Research Article

On Bounded Strictly Positive Operators of Closed Range and Some Applications to Asymptotic Hyperstability of Dynamic Systems

M. De la Sen

Institute of Research and Development of Processes, University of the Basque Country, Campus of Leioa (Bizkaia), Apartado 644, 48080 Bilbao, Spain

Correspondence should be addressed to M. De la Sen; manuel.delasen@ehu.es

Received 7 May 2013; Accepted 27 May 2013

Academic Editor: Luca Guerrini

Copyright © 2013 M. De la Sen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The problem discussed is the stability of two input-output feedforward and feedback relations, under an integral-type constraint defining an admissible class of feedback controllers. Sufficiency-type conditions are given for the positive, bounded and of closed range feed-forward operator to be strictly positive and then boundedly invertible, with its existing inverse being also a strictly positive operator. The general formalism is first established and the linked to properties of some typical contractive and pseudocontractive mappings while some real-world applications and links of the above formalism to asymptotic hyperstability of dynamic systems are discussed later on.

1. Introduction

The properties of absolute stability and hyperstability and asymptotic hyperstability of dynamic systems are very important tools in dynamic systems since they are associated with the positivity and boundedness of the energy for all feedback controllers within a wide class characterized by a Popov-type integral inequality, then implying global Lyapunov's stability [1–8]. The fact that such properties hold for a class of controllers defined by the Popov inequality, rather than for just some individual one, makes the related theory to be very useful against potential parametrical dispersion of components. The main objective of this paper is the investigation of the strict positivity and stability of bounded positive one-to-one operators with closed range on Hilbert spaces linked to contractive, pseudocontractive, asymptotically pseudocontractive, and asymptotically pseudocontractive in the intermediate sense mappings. See [9–21] and exhaustive list of references therein. Fixed point theory has also been proven to be useful to describe the asymptotic behaviour, stability and equilibrium points of differential, functional, and difference equations and systems of equations, and continuous-time, discrete-time, and hybrid dynamic systems. See, for instance, [22–27] and references therein. Further links with technical results and some real-world examples are established through the paper related to the relevant problems of absolute stability and asymptotic hyperstability of continuous-time and discrete-time dynamic systems [1–8]. Such dynamic systems possess the significant physical property that their associate input-output energy is non-negative and finite for all time. Thus, they are purely dissipative systems, for a wide class of feedback nonlinear time-varying controllers satisfying an integral input-output inequality what leads to the global Lyapunov's stability for all controllers within such a class. Several operators are characterized but the most important one in the analysis is the one which maps the input space to the output space. Both such spaces are subspaces of a Hilbert space resulting to be, typically in real-world examples, either the space of square-integrable real or complex functions (or, in general, vector functions) or its corresponding square-summable counterparts. The relevant property needed for a positive operator to be strictly positive is seen to be that its minimum modulus be nonzero so as to ensure that it is invertible if it is of a closed range. Note, on the other hand,
that the crucial property for the boundedness and stability of the operator restricted to the Hilbert space of interest is that it will be stable on its whole definition domain.

2. Problem Statement and Main Results

Through this paper, one considers the complex Hilbert space H on C and operators $G: H \to H$ and $K: H \to H$ which define the following associated relations:

$$y = Gu + y_h,$$
$$u = Kr - \varphi_t(y),$$

where $y_h = y_h(p)$ and $p \in C^1$ is some given complex parameterizing vector, and $r: \Gamma \to H \mid \text{dom}K, \varphi_t: \Gamma \times H \to \text{ran} K \mid \text{ran} \varphi_t(\subset H); u: \Gamma \to (H \mid \text{ran} K) + \text{ran} \varphi_t(\subset H);$ and $y = y_h + y_f,$ with $y_h: \Gamma \times C^1 \to H$ and $y_f: \Gamma \to H \mid \text{ran} K.$ The set Γ is some appropriate domain to define the previous functions of interest. Examples which adjust to the previous structure are very common in the real world as, for instance, linear continuous-time dynamic systems (with $\Gamma = R_0$, being the nonnegative real set for picking up values $t \in \Gamma$ of the continuous-time argument) and linear discrete-time dynamic systems (with $\Gamma = Z_0$, being the nonnegative integer set for values $t \in \Gamma$ of the discrete-time argument) where r is an exogenous, or reference, signal, u is the feedback control, y_h is the parameterized response to initial conditions, versus Gu which is the forced response, y is the measurable output to be controlled, and $\varphi_t(y)$ is a nonlinear (and, eventually, time-varying) controller device.

The inner products on the previous various Hilbert spaces are all denoted with the standard notation $\langle \cdot, \cdot \rangle$ and mutually distinguished easily depending on context without explicit notational subscripts referred to each concrete space. Assume that Γ is an indicator set defining truncated elements of the Hilbert space as, for instance, a real interval or a subset of the nonnegative integers and P_t is a projection operator being a truncation operator so that $x_t = P_t x$ and for each $t \in \Gamma,$ and we define the seminorm on H by $\|x\|_t = \|x_t\| = \|P_t x\|; \forall t \in \Gamma$ with $P_t \neq I$ and the family $\|\|_t, t \in \Gamma$ of seminorms defines the resolution topology on H since $\{P_t : t \in H\}$ is a resolution of the identity [28]. Note that $\|x\|_{t_1} \geq \|x\|_{t_2}$ if $t_1 \geq t_2.$ For instance, if $\Gamma = R_0,$ then $x(t)$ denotes a point value of $x: R_0 \to R_0,$ for $t \in \Gamma$ while x_t denotes the strip $x: [0, t] \cap R_0 \to R_0.$ Through the paper the notation \ast stands for adjoint operators and also for complex conjugates of scalars or vectors depending on the context.

The problem to be discussed in the paper is the stability of (1) under an integral-type constraint for the controller specified later on, which characterizes a whole admissible class of controllers rather than an individual controller. Conditions are given for the positive feed-forward operator G which is assumed to be bounded and of closed range is ensured to be also strictly positive, then boundedly invertible, with its existing inverse being also a strictly positive operator. If such an operator is bounded and strictly positive, then the inner products $\langle Gu, u \rangle$ and $\langle G^{-1} u, x_t \rangle$ are both strictly positive and finitely upper-bounded for all nonzero input $u.$

The general formalism is given in Section 2 together with some links to contractive and pseudocontractive mappings while some real-world applications to asymptotic hyperstability of dynamic systems are then given in Section 3. The following preliminary result holds.

