Research Article

Homoclinic Solutions for a Class of the Second-Order Impulsive Hamiltonian Systems

Jingli Xie, 1,2 Zhiguo Luo, 2 and Guoping Chen 1

1 College of Mathematics and Statistics, Jishou University, Jishou, Hunan 416000, China
2 Department of Mathematics, Hunan Normal University, Changsha, Hunan 410081, China

Correspondence should be addressed to Zhiguo Luo; luozg@hunnu.edu.cn

Received 16 May 2013; Accepted 18 July 2013

1. Introduction and Main Results

In this paper, we consider the second-order impulsive differential equation

$$\ddot{q}(t) + V_q(t, q) = f(t), \quad t \neq t_j, \ t \in \mathbb{R},$$

$$-\Delta \dot{q}(t_j) = g_j(q(t_j)), \quad j \in \mathbb{Z},$$

where $q \in \mathbb{R}^N$, $f \in (\mathbb{R}, \mathbb{R}^N)$, $V_q(t, q) = \text{grad}_q V(t, q)$, $g_j(q) = \text{grad}_q G_j(q)$, $G_j \in (\mathbb{R}^N, \mathbb{R}^N)$ for each $j \in \mathbb{Z}$, and the operator Δ is defined as $\Delta \dot{q}(t_j) = \dot{q}(t_j^+) - \dot{q}(t_j^-)$, where $\dot{q}(t_j^+)(\dot{q}(t_j^-))$ denotes the right-hand (left-hand) limit of \dot{q} at t_j. There exist an $m \in \mathbb{N}$ and a $T > 0$ such that $0 = t_0 < t_1 < \cdots < t_m = T$, $t_{j+m} = t_j + T$, and $g_{j+m} = g_j$, $j \in \mathbb{Z}$. $V : \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$ satisfies

(V1) $V(t, q) = -K(t, q) + W(t, q)$, $K, W \in C^1(\mathbb{R} \times \mathbb{R}^N, \mathbb{R})$, and is T-periodic in its first variable.

We are mainly concerned with the existence of homoclinic solutions of system (1) and (2). A function $q(t) \in \mathcal{C}(\mathbb{R}, \mathbb{R}^N)$ is said to be a (classical) solution of (1) and (2) if $q(t)$ satisfies (1) and (2). A (classical) solution $q(t)$ of (1) and (2) is a homoclinic solution and if $q(t) \to 0$ as $t \to \pm \infty$ and $\dot{q}(t) \to 0$ as $t \to \pm \infty$.

When $\Delta \dot{q}(t_j) = 0$, $f(t) = 0$, and $V(t, q) = (1/2)L(t)q(q) + W(t, q)$, system (1) and (2) reduces to Hamiltonian system

$$\ddot{q}(t) + V_q(t, q) = 0, \quad t \in \mathbb{R}.$$ (3)

Rabinowitz [1] studied the existence of nontrivial homoclinic solutions of it.

When $\Delta \dot{q}(t_j) \equiv 0$ and $V(t, q)$ satisfied (V1), system (1), (2) reduces to Hamiltonian system

$$\ddot{q}(t) + V_q(t, q) = f(t), \quad t \in \mathbb{R}.$$ (4)

Izydorek and Janczewska [2] studied the existence of homoclinic solutions of it.

Some classical tools such as some fixed point theorems in cones, topological degree theory, the upper and lower solutions method combined with monotone iterative technique, and variational methods [3–20] have been widely used to get solutions of impulsive differential equations. However, the existence of homoclinic solutions for the impulsive systems is paid little attention. It is well known that the homoclinic orbit rupture phenomenon can lead to chaos, which has been interesting to the mathematicians in recent years [21–26]. In the literature, Coti-Zelati et al. [27] used dual variational methods, and Lions [28] and Hofer and Wysocki [29] employed concentration compactness method, Ekeland’s variational principle, that they established the existence of homoclinic solutions of the first-order Hamiltonian systems. Rabinowitz [1] and Izydorek and Janczewska [2] obtained homoclinic solutions of a class of second order Hamiltonian systems as a limit of its periodic solutions.

In recent paper [18], Zhang and Li studied the existence of homoclinic solutions of an impulsive Hamiltonian system
Abstract and Applied Analysis

\(q''(t) + V_q(t, q) = f(t), t \neq t_j, t \in \mathbb{R}, \Delta q'(t_j) = g_j(q(t_j)), j \in \mathbb{Z}\) as a limit of its periodic solutions. In detail, they obtained the following theorem.

