

			

				1
			

			

				
			

			

				𝛼
			

			
				+
				𝐾
			

			

				1
			

			
				+
				𝐾
			

			

				2
			

			

				𝜂
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			

				𝑡
			

			

				1
			

			

				𝑡
			

			

				0
			

			
				
				
				𝑡
			

			

				1
			

			
				
				−
				𝑠
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
			

			

				1
			

			
				−
				𝑠
				)
			

			
				−
				
				𝑡
			

			

				2
			

			
				
				−
				𝑠
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
			

			

				1
			

			
				−
				𝑠
				)
			

			
				
				+
				𝐾
				𝑑
				𝑠
			

			

				1
			

			
				+
				𝐾
			

			

				2
			

			

				𝜂
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			

				𝑡
			

			

				1
			

			

				𝑡
			

			

				0
			

			
				
				
				𝑡
			

			

				2
			

			
				
				−
				𝑠
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
			

			

				1
			

			
				−
				𝑠
				)
			

			
				−
				
				𝑡
			

			

				2
			

			
				
				−
				𝑠
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
			

			

				2
			

			
				−
				𝑠
				)
			

			
				
				𝑑
				𝑠
				.
			

		
	
Observing that
							
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			

				𝐾
			

			

				1
			

			
				+
				𝐾
			

			

				2
			

			

				𝜂
			

			
				
			
			
				×
				
				Γ
				(
				𝛼
				)
			

			

				𝑡
			

			

				1
			

			

				𝑡
			

			

				0
			

			
				
				
				𝑡
			

			

				1
			

			
				
				−
				𝑠
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
			

			

				1
			

			
				−
				𝑠
				)
			

			
				−
				
				𝑡
			

			

				2
			

			
				
				−
				𝑠
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
			

			

				1
			

			
				−
				𝑠
				)
			

			
				
				⩽
				𝐾
				𝑑
				𝑠
			

			

				1
			

			
				+
				𝐾
			

			

				2
			

			

				𝜂
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			

				𝑡
			

			

				1
			

			

				𝑡
			

			

				0
			

			
				
				
				𝑡
			

			

				1
			

			
				
				−
				𝑠
			

			
				𝛼
				−
				1
			

			
				−
				
				𝑡
			

			

				2
			

			
				
				−
				𝑠
			

			
				𝛼
				−
				1
			

			
				
				⩽
				𝐾
				𝑑
				𝑠
			

			

				1
			

			
				+
				𝐾
			

			

				2
			

			

				𝜂
			

			
				
			
			
				𝑡
				Γ
				(
				𝛼
				+
				1
				)
				
				
			

			

				1
			

			
				−
				𝑡
			

			

				0
			

			

				
			

			

				𝛼
			

			
				−
				
				𝑡
			

			

				2
			

			
				−
				𝑡
			

			

				0
			

			

				
			

			

				𝛼
			

			
				+
				
				𝑡
			

			

				2
			

			
				−
				𝑡
			

			

				1
			

			

				
			

			

				𝛼
			

			
				
				⩽
				𝐾
			

			

				1
			

			
				+
				𝐾
			

			

				2
			

			

				𝜂
			

			
				
			
			
				
				𝑡
				Γ
				(
				𝛼
				+
				1
				)
			

			

				2
			

			
				−
				𝑡
			

			

				1
			

			

				
			

			

				𝛼
			

			

				,
			

		
	

						from Taylor’s theorem, we obtain
							
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			

				𝐾
			

			

				1
			

			
				+
				𝐾
			

			

				2
			

			

				𝜂
			

			
				
			
			
				×
				
				Γ
				(
				𝛼
				)
			

			

				𝑡
			

			

				1
			

			

				𝑡
			

			

				0
			

			
				
				
				𝑡
			

			

				2
			

			
				
				−
				𝑠
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
			

			

				1
			

			
				−
				𝑠
				)
			

			
				−
				
				𝑡
			

			

				2
			

			
				
				−
				𝑠
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
			

			

				2
			

			
				−
				𝑠
				)
			

			
				
				⩽
				𝐾
				𝑑
				𝑠
			

			

				1
			

			
				+
				𝐾
			

			

				2
			

			

				𝜂
			

			
				
			
			
				
				𝑡
				Γ
				(
				𝛼
				)
			

			

				2
			

			
				−
				𝑡
			

			