Proposition 1. Assume that $G : H \to H$ is a one-to-one linear operator with closed range. Then, the following properties hold

(i) $G : H \to H$ is invertible with nonzero minimum modulus,

(ii) if, in addition, $G : H \to H$ is positive (abbreviated notation being $G \succeq 0$), then $\langle Gu, u \rangle > 0$ for any nonzero $u : \Gamma \to H.$

(iii) there is $t \in \Gamma$ such that $\langle GP_t u, P_t u \rangle > 0$ for any nonzero $u \in \text{dom}(G).$

Proof. Since G on H is one-to-one with closed range, it is also invertible from the open mapping theorem and then bounded below, so that there is $c \in R,$ such that

$$\|Gu\| = \langle Gu, Gu \rangle^{1/2} \geq c \|u\| = c \langle u, u \rangle^{1/2}; \quad \forall u \in \text{dom} G.$$

The minimum modulus $\mu(G)$ of G satisfies

$$\mu(G) = \inf \left\{ \frac{\|Gu\|}{\|u\|} : u \in \text{dom} G \neq 0 \right\} \geq c > 0$$

and Property (i) has been proven. Now, if $G \succeq 0,$ then there is a self-adjoint operator $\widetilde{G} = G^* \succeq 0$ on X such that $G = \widetilde{G} \widetilde{G}^* = \widetilde{G}^2$ so that, since $\mu(\widetilde{G}) > 0$ from Property (i),

$$\langle Gu, u \rangle^{1/2} = \langle \widetilde{G}^2 u, u \rangle^{1/2} = \langle \widetilde{G}^2 u, \widetilde{G} u \rangle^{1/2} = \|\widetilde{G} u\| = \|\widetilde{G} u\| \|u\|$$

$$\geq \inf \left\{ \frac{\|\widetilde{G} u\|}{\|u\|} : u \in \text{dom} G \neq 0 \right\} \|u\|$$

$$\geq \mu(\widetilde{G}) \|u\| > 0; \quad \forall u \neq 0 : \Gamma \to H$$

and Property (ii) is proven.

(iii) Note that if, $u \neq 0,$ then there is $t \in \Gamma$ such that $P_t u \neq 0$ and $\langle GP_t u, P_t u \rangle > 0$ since one gets by Property (ii) that

$$\langle Gu, u \rangle^{1/2} = \inf \left\{ \frac{\|GP_t u\|}{\|P_t u\|} : u \in \text{dom} G \neq 0 \right\} \|P_t u\|$$

$$\geq \mu(\widetilde{G}) \|P_t u\| > 0; \quad \forall u \neq 0 : \Gamma \to H.$$
Thus, \(<G_P u, P_t u \rangle > 0 \) for some \(t \in \Gamma \) if \(u \neq 0 \). Hence, Property (iii) follows.

Definition 2. The operator \(G : H \to H \) is said to be strictly positive (denoted as \(G > 0 \)) if it is positive (i.e., \(G \geq 0 \)) and \(\mu(G) > 0 \).

Note from Proposition 1 that if \(G \geq 0 \) is a one-to-one operator on \(H \) with closed range, then it is invertible and \(G > 0 \).

It is also direct to prove that Property (i) of Proposition 1 is equivalent to its given assumption so that one has [28].

Proposition 3. \(G : H \to H \) is a one-to-one linear bounded operator with closed range if and only if it is invertible with nonzero minimum modulus.

Proposition 4. If \(G : H \to H \) is a one-to-one linear bounded strictly positive operator with closed range, then it is invertible and \(G^{-1} : H \to H \) is also strictly positive with closed range and bounded and \(\mu(G^{-1}) > 0 \) so that \(\langle G^{-1} u, u \rangle > 0 \) for any nonzero \(u : \Gamma \to H \).

Proof. Note that \(1/\|G^{-1}\| = \mu(G) > 0 \) from Proposition 1. Thus, \(\|G^{-1}\| < \infty \) so that \(G^{-1} \) is bounded. Since \(G \) is bounded, then \(\|G\| < \infty \) and \(1/\|G\| = \mu(G^{-1}) > 0 \). Thus, \(G^{-1} : H \to H \) is also one-to-one with closed range from Proposition 3. Then, \(G^{-1} = G^{*} G^{-1} G = G^{-2} \) is self-adjoint, and since \(\mu(G^{-1}) > 0 \), one has from Property (i) of Proposition 1 and Definition 2 that \(G^{-1} > 0 \) since

\[
\langle G^{-1} u, u \rangle^{1/2} = \langle G^{-2} u, u \rangle^{1/2} = \langle G^{-2} u, u \rangle^{1/2} / \|u\| > 0,
\]

\(\forall u \neq 0 : \Gamma \to H. \)

Note that, if \(G \geq 0 \), then \(\langle G u, u \rangle \) can be zero for some nonzero \(u : \Gamma \to H \). The following result refers to the fulfillment of relationships (1) for all \(t \in \Gamma \), that is, on the space \(H_e = \{ f : \Gamma \to PC(\Gamma) ; \forall t \in \Gamma \} \) provided that \(G > 0 \) and bounded. Under some additional weak boundedness conditions, it is proven the stability of (1) with \(u \) and \(y \) belonging to \(N \). Note that \(H_e \) is not a Hilbert space (even though \(H \) is a Hilbert space) since it is not ensured that, for any \(f : \Gamma \to PC(\Gamma) ; f : \Gamma \to H (\Gamma \exists t \to \infty). \)

An important result follows.

Theorem 5. Assume that (1) holds for all \(t \in \Gamma \), that is, \(G : H_e \to H_e \) and \(K : H_e \to H_e \), where \(H_e = \{ f : \Gamma \to PC(\Gamma) ; \forall t \in \Gamma \}, y_h = y_h(p) \) and \(p \in C^3 \) is some given complex parameterizing vector, \(r : \Gamma \to H_e \mid \text{dom} K, \quad q_r : \Gamma \times H_e \to \text{ran} q_r, u : \Gamma \to (H_e \mid \text{ran} K) + \text{ran} q_r; \) and \(y = y_h + y_f, \) with \(y_h : \Gamma \times C^3 \to H \) and \(y_f : \Gamma \to H_e \mid \text{ran} G. \) Assume also that

\((1) \quad y_h = y_h(p) \) is bounded and \(P_t y_h \to 0 \) as \((\Gamma \exists t \to \infty) \),

\((2) \quad G : H_e \to H_e \) is stable (or, equivalently, \(G : H_e \mid H \to H \) is bounded and causal), one-to-one, and with closed range,

\((3) \quad G > 0, \)

(4) \(K : H \to H \) is bounded,

(5) \(r : \Gamma \to H \) is bounded,

(6) \(\langle P_t y, P_t q_r(y) \rangle \geq -\gamma_t \geq -\gamma \geq -\infty; \forall t \in \Gamma. \)

Then, \(u, y, y : \Gamma \to H, \) and they are bounded. Also, if \(r \equiv 0, \) then \(u(t) \to 0, \) \(y_f(t) \to 0, \) \(y(t) \to 0 \) as \((\Gamma \exists t \to \infty). \)

Proof. Direct calculations yield

\[
\langle y, u \rangle = \langle G u + y_h, Kr - q_r(y) \rangle
\]

\[
= \langle G u, Kr \rangle + \langle y_h, Kr \rangle
\]

\[
- \langle (G u, q_r(y)) \rangle
\]

\[
= \langle G u, Kr \rangle + \langle y_h, Kr \rangle + \langle y_h, Kr \rangle
\]

\[
= \langle G u, \rangle + \langle y_h, Kr - q_r(y) \rangle
\]

\[
\geq \mu^2(\langle G \rangle) \|u\|^2 + \langle y_h, Kr - q_r(y) \rangle
\]

\[
= \mu^2(\langle G \rangle) \|P_t u\|^2 + \langle y_h, Kr - q_r(y) \rangle; \quad \forall t \in \Gamma
\]

since \(u = Kr - q_r(y) \) and \(\langle G u, \rangle \geq \mu^2(\langle G \rangle) \|u\|^2 \geq \mu^2(\langle G \rangle) \|P_t u\|^2 > 0 \) for any nonzero control from Proposition 1.