Theorem A (see [18]). Assume that \(f \in C(\mathbb{R}, \mathbb{R}^N) \cap L^2(\mathbb{R}, \mathbb{R}^N), g_j\) is continuous and \(m\)-periodic in \(j\), and \(V, g_j\) satisfy the following conditions:

1. \(V : \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}\) is continuous differentiable \(T\)-periodic, and there exist positive constants \(b_1, b_2 > 0\) such that
 \[b_1|q|^2 - V(t, q) \leq b_2|q|^2, \ \forall \ (t, q) \in [0, T] \times \mathbb{R}^N; \ (5)\]
2. \(-V(t, q) \leq -V_q(t, q)q \leq -2V(t, q)\) for all \((t, q) \in [0, T] \times \mathbb{R}^N; \ (H2)\)
3. \(\lim_{|q| \to 0} \frac{1}{|q|} |g_j(q)| = 0\) for \(j = 1, 2, \ldots, m; \ (H3)\)
4. \(g_j(q) \leq \mu G_j(q) < 0, \ \text{for } q \in \mathbb{R}^N \setminus \{0\}, j = 1, 2, \ldots, m, \ (6)\)

Then the Hamiltonian \(\tilde{q}(t) + V_q(t, q) = f(t), t \neq t_j, t \in \mathbb{R}, \Delta q'(t_j) = g_j(q(t_j)), j \in \mathbb{Z}, \) possesses at least one nonzero homoclinic solution.

Motivated by papers [1, 2, 18], in this paper, we synthesize their methods to study the existence of homoclinic solutions of systems (1), (2). In detail, firstly, we introduce the following sequence equations:

\[q''(t) + V_q(t, q) = f_k(t), \ t \neq t_j, t \in \mathbb{R}, \ (7)\]

where for each \(k \in \mathbb{N}, f_k : \mathbb{R} \to \mathbb{R}^N\) is a \(2kT\)-periodic extension of the restriction of \(f\) to the interval \([-kT, kT]\). Secondly, we study periodic solutions of (2) and (7) by converting the problem to the existence of critical points of some variational structure. Finally, we find the homoclinic solutions of (1) and (2) as the limit of the periodic solutions of (2) and (7).

Part of the difficulty in treating (1) and (2) is subjected to the impulse perturbation which destroys continuities of the velocity and when we apply the Mountain Theorem to prove our main result, we need the constant \(\rho, \alpha\) appearing in the theorem to be independent of \(k\).

Our result is the following theorem.

Theorem 1. Assume that \(V\) satisfies (V1), and \(K, W, \) and \(f\) satisfy the following:

1. \(\text{there exist constants } a_i, \gamma > 0 \text{ and } \gamma \in (1, 2] \text{ such that for all } (t, q) \in [0, T] \times \mathbb{R}^N\)
 \[K(t, 0) = 0, \ K(t, q) \geq a_i|q|^{\gamma}; \ (8)\]
2. \(\text{there exists } \theta \in (1, 2] \text{ such that}\)
 \[K(t, q) \leq K_q(t, q) \leq \theta K(t, q), \ \forall \ (t, q) \in [0, T] \times \mathbb{R}^N; \ (9)\]

(W1) \(W(t, 0) = 0, W_q(t, q) = 0(|q|), \ as \ |q| \to 0 \text{ uniformly for } t \in [0, T]; \ (W2)\)

(W3) \(\text{there exist } \mu > m > 0 \text{ and } \beta(t) \in L^1(\mathbb{R}), \) such that \(\mu > r - \gamma \text{ and } \)
 \[W_q(t, q) - 2W(t, q) \geq a_j|q|^\mu - \beta(t), \ \forall \ (t, q) \in [0, T] \times \mathbb{R}^N; \ (11)\]

(W4) \(W(t, q)/|q|^\mu \to +\infty \text{ as } |q| \to +\infty \text{ uniformly in } t \in [0, T]; \ (W5)\)

(G1) \(G_j(0) = 0, G_j(q) = o(|q|), \ as \ |q| \to 0, j = 1, 2, \ldots, m; \ (G2)\)

(G3) \(g_j(q)|q| - 2G_j(q) \geq 0, q \in \mathbb{R}^N \setminus \{0\}, j = 1, 2, \ldots, m; \ (G4)\)

(F1) \(f \in C(\mathbb{R}, \mathbb{R}^N) \cap L^2(\mathbb{R}, \mathbb{R}^N) \cap L^{\mu/(\mu-1)}(\mathbb{R}, \mathbb{R}^N), \)

\((\int_{-\infty}^{+\infty} |f(t)|^2 dt)^{1/2} < \min\{1/2, a_i - b_j - M\}(1/C), \)

where \(M = \sup G_j(q) : j = 1, 2, \ldots, m, |q| = 1, \)

\(a_i > b_j + M, \) and \(C\) is a constant of (17). Then the system (1) and (2) possesses at least one nonzero homoclinic solution.