				1
			

			

				
			

			
				𝛼
				−
				1
			

			

				
			

			

				𝑡
			

			

				1
			

			

				𝑡
			

			

				0
			

			
				
				𝑒
			

			
				−
				𝛽
				(
				𝑡
			

			

				1
			

			
				−
				𝑠
				)
			

			
				−
				𝑒
			

			
				−
				𝛽
				(
				𝑡
			

			

				2
			

			
				−
				𝑠
				)
			

			
				
				⩽
				𝐾
				𝑑
				𝑠
			

			

				1
			

			
				+
				𝐾
			

			

				2
			

			

				𝜂
			

			
				
			
			
				
				𝑡
				𝛽
				Γ
				(
				𝛼
				)
			

			

				2
			

			
				−
				𝑡
			

			

				1
			

			

				
			

			
				𝛼
				−
				1
			

			
				
				1
				−
				𝑒
			

			
				−
				𝛽
				(
				𝑡
			

			

				2
			

			
				−
				𝑡
			

			

				1
			

			

				)
			

			
				
				=
				𝐾
			

			

				1
			

			
				+
				𝐾
			

			

				2
			

			

				𝜂
			

			
				
			
			
				
				
				𝑡
				Γ
				(
				𝛼
				)
			

			

				2
			

			
				−
				𝑡
			

			

				1
			

			

				
			

			

				𝛼
			

			
				+
				𝑜
				
				𝑡
			

			

				2
			

			
				−
				𝑡
			

			

				1
			

			

				
			

			
				
			
			

				𝑡
			

			

				2
			

			
				−
				𝑡
			

			

				1
			

			
				
				𝑡
			

			

				2
			

			
				−
				𝑡
			

			

				1
			

			

				
			

			

				𝛼
			

			
				
				,
			

		
	

						where 
	
		
			
				l
				i
				m
			

			

				𝑡
			

			

				2
			

			
				−
				𝑡
			

			

				1
			

			
				→
				0
			

			
				(
				𝑜
				(
				𝑡
			

			

				2
			

			
				−
				𝑡
			

			

				1
			

			
				)
				/
				(
				𝑡
			

			

				2
			

			
				−
				𝑡
			

			

				1
			

			
				)
				)
				=
				0
			

		
	
. By (37)–(39), we can conclude that
							
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			
				|
				|
				
				𝑡
				(
				𝑃
				𝑦
				)
			

			

				2
			

			
				
				
				𝑡
				−
				(
				𝑃
				𝑦
				)
			

			

				1
			

			
				
				|
				|
				⩽
				𝜂
				𝑒
			

			
				𝛽
				𝑡
			

			

				0
			

			
				|
				|
				𝑒
			

			
				−
				𝛽
				𝑡
			

			

				2
			

			
				−
				𝑒
			

			
				−
				𝛽
				𝑡
			

			

				1
			

			
				|
				|
				+
				2
				
				𝐾
			

			

				1
			

			
				+
				𝐾
			

			

				2
			

			
				𝜂
				
			

			
				
			
			
				Γ
				
				𝑡
				(
				𝛼
				+
				1
				)
			

			

				2
			

			
				−
				𝑡
			

			

				1
			

			

				
			

			

				𝛼
			

			
				+
				𝐾
			

			

				1
			

			
				+
				𝐾
			

			

				2
			

			

				𝜂
			

			
				
			
			
				
				
				𝑡
				Γ
				(
				𝛼
				)
			

			

				2
			

			
				−
				𝑡
			

			

				1
			

			

				
			

			

				𝛼
			

			
				+
				𝑜
				
				𝑡
			

			

				2
			

			
				−
				𝑡
			

			

				1
			

			

				
			

			
				
			
			

				𝑡
			

			

				2
			

			
				−
				𝑡
			

			

				1
			

			
				
				𝑡
			

			

				2
			

			
				−
				𝑡
			

			

				1
			

			

				
			

			

				𝛼
			

			
				
				.
			