One gets in the same way that

\[
\langle P_t y, P_t u \rangle \geq \mu^2(\langle G \rangle) \|P_t u\|^2 + \langle P_t (y_h), P_t (Kr - q_r(y)) \rangle,
\]

\(\forall t \in \Gamma. \)

(8)

Since \(\langle P_t y, P_t q_r(y) \rangle \geq -\gamma_t \geq -\infty; \forall t \in \Gamma, \) one gets also that

\[
\langle y, u \rangle = \langle y, Kr - q_r(y) \rangle = \langle y, Kr \rangle - \langle y, q_r(y) \rangle
\]

\[
\leq \langle y, Kr \rangle + \sup_{t \in \Gamma} y_t; \quad \forall t \in \Gamma
\]

(9)

One gets from (7), (9), (8), and (10) that

\[
\langle y, Kr \rangle + y \geq \mu^2(\langle G \rangle) \|u\|^2
\]

\[
+ \langle y_h, Kr - q_r(y) \rangle
\]

\[
\geq \mu^2(\langle G \rangle) \|P_t u\|^2 + \langle y_h, Kr - q_r(y) \rangle,
\]

\(\forall t \in \Gamma, \)

(11)

\[
\langle P_t y, P_t (Kr) \rangle y_t \geq \mu^2(\langle G \rangle) \|P_t u\|^2 \langle P_t (y_h), P_t (Kr - q_r(y)) \rangle;
\]

\(\forall t \in \Gamma. \)

(12)
Abstract and Applied Analysis

where $0 < \gamma = \sup_{t \in \Gamma} \gamma_t < \infty$. Now, since K is a bounded operator, r is a bounded function, $P_t y_h \to 0$ as $t \to \infty$, and $G > 0$ is bounded and one-to-one with closed range so that $G > 0$ is also bounded and one-to-one with closed range implying from Proposition 1 that $\mu(G) = \mu^2(G) > 0$, and one gets from (12) that

$$
\lim \inf_{t \to \infty} \left[\gamma_t + \langle P_t (GP_t u), P_t (Kr) \rangle - \mu^2 \left(\frac{G}{\gamma_t} \right) \|P_t u\|^2 \right]
\geq \lim \inf_{t \to \infty} \left[\gamma_t + \langle P_t (GP_t u), P_t (Kr) \rangle - \mu^2 \left(\frac{G}{\gamma_t} \right) \|P_t u\|^2 \right]
\geq 0.
$$

Assume that there is some unbounded $u : \Gamma \to H$. Then, the subsequent contradiction

$$
0 \leq \lim \inf_{t \to \infty} \left[\gamma_t + \mu^2 \left(\frac{G}{\gamma_t} \right) \left(\lambda - \|P_t u\| \right) \|P_t u\| \right] \leq -\infty
$$

(14)

follows from (13) for some $\lambda \in R$, since $\mu(G) > 0$. Then any $u : \Gamma \to H$ is bounded. Since the operator G on H is bounded, it is stable, and then $G : H_c \to H$ is also bounded and causal, and, since the function $u : \Gamma \to H$ is bounded, then $y_f : \Gamma \to H$ is also bounded with $\|y_f\| \leq \|G\|\|u\|$ and $\|P_t y_f\| \leq \|P_t GP_t\|\|u\| \leq \|G\|\|u\|$; $\forall t \in \Gamma$, and $y : \Gamma \to H$ is also bounded since $y = y_h + y_f$. On the other hand, if $r : \Gamma \to H$ is identically zero, then one gets from (13)

$$
0 \leq \mu(G) \sup_{t \to \infty} \|P_t u\| \leq \gamma < \infty,
$$

(18)

and, since $\mu(G) > 0$, then $\lim \inf_{t \to \infty} u(t) = 0$.

Also, it is clear that, since $u : \Gamma \to H$, and since $u : \Gamma \to H$ is bounded and converges asymptotically to zero and $\|y_f\| \leq \|G\|\|u\|$, then $u : \Gamma \to H$, y_f is bounded, $y_f : \Gamma \to H$, and then $\lim \inf \langle y_f(t), y_f(t) \rangle = 0$ since $y_h : \Gamma \to H$ is bounded and asymptotically vanishing.

The assumption 6 of Theorem 5 can be relaxed leading to the following stronger result.

Corollary 6. Theorem 5 holds if its assumption 6 is relaxed to

$$
\lim \inf_{t \to \infty} \langle P_t y, P_t (\varphi_t(y)) \rangle \geq -\gamma > -\infty.
$$

Proof. Note that (7) still holds since it is independent of assumption 6. The constraint (12) is modified as follows:

$$
\lim \inf_{t \to \infty} \langle P_t y, P_t (Kr) \rangle + \gamma_t - \mu^2 \left(\frac{G}{\gamma_t} \right) \|P_t u\|^2
- \langle P_t (y_h), P_t (Kr - \varphi_t(y)) \rangle \geq 0.
$$

which makes (13) to remain valid, and Theorem 5 still holds.

In a physical context, $E = \langle y, u \rangle$ is the whole input-output energy of (1), $E(t) = \langle P_t y, P_t u \rangle$ is the input-output energy dissipated on $[0, t] \cap \Gamma$, and $(u \ast y)(t)$ is the instantaneous input-output power at $t \in \Gamma$ while $\langle Gu + y_h, Kr - \varphi_t(y) \rangle$ is the energy supplied by the external source. Particular cases of interest in control engineering are (a) if the reference input $r \equiv 0$, then the feedback control system is a regulator evolving only from its initial conditions, (b) if such reference is a constant real level, then the control system is a position servomechanism, (c) if the reference $r(t) = Kt$ for $t \in \Gamma$, then the control system is a velocity servomechanism and so forth.

On the other hand, the extended Popov-type control inequality of the controller $(P_t y, P_t (\varphi_t(y))) \geq -\gamma > -\infty$ and $G > 0$ implies that $0 \leq E(t) \leq \gamma < \infty$, $(0 < E \leq \gamma < \infty)$ for any nonzero control input with compact support; $\forall t \in \Gamma$ and all $\varphi_t(y)$ satisfying the assumption 6 of Theorem 5; that is, the input-output energy is nonnegative and bounded; $\forall t \in \Gamma$. The use of such a constraint allows the simultaneous investigation of the maintenance of the positivity and stability properties of (1) under a class of nonlinear time-varying controllers (defined by such a Popov constraint itself) rather than for a particular controller device belonging to such a class.

Note that G on H_e is stable since $\|Gu\| \leq M\|u\|$, for some finite $M \in R_+$; $\forall t \in \Gamma$ and, equivalently, $G : H_e \to H$ is bounded. Now, one concludes from Proposition 4 for the system defined by the inverse operator G^{-1} that

$$
0 \leq \langle P_t (G^{-1} u), P_t u \rangle < \infty
$$

for any admissible control input u since $G^{-1} > 0$, bounded and causal.

The following result basically reformulates Theorem 5 if $G \mid H$ is a strictly positive pseudocontraction. Since the contribution of initial conditions and a bounded exogenous reference do not modify the stability properties, as seen from Theorem 5, they are assumed to be null in the sequel.