The rest of this paper is organized as follows. In Section 2 we present some preliminary results. Our main result’s proofs are given in Section 3.

2. Preliminaries

Let

\[H_{2kT} = \left\{ q : \mathbb{R} \to \mathbb{R}^N \mid q, q \in L^2((-kT, kT)), \mathbb{R}^N \right\}, \]

\[u(t) = u(t + 2kT), t \in \mathbb{R} \right\}. \ (12)\]

Then \(H_{2kT}\) is a Hilbert space with the norm defined by

\[\|q\|_{H_{2kT}} = \left(\int_{-kT}^{kT} \left(|q(t)|^2 + |q'|^2 \right) dt \right)^{1/2}, \ q \in H_{2kT}. \ (13)\]

For the norm in \(L^{\infty}_{2kT}(\mathbb{R}, \mathbb{R}), \) which denotes a space of \(2kT\) periodic essentially bounded measurable functions from \(\mathbb{R}\) into \(\mathbb{R}^N, \) \(\|q\|_{L^{\infty}_{2kT}} = \text{ess sup} |q(t)| : t \in [-kT, kT]\). Next we set \(\Omega_k = \{-km + 1, -km + 2, \ldots, 0, 1, 2, \ldots, km - 1, km\}\) and define a functional \(\varphi_k\) as

\[\varphi_k(q) = \frac{1}{2} \int_{-kT}^{kT} W dt - \sum_{j \in \Omega_k} G_j(q(t_j)) + \int_{-kT}^{kT} f(t)q dt, \ q \in H_{2kT}, \ (14)\]
where
\[\eta_k (q) = \left(\int_{-kT}^{kT} |q(t)|^2 + 2K(t, q(t))dt \right)^{1/2}. \] (15)

Note that \(\eta_k \) is Fréchet differentiable at any \(q \in H_{2kT} \), and for any \(p \in H_{2kT} \), we have
\[\eta_k' (q) (p) = \lim_{h \to 0} \frac{\eta_k (q + hp) - \eta_k (q)}{h} \]
\[= \int_{-kT}^{kT} \left(\dot{q} (t) \dot{p} (t) - V_q (t, q(t)) p + f_k p \right) dt \] (16)
\[- \sum_{j \in \Omega_k} g_j (q (t_j)) p (t_j). \]

It is clear that critical points of the functional \(\eta_k \) are classical 2\(k \)-periodic solutions of system (2) and (7).

Lemma 2 (see [2]). There is a positive constant \(C \) such that for each \(k \in \mathbb{N} \) and \(q \in H_{2kT} \), the following inequality holds:
\[\|q\|_{L_{2kT}^\infty} \leq C\|q\|_{H_{2kT}}, \quad \forall q \in H_{2kT}. \] (17)

Lemma 3. Set \(m_1 = \inf \{ G_j (q) : |q| = 1, j = 1, 2, \ldots, m \} \), then for every \(\xi \in \mathbb{R} \setminus \{0\} \) and \(q \in H_{2kT} \setminus \{0\} \), we have
\[\sum_{j \in \Omega_k} G_j (\xi q (t_j)) \geq m_1 |\xi|^2 \sum_{j \in \Omega_k} |q(t_j)|^2 - 2kmn. \] (18)

Proof. Set \(A_k = \{ j \in \Omega_k : |\xi q (t_j)| \leq 1 \}, B_k = \{ j \in \Omega_k : |\xi q (t_j)| \geq 1 \}, \) and \(q(s) = s^2 G_j(q/s), j \in \Omega_k, s > 0. \) By (G3), we have
\[q' (s) = 2G_j \left(\frac{q}{s} \right) - g_j \left(\frac{q}{s} \right) \frac{q}{s} \leq 0. \] (19)

So we have \(G_j (q) \geq \xi^2 G_j (q/|q|), |q| \geq 1. \) If \(B_k \) is empty, we have \(q(t_j) = 0, j \in \Omega_k, \) which implies \(\sum_{j \in \Omega_k} G_j (\xi q (t_j)) = 0 \geq -2kmn. \) Therefore, Without loss of generality, we can assume that \(B_k \) is nonempty, and we have
\[\sum_{j \in \Omega_k} G_j (\xi q (t_j)) \geq \sum_{j \in B_k} G_j (\xi q (t_j)) \]
\[\geq \sum_{j \in B_k} \xi^2 \sum_{j \in \Omega_k} |q(t_j)|^2 \]
\[\geq \left(\sum_{j \in \Omega_k} |q(t_j)|^2 - \sum_{j \in \Omega_k} |q(t_j)|^2 \right) m_1 \]
\[\geq m_1 |\xi|^2 \sum_{j \in \Omega_k} |q(t_j)|^2 - 2kmn. \]
(20)