		
	

						As 
	
		
			

				𝑡
			

			

				1
			

			
				→
				𝑡
			

			

				2
			

		
	
, the right-hand side of the above inequality tends to zero. The equicontinuity for the cases 
	
		
			

				𝑡
			

			

				1
			

			
				<
				𝑡
			

			

				2
			

			
				⩽
				𝑡
			

			

				0
			

		
	
 and 
	
		
			

				𝑡
			

			

				1
			

			
				⩽
				𝑡
			

			

				0
			

			
				⩽
				𝑡
			

			

				2
			

		
	
 is obvious.Step 4 (
	
		
			

				𝑃
			

		
	
 maps bounded sets into equiconvergent sets). Let 
	
		
			
				𝑦
				∈
				𝐵
			

			

				𝜂
			

		
	
. Then
							
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				⩽
				|
				|
				𝑦
				
				𝑡
				(
				𝑃
				𝑦
				)
				(
				𝑡
				)
			

			

				0
			

			
				
				|
				|
				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑡
			

			

				0
			

			

				)
			

			
				+
				1
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			
				𝑡
				𝑡
			

			

				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑠
				)
			

			
				|
				|
				𝑓
				
				𝑠
				,
				𝑦
			

			

				𝑠
			

			
				
				|
				|
				𝑑
				𝑠
				⩽
				𝜂
				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑡
			

			

				0
			

			

				)
			

			
				+
				1
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			
				𝑡
				𝑡
			

			

				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑠
				)
			

			
				
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				+
				𝑘
			

			

				2
			

			
				
				(
				𝑠
				)
				𝜂
				𝑑
				𝑠
				.
			

		
	

						Therefore, 
	
		
			
				(
				𝐻
			

			

				4
			

			

				)
			

		
	
 implies that 
	
		
			
				|
				(
				𝑃
				𝑦
				)
				(
				𝑡
				)
				|
			

		
	
 uniformly (with respect to 
	
		
			
				𝑦
				∈
				𝐵
				(
				𝜂
				)
			

		
	
) converges to 
	
		
			

				0
			

		
	
 as 
	
		
			
				𝑡
				→
				∞
			

		
	
. As a consequence of Steps 1–4, we can conclude that 
	
		
			
				𝑃
				∶
				𝐵
				𝐶
				→
				𝐵
				𝐶
			

		
	
 is continuous and completely continuous.Step 5 (a priori bounds). We now show that there exists an open set 
	
		
			
				𝑈
				⊆
				𝐵
				𝐶
			

		
	
 with 
	
		
			
				𝑦
				≠
				𝜆
				𝑃
				(
				𝑦
				)
			

		
	
 for 
	
		
			
				𝜆
				∈
				(
				0
				,
				1
				)
			

		
	
 and 
	
		
			
				𝑦
				∈
				𝜕
				𝑈
			

		
	
.Let 
	
		
			
				𝑦
				∈
				𝐵
				𝐶
			

		
	
 and 
	
		
			
				𝑦
				=
				𝜆
				𝑃
				(
				𝑦
				)
			

		
	
 for some 
	
		
			
				0
				<
				𝜆
				<
				1
			

		
	
. Then, for each 
	
		
			
				𝑡
				∈
				[
				𝑡
			

			

				0
			

			
				,
				∞
				)
			

		
	
, we obtain
							
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			
				
				𝑦
				
				𝑡
				𝑦
				(
				𝑡
				)
				=
				𝜆
			

			

				0
			

			
				
				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑡
			

			

				0
			

			

				)
			

			
				+
				1
			

			
				
			
			
				Γ
				
				(
				𝛼
				)
			

			
				𝑡
				𝑡
			

			

				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑓
				
				𝑠
				,
				𝑦
			

			

				𝑠
			

			
				
				
				.
				𝑑
				𝑠
			

		
	

						By 
	
		
			
				(
				𝐻
			

			

				3
			

			

				)
			

		
	
, we have that for all 
	
		
			
				𝜃
				∈
				[
				−
				ℎ
				,
				0
				]
			

		
	
 and 
	
		
			
				𝑡
				⩾
				𝑡
			

			

				0
			

			
				+
				ℎ
			

		
	
,
							
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				⩽
				|
				|
				𝑦
				
				𝑡
				𝑦
				(
				𝑡
				+
				𝜃
				)
			

			

				0
			

			
				
				|
				|
				𝑒
			

			
				−
				𝛽
				(
				𝑡
				+
				𝜃
				−
				𝑡
			

			

				0
			

			

				)
			

			
				+
				1
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			
				𝑡
				𝑡
				+
				𝜃
			

			