Theorem 7. Assume that the relationships of (1) hold for all

$$
(1) \quad G : H_e \to H \quad \text{is bounded and causal, one-to-one, and with closed range.}
$$

(2) $G > 0$.

(3) $\langle P_t y, P_t (\varphi_t(y)) \rangle \geq -\gamma \geq -\gamma > -\infty \forall t \in \Gamma$.

Then, $u, y, y : \Gamma \to H$ are bounded, and $u(t) \to 0$, $y(t) \to 0$ as $(\Gamma \ni) t \to \infty$. Furthermore, one gets for any, $u_1, u_2 : \Gamma \to \varphi_t$ that

$$
\langle u_1, u_2 \rangle + \langle u_1, u_2 \rangle^* \leq \frac{2\gamma}{\mu^2(G)}.
$$

(16)

If, in addition, $G \mid H$ is a pseudocontraction, then

$$
0 \leq \langle Gu_1 - Gu_2, u_1 - u_2 \rangle \leq \gamma \min \left(1, \frac{4}{\mu^2(G)} \right)
$$

(17)

with the lower-bound equating zero if and only if $u_1 = u_2$.

Proof. Take the relation proved in Theorem 5 $\langle y, u \rangle = \langle Gu + y_h, Kr - \varphi_t(y) \rangle$ under zero exogenous reference and initial conditions in (1) to yield

$$
0 < \mu^2(G) \langle u, u \rangle \leq \langle Gu, u \rangle = \langle Gu, Gu \rangle \leq \gamma < \infty.
$$

(18)
Since $G > 0$ then $G = G^*$, and one gets for $u = u_1 - u_2$

\[0 \leq \langle Gu_1 - Gu_2, u_1 - u_2 \rangle = \langle \tilde{G}u_1 - \tilde{G}u_2, \tilde{G}u_1 - \tilde{G}u_2 \rangle = \langle Gu_1, u_1 \rangle + \langle Gu_2, u_2 \rangle - \langle Gu_1, u_2 \rangle - \langle Gu_2, u_1 \rangle \leq 2 \gamma - \langle Gu_1, u_2 \rangle - \langle u_1, Gu_2 \rangle = 2 \gamma - \langle Gu_1, u_2 \rangle - \langle Gu_2, u_1 \rangle^* \]

implies that

\[0 \leq \max(0, \langle Gu_1, u_2 \rangle + \langle Gu_1, u_2 \rangle^*) \]

and $\langle u_1, u_2 \rangle + \langle u_1, u_2 \rangle^* \leq 2 \gamma / \mu^2(G)$. Assume that $G > 0$ is furthermore, a pseudocontraction on H. Then, $0 \leq \langle Gu_1 - Gu_2, u_1 - u_2 \rangle = \langle \tilde{G}u_1 - \tilde{G}u_2, \tilde{G}u_1 - \tilde{G}u_2 \rangle = \| u_1 - u_2 \|^2$

and, equivalently,

\[0 \leq \langle Gu_1 - Gu_2, u_1 - u_2 \rangle \leq \| u_1 - u_2 \|^2 \]

implies that

\[\langle u_1, u_2 \rangle + \langle u_1, u_2 \rangle^* \quad \langle u_1, u_2 \rangle + \langle u_1, u_2 \rangle^* \leq 2 \gamma / \mu^2(G) \]

and the following cases can occur.

(a) $0 \leq \langle Gu_1 - Gu_2, u_1 - u_2 \rangle \leq \min(\gamma, 2 \gamma / \mu^2(G)) - \langle u_1, u_2 \rangle - \langle u_1, u_2 \rangle^*$ if the controls u_1 and u_2 fulfill $0 < \langle u_1, u_2 \rangle + \langle u_1, u_2 \rangle^* < 2 \gamma / \mu^2(G)$,

(b) $0 \leq \langle Gu_1 - Gu_2, u_1 - u_2 \rangle \leq \min(\gamma, 2 \gamma / \mu^2(G)) - \langle u_1, u_2 \rangle - \langle u_1, u_2 \rangle^*$ if the controls u_1 and u_2 fulfill $0 < \langle u_1, u_2 \rangle + \langle u_1, u_2 \rangle^* < 0$.

Combining the three cases one gets that

\[0 \leq \langle Gu_1 - Gu_2, u_1 - u_2 \rangle \leq \gamma \min \left(1, \frac{4}{\mu^2(G)} \right) \]

with the lower-bound equating zero if and only if $u_1 = u_2$; that is $u = u_1 - u_2 = 0$.

Basically, Theorem 7 states that a strictly positive operator, which is also a pseudocontraction, subject to a feedback control law satisfying a Popov-type inequality keeps the boundedness of the input-output energy with a modified upper-bound which improves that associated to the Popov inequality if the minimum modulus of G satisfies $\mu(G) > 4$.

The following result guarantees the fulfillment of Theorem 5 if $G : H \to H$ is strictly positive and asymptotically pseudocontractive in the intermediate sense under a modified Popov-type inequality.

Theorem 8. Assume that

1. $G > 0$ is one-to-one, bounded, causal, and of closed range with minimum modulus $\mu(G) > \alpha$,
2. $G : H \to H$ is asymptotically pseudocontractive in the intermediate sense satisfying the constraint,

\[0 \leq \langle P_t \bar{y}_1 - P_t \bar{y}_2, P_t \bar{u}_1 - P_t \bar{u}_2 \rangle \leq \alpha \| P_t \bar{u}_1 - P_t \bar{u}_2 \|^2 \]

for some real convergent sequence $\{u_n\}_{n \in \Gamma}$ in $[\alpha, \infty)$ such that $\alpha_n \to \alpha \in [0, 1]$ as $t \to \infty$ and zero initial conditions and exogenous reference in (1), where

\[\bar{y}_t = y_{t+T} = \gamma_t y_{t+T} - P_t y, \quad \bar{u}_t = u_{t+T} - u_t = P_t u \]

are incremental values of y and u with $t, t + T(t) > \in T$ being adjacent elements in the strict ordering on T if such an indexing set is discrete and $[t, t + T]$ being a closed interval of nonzero constant Lebesgue measure T in Γ if such an indexing set is real.

3. If $\lim_{t \to \infty} \langle P_t y, P_t (\varphi_t (\bar{y})) + \alpha \| \bar{u} \|^2 \rangle \geq 0$.

Then, $u, y : \Gamma \to H$, and they are bounded, and, furthermore, $u(t) \to 0, y(t) \to 0$ as $T(t) \to \infty$ under a zero exogenous input and initial conditions.