Lemma 4 (see [30]). Let \(E \) be a real Banach space and let \(\varphi : E \to \mathbb{R} \) be a \(C^1 \)-smooth functional satisfying the Palais-Smale condition and \(\varphi (0) = 0. \) If \(\varphi \) satisfies the following conditions:
(i) there exist constants \(\rho, \alpha > 0 \) such that \(\varphi|_{\partial B_\rho} \geq \alpha, \)
(ii) there exists \(c < E \setminus \overline{B}_\rho \) such that \(\varphi(c) \leq 0, \) then \(\varphi \) possesses a critical value \(c \geq \alpha \) given by
\[c = \inf_{y \in \mathbb{R} \setminus \{0\}} \max \varphi (g (s)), \] (21)
where
\[\Gamma = \{ g \in C ([0,1], E) : g (0) = 0, g (1) = 1 \}. \] (22)

Lemma 5 (see [2]). Let \(q : \mathbb{R} \to \mathbb{R}^N \) be a continuous mapping such that \(\dot{q} \in L_{2kT}^1 (\mathbb{R}, \mathbb{R}^N). \) For every \(t \in \mathbb{R} \) the following inequality holds:
\[|q(t)| \leq \sqrt{2} \left(\int_{t-1/2}^{t+1/2} \left(|q(s)|^2 + |q(s)|^2 ds \right)^{1/2}. \] (23)

3. Proof of Theorem 1

We have divided the proof of Theorem 1 into a sequence of lemmas.

Lemma 6. Assume that (VI), (K1), (K2), (W1), (W2), (W3), (W4), (G1), (G2), (G3), and (F1) are satisfied; system (2), (7) possesses a 2\(k \)-periodic solution.

Proof. It is clear that \(\varphi_k (0) = 0. \) It is well known that Lemma 4 holds true with the (C) condition replacing the usual (PS) condition. We say the functional \(\varphi_k \) satisfies the (C) condition; that is, for every sequence \(\{q_n\} \subset H_{2kT}, \) \(\{q_n\} \) has a convergent subsequence if \(\varphi_k (q_n) \) is bounded and \(\lim_{n \to \infty} (1 + \|q\|_{2kT}) \varphi_k (q_n) = 0. \)

Step 1. Pick \(\{q_n\} \subset H_{2kT} \) such that \(\varphi_k (q_n) \) is bounded and \(\lim_{n \to \infty} (1 + \|q\|_{2kT}) \varphi_k (q_n) = 0 \) then there exists a constant \(C_1 > 0 \) such that
\[C_1 \geq 2\varphi_k (q_n) - \varphi_k' (q_n) (q_n) \]
\[= \int_{-kT}^{kT} \left[2K (t, q_n) - K_q (t, q_t) \right] dt \]
\[- \int_{-kT}^{kT} \left[2W (t, q_n) - W_q (t, q_n) q_n \right] dt \]
\[- \sum_{j \in \Omega_k} \left[2G_j (q_n (t_j)) - g_j (q_n (t_j)) q_n (t_j) \right] \]
\[+ \int_{-kT}^{kT} f_k q_n dt \]
\[\geq \left(\int_{-kT}^{kT} |q_n|^\mu dt - \int_0^{\infty} \beta (t) dt \right) \]
\[- \left(\int_{-kT}^{kT} |f|^\mu dt \right)^{1/\mu} \left(\int_{-kT}^{kT} |q_n|^\mu dt \right)^{1/\mu}. \] (24)
where $\mu' > 1$ and $1/\mu' + 1/\mu = 1$. (24) implies $(\int_0^{kT} |q_n|^{\mu'} dt)^{1/\mu} \leq C_2$. Hence when $0 < \|q\|_{L^\infty_{t,x}} \leq 1$, we have

$$\sum_{j \in \Omega_k} G_j(q(t_j)) \leq \sum_{j \in \Omega_k} G_j \left(\frac{q(t_j)}{|q(t_j)|} \right) |q(t_j)|^2 \leq M \sum_{j \in \Omega_k} |q(t_j)|^2 \leq M \|q\|_{L^\infty_{t,x}}^2.$$

From (K1), (W2), and (30), we have

$$q_k(q) = \frac{1}{2} \eta_k^2(q) - \int_{-kT}^{kT} W(t, q) dt - \sum_{j \in \Omega_k} G_j(q(t_j)) \geq \min \left\{ \frac{1}{2} (a_1 - b_1 - M) \|q\|_{L^\infty_{t,x}}^2, - \left(\int_{-\infty}^{+\infty} |f(t)|^2 dt \right)^{1/2} \|q\|_{L^\infty_{t,x}} \right\} \geq \alpha > 0.$$

Let $\|q\|_{L^\infty_{t,x}} = \rho$; then $0 < \|q\|_{L^\infty_{t,x}} \leq 1$ and (31) gives $q_k(q) \geq \alpha > 0$.