				0
			

			
				(
				𝑡
				+
				𝜃
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
				+
				𝜃
				−
				𝑠
				)
			

			
				|
				|
				𝑓
				
				𝑠
				,
				𝑦
			

			

				𝑠
			

			
				
				|
				|
				⩽
				|
				|
				𝑦
				
				𝑡
				𝑑
				𝑠
			

			

				0
			

			
				
				|
				|
				𝑒
			

			
				−
				𝛽
				(
				𝑡
				+
				𝜃
				−
				𝑡
			

			

				0
			

			

				)
			

			
				+
				1
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			
				𝑡
				𝑡
				+
				𝜃
			

			

				0
			

			
				(
				𝑡
				+
				𝜃
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
				+
				𝜃
				−
				𝑠
				)
			

			
				
				𝐾
			

			

				1
			

			
				+
				𝐾
			

			

				2
			

			
				‖
				‖
				𝑦
			

			

				𝑠
			

			
				‖
				‖
				
				𝑑
				𝑠
				,
			

		
	

						and thus
							
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			
				‖
				‖
				𝑦
			

			

				𝑡
			

			
				‖
				‖
				⩽
				|
				|
				𝑦
				
				𝑡
			

			

				0
			

			
				
				|
				|
				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				ℎ
				−
				𝑡
			

			

				0
			

			

				)
			

			
				+
				1
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			
				𝑡
				𝑡
			

			

				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				ℎ
				−
				𝑠
				)
			

			
				
				𝐾
			

			

				1
			

			
				+
				𝐾
			

			

				2
			

			
				‖
				‖
				𝑦
			

			

				𝑠
			

			
				‖
				‖
				
				𝑑
				𝑠
				.
			

		
	

						From the arguments in (26)-(27), we can conclude that for each 
	
		
			
				𝑡
				∈
				[
				𝑡
			

			

				0
			

			
				,
				∞
				)
			

		
	
, 
							
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			
				𝑡
				𝑡
			

			

				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑠
				)
			

			
				⩽
				
				𝑡
				𝑑
				𝑠
			

			

				0
			

			
				
				+
				ℎ
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
			

			

				0
			

			
				+
				ℎ
				)
			

			
				
			
			
				+
				
				𝑡
				𝛽
				Γ
				(
				𝛼
				)
			

			

				0
			

			
				
				+
				ℎ
			

			

				𝛼
			

			
				
			
			
				Γ
				(
				𝛼
				+
				1
				)
				=
				∶
				𝑅
			

			

				1
			

			

				.
			

		
	

						Hence,
							
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			

				𝑒
			

			
				𝛽
				𝑡
			

			
				‖
				‖
				𝑦
			

			

				𝑡
			

			
				‖
				‖
				⩽
				‖
				𝜙
				‖
				𝑒
			

			
				𝛽
				(
				ℎ
				+
				𝑡
			

			

				0
			

			

				)
			

			
				+
				𝑒
			

			
				𝛽
				(
				ℎ
				+
				𝑡
				)
			

			

				𝐾
			

			

				1
			

			

				𝑅
			

			

				1
			

			
				+
				𝐾
			

			

				2
			

			

				𝑒
			

			
				𝛽
				ℎ
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			
				𝑡
				𝑡
			

			

				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				𝛽
				𝑠
			

			
				‖
				‖
				𝑦
			

			

				𝑠
			

			
				‖
				‖
				𝑑
				𝑠
				.
			

		
	

						Let 
	
		
			

				𝑅
			

			

				2
			

			
				=
				‖
				𝜙
				‖
				𝑒
			

			
				𝛽
				(
				ℎ
				+
				𝑡
			

			

				0
			

			

				)
			

			
				+
				𝑒
			

			
				𝛽
				ℎ
			

			

				𝐾
			

			

				1
			

			

				𝑅
			

			

				1
			

		
	
. Then, from Lemma 2, there exists 
	
		
			

				𝐾
			

		
	
 such that we have for all 
	
		
			
				𝑡
				⩾
				𝑡
			

			

				0
			

			
				+
				ℎ
			

		
	
,
							
	
 		
 			
				(
				4
				7
				)
			
 		
	

	
		
			
				‖
				‖
				𝑦
			

			

				𝑡
			

			
				‖
				‖
				⩽
				𝑅
			

			

				2
			

			
				+
				𝐾
				𝐾
			

			

				2
			

			

				𝑅
			

			

				2
			

			

				𝑒
			

			
				𝛽
				ℎ
			

			
				
			
			
				
				Γ
				(
				𝛼
				+
				1
				)
				𝑡
				−
				𝑡
			

			

				0
			

			

				
			

			

				𝛼
			

			

				𝑒
			

			
				−
				𝛽
				𝑡
			

			

				.
			