Proof. Since $G : H \to H$ is asymptotically pseudocontractive in the intermediate sense

\[0 \leq \langle P_t \bar{y}_1 - P_t \bar{y}_2, P_t \bar{u}_1 - P_t \bar{u}_2 \rangle = \langle P_t \bar{y}_1 - P_t \bar{y}_2, P_t \bar{u}_1 - P_t \bar{u}_2 \rangle \leq \alpha \| P_t \bar{u}_1 - P_t \bar{u}_2 \|^2 \]

for $t \in \Gamma$.
for zero initial conditions and exogenous reference in (1). Note that these particular conditions do not modify the boundedness-type stability properties related to the injection of any bounded exogenous reference under bounded initial conditions and some real convergent sequence \(\{ \alpha_t \}_{t \in \Gamma} \) in \([\alpha, \infty)\) such that \(\alpha_t \to \alpha \in (0, 1) \) as \(t \in \Gamma \) \(\to \infty \). Since
\[
\liminf_{t \to \infty} \left(\langle P_t \varphi, P_t (\varphi) \rangle + \alpha_t \| \varphi \|_2 \right) = \liminf_{t \to \infty} \left(\alpha_t \| P_t \varphi \|_2 - \langle P_t \varphi, P_t \varphi \rangle \right) \geq 0,
\]
then one has
\[
0 \leq \mu^2 \left(\frac{1}{\alpha} \right) \| \varphi \|_2^2 = \mu^2 \left(\frac{1}{\alpha} \right) \| \varphi \|_2^2 \leq \alpha_t \| \varphi \|_2^2 \Longrightarrow \left(-\alpha_t \| \varphi \|_2^2 \leq \left(\frac{1}{\alpha} \right) \| \varphi \|_2^2 \leq 0 \right), \quad \forall t \in \Gamma
\]
so that, if \(\alpha = \lim_{t \to \infty} \alpha_t < \mu^2 \left(\frac{1}{\alpha} \right) \), then
\[
\limsup_{t \to \infty} \left(\frac{1}{\alpha} \right) \| \varphi \|_2^2 \leq 0 \quad \text{and} \quad u(t) \to 0 \quad \text{as} \quad t \to \infty. \quad u : \Gamma \to H \quad \text{is bounded since it is piecewise continuous with event\-bounded discontinuities, and} \quad T > 0 \quad \text{and finite. Since} \quad G \quad \text{on} \quad H \quad \text{and} \quad H \quad \text{restricted to} \quad H \quad \text{are stable,} \quad y : \Gamma \to H \quad \text{is also bounded and converges to zero.}
\]
A particular case of Theorem 8 of interest is as follows.

Corollary 9. Theorem 8 holds if the assumption 2 is replaced by \(G : H \to H \) being a pseudocontraction.

Proof. It follows since Theorem 8 holds, in particular, under the condition \(\alpha_t = \alpha = 1; \forall t \in \Gamma \).

If \(G : H \to H \) is strictly positive and contractive, we obtain the subsequent result.

Theorem 10. Assume that

1. \(G > 0 \) is one-to-one, bounded, causal, and of closed range.
2. \(G : H \to H \) satisfies the following positive-bounded and contractive constraints for some given \(\beta \in \Gamma \) and \(u : u_1 \to u_2 \):
\[
0 \leq \left\langle P_t \beta G \beta u_1 - P_t \beta G \beta u_2, P_t \beta u_1 - P_t \beta u_2 \right\rangle \leq M < \infty \quad \text{for} \quad \beta \in \Gamma
\]

Thus, the output of a single-input single-output linear time-invariant continuous-time dynamic system of \(n \)th order and initial state \(x(0) = x_0 \in \mathbb{R}^n \) under a piecewise continuous control with eventual isolated bounded discontinuities \(u : \mathbb{R} \to \mathbb{R} \cap H \), where \(H = L^2(\mathbb{R}_0^+) \equiv L^2[0, \infty) \) the Hilbert space of the square-integrable functions on \(\mathbb{R}_0^+ \), is
\[
y(t) = \int_0^t g(t, \tau) u(\tau) d\tau + c(t, x_0)
\]

Thus, the output of a single-input single-output linear time-invariant continuous-time dynamic system of \(n \)th order and initial state \(x(0) = x_0 \in \mathbb{R}^n \) under a piecewise continuous control with eventual isolated bounded discontinuities \(u : \mathbb{R} \to \mathbb{R} \cap H \), where \(H = L^2(\mathbb{R}_0^+) \equiv L^2[0, \infty) \) the Hilbert space of the square-integrable functions on \(\mathbb{R}_0^+ \), is
\[
y(t) = \int_0^t g(t, \tau) u(\tau) d\tau + c(t, x_0)
\]

Thus, the output of a single-input single-output linear time-invariant continuous-time dynamic system of \(n \)th order and initial state \(x(0) = x_0 \in \mathbb{R}^n \) under a piecewise continuous control with eventual isolated bounded discontinuities \(u : \mathbb{R} \to \mathbb{R} \cap H \), where \(H = L^2(\mathbb{R}_0^+) \equiv L^2[0, \infty) \) the Hilbert space of the square-integrable functions on \(\mathbb{R}_0^+ \), is
\[
y(t) = \int_0^t g(t, \tau) u(\tau) d\tau + c(t, x_0)
\]

Thus, the output of a single-input single-output linear time-invariant continuous-time dynamic system of \(n \)th order and initial state \(x(0) = x_0 \in \mathbb{R}^n \) under a piecewise continuous control with eventual isolated bounded discontinuities \(u : \mathbb{R} \to \mathbb{R} \cap H \), where \(H = L^2(\mathbb{R}_0^+) \equiv L^2[0, \infty) \) the Hilbert space of the square-integrable functions on \(\mathbb{R}_0^+ \), is
\[
y(t) = \int_0^t g(t, \tau) u(\tau) d\tau + c(t, x_0)
\]
where \(\Gamma = R_0^+ = \{ z \in R : z \geq 0 \} \), \(g : R \times R \to R \) is the impulse response, \(c(t, x_0) \) is the zero-input response (i.e., the response contribution due to initial conditions) for initial state \(x_0 \), and "*" stands for the convolution integral operator. Since the dynamic system is realizable, \(g(t, \tau) = 0 \) for \(\tau > t \). The complex function \(G : C \to C \) defined as \(G(s) = \mathcal{L}(g(t)) \) is the transfer function, where \(\mathcal{L} \) stands for the Laplace transform of the impulse response where it exists. After defining \(y(t) = 0 \) for \(t < 0 \), the input-output energy obeys the following relations by using twice Parseval theorem:

\[
E(t) = \int_0^t y(\tau) u(\tau) d\tau = \int_{-\infty}^{\infty} y(\tau) u_i(\tau) d\tau
\]

\[
= \frac{1}{2\pi} \int_{-\infty}^{\infty} Y(i\omega) U_i(-i\omega) d\omega = \langle y, u_i \rangle = \langle y, u_t \rangle
\]

\[
= \langle y_t, u \rangle = \langle y_t, u \rangle = \frac{1}{2\pi} (Y, U_i)
\]

\[
= \frac{1}{2\pi} \int_{-\infty}^{\infty} G(i\omega) U_i(i\omega) U_i(-i\omega) d\omega
\]

\[
+ \int_0^t c(\tau, x_0) u(\tau) d\tau
\]

\[
= \frac{1}{2\pi} \int_{-\infty}^{\infty} G(i\omega) |U_i(i\omega)|^2 d\omega
\]

\[
+ \int_0^t c(\tau, x_0) u(\tau) d\tau
\]

\[
= \frac{1}{2\pi} \langle GU_i, U_i \rangle + \int_0^t c(\tau, x_0) u(\tau) d\tau
\]

\[
= \frac{1}{2\pi} \langle G, |U_i|^2 \rangle + \int_0^t c(\tau, x_0) u(\tau) d\tau
\]