Step 3. We show that the functional q_k satisfies assumption (ii) of Lemma 4.

In order to verify (ii), we choose $\xi \in \mathbb{R}, Q \in H_{T^2} \setminus \{0\}$ such that $Q(\pm T) = 0$ and $M_2 = \max_{\xi \in T, \xi \in [2]} K(t, q)$. Set $h(s) = s^{-\theta} K(t, sq)$. By (K2), we have $h'(s) = (K_q(t, sq) sq - \theta K(t, sq))/s^{\theta+1} \leq 0$. So we have

$$K(t, q) \begin{cases} \geq |q|^\theta K(t, |q|), & |q| \leq 1, \ t \in [0, T], \\ \leq |q|^\theta K(t, |q|), & |q| \geq 1, \ t \in [0, T]. \end{cases} \quad (33)$$

Define

$$\bar{Q} = \begin{cases} Q, & t \in [-T, T], \\ 0, & t \in \left[-kT, kT \right] \setminus [-T, T]. \end{cases} \quad (34)$$

Therefore, \bar{Q} satisfies the assumptions of Lemma 4.
Take \(A > (1 + 2M_2\|Q\|_{H^2})^2 \int_T^T Q(t)dt \). By (W4), there exists \(B > 0 \) such that
\[
W(t,q) \geq A|q|^2 - B, \quad t \in [0,T] \times \mathbb{R}^N.
\] (35)

By (33), (34), (35), and Lemma 3, we have
\[
\varphi_k(\tilde{Q}) = \frac{1}{2} \int_T^T W(t, \tilde{Q}) dt
- \sum_{j \in S_k} G_j(\tilde{Q}(t_j)) + \zeta \int_T^T f_j Q dt
\leq \frac{1}{2} \left(1 + 2M_2 \right) \|\tilde{Q}\|^2_{H^2} - \alpha \|\tilde{Q}\|^2
+ 2 \left(M_2T + TB + m_m \right)_k
- m_1\|\tilde{Q}\|^2 + \left| \zeta \right|^2 \left(\int_T^T |f_j|^2 dt \right)^{1/2}
\leq \left| \zeta \right|^2 \left(\frac{1 + 2M_2}{2} \|\tilde{Q}\|^2_{H^2} - A \int_T^T |Q(t)|^2 dt \right)
+ 2 \left(M_2T + TB + m_m \right)_k
+ \left| \zeta \right|^2 \left(\int_T^T |f_j|^2 dt \right)^{1/2} \left(\int_T^T |Q(t)|^2 dt \right)^{1/2}.
\] (36)

Clearly, \(\varphi_k(\tilde{Q}) \rightarrow -\infty \) as \(|\zeta| \rightarrow +\infty \), so (ii) holds. By Lemma 4, \(\varphi_k \) possesses a critical value \(c_k \geq \alpha > 0 \). Let \(q_k \) denote the corresponding critical point of \(\varphi_k \) on \(H_{2K} \); that is,
\[
\varphi_k(q_k) = c_k, \quad \varphi_k'(q_k) = 0.
\] (37)

Hence the system (2), (7) possesses a nontrivial 2KT-periodic solution \(q_k \).

Lemma 7. Let \(\{q_k\} \) be the sequence given by (37). Then there exist a subsequence \(\{q_{k,j}\} \) of \(\{q_k\} \) and a function \(q_0 \in W_0^{1,2} \cap L_{\text{loc}}^\infty(\mathbb{R}, \mathbb{R}^N) \) such that \(\{q_{k,j}\} \) converges to \(q_0 \) weakly in \(W_0^{1,2} \) and strongly in \(L_{\text{loc}}^\infty(\mathbb{R}, \mathbb{R}^N) \).

Proof. We assert that there is a constant \(M_3 > 0 \) independent of \(k \) such that
\[
\|q_k\|_{H_{2K}} \leq M_3.
\] (38)

Let \(e_1 \in H_{2K} \setminus \{0\} \) such that \(e_1(\pm T) = 0 \), \(e_1(t_k) \neq 0 \) for some \(t_k \in (-T, T) \), and \(\varphi_1(e_1) \leq 0 \). Define
\[
e_k = \begin{cases} e_1, & |t| \leq T, \\ 0, & T \leq |t| \leq kT. \end{cases}
\] (39)

We extend \(e_k \) in the way of 2KT-periodic to \(\mathbb{R} \). For simplicity, we also note it again by \(e_k \). It is clear that \(e_k \in H_{2K} \) and \(\varphi_k(e_k) = \varphi_1(e_1) \leq 0 \). Define \(g_k : [0, T] \rightarrow H_{2K} \) by \(g_k(s) = se_k \) for \(s \in [0, 1] \). Then, we have
\[
c_k \leq \max_{s \in [0, 1]} \varphi_k(g_k(s)) = \max_{s \in [0, 1]} \varphi_1(g_1(s)) = c_0,
\] (40)

independently of \(k \). The rest detailed argument is similar to the proof of Step 1 in Lemma 6 and we thus omit it here.

