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Abstract. 
The main purpose of this paper is to establish a Hörmander multiplier theorem for Herz-type Hardy spaces associated with the Dunkl transform.


1. Introduction
 Let 
	
		
			

				𝑇
			

			

				𝑚
			

			
				(
				𝑓
				)
			

		
	
 be a multiplier operator defined in terms of Fourier transforms by 
	
		
			

				𝑇
			

			

				𝑚
			

			
				(
				𝑓
				)
				=
				ℱ
			

			
				−
				1
			

			
				(
				𝑚
				ℱ
				(
				𝑓
				)
				)
			

		
	
 for suitable functions 
	
		
			

				𝑓
			

		
	
. The multiplier theorem of Hörmander [1] gives a sufficient condition on 
	
		
			

				𝑚
			

		
	
 for the operator 
	
		
			

				𝑇
			

			

				𝑚
			

		
	
 to be bounded on 
	
		
			

				𝐿
			

			

				𝑝
			

			
				(
				ℝ
			

			

				𝑛
			

			

				)
			

		
	
 whenever 
	
		
			
				1
				<
				𝑝
				<
				∞
			

		
	
, namely, that 
	
		
			

				𝑚
			

		
	
 is a bounded 
	
		
			

				𝐶
			

			

				ℓ
			

		
	
-function on 
	
		
			

				ℝ
			

			

				𝑛
			

			
				⧵
				{
				0
				}
			

		
	
 satisfying the Hörmander condition 
	
		
			
				𝑀
				(
				2
				,
				ℓ
				)
			

		
	
 as follows:
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				
				
			

			
				𝑅
				2
				𝑅
			

			
				|
				|
				𝑚
			

			
				(
				𝑠
				)
			

			
				(
				|
				|
				𝜉
				)
			

			

				2
			

			
				
				𝑑
				𝜉
			

			
				1
				/
				2
			

			
				≤
				𝐶
				𝑅
			

			
				(
				𝑛
				+
				1
				)
				/
				2
				−
				𝑠
			

			
				,
				∀
				𝑅
				>
				0
				,
			

		
	

					where 
	
		
			

				ℓ
			

		
	
 is the least integer greater than 
	
		
			
				𝑛
				/
				2
			

		
	
 and 
	
		
			
				𝑠
				=
				0
				,
				1
				,
				…
				,
				ℓ
			

		
	
. In [2], the authors proved that if 
	
		
			

				𝑚
			

		
	
 satisfies the Hörmander condition with 
	
		
			
				ℓ
				>
				𝑛
				(
				1
				/
				𝑝
				−
				1
				/
				2
				)
			

		
	
, then 
	
		
			

				𝑇
			

			

				𝑚
			

		
	
 is bounded on the Hardy spaces 
	
		
			

				𝐻
			

			

				𝑝
			

			
				(
				ℝ
			

			

				𝑛
			

			

				)
			

		
	
 with 
	
		
			
				0
				<
				𝑝
				≤
				1
			

		
	
.
 In [3], the authors considered the following multiplier operator which is associated with the Dunkl transform: 
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			

				𝑇
			

			
				𝛼
				𝑚
			

			
				(
				𝑓
				)
				=
				ℱ
			

			
				𝛼
				−
				1
			

			
				
				𝑚
				ℱ
			

			

				𝛼
			

			
				
				,
				(
				𝑓
				)
			

		
	

					where 
	
		
			

				ℱ
			

			

				𝛼
			

		
	
 designs the Dunkl transform and using Hörmander’s technique proved the following theorem.
Theorem 1.  Let 
	
		
			

				ℓ
			

		
	
 be the least integer greater than 
	
		
			
				𝛼
				+
				1
			

		
	
 and let 
	
		
			

				𝑚
			

		
	
 be a bounded 
	
		
			

				𝐶
			

			

				ℓ
			

		
	
-function on 
	
		
			
				ℝ
				⧵
				{
				0
				}
			

		
	
 which satisfies the Hörmander condition 
	
		
			

				𝑀
			

			

				𝛼
			

			
				(
				2
				,
				ℓ
				)
			

		
	
 as follows:
							
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				
				
			

			
				𝑅
				2
				𝑅
			

			
				|
				|
				𝑚
			

			
				(
				𝑠
				)
			

			
				(
				|
				|
				𝜉
				)
			