\[
\geq \frac{1}{2\pi} \left(\min_{\omega \in R_0^+} \text{Re} G(\omega) \right) \int_{-\infty}^{\infty} |U_i(i\omega)|^2 d\omega
\]

\[
= \left(\min_{\omega \in R_0^+} \text{Re} G(\omega) \right) \int_{-\infty}^{\infty} |u_t(\tau)|^2 d\tau
\]

\[
+ \int_0^t c(\tau, x_0) u(\tau) d\tau
\]

\[
= \left(\min_{\omega \in R_0^+} \text{Re} G(\omega) \right) \int_{-\infty}^{\infty} |u(\tau)|^2 d\tau
\]

\[
+ \int_0^t c(\tau, x_0) u(\tau) d\tau
\]

\[
= \left(\min_{\omega \in R_0^+} \text{Re} G(\omega) \right) (u_t, u_t) + \int_0^t c(\tau, x_0) u(\tau) d\tau
\]

\[
= \left(\min_{\omega \in R_0^+} \text{Re} G(\omega) \right) (u, u) + \int_0^t c(\tau, x_0) u(\tau) d\tau.
\]

where \(F(\omega) \) is the pointwise value at frequency \(\omega \) of \(F : C \to C \), the Fourier transform of \(f : R \to R \) provided that it exists with \(i = \sqrt{-1} \) being the complex unit. Note that, in the previous expressions, the integral expressions have been also denoted by inner products \(\langle \cdot, \cdot \rangle \) on the time interval \([0, t]\) for the given \(t \in R_0^+ \), all of them being equivalent to inner products of truncated functions for the given \(t \in R_0^+ \) on the Hilbert space \(L^2[0, \infty) \). Equivalently, integrals of complex Fourier transforms on the whole imaginary axis are got through Parseval's theorem and denoted by \(\langle GU_i, U_i \rangle \) involving the impulse response (i.e., the transfer function evaluated on the imaginary complex axis) of the system and the Fourier transform of the truncated input. Now, assume that the controller is

\[
u(t) = k(t) r(t) - \phi(t, y(t)); \quad \forall t \in R_0^+.
\]

\(r : R \to R \) is an exogenous reference signal which is piecewise continuous on \(R_0^+ \), and \(\phi : [0, t] \times R \to R \) is any piecewise continuous nonlinear time-varying function which satisfies the following integral-type constraint:

\[
\int_0^t \phi(\tau, y(\tau)) \gamma(\tau, y(\tau)) d\tau \geq \gamma(t, x_0), \quad \forall t \in R_0^+.
\]

then

\[
E(t) = \int_0^t y(\tau) u(\tau) d\tau
\]

\[
= \int_0^t y(\tau) k(\tau) r(\tau) d\tau - \int_0^t y(\tau) \phi(\tau, y(\tau)) d\tau
\]

\[
\leq \gamma(t, x_0) + \int_0^t y(\tau) k(\tau) r(\tau) d\tau.
\]

Note that any hodograph \(G(\omega) \) has the symmetry rules \(\text{Re} G(\omega) = \text{Re} G(-\omega) \) and \(\text{Im} G(\omega) = -\text{Im} G(-\omega) \). Also, \(\mu(\omega) \geq \min_{\omega \in R_0^+} \text{Re} G(\omega) > 0 \). Thus, one gets by combining (37) and (40)

\[
\left(\min_{\omega \in R_0^+} \text{Re} G(\omega) \right) \int_0^t |u(\tau)|^2 d\tau
\]

\[
+ \int_0^t c(\tau, x_0) u(\tau) d\tau
\]

\[
= \left(\min_{\omega \in R_0^+} \text{Re} G(\omega) \right) (u, u) + \int_0^t c(\tau, x_0) u(\tau) d\tau
\]

\[
\leq \gamma(t, x_0) + \int_0^t y(\tau) k(\tau) r(\tau) d\tau; \quad \forall t \in R_0^+.
\]

Decompose \([0, t] = I_{1e}(t) \cup I_{2e}(t)\) for each \(t \in R_0^+ \), where

\[
I_{1e}(t) = \{ \tau \in [0, t] : |u(\tau)| \leq e \},
\]

\[
I_{2e}(t) = \{ \tau \in [0, t] : |u(\tau)| > e \},
\]
for some given prefixed \(\epsilon \in \mathbb{R}_+ \). Note that one (but not both) of the disjoint sets \(I_{\epsilon}(t) \) for \(i = 1, 2 \) can be empty. Then, by direct calculation one gets the following:

\[
\left(\min_{\omega \in \mathbb{R}_+} \text{Re} G(\omega) \right) \int_0^t |u(\tau)|^2 d\tau + \int_0^t c(\tau, x_0) u(\tau) d\tau
\geq \left(\min_{\omega \in \mathbb{R}_+} \text{Re} G(\omega) \right) \int_0^t |u(\tau)|^2 d\tau - \epsilon \int_{I_{\epsilon}(t)} c(\tau, x_0) d\tau
+ \int_{I_{\epsilon}(t)} \frac{c(\tau, x_0)}{u(\tau)} |u(\tau)|^2 d\tau
\geq \left(\min_{\omega \in \mathbb{R}_+} \text{Re} G(\omega) - \epsilon^{-1} \max_{\tau \in \mathbb{R}_+} |c(\tau, x_0)| \right)
\times \left(\gamma(t, x_0) + \epsilon \int_{I_{\epsilon}(t)} c(\tau, x_0) d\tau \right),
\forall t \in \mathbb{R}_+.
\]

(43)

Assume that \(\sup_{\tau \in \mathbb{R}_+} |k(t)| \leq K \) and \(\sup_{\tau \in \mathbb{R}_+} |r(t)| \leq F \). Then, one gets from (41) and (43) that

\[
\int_0^t \left(|u(\tau)| - k(t) \max_{\omega \in \mathbb{R}_+} |G(\omega)| \right) |u(\tau)| d\tau
\leq \frac{1}{\min_{\omega \in \mathbb{R}_+} \text{Re} G(\omega) - \epsilon^{-1} \max_{\tau \in \mathbb{R}_+} |c(\tau, x_0)|}
\times \left(\gamma(t, x_0) + \epsilon \int_{I_{\epsilon}(t)} c(\tau, x_0) d\tau \right),
\forall t \in \mathbb{R}_+.
\]

(44)

This relation leads to the following result.

Proposition 11. Assume that

1. \(k, r \in L_{\infty}(\mathbb{R}_+) \) so that \(\sup_{\tau \in \mathbb{R}_+} |k(t)| \leq K < \infty \) and \(\sup_{\tau \in \mathbb{R}_+} |r(t)| \leq F < \infty \).
2. The transfer function \(G(s) \) is strongly strictly positive real; that is, \(\text{Re} G(s) > 0 \) for all complex \(s \) with \(\text{Re} s \geq 0 \).
3. \(+\infty > \lim_{t \to +\infty} \sup_{t \to +\infty} \gamma(t, x_0) \geq \liminf_{t \to +\infty} \gamma(t, x_0) > 0 ; \forall x_0 \in \mathbb{R}^n \).