Hence, \(\{q_{k,j}\} \) is a bounded sequence in \(W_0^{1,2}((\cdot, T), \mathbb{R}^N) \) and we may pick a subsequence \(\{q_{k,j}\} \) such that \(\{q_{k,j}\} \) converges weakly in \(W_0^{1,2}((-T, T), \mathbb{R}^N) \) and strongly in \(L_{\text{loc}}^\infty((-T, T), \mathbb{R}^N) \). Next \(\{q_{k,j}\} \) is a bounded sequence in \(W_0^{1,2}((-2T, 2T), \mathbb{R}^N) \), so we may pick a subsequence \(\{q_{k,j}\} \) such that \(\{q_{k,j}\} \) converges weakly in \(W_0^{1,2}((-2T, 2T), \mathbb{R}^N) \) and strongly in \(L_{\text{loc}}^\infty((-2T, 2T), \mathbb{R}^N) \). We can repeat this process and obtain, for any positive integer \(n \), a sequence \(\{q_{n,k}\} \) which converges weakly in \(W_0^{1,2}(-nT, nT), \mathbb{R}^N \) and strongly in \(L_{\text{loc}}^\infty((-nT, nT), \mathbb{R}^N) \), and
\[
\{q_k\} \supset \{q_{1,k}\} \supset \{q_{2,k}\} \supset \cdots \supset \{q_{n,k}\} \supset \cdots.
\] (41)

Therefore, for any positive integer \(n \), the sequence \(\{q_{n,k}\} \) converges weakly in \(W_0^{1,2}(-nT, nT), \mathbb{R}^N \) and strongly in \(L_{\text{loc}}^\infty((-nT, nT), \mathbb{R}^N) \). Hence there exists a function \(q \in W_0^{1,2}(\mathbb{R}, \mathbb{R}^N) \cap L_{\text{loc}}^\infty(\mathbb{R}, \mathbb{R}^N) \) such that the sequence \(\{q_{n,k}\} \) converges weakly in \(q \in W_0^{1,2}(\mathbb{R}, \mathbb{R}^N) \) and strongly in \(L_{\text{loc}}^\infty(\mathbb{R}, \mathbb{R}^N) \).

Lemma 8. The function \(q_0 \) determined by Lemma 7 is a non-zero homoclinic solution of the system (1), (2).

Proof. The proof will be divided into four steps.

Firstly, we show that \(q_0 \) is a solution of the system (1), (2).

Here, for simplicity, we denote \(\{q_{n,k}\} \) by \(\{q_k\} \). For any given interval \((a, b) \subset (-KT, KT)\) and any \(p \in W_0^{1,2}((a, b), \mathbb{R}^N) \), define
\[
p_1 = \begin{cases} p, & t \in (a, b), \\ 0, & t \in (-KT, KT) \setminus (a, b). \end{cases}
\] (42)

so for any \(p \in W_0^{1,2}((a, b), \mathbb{R}^N) \), we have
\[
0 = \varphi_k'(q_k)v p_1
\]
\[
= \int_a^b (q_k v - q_k'v_p + f_k p) dt
\]
\[
+ \sum_{t_j \in (a, b)} g_j (q_k(t_j)) p(t_j).
\] (43)
Therefore, one has
\[
\int_a^b (\dot{q}_0 \dot{p} - V_q (t, q_0) p + f_p) \, dt + \sum_{t_j \in (a, b)} g_j (q_0 (t_j)) \, p (t_j)
\]
\[
= \lim_{k \to +\infty} \left(\int_a^b (\dot{q}_k \dot{p} - V_q (t, q_k) p + f_p) \, dt + \sum_{t_j \in (a, b)} g_j (q_k (t_j)) \, p (t_j) \right)
\]
\[
= 0.
\]
(44)
The remained detailer argument is similar to the proof of Lemma 2.5 in [13] and we thus omit it here, so \(q_0 (t)\) is a solution of system (1) and (2).