			

				2
			

			
				𝑑
				𝜇
			

			

				𝛼
			

			
				(
				
				𝜉
				)
			

			
				1
				/
				2
			

			
				≤
				𝐶
				𝑅
			

			
				𝛼
				+
				1
				−
				𝑠
			

			
				,
				∀
				𝑅
				>
				0
				,
			

		
	

						where 
	
		
			

				𝐶
			

		
	
 is a constant independent of 
	
		
			

				𝑅
			

		
	
 and 
	
		
			
				𝑠
				=
				0
				,
				1
				,
				…
				,
				ℓ
			

		
	
. Then, the multiplier operator associated with the Dunkl transform can be extended to a bounded operator from 
	
		
			

				𝐿
			

			

				𝑝
			

			
				(
				𝜇
			

			

				𝛼
			

			

				)
			

		
	
 into itself for 
	
		
			
				1
				<
				𝑝
				<
				∞
			

		
	
, where 
	
		
			

				𝐿
			

			

				𝑝
			

			
				(
				𝜇
			

			

				𝛼
			

			

				)
			

		
	
 is the Lebesgue space on 
	
		
			

				ℝ
			

		
	
 with respect to the following measure:
							
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			

				𝜇
			

			

				𝛼
			

			
				
				2
				(
				𝑥
				)
				=
			

			
				𝛼
				+
				1
			

			
				
				Γ
				(
				𝛼
				+
				1
				)
			

			
				−
				1
			

			
				|
				𝑥
				|
			

			
				2
				𝛼
				+
				1
			

			
				,
				
				1
				𝛼
				>
				−
			

			
				
			
			
				2
				
				.
			

		
	

 The Hardy spaces associated with Herz spaces can be regarded as the local version at the origin of the classical Hardy spaces 
	
		
			

				𝐻
			

			

				𝑝
			

		
	
 and they are good substitutes for 
	
		
			

				𝐻
			

			

				𝑝
			

		
	
 when we study the boundedness of nontranslation invariant operators. To establish the boundedness of operators in hardy-type spaces on 
	
		
			

				ℝ
			

			

				𝑛
			

		
	
, one usually appeals to the atomic decomposition characterization of these spaces. In [4, 5], the authors studied the Herz-type Hardy spaces 
	
		
			
				𝐻
				̇
				𝐾
			

			
				𝛽
				,
				𝑝
				𝛼
				,
				2
			

		
	
 for the Dunkl operator in one-dimension and gave an atomic decomposition characterization of these spaces. The aim of this work is to prove the following Hörmander multiplier theorem on the spaces 
	
		
			
				𝐻
				̇
				𝐾
			

			
				𝛽
				,
				𝑝
				𝛼
				,
				2
			

		
	
.
Theorem 2.  Let 
	
		
			
				0
				<
				𝑝
				≤
				1
			

		
	
, 
	
		
			
				𝛽
				=
				(
				1
				/
				𝑝
				)
				−
				(
				1
				/
				2
				)
			

		
	
, and 
	
		
			

				ℓ
			

		
	
 be an integer greater than 
	
		
			
				2
				(
				𝛼
				+
				1
				)
				𝛽
			

		
	
. If 
	
		
			

				𝑚
			

		
	
 satisfies the Hörmander condition 
	
		
			

				𝑀
			

			

				𝛼
			

			
				(
				2
				,
				ℓ
				)
			

		
	
, then the operator 
	
		
			

				𝑇
			

			
				𝛼
				𝑚
			

		
	
 is bounded on 
	
		
			
				𝐻
				̇
				𝐾
			

			
				𝛽
				,
				𝑝
				𝛼
				,
				2
			

		
	
. 
The paper is organized as follows. In Section 2, we recall some results about harmonic analysis and Herz-type Hardy spaces associated with the Dunkl operator on 
	
		
			

				ℝ
			

		
	
. In Section 3, we give the proof of the main result of this work. Then, as an application, we obtain the boundedness of the generalized Hilbert transform on 
	
		
			
				𝐻
				̇
				𝐾
			

			
				𝛽
				,
				𝑝
				𝛼
				,
				2
			

		
	
.
Throughout this paper, let 
	
		
			
				𝑆
				(
				ℝ
				)
			

		
	
 be the usual Schwartz space and let 
	
		
			