Then, one gets the following properties for any given initial state \(x_0 \in \mathbb{R}^n \):

1. \(u, y \in L_{\infty}(\mathbb{R}_+) \).
2. \(\liminf_{t \to +\infty} \int_0^t y(\tau) k(\tau) r(\tau) d\tau > -\infty ; \liminf_{t \to +\infty} (u(\tau) - y(\tau) k(t) r(t)) \leq 0 \).
3. If \(|u(t)|^2 \geq \gamma(t) k(t) r(t) ; \forall t \in \mathbb{R}_+ \), then \(\lim_{t \to +\infty} (|u(t)|^2 - \gamma(t) k(t) r(t)) = 0 \). If, in addition, \(k(t) = k \) and \(r(t) = r \) are nonzero constants; \(\forall t \in \mathbb{R}_+ \), then \(\lim_{t \to +\infty} y(t) = y_{\infty} \) and \(\lim_{t \to -\infty} u(t) = u_{\infty} = k r \int_0^\infty g(\tau) d\tau \) and \(\lim_{t \to +\infty} y(t) = y_{\infty} = k r \int_0^\infty g(\tau) d\tau \).

(iv) if \(r \equiv 0 \), then \(u(t) \to 0 \) and \(y(t) \to 0 \) as \(t \to +\infty \) and are both square-integrable on \(\mathbb{R}_+ ; \forall x_0 \in \mathbb{R}^n \).

Thus, the closed-loop dynamic system (36), (38) is asymptotically hyperstable (i.e., globally asymptotically Lyapunov’s stable, [1–3]) since the state of any minimal state-space realization is also square-integrable on \(\mathbb{R}_+ \), and it converges asymptotically to zero as time tends to infinity for any controller device \(\varphi : [0, t] \times \mathbb{R} \to \mathbb{R} \) satisfying (39).

Proof. Since the transfer function \(G(s) \) is strictly positive real then it is strictly stable (i.e. all its poles are in \(\text{Re} s \leq -\rho < 0 \) for some \(\rho \in \mathbb{R}_+ \) and \(\text{Re} G(s) > 0 \) for all complex \(s \) with \(\text{Re} s \geq 0 \). Since it is, furthermore, strongly positive real (i.e., a strictly positive operator on \(L^2(\mathbb{R}_+) \)), and it is associated to a dynamic system, so that it is realizable, then it is rational with pole-zero excess is zero (otherwise, if the pole-zero excess was +1, then it could not be strictly positive real since \(\lim_{\omega \to +\infty} G(\omega) = 0 \), and if the pole-zero excess was -1 then it would not be realizable.) Since it has the same number of zeros and poles, and it is strongly strictly real, then its modulus is everywhere bounded in its definition domain, invertible, and of bounded inverse, so that one has

\[
0 < \min_{\omega \in \mathbb{R}_+} \text{Re} G(\omega) \leq \max_{\omega \in \mathbb{R}_+} |G(\omega)| < +\infty.
\]

(45)

Note that \(\int_0^t |c(\tau, x_0)| d\tau \leq \int_0^\infty |c(\tau, x_0)| d\tau = \psi(x_0) < +\infty \) since \(\lim_{t \to +\infty} \sup_{t \to +\infty} |c(\tau, x_0)| = 0 \) at exponential rate since the dynamic system is strictly stable. Since \(\epsilon \in \mathbb{R}_+ \) can be chosen arbitrarily to build the disjoint union \(I_{\epsilon}(t) \cup I_{\epsilon}(t) \) equalizing \([0, t] ; \forall t \in \mathbb{R}_+ \), then choose \(\epsilon \in |c(t, x_0)|/(\min_{\omega \in \mathbb{R}_+} G(\omega_0)) \). Now, assume that \(u : \mathbb{R} \to \mathbb{R} \) is unbounded. Since it is piecewise continuous with eventual bounded discontinuities, then \(\lim_{t \to +\infty} \int_0^t |u(\tau)| d\tau = \infty \) which implies that \(\int_0^t (|u(\tau)| - \epsilon) d\tau \to +\infty \) which is strictly increasing so that the subsequent contradiction follows

\[
+\infty = \lim_{t \to +\infty} \int_0^t \left(|u(\tau)| - k(t) \max_{\omega \in \mathbb{R}_+} |G(\omega)| \right) |u(\tau)| d\tau
\leq \frac{1}{\min_{\omega \in \mathbb{R}_+} \text{Re} G(\omega) - \epsilon^{-1} \max_{\tau \in \mathbb{R}_+} |c(\tau, x_0)|}
\times \left(\gamma(t, x_0) + \epsilon \int_{I_{\epsilon}(t)} c(\tau, x_0) d\tau \right) < +\infty,
\forall t \in \mathbb{R}_+.
\]

(46)

Thus, \(u \in L_{\infty}(\mathbb{R}_+) \). Since \(G(s) \) is strictly stable and \(u \in L_{\infty}(\mathbb{R}_+) \), then \(y \in L_{\infty}(\mathbb{R}_+) \). Property (i) has
been proved. On the other hand, if \(\liminf_{t \to \infty} (|u(t)|^2 - y(t)k(t)r(t)) > 0 \), then \(\lim_{t \to \infty} \int_0^t \left[|u(\tau)|^2 - y(\tau)k(\tau)r(\tau) \right] d\tau = +\infty \), and the above contradiction holds. Then, \(\lim_{t \to \infty} \int_0^t y(\tau)k(\tau)r(\tau) d\tau = -\infty \), then the subsequent contradiction follows

\[
0 \leq \lim_{t \to \infty} \int_0^t |u(\tau)|^2 d\tau \\
\leq \frac{1}{\min_{x \in R_0^+} \text{Re} G(i\omega) - \epsilon^{-1} \max_{x \in R_0^+} |c(t, x_0)|} \\
\times \left(y(t, x_0) + \epsilon \int_0^t |c(\tau, x_0)| + k(\tau) r(\tau) d\tau \right) \\
= -\infty, \quad \forall t \in R_0^+.
\]

Then, \(\lim_{t \to \infty} \int_0^t y(\tau)k(\tau)r(\tau) d\tau > -\infty \). Property (ii) has been proven.

Note that \(\exists \lim_{t \to \infty} (|u(t)|^2 - y(t)k(t)r(t)) = 0 \) if \(|u(t)|^2 \geq y(t)k(t)r(t) \); \(\forall t \in R_0^+ \) is a direct consequence of \(\lim_{t \to \infty} \int_0^t (|u(\tau)|^2 - y(\tau)k(\tau)r(\tau)) d\tau \leq 0 \) from Property (ii). This proves the first part of Property (iii). Also, if \(k(t) = k \) and \(r(t) = r \) are nonzero constants; \(\forall t \in R_0^+ \), then \(\lim_{t \to \infty} (|u(t)|^2 - y(t)k) = 0 \).