Secondly we show that \(q_0 (t) \to 0\), as \(t \to \pm \infty\). \(\{q_k\}\) is weak continuity, so it is weak lower semicontinuity. One has
\[
\int_{-\infty}^{+\infty} \left(|q_0|^2 + |\dot{q}_0|^2 \right) \, dt = \lim_{k \to +\infty} \int_{-kT}^{kT} \left(|q_0|^2 + |\dot{q}_0|^2 \right) \, dt
\]
\[
\leq \lim_{k \to +\infty} \sup_{j \to +\infty} \min \inf_{t \to +\infty} \int_{-kt}^{kt} \left(|q_0|^2 + |\dot{q}_0|^2 \right) \, dt
\]
\[
\leq M_2^2,
\]
and so
\[
\int_{|s| \geq r} \left(|q_0|^2 + |\dot{q}_0|^2 \right) \, dt \to 0, \quad \text{as} \ r \to +\infty. \quad (46)
\]
By (23) and (46), we obtain \(q_0 (t) \to 0\), as \(t \to \pm \infty\).

Thirdly, we prove that \(q_0 (t^+) \to 0\) as \(t \to \pm \infty\). We have proved \(q_0 (t)\) is a solution of system (1) and (2), so we have
\[
\int_{t_j-1}^{t_j} |\dot{q}_0 (s)|^2 \, ds
\]
\[
= \int_{t_j-1}^{t_j} \left(-V_q (s, q_0 (s)) + f (s) \right)^2 \, ds
\]
\[
\leq 2 \int_{t_j-1}^{t_j} \left(\left| V_q (s, q_0 (s)) \right|^2 + |f (s)|^2 \right) \, ds.
\]
By (VI), (K1), and (W1), one has \(V_q (t, 0) = -K_q (t, 0) + W_q (t, 0) = 0\). Hence \(\int_{t_j-1}^{t_j} \dot{q}_0 (s)^2 \, ds \to 0\) as \(j \to +\infty\). By (23), one has
\[
|q_0 (t)|^2 \leq 2 \int_{t_j-1}^{t_j} \left(|q_0 (s)|^2 + |\dot{q}_0 (s)|^2 \right) \, ds
\]
\[
\leq 2 \int_{t_j-1}^{t_j} \left(|q_0 (s)|^2 + |\dot{q}_0 (s)|^2 \right) \, ds
\]
\[
+ 2 \int_{t_j-1}^{t_j} |\dot{q}_0 (s)|^2 \, ds, \quad t \in (t_j-1, t_j).
\]
(48)
Therefore one has \(q_0 (t^+) \to 0\) as \(t \to \pm \infty\).

Finally, we show \(q_0 \not\equiv 0\) when \(f \not\equiv 0\). Since \(0 = t_0 < t_1 < \cdots < t_m = T\), \(t_{j+m} = t_j + T\), \(j \in \mathbb{Z}\), we can let \(\delta = \min_{j \in \mathbb{Z}} |t_j - t_{j-1}| \) and \(\delta = \max_{j \in \mathbb{Z}} |t_j - t_{j-1}| \). By Hölder inequality and \(\dot{q}_k (t_j) = q_k (t_j) + \int_{t_j}^{t_j+T} \dot{q}_k (s) \, ds, \tau \in [t_j, t_{j+1}], j \in \Omega_k\), we have
\[
\sum_{j \in \Omega_k} |q_k (t_j)|^2 \leq \frac{1}{\delta} \sum_{j \in \Omega_k} \int_{t_j}^{t_j+T} |\dot{q}_k (s)|^2 \, ds
\]
\[
= \frac{1}{\delta} \int_{-\infty}^{+\infty} \left(\left| q_k (\tau) \right|^2 + \int_{\tau}^{\tau+T} |\dot{q}_k (s)|^2 \, ds \right) \, d\tau
\]
\[
\leq \frac{2}{\delta} \int_{-\infty}^{+\infty} \left(|q_k (\tau)|^2 + \int_{\tau}^{\tau+T} |\dot{q}_k (s)|^2 \, ds \right) \, d\tau
\]
\[
\leq \frac{2}{\delta} \int_{-kT}^{kT} \left| q_k (\tau) \right|^2 \, d\tau + \frac{2\delta}{\delta} \int_{-kT}^{kT} \left| \dot{q}_k (\tau) \right|^2 \, d\tau
\]
\[
\leq \max \{1, \delta^2\} \frac{2}{\delta} \|q_k\|^2_{H^{2\nu}}.
\]
(49)
Let \(M_4 = \max \{1, \delta^2\} \{2/\delta\} > 0\), which is a constant independent of \(k\).