				ℰ
				(
				ℝ
				)
			

		
	
 be the space of 
	
		
			

				𝐶
			

			

				∞
			

		
	
-functions on 
	
		
			

				ℝ
			

		
	
. We always use 
	
		
			

				𝐶
			

		
	
 to denote a positive constant that is independent of the main parameters involved but whose value may differ from line to line. We use the shorter notation 
	
		
			
				‖
				𝑓
				‖
			

			
				𝑝
				,
				𝛼
			

		
	
 instead of 
	
		
			
				‖
				𝑓
				‖
			

			

				𝐿
			

			

				𝑝
			

			
				(
				𝜇
			

			

				𝛼
			

			

				)
			

		
	
.
2. Preliminaries
  In this section, we recapitulate some results about harmonic analysis on Dunkl hypergroups and the Herz-type Hardy space and its atomic decomposition which will be used later. For details, the reader is referred to [6–8].
Let 
	
		
			
				𝛼
				>
				−
				1
				/
				2
			

		
	
. We consider the differential-difference operator introduced in [9] as follows: 
						
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			

				Λ
			

			

				𝛼
			

			
				(
				𝑓
				)
				(
				𝑥
				)
				=
				𝑑
				𝑓
			

			
				
			
			
				𝑑
				𝑥
				(
				𝑥
				)
				+
				2
				𝛼
				+
				1
			

			
				
			
			
				𝑥
				⋅
				𝑓
				(
				𝑥
				)
				−
				𝑓
				(
				−
				𝑥
				)
			

			
				
			
			
				2
				,
				𝑓
				∈
				ℰ
				(
				ℝ
				)
				,
			

		
	

					and call it the Dunkl operator. 
 For 
	
		
			
				𝜆
				∈
				ℂ
			

		
	
, the following initial value problem:
						
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			

				Λ
			

			

				𝛼
			

			
				(
				𝑓
				)
				(
				𝑥
				)
				=
				𝜆
				𝑓
				(
				𝑥
				)
				,
				𝑓
				(
				0
				)
				=
				1
				,
				𝑥
				∈
				ℝ
				,
			

		
	

					has a unique solution 
	
		
			

				𝐸
			

			

				𝛼
			

			
				(
				𝜆
				⋅
				)
			

		
	
 (called the Dunkl kernel) given by 
						
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			

				𝐸
			

			

				𝛼
			

			
				(
				𝑧
				)
				=
				𝑗
			

			

				𝛼
			

			
				𝑧
				(
				𝑖
				𝑧
				)
				+
			

			
				
			
			
				𝑗
				2
				(
				𝛼
				+
				1
				)
			

			
				𝛼
				+
				1
			

			
				(
				𝑖
				𝑧
				)
				,
				𝑧
				∈
				ℂ
				,
			

		
	

					where 
	
		
			

				𝑗
			

			

				𝛼
			

		
	
 is the normalized Bessel function of the first kind (with order 
	
		
			

				𝛼
			

		
	
) defined on 
	
		
			

				ℂ
			

		
	
 by 
						
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			

				𝑗
			

			

				𝛼
			

			
				(
				𝑧
				)
				=
				Γ
				(
				𝛼
				+
				1
				)
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			
				(
				−
				1
				)
			

			

				𝑛
			

			
				(
				𝑧
				/
				2
				)
			

			
				2
				𝑛
			

			
				
			
			
				.
				𝑛
				!
				Γ
				(
				𝑛
				+
				𝛼
				+
				1
				)
			

		
	

					The integral representation of 
	
		
			

				𝐸
			

			

				𝛼
			

		
	
 is given by 
						
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			

				𝐸
			

			

				𝛼
			

			
				(
				𝑖
				𝜆
				𝑥
				)
				=
				Γ
				(
				𝛼
				+
				1
				)
			

			
				
			
			

				√
			

			
				
			
			
				
				𝜋
				Γ
				(
				𝛼
				+
				(
				1
				/
				2
				)
				)
			

			
				1
				−
				1
			

			
				
				(
				1
				−
				𝑡
				)
				1
				−
				𝑡
			

			

				2
			

			

				
			

			
				𝛼
				−
				(
				1
				/
				2
				)
			

			

				𝑒
			

			
				−
				𝑖
				𝜆
				𝑥
				𝑡
			

			
				𝑑
				𝑡
				.
			