Now, if \(r(t) \) is identically zero in \(R_0^+ \), then

\[
\lim_{t \to \infty} \int_0^t |u(\tau)|^2 d\tau \\
\leq \frac{1}{\min_{x \in R_0^+} \text{Re} G(i\omega) - \epsilon^{-1} \max_{x \in R_0^+} |c(t, x_0)|} \\
\times \left(y(t, x_0) + \epsilon \int_0^t |c(\tau, x_0)| d\tau \right) < +\infty,
\]

\(\forall t \in R_0^+ \),

leads to \(\lim_{t \to \infty} y(t) = 0 \) exponentially and the \(\lim_{t \to \infty} y(t) = 0 \); \(\forall x_0 \in R^n \) since \(G(s) \) is strictly strongly positive real so that the internal state of any minimal state-space realization is uniformly bounded, and it converges asymptotically to zero as time tends to infinity. Thus, asymptotic hyperstability follows for any \(\varphi : [0, t] \times R \to R \) satisfying (38). As a result, Property (iv) has been proven.

\[
\sum_{j=0}^k g^d(k, j) u_j + c(k, x_0)
\]

\[
\sum_{j=-\infty}^\infty g^d(k, j) u_k(\tau) + c_k(\tau)
\]

\[
(g^d * u)(\tau) + c_k(\tau), \quad \forall k \in Z_0^+.
\]

where \(Z_0^+ = \{ z \in Z : z \geq 0 \} \), “\(\ast \)” stands for the discrete convolution operator, \(c_k(x_0) \equiv c_0(kT, x_0) \) and \(\{g^d(k, j)\}_{k,j \in Z_0^+} \) is the impulse response sequence since the dynamic system is realizable \(g^d(k, j) = 0 \) for \(j > k \). If this dynamic system is the same system as in the previous example subject to a piecewise control sequence \(\{u_k\}_{k \in Z_0^+} \), with \(u_k = u(kT); \forall k \in Z_0^+ \), then \(g^d(k, 0) = (1 - q^{-1})L^{-1}(G(s)/s)_{h=kT} ; \forall k \in Z_0^+ \) where \(q^{-1} \) is the one-step delay operator such that \(f_k = q^{-1} f_{k+1} \). In this case, the discrete controller is

\[
u_k = k r_k - \varphi_k(k, y_k); \quad \forall k \in Z_0^+.
\]
Proposition 12. Assume that
(a) \(k, r \in \ell_{\text{co}}(Z_{0+}) \) so that \(\sup_{k \in Z_{0+}} |k| \leq k < \infty \) and \(\sup_{k \in Z_{0+}} |r| \leq r < \infty \),
(b) the discrete function \(G^d(z) \) is strongly strictly positive real; that is, \(\Re G(z) > 0 \) for all complex \(z \) with \(|z| \geq 1 \).
(c) \(\lim_{k \to -\infty} \sup_{r \to \infty} \langle \eta_k(r) \rangle \eta_k(r) \geq \lim_{k \to -\infty} \inf_{r \to \infty} \langle \eta_k(r) \rangle \eta_k(r) \geq 0; \forall x_0 \in R^n \).

Then, one gets the following properties for any given initial state \(x_0 \in R^n \).

(i) \(u, y \in \ell_{\text{co}}(Z_{0+}) \).
(ii) \(\lim_{k \to -\infty} \inf_{r \to \infty} (\sum_{j=0}^{k} y_j^r) > -\infty; \lim_{k \to -\infty} (u_j^r - y_j^r) \leq 0. \)
(iii) \(\exists \lim_{k \to -\infty} \inf_{r \to \infty} (u_j^r - y_j^r) = 0. \) If, in addition, \(k_j = k \) and \(r_j = r \) are nonzero constants; \(j \in Z_{0+} \), then \(\exists \lim_{k \to -\infty} \inf_{r \to \infty} y_j^r = y_{\infty} \) and \(\exists \lim_{k \to -\infty} \inf_{r \to \infty} y_j^r = y_{\infty} = kr(\sum_{j=0}^{\infty} g_j) \).
(iv) \(\exists \lim_{k \to -\infty} \inf_{r \to \infty} y_j^r = y_{\infty} \). If \(r \equiv 0 \), then \(u_j \to 0 \) and \(y_j \to 0 \) as \(j \to \infty \), and they are both square-summable on \(Z_{0+}, \forall x_0 \in R^n \). Thus, the closed-loop discrete dynamic system (50)-(51) is asymptotically hyperstable for any controller device of output sequence \(\eta_k = \eta_k(k, y_j) \) \(k \in Z_{0+} \), satisfying the discrete summation inequality \(\sum_{j=0}^{k} \eta_j(k, y_j) y_j \geq -y_{k}(x_0); \forall k \in Z_{0+} \).

The following example links asymptotic hyperstability of a discrete dynamic system with a unique equilibrium point which is also a fixed point.

Example 3. Assume that, in Example 2, a feedback stabilizing discrete control law \(u_k = -\varphi_k(t, y_{i-1}) y_{i-1} \) satisfying the constraint \(\sum_{j=0}^{k} \eta_j(k, y_j) y_j \geq -y_{k}(x_0) \geq -y > 0; \forall j, t \in Z_{0+} \) is injected to the system (1), neglecting initial conditions, and equivalently if the initial conditions are zero (this assumption does not affect the stability study), we get
\[
P_t y = y_t = -(P_t G) u = -(P_t G \varphi_k(t, y_{i-1}) y_{i-1}) y = -y_{k}(t, y_{i-1}) P_{t+1}^{-1} y; \forall t \in Z_{0+},
\]
so that the closed-loop system can be described by the operator \(Q : H_{\ell}^2(Z_{0+}) \to H_{\ell}^2(Z_{0+}) \) represented as
\[
y_t = P_t Q y_{t-1} = -P_{t+1} G \varphi_k(t, y_{i-1}) y_{i-1}; \forall t \in Z_{0+},
\]
or, equivalently, as
\[
P_t (I + G \varphi_k(t, y_{i-1}) P_{t+1}^{-1}) y = 0; \forall t \in Z_{0+}.
\]
Assume that \(Q : \ell^2[0, z] \to \ell^2[0, z] \) for any \(z \in Z_+ \) is stable, positive, one-to-one, and of closed range. Then, \(Q : H_{\ell}^2(Z_{0+}) \to H_{\ell}^2(Z_{0+}) \), where \(H_{\ell} = \bigcup_{z \in Z_+} \ell^2[0, z] \)}
is positive, bounded and of closed range, invertible and of nonzero minimum modulus; and

\[0 \leq E(t) = \langle P_t Q P_{t-1} y, P_t y \rangle \leq y < \infty; \quad \forall t \in \mathbb{Z}_0^+. \quad (58) \]

Since \(E(t) \) is nonnegative, bounded, and nondecreasing, \(y_i \to 0 \) as \(t \to \infty \), and then \(n = -\varphi(t, y_{i-1}), y_{i-1} \to 0 \) as \(t \to \infty \). One gets for any given finite integer \(T > 0 \) that

\[
\lim_{t \to \infty} \langle P_t Q P_{t+T} - P_t u \rangle = \lim_{t \to -\infty} \langle P_t Q P_{t+T} - P_t y \rangle = 0.
\]

Thus, \(\mathcal{P}(T) \equiv 0 \in \mathcal{E}^2 [t, t+T] \) is the unique fixed point of \(Q : H^2 [t, t+T] \to H^2 [t+T, t+2T] \); \(\forall t \in \Gamma \).

Acknowledgments

The author is very grateful to the Spanish Government for its support of this research through Grant DPI2012-30651 and to the Basque Government for its support of this research through Grants IT378-10 and SAIOTEK S-PE12UN015. The author is also grateful to the University of the Basque Country for its financial support through Grant UFI2011/07.

References