		
	

						Since 
	
		
			
				l
				i
				m
			

			
				𝑡
				→
				∞
			

			
				(
				𝑡
				−
				𝑡
			

			

				0
			

			

				)
			

			

				𝛼
			

			

				𝑒
			

			
				−
				𝛽
				𝑡
			

			
				=
				0
			

		
	
, there exists 
	
		
			

				𝑅
			

			

				3
			

			
				>
				0
			

		
	
 such that
							
	
 		
 			
				(
				4
				8
				)
			
 		
	

	
		
			
				‖
				𝑦
				‖
			

			

				∞
			

			
				⩽
				𝑅
			

			

				3
			

			

				.
			

		
	
Set
							
	
 		
 			
				(
				4
				9
				)
			
 		
	

	
		
			
				
				𝑈
				=
				𝑦
				∈
				𝐵
				𝐶
				∶
				‖
				𝑦
				‖
			

			

				∞
			

			
				<
				𝑅
			

			

				3
			

			
				
				.
				+
				1
			

		
	

	
		
			
				𝑃
				∶
				𝑈
				→
				𝐵
				𝐶
			

		
	
 is continuous and completely continuous. From the choice of 
	
		
			

				𝑈
			

		
	
, there is no 
	
		
			
				𝑦
				∈
				𝜕
				𝑈
			

		
	
 such that 
	
		
			
				𝑦
				=
				𝜆
				𝑃
				(
				𝑦
				)
			

		
	
, for 
	
		
			
				𝜆
				∈
				(
				0
				,
				1
				)
			

		
	
. As a consequence of Leray-Schauder fixed-point theorem, we deduce that 
	
		
			

				𝑃
			

		
	
 has a fixed point 
	
		
			

				𝑦
			

		
	
 in 
	
		
			

				𝑈
			

		
	
.Step 6 (uniform asymptotic stability of solutions). Let 
	
		
			
				𝐵
				⊂
				𝐶
				(
				[
				−
				ℎ
				,
				0
				]
				,
				ℝ
				)
			

		
	
 be bounded; that is, there exists 
	
		
			
				𝑑
				⩾
				0
			

		
	
 such that
							
	
 		
 			
				(
				5
				0
				)
			
 		
	

	
		
			
				‖
				𝜓
				‖
				=
				s
				u
				p
			

			
				[
				]
				𝜃
				∈
				−
				ℎ
				,
				0
			

			
				|
				|
				|
				|
				𝜓
				(
				𝜃
				)
				⩽
				𝑑
				∀
				𝜓
				∈
				𝐵
				.
			

		
	

						From the similar arguments in Step 4, we can deduce that there exists 
	
		
			

				𝑅
			

			

				4
			

			
				>
				0
			

		
	
 such that for all solutions 
	
		
			
				𝑦
				(
				𝑡
				,
				𝑡
			

			

				0
			

			
				,
				𝜙
				)
			

		
	
 of IVP (1) with initial data 
	
		
			
				𝜙
				∈
				𝐵
			

		
	
, we have
							
	
 		
 			
				(
				5
				1
				)
			
 		
	

	
		
			
				‖
				𝑦
				‖
			

			

				∞
			

			
				⩽
				𝑅
			

			

				4
			

			
				,
				∀
				𝜙
				∈
				𝐵
				.
			

		
	
Now we consider two solutions 
	
		
			
				𝑥
				=
				𝑥
				(
				𝑡
				)
			

		
	
 and 
	
		
			
				𝑦
				=
				𝑦
				(
				𝑡
				)
			

		
	
 of IVP (1) corresponding to the initial values 
	
		
			

				𝜓
			

		
	
 and 
	
		
			

				𝜙
			

		
	
. Note that for all 
	
		
			
				𝑡
				⩾
				𝑡
			

			

				0
			

		
	
,
							
	
 		
 			
				(
				5
				2
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				⩽
				|
				|
				𝑥
				