		
	

					From which, we get 
						
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				|
				|
				𝜕
			

			
				𝑛
				𝑥
			

			

				𝐸
			

			

				𝛼
			

			
				|
				|
				≤
				|
				|
				𝜆
				|
				|
				(
				𝑖
				𝜆
				𝑥
				)
			

			

				𝑛
			

			
				,
				𝜆
				,
				𝑥
				∈
				ℝ
				,
				𝑛
				∈
				ℕ
				.
			

		
	

 The  Dunkl transform 
	
		
			

				ℱ
			

			

				𝛼
			

		
	
, which was introduced by [10] and studied in [11], is defined for 
	
		
			
				𝑓
				∈
				𝐿
			

			

				1
			

			
				(
				𝜇
			

			

				𝛼
			

			

				)
			

		
	
 by 
						
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			

				ℱ
			

			

				𝛼
			

			
				
				(
				𝑓
				)
				(
				𝑥
				)
				=
			

			

				ℝ
			

			

				𝐸
			

			

				𝛼
			

			
				(
				−
				𝑖
				𝑥
				𝑦
				)
				𝑓
				(
				𝑦
				)
				𝑑
				𝜇
			

			

				𝛼
			

			
				(
				𝑦
				)
				,
				𝑥
				∈
				ℝ
				.
			

		
	

					This transform satisfies the following properties.(i)For all 
	
		
			
				𝑓
				∈
				𝐿
			

			

				1
			

			
				(
				𝜇
			

			

				𝛼
			

			

				)
			

		
	
, we have 
									
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				‖
				‖
				ℱ
			

			

				𝛼
			

			
				(
				‖
				‖
				𝑓
				)
			

			
				∞
				,
				𝛼
			

			
				≤
				‖
				𝑓
				‖
			

			
				1
				,
				𝛼
			

			

				.
			

		
	
(ii)For all 
	
		
			
				𝑓
				∈
				𝐿
			

			

				1
			

			
				(
				𝜇
			

			

				𝛼
			

			

				)
			

		
	
 such that 
	
		
			

				ℱ
			

			

				𝛼
			

			
				(
				𝑓
				)
				∈
				𝐿
			

			

				1
			

			
				(
				𝜇
			

			

				𝛼
			

			

				)
			

		
	
, we have the following inversion formula:
									
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			

				ℱ
			

			
				𝛼
				−
				1
			

			
				(
				𝑓
				)
				(
				𝑥
				)
				=
				ℱ
			

			

				𝛼
			

			
				(
				𝑓
				)
				(
				−
				𝑥
				)
				,
				a
				.
				e
				.
				𝑥
				∈
				ℝ
				.
			

		
	
(iii)For all 
	
		
			
				𝑓
				∈
				𝒮
				(
				ℝ
				)
			

		
	
,
									
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			

				ℱ
			

			

				𝛼
			

			
				
				Λ
			

			

				𝛼
			

			
				𝑓
				
				(
				𝑥
				)
				=
				𝑖
				𝑥
				ℱ
			

			

				𝛼
			

			
				(
				𝑓
				)
				(
				𝑥
				)
				.
			

		
	
(iv)
	
		
			

				ℱ
			

			

				𝛼
			

		
	
 is a topological isomorphism from 
	
		
			
				𝒮
				(
				ℝ
				)
			

		
	
 into itself. (v)
	
		
			

				ℱ
			

			

				𝛼
			

		
	
 is an isometric isomorphism of 
	
		
			

				𝐿
			

			

				2
			

			
				(
				𝜇
			

			

				𝛼
			

			

				)
			

		
	
, and we have the following Parseval formula: 
									
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			

				
			

			

				ℝ
			

			
				𝑓
				(
				𝑥
				)
			

			
				
			
			
				𝑔
				(
				𝑥
				)
				𝑑
				𝜇
			

			

				𝛼
			

			
				
				(
				𝑥
				)
				=
			

			

				ℝ
			

			

				ℱ
			

			

				𝛼
			

			
				(
				𝑓
				)
				(
				𝑥
				)
			

			
				
			
			

				ℱ
			

			

				𝛼
			

			
				(
				𝑔
				)
				(
				𝑥
				)
				𝑑
				𝜇
			

			

				𝛼
			

			
				‖
				‖
				ℱ
				(
				𝑥
				)
				,
			

			

				𝛼
			

			
				(
				‖
				‖
				𝑓
				)
			

			
				2
				,
				𝛼
			

			
				=
				‖
				𝑓
				‖
			

			
				2
				,
				𝛼
			

			

				.
			