It is clearly that \(q_k (t+T), j \in \mathbb{Z}\), is a \(2kT\) periodic solution of (2), (7). So we can assume the maximum of \(q_k\) occurs in \([-T, T]\). Now we assume \(q_0 = 0\), so there is \(\|q_0\|_{H^{2\nu}} = \max_{t \in [-T, T]} |q_0| \to 0\) as \(k \to +\infty\); there therefore exists integer \(N_2 > 0\) such that \(\|q_k\|_{H^{2\nu}} < 1\). Combining (G1), there exists an integer \(N_2 > 0\) such that when \(k > N_2\), one has
\[
\frac{|g_j (q_k (t_j))|}{|q_k (t_j)|} \leq \frac{1}{2M_4} \min \{1, a_1\}, \quad j \in \mathbb{Z}. \quad (50)
\]
By (49) and (50), when \(k > N_2\), one has
\[
\sum_{j \in \Omega_k} g_j (q_k (t_j)) q_k (t_j)
\]
\[
\leq \sum_{j \in \Omega_k} \frac{|g_j (q_k (t_j))|}{|q_k (t_j)|} |q_k (t_j)|^2
\]
\[
\leq \frac{1}{2} \min \{1, a_1\} \|q_k\|^2_{H^{2\nu}}. \quad (51)
\]
Define a function \(Y : \mathbb{R}^+ \to \mathbb{R}^+\) by
\[
Y (s) = \begin{cases} 0, & s = 0, \\ \max_{t \in [kT, kT]} \left| \frac{\mathbb{W}_q (t, \xi)}{|\xi|^2} \right|, & s > 0. \end{cases} \quad (52)
\]
It is clear that $Y \in C(\mathbb{R}^+, \mathbb{R}^+)$ and is monotone nondecreasing, so we have
\[
\frac{|q_k W_q(t, q_k(t))|}{|q_k|^2} \leq Y \left(\|q_k\|_{L^{T_k,T_k}} \right), \quad t \in [-kT, kT].
\] (53)

Hence we have
\[
\int_{-kT}^{kT} |q_k W_q(t, q_k(t))| \, dt
\leq Y \left(\|q_k\|_{L^{T_k,T_k}} \right) \int_{-kT}^{kT} |q_k(t)|^2 \, dt
\leq Y \left(\|q_k\|_{L^{T_k,T_k}} \right) \|q_k\|^2_{H^1}.
\] (54)

Since $f \equiv 0$, q_k is a solution of the system (1) and (2), so when $k > \max\{N_1, N_2\}$, we have
\[
\int_{-kT}^{kT} q_k W_q(t, q_k(t)) \, dt + \sum_{j \in \mathbb{Z}} g_j(q_k(t_j)) q_k(t_j)
\geq \min\{1, a_1\} \|q_k\|^2_{H^1}.
\] (55)

Combining (51), (54), and (55) we have
\[
Y \left(\|q_k\|_{L^{T_k,T_k}} \right) \|q_k\|^2_{H^1} + \frac{1}{2} \min\{1, a_1\} \|q_k\|^2_{H^1}
\geq \min\{1, a_1\} \|q_k\|^2_{H^1}.
\] (56)

Hence, we have
\[
Y \left(\|q_k\|_{L^{T_k,T_k}} \right) \geq \frac{1}{2} \min\{1, a_1\} > 0.
\] (57)

By the property of the function Y, there exists a constant $M_5 > 0$ such that $\|q_k\|_{L^{T_k,T_k}} \geq M_5 > 0$. This is a contradiction. Hence the system (1), (2) has a nontrivial homoclinic solution even if $f \equiv 0$.

Next, we give an example to illustrate our main result.

Example 9. Let
\[
K(t, q) = (4 + \sin t) |q|^{4/3},
\]
\[
W(t, q) = (2 + \cos t) |q|^2 \ln(1 + |q|),
\]
\[
G_j(q(t_j)) = \left| \sin \left(\frac{t_j}{2} \right) \right| q^{j-1}(t_j),
\]
\[
g_j(q(t_j)) = r \left| \sin \left(\frac{t_j}{2} \right) \right| q^{j-1}(t_j), \quad f(t) = 0,
\] (58)

where $r > 2, t_j = 2\pi j/m, j \in \mathbb{N}$. It is easy to verify that K, W, G_j, g_j and f satisfy conditions (V1), (K1), (K2), (W1), (W2), (W3), (W4), (G1), (G2), (G3) and (F1). So, system (1), (2) with K, W, G_j, g_j and f as in (58) has a nontrivial homoclinic solution.

Acknowledgments

The authors are very grateful to the referees for their very helpful comments and suggestions, which greatly improved the presentation of this paper. This work is supported by the Hunan Provincial Natural Science Foundation of China (no. 11JJ3012) and Major Project of Science Research Fund of Education Department in Hunan (no. 11A095).

References