				𝑡
				𝑥
				(
				𝑡
				)
				−
				𝑦
				(
				𝑡
				)
			

			

				0
			

			
				
				
				𝑡
				−
				𝑦
			

			

				0
			

			
				
				|
				|
				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑡
			

			

				0
			

			

				)
			

			
				+
				1
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			
				𝑡
				𝑡
			

			

				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑠
				)
			

			
				
				|
				|
				𝑓
				
				𝑠
				,
				𝑥
			

			

				𝑠
			

			
				
				|
				|
				+
				|
				|
				𝑓
				
				𝑠
				,
				𝑦
			

			

				𝑠
			

			
				
				|
				|
				
				𝑑
				𝑠
				⩽
				2
				𝑑
				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑡
			

			

				0
			

			

				)
			

			
				+
				2
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			
				𝑡
				𝑡
			

			

				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			

				𝑒
			

			
				−
				𝛽
				(
				𝑡
				−
				𝑠
				)
			

			
				
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				+
				𝑘
			

			

				2
			

			
				(
				𝑠
				)
				𝑅
			

			

				4
			

			
				
				𝑑
				𝑠
				.
			

		
	

						Then, the proof of uniform asymptotic stability of solutions can be done by making use of 
	
		
			
				(
				𝐻
			

			

				4
			

			

				)
			

		
	
 and (52).The proof of Theorem 5 is completed.
4. Examples
Example 1. Consider the fractional functional differential equation
							
	
 		
 			
				(
				5
				3
				)
			
 		
	

	
		
			

				𝐷
			

			
				1
				/
				2
			

			
				
				𝑦
				(
				𝑡
				)
				𝑒
			

			

				𝑡
			

			
				
				=
				𝑒
			

			
				2
				𝑡
			

			
				
			
			
				8
				(
				𝑒
			

			

				𝑡
			

			
				+
				𝑒
			

			
				−
				𝑡
			

			
				)
				s
				i
				n
			

			

				4
			

			
				(
				𝑦
				(
				𝑡
				−
				1
				)
				)
				+
				𝑒
			

			

				𝑡
			

			
				,
				𝑡
				⩾
				0
				,
				𝑦
				(
				𝑡
				)
				=
				𝜙
				(
				𝑡
				)
				,
				−
				1
				⩽
				𝑡
				⩽
				0
				,
			

		
	

						where 
	
		
			
				𝑓
				(
				𝑡
				,
				𝑦
			

			

				𝑡
			

			
				)
				=
				(
				𝑒
			

			

				𝑡
			

			
				/
				8
				(
				𝑒
			

			

				𝑡
			

			
				+
				𝑒
			

			
				−
				𝑡
			

			
				)
				)
				s
				i
				n
			

			

				4
			

			
				(
				𝑦
				(
				𝑡
				−
				1
				)
				)
				+
				1
			

		
	
. It is clear that condition 
	
		
			
				(
				𝐻
			

			

				0
			

			

				)
			

		
	
 holds. Let 
	
		
			

				𝑥
			

			

				𝑡
			

		
	
, 
	
		
			

				𝑦
			

			

				𝑡
			

			
				∈
				𝐶
				(
				[
				−
				1
				,
				0
				]
				,
				ℝ
				)
			

		
	
. Then for all 
	
		
			
				𝑡
				∈
				[
				0
				,
				∞
				)
			

		
	
, we have
							
	
 		
 			
				(
				5
				4
				)
			
 		
	

	
		
			
				|
				|
				𝑓
				
				𝑡
				,
				𝑥
			

			

				𝑡
			

			
				
				
				−
				𝑓
				𝑡
				,
				𝑦
			

			

				𝑡
			

			
				
				|
				|
				=
				𝑒
			

			

				𝑡
			

			
				
			
			
				8
				(
				𝑒
			

			

				𝑡
			

			
				+
				𝑒
			

			
				−
				𝑡
			

			
				)
				|
				|
				s
				i
				n
			

			

				4
			

			
				(
				𝑥
				(
				𝑡
				−
				1
				)
				)
				−
				s
				i
				n
			

			

				4
			

			
				|
				|
				⩽
				𝑒
				(
				𝑦
				(
				𝑡
				−
				1
				)
				)
			

			

				𝑡
			

			
				
			
			
				2
				(
				𝑒
			

			