		
	

The following lemma can be proved, similar to Lemma 7.25, page 343, in [12]. 
Lemma 3.  Let 
	
		
			

				ℓ
			

		
	
 be the least integer greater than 
	
		
			
				𝛼
				+
				1
			

		
	
. If 
	
		
			

				𝑚
			

		
	
 satisfies the Hörmander condition 
	
		
			

				𝑀
			

			

				𝛼
			

			
				(
				2
				,
				ℓ
				)
			

		
	
, then there is a constant 
	
		
			

				𝐶
			

		
	
 independent of 
	
		
			

				𝑚
			

		
	
, such that if 
	
		
			
				𝑞
				=
				1
			

		
	
 or 
	
		
			
				𝑠
				−
				ℓ
				+
				𝛼
				+
				1
				<
				(
				𝛼
				+
				1
				)
				/
				𝑞
				≤
				𝛼
				+
				1
			

		
	
, the following inequality holds: 
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			

				
			

			
				𝑅
				2
				𝑅
			

			
				|
				|
				𝑚
			

			
				(
				𝑠
				)
			

			
				|
				|
				(
				𝜉
				)
			

			
				2
				𝑞
			

			
				𝑑
				𝜇
			

			

				𝛼
			

			
				(
				𝜉
				)
				≤
				𝐶
				𝑅
			

			
				2
				(
				𝛼
				+
				1
				)
				−
				2
				𝑞
				𝑠
			

			
				,
				∀
				𝑅
				>
				0
				.
			

		
	

						Furthermore, in case 
	
		
			
				𝑠
				−
				ℓ
				+
				𝛼
				+
				1
				<
				0
			

		
	
, then 
	
		
			
				|
				𝑥
				|
			

			

				𝑠
			

			
				|
				𝑚
			

			
				(
				𝑠
				)
			

			
				(
				𝑥
				)
				|
				≤
				𝐶
			

		
	
 and 
	
		
			

				𝑚
			

			
				(
				𝑠
				)
			

		
	
 is continuous on 
	
		
			
				ℝ
				⧵
				{
				0
				}
			

		
	
. 
Notation. For all 
	
		
			
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				ℝ
			

		
	
, we put
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			

				𝑊
			

			

				𝛼
			

			
				
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				=
				1
				−
				𝜎
			

			
				𝑥
				,
				𝑦
				,
				𝑧
			

			
				+
				𝜎
			

			
				𝑧
				,
				𝑥
				,
				𝑦
			

			
				+
				𝜎
			

			
				𝑧
				,
				𝑦
				,
				𝑥
			

			
				
				Δ
			

			

				𝛼
			

			
				
				|
				|
				𝑦
				|
				|
				
				,
				|
				𝑥
				|
				,
				,
				|
				𝑧
				|
			

		
	

						where 
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			

				𝜎
			

			
				𝑥
				,
				𝑦
				,
				𝑧
			

			
				=
				⎧
				⎪
				⎨
				⎪
				⎩
				𝑥
			

			

				2
			

			
				+
				𝑦
			

			

				2
			

			
				−
				𝑧
			

			

				2
			

			
				
			
			
				Δ
				2
				𝑥
				𝑦
				,
				i
				f
				𝑥
				,
				𝑦
				∈
				ℝ
				⧵
				{
				0
				}
				,
				0
				,
				o
				t
				h
				e
				r
				w
				i
				s
				e
				,
			

			

				𝛼
			

			
				
				|
				|
				𝑦
				|
				|
				
				=
				⎧
				⎪
				⎪
				⎨
				⎪
				⎪
				⎩
				𝑑
				|
				𝑥
				|
				,
				,
				|
				𝑧
				|
			

			

				𝛼
			

			
				
				|
				|
				𝑦
				|
				|
				
				
				
				|
				𝑥
				|
				+
			

			

				2
			

			
				−
				𝑧
			

			

				2
			

			
				𝑧
				
				
			

			

				2
			

			
				−
				
				|
				|
				𝑦
				|
				|
				
				|
				𝑥
				|
				−
			

			

				2
			

			
				
				
			

			
				𝛼
				−
				1
				/
				2
			

			
				
			
			
				|
				|
				|
				|
				𝑥
				𝑦
				𝑧
			

			
				2
				𝛼
			

			
				,
				i
				f
				|
				𝑧
				|
				∈
				𝐴
			

			
				𝑥
				,
				𝑦
			

			
				,
				𝑑
				0
				,
				o
				t
				h
				e
				r
				w
				i
				s
				e
				,
			

			

				𝛼
			

			
				=
				2
			

			
				1
				−
				𝛼
			

			
				(
				Γ
				(
				𝛼
				+
				1
				)
				)
			

			

				2
			

			
				
			
			

				√
			

			
				
			
			
				,
				𝐴
				𝜋
				Γ
				(
				𝛼
				+
				1
				/
				2
				)
			

			
				𝑥
				,
				𝑦
			

			
				=
				
				|
				|
				|
				|
				𝑦
				|
				|
				|
				|
				,
				|
				|
				𝑦
				|
				|
				
				.
				|
				𝑥
				|
				−
				|
				𝑥
				|
				+
			

		
	

						The Dunkl translation operator 
	
		
			

				𝜏
			

			

				𝑥
			

		
	
, 
	
		
			
				𝑥
				∈
				ℝ
			

		
	
 is defined for a continuous function 
	
		
			

				𝑓
			

		
	
 on 
	
		
			

				ℝ
			

		
	
 by 
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			

				𝜏
			

			

				𝑥
			

			
				
				𝑓
				(
				𝑦
				)
				=
			

			

				ℝ
			

			
				𝑓
				(
				𝑧
				)
				𝑑
				𝛾
			

			
				𝑥
				,
				𝑦
			

			
				(
				𝑧
				)
				,
				𝑦
				∈
				ℝ
				,
			

		
	

						where 
	
		
			

				𝛾
			

			
				𝑥
				,
				𝑦
			

		
	
 is the signed measures given by 
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				𝑑
				𝛾
			

			
				𝑥
				,
				𝑦
			

			
				⎧
				⎪
				⎨
				⎪
				⎩
				𝑊
				(
				𝑧
				)
				=
			

			

				𝛼
			

			
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				𝑑
				𝜇
			

			

				𝛼
			

			
				(
				𝑧
				)
				,
				i
				f
				𝑥
				,
				𝑦
				∈
				ℝ
				⧵
				{
				0
				}
				,
				𝑑
				𝛿
			

			

				𝑥
			

			
				(
				𝑧
				)
				,
				i
				f
				𝑦
				=
				0
				,
				𝑑
				𝛿
			

			

				𝑦
			

			
				(
				𝑧
				)
				,
				i
				f
				𝑥
				=
				0
				.
			

		
	

						The operator 
	
		
			

				𝜏
			

			

				𝑥
			

		
	
 has the following properties. (i)For 
	
		
			
				𝑥
				,
				𝑦
				∈
				ℝ
			

		
	
 and a continuous function 
	
		
			

				𝑓
			

		
	
 on 
	
		
			

				ℝ
			

		
	
, we have 
										
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			

				𝜏
			

			

				𝑥
			

			
				(
				𝑓
				)
				(
				𝑦
				)
				=
				𝜏
			

			

				𝑦
			

			
				(
				𝑓
				)
				(
				𝑥
				)
				.
			

		
	
(ii)For all 
	
		
			
				𝑥
				∈
				ℝ
			

		
	
, the operator 
	
		
			

				𝜏
			

			

				𝑥
			

		
	
 can be extended to 
	
		
			

				𝐿
			

			

				𝑝
			

			
				(
				𝜇
			

			

				𝛼
			

			
				)
				(
				𝑝
				≥
				1
				)
			

		
	
, and for 
	
		
			
				𝑓
				∈
				𝐿
			

			

				𝑝
			

			
				(
				𝜇
			

			

				𝛼
			

			

				)
			

		
	
, we have 
										
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				‖
				‖
				𝜏
			

			

				𝑥
			

			
				(
				‖
				‖
				𝑓
				)
			

			
				𝑝
				,
				𝛼
			

			
				≤
				3
				‖
				𝑓
				‖
			

			
				𝑝
				,
				𝛼
			

			

				.
			