				𝑡
			

			
				+
				𝑒
			

			
				−
				𝑡
			

			
				)
				|
				|
				|
				|
				⩽
				1
				𝑥
				(
				𝑡
				−
				1
				)
				−
				𝑦
				(
				𝑡
				−
				1
				)
			

			
				
			
			
				2
				|
				|
				|
				|
				.
				𝑥
				(
				𝑡
				−
				1
				)
				−
				𝑦
				(
				𝑡
				−
				1
				)
			

		
	

						On the other hand, note that 
	
		
			
				𝑓
				(
				𝑡
				,
				0
				)
				=
				1
			

		
	
 for each 
	
		
			
				𝑡
				∈
				[
				0
				,
				∞
				)
			

		
	
 and 
	
		
			
				(
				1
				/
				2
				)
				(
				𝑒
			

			
				−
				1
			

			
				/
				Γ
				(
				1
				/
				2
				)
				+
				1
				/
				Γ
				(
				3
				/
				2
				)
				)
				<
				1
			

		
	
. Hence, conditions 
	
		
			
				(
				𝐻
			

			

				1
			

			

				)
			

		
	
 and (10) hold. By Theorem 4, we conclude that IVP (53) has a unique solution in the space 
	
		
			
				𝐵
				𝐶
				(
				[
				−
				1
				,
				∞
				)
				,
				ℝ
				)
			

		
	
, and the solution of IVP (53) is uniformly asymptotically stable.
Example 2. Consider the fractional functional differential equation
							
	
 		
 			
				(
				5
				5
				)
			
 		
	

	
		
			

				𝐷
			

			
				1
				/
				2
			

			
				
				𝑦
				(
				𝑡
				)
				𝑒
			

			

				𝑡
			

			
				
				=
				1
				0
				𝑒
			

			

				𝑡
			

			
				(
				𝑡
				+
				1
				)
			

			
				−
				3
				/
				4
			

			
				𝑦
				(
				𝑡
				−
				1
				)
			

			
				
			
			
				|
				|
				|
				|
				1
				+
				𝑦
				(
				𝑡
				−
				1
				)
				,
				𝑡
				⩾
				0
				,
				𝑦
				(
				𝑡
				)
				=
				𝜙
				(
				𝑡
				)
				,
				−
				1
				⩽
				𝑡
				⩽
				0
				,
			

		
	

						where 
	
		
			
				𝑓
				(
				𝑡
				,
				𝑦
			

			

				𝑡
			

			
				)
				=
				1
				0
				(
				𝑡
				+
				1
				)
			

			
				−
				3
				/
				4
			

			
				(
				𝑦
				(
				𝑡
				−
				1
				)
				/
				(
				1
				+
				|
				𝑦
				(
				𝑡
				−
				1
				)
				|
				)
				)
			

		
	
. It is easy to see that condition 
	
		
			
				(
				𝐻
			

			

				2
			

			

				)
			

		
	
 holds. Let 
	
		
			

				𝑦
			

			

				𝑡
			

			
				∈
				𝐶
				(
				[
				−
				1
				,
				0
				]
				,
				ℝ
				)
			

		
	
. Then, for all 
	
		
			
				𝑡
				∈
				[
				0
				,
				∞
				)
			

		
	
, we find that 
							
	
 		
 			
				(
				5
				6
				)
			
 		
	

	
		
			
				|
				|
				𝑓
				
				𝑡
				,
				𝑦
			

			

				𝑡
			

			
				
				|
				|
				=
				|
				|
				|
				|
				1
				0
				(
				𝑡
				+
				1
				)
			

			
				−
				3
				/
				4
			

			
				𝑦
				(
				𝑡
				−
				1
				)
			

			
				
			
			
				|
				|
				|
				|
				|
				|
				|
				|
				1
				+
				𝑦
				(
				𝑡
				−
				1
				)
				⩽
				1
				0
				(
				𝑡
				+
				1
				)
			

			
				−
				3
				/
				4
			

			
				|
				|
				|
				|
				,
				𝑦
				(
				𝑡
				−
				1
				)
			

		
	

						where 
	
		
			
				1
				0
				(
				𝑡
				+
				1
				)
			

			
				−
				3
				/
				4
			

			
				∈
				𝐵
				𝐶
				(
				[
				0
				,
				∞
				)
				,
				ℝ
			

			

				+
			

			

				)
			