		
	
(iii)For all 
	
		
			
				𝑥
				,
				𝜆
				∈
				ℝ
			

		
	
 and 
	
		
			
				𝑓
				∈
				𝐿
			

			

				1
			

			
				(
				𝜇
			

			

				𝛼
			

			

				)
			

		
	
, we have 
										
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			

				ℱ
			

			

				𝛼
			

			
				
				𝜏
			

			

				𝑥
			

			
				
				(
				𝑓
				)
				(
				𝜆
				)
				=
				𝐸
			

			

				𝛼
			

			
				(
				𝑖
				𝜆
				𝑥
				)
				ℱ
			

			

				𝛼
			

			
				(
				𝑓
				)
				(
				𝜆
				)
				.
			

		
	
 Let 
	
		
			
				𝑝
				,
				𝑞
				,
				𝑟
				∈
				[
				1
				,
				∞
				]
			

		
	
 such that 
	
		
			
				1
				/
				𝑝
				+
				1
				/
				𝑞
				=
				1
				/
				𝑟
				+
				1
			

		
	
. The convolution product of 
	
		
			
				𝑓
				∈
				𝐿
			

			

				𝑝
			

			
				(
				𝜇
			

			

				𝛼
			

			

				)
			

		
	
 and 
	
		
			
				𝑔
				∈
				𝐿
			

			

				𝑞
			

			
				(
				𝜇
			

			

				𝛼
			

			

				)
			

		
	
 is defined by 
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				𝑓
				∗
			

			

				𝛼
			

			
				
				𝑔
				(
				𝑥
				)
				=
			

			

				ℝ
			

			

				𝜏
			

			

				𝑥
			

			
				(
				𝑓
				)
				(
				−
				𝑦
				)
				𝑔
				(
				𝑦
				)
				𝑑
				𝜇
			

			

				𝛼
			

			
				(
				𝑦
				)
				,
				a
				.
				e
				.
				𝑥
				,
			

		
	

						and we have 
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				‖
				‖
				𝑓
				∗
			

			

				𝛼
			

			
				𝑔
				‖
				‖
			

			
				𝑟
				,
				𝛼
			

			
				≤
				3
				‖
				𝑓
				‖
			

			
				𝑝
				,
				𝛼
			

			
				‖
				𝑔
				‖
			

			
				𝑞
				,
				𝛼
			

			

				.
			

		
	

						If 
	
		
			
				𝑓
				,
				𝑔
				∈
				𝐿
			

			

				1
			

			
				(
				𝜇
			

			

				𝛼
			

			

				)
			

		
	
, then 
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			

				ℱ
			

			

				𝛼
			

			
				
				𝑓
				∗
			

			

				𝛼
			

			
				𝑔
				
				=
				ℱ
			

			

				𝛼
			

			
				(
				𝑓
				)
				ℱ
			

			

				𝛼
			

			
				(
				𝑔
				)
				.
			

		
	

Now, let us recall the definition of the Herz-type Hardy space and its atomic decomposition. For 
	
		
			
				𝑁
				∈
				ℕ
			

		
	
 being sufficiently large, we denote by 
	
		
			

				𝐹
			

			

				𝑁
			

		
	
 the subset of 
	
		
			
				𝑆
				(
				ℝ
				)
			

		
	
 constituted by all those 
	
		
			
				𝜙
				∈
				𝑆
				(
				ℝ
				)
			

		
	
 such that 
	
		
			
				s
				u
				p
				p
				(
				𝜙
				)
				⊂
				[
				−
				1
				,
				1
				]
			

		
	
 and for all 
	
		
			
				𝑚
				,
				𝑛
				∈
				ℕ
			

		
	
 such that 
	
		
			
				𝑚
				,
				𝑛
				≤
				𝑁
			

		
	
, we have 
						
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			

				𝜌
			

			
				𝑚
				,
				𝑛
			

			
				(
				𝜙
				)
				=
				s
				u
				p
			

			
				𝑥
				∈
				ℝ
			

			
				(
				1
				+
				|
				𝑥
				|
				)
			

			

				𝑚
			

			
				|
				|
				Λ
			

			
				𝑛
				𝛼
			

			
				|
				|
				𝜙
				(
				𝑥
				)
				≤
				1
				.
			