		
	
 with 
	
		
			
				s
				u
				p
			

			
				𝑡
				⩾
				0
			

			
				1
				0
				(
				𝑡
				+
				1
				)
			

			
				−
				3
				/
				4
			

			
				=
				1
				0
			

		
	
 and
							
	
 		
 			
				(
				5
				7
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				
				Γ
				(
				1
				/
				2
				)
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				−
				1
				/
				2
			

			

				𝑒
			

			
				−
				(
				𝑡
				−
				𝑠
				)
			

			
				1
				0
				(
				𝑠
				+
				1
				)
			

			
				−
				3
				/
				4
			

			
				⩽
				𝑑
				𝑠
				1
				0
			

			
				
			
			
				
				Γ
				(
				1
				/
				2
				)
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				−
				1
				/
				2
			

			

				𝑠
			

			
				−
				3
				/
				4
			

			
				=
				𝑑
				𝑠
				1
				0
				Γ
				(
				1
				/
				4
				)
			

			
				
			
			
				𝑡
				Γ
				(
				3
				/
				4
				)
			

			
				−
				1
				/
				4
			

			
				⟶
				0
				a
				s
				𝑡
				⟶
				∞
				.
			

		
	

						Thus, conditions 
	
		
			
				(
				𝐻
			

			

				3
			

			

				)
			

		
	
 and 
	
		
			
				(
				𝐻
			

			

				4
			

			

				)
			

		
	
 hold, and the global existence and the uniform asymptotic stability of solutions of IVP (55) can be obtained by applying Theorem 5.By using the algorithm given in [19], we numerically simulate Example 1 with the initial conditions 
	
		
			
				𝜙
				(
				𝑡
				)
				=
				s
				i
				n
				(
				𝑡
				)
				,
				c
				o
				s
				(
				𝑡
				)
				,
				−
				c
				o
				s
				(
				𝑡
				)
				,
				1
				.
				5
			

		
	
, and Example 2 with 
	
		
			
				𝜙
				(
				𝑡
				)
				=
				𝑡
				,
				c
				o
				s
				(
				𝑡
				)
				,
				−
				c
				o
				s
				(
				𝑡
				)
				,
				1
				.
				5
			

		
	
; see Figures 1 and 2. From the numerical results, it can be noted that both of the solutions of Examples 1 and 2 converge uniformly, and the solutions of Example 1 converge faster than the ones of Example 2. The numerical results confirm the theoretical analysis.




	




	




	




	




	




	




	




	




	




	




	
	








	




	
	
	




	




	
	
	




	










	


	


	
		


	
		


	
		


	
		


	
		
	
	
		
	


	
		
	
	
		
		
		
	


	
		
		
		
		
	
	
		
	
	
		
	


	
		
		
		
		
	
	
		
	
	
		
	


	
		
	
	
		
		
		
		
	
	
		
	
	
		
	


	
		
		
		
	













Figure 1: The numerical solutions of Example 1 with the initial conditions 
	
		
			
				𝜙
				(
				𝑡
				)
				=
				s
				i
				n
				(
				𝑡
				)
				,
				c
				o
				s
				(
				𝑡
				)
				,
				−
				c
				o
				s
				(
				𝑡
				)
			

		
	
, and 
	
		
			
				1
				.
				5
			

		
	
, respectively.






























































	
		
	
	
		
	
	
		
		
	
	
		
		
	
	
		
		
	
	
		
		
	
	
		
		
	
	
		
		
	
	
		
		
	
	
		
		
	
	
		
		
	
	
		
	


	
		
	






	
		
	
	
		
	
	
		
		
		
	
	
		
	
	
		
		
		
	
	
		
	
	
		
		
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
			
			
		
	
	
		
			
		
		
			
			
			
		
	
	
		
			
		
		
			
			
			
		
	


	
		
		
		
		
	
	
		
	
	
		
	


	
		
	
	
		
		
		
		
	
	
		
	
	
		
	


	
		
		
		
	













Figure 2: The numerical solutions of Example 2 with the initial conditions 
	
		
			
				𝜙
				(
				𝑡
				)
				=
				𝑡
				,
				c
				o
				s
				(
				𝑡
				)
				,
				−
				c
				o
				s
				(
				𝑡
				)
			

		
	
, and 
	
		
			
				1
				.
				5
			

		
	
, respectively.
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