		
	

					Moreover, the system of seminorms 
	
		
			
				{
				𝜌
			

			
				𝑚
				,
				𝑛
			

			

				}
			

			
				𝑚
				,
				𝑛
				∈
				ℕ
			

		
	
 generates the topology of 
	
		
			
				𝑆
				(
				ℝ
				)
			

		
	
.
Let 
	
		
			
				𝑓
				∈
				𝑆
			

			

				
			

			
				(
				ℝ
				)
			

		
	
. We define the 
	
		
			

				𝛼
			

		
	
-grand maximal function 
	
		
			

				𝐺
			

			

				𝛼
			

			
				(
				𝑓
				)
			

		
	
 of 
	
		
			

				𝑓
			

		
	
 by 
						
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			

				𝐺
			

			

				𝛼
			

			
				(
				𝑓
				)
				(
				𝑥
				)
				=
				s
				u
				p
			

			
				𝑡
				>
				0
				,
				𝜙
				∈
				𝐹
			

			

				𝑁
			

			
				|
				|
				𝜙
			

			

				𝑡
			

			

				∗
			

			

				𝛼
			

			
				|
				|
				𝑓
				(
				𝑥
				)
				,
				𝑥
				∈
				ℝ
				,
			

		
	

					where 
	
		
			

				𝜙
			

			

				𝑡
			

		
	
 is the dilation of 
	
		
			

				𝜙
			

		
	
 given by 
						
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			

				𝜙
			

			

				𝑡
			

			
				(
				𝑥
				)
				=
				𝑡
			

			
				−
				2
				(
				𝛼
				+
				1
				)
			

			
				𝜙
				
				𝑥
			

			
				
			
			
				𝑡
				
				,
				𝑥
				∈
				ℝ
				.
			

		
	

Definition 4. Let 
	
		
			
				𝛽
				∈
				ℝ
			

		
	
, 
	
		
			
				𝑝
				∈
				]
				0
				,
				∞
				[
			

		
	
, and 
	
		
			
				𝑞
				∈
				[
				1
				,
				∞
				]
			

		
	
.(i) The homogeneous weighted Herz space 
	
		
			
				̇
				𝐾
			

			
				𝛽
				,
				𝑝
				𝛼
				,
				𝑞
			

		
	
 is the space constituted by all functions 
	
		
			
				𝑓
				∈
				𝐿
			

			
				𝑞
				l
				o
				c
			

			
				(
				𝜇
			

			

				𝛼
			

			

				)
			

		
	
, such that
										
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				‖
				𝑓
				‖
			

			
				̇
				𝐾
			

			
				𝛽
				,
				𝑝
				𝛼
				,
				𝑞
			

			
				=
				
			

			

				∞
			

			

				
			

			
				𝑘
				=
				−
				∞
			

			

				2
			

			
				2
				(
				𝛼
				+
				1
				)
				𝛽
				𝑘
				𝑝
			

			
				‖
				‖
				𝑓
				𝜒
			

			

				𝑘
			

			
				‖
				‖
			

			
				𝑝
				𝑞
				,
				𝛼
			

			

				
			

			
				1
				/
				𝑝
			

			
				<
				∞
				,
			

		
	

									where 
	
		
			

				𝜒
			

			

				𝑘
			

		
	
 is the characteristic function of 
	
		
			

				𝐴
			

			

				𝑘
			

			
				=
				{
				𝑥
				∈
				ℝ
				/
				2
			

			
				𝑘
				−
				1
			

			
				≤
				|
				𝑥
				|
				≤
				2
			

			

				𝑘
			

			

				}
			

		
	
.(ii) The nonhomogeneous weighted Herz space 
	
		
			

				𝐾
			

			
				𝛽
				,
				𝑝
				𝛼
				,
				𝑞
			

		
	
 is defined, as usual, by 
	
		
			

				𝐾
			

			
				𝛽
				,
				𝑝
				𝛼
				,
				𝑞
			

			
				=
				𝐿
			

			

				𝑞
			

			
				(
				𝜇
			

			

				𝛼
			

			
				̇
				𝐾
				)
				∩
			

			
				𝛽
				,
				𝑝
				𝛼
				,
				𝑞
			

		
	
. Moreover, 
	
		
			
				‖
				𝑓
				‖
			

			

				𝐾
			

			
				𝛽
				,
				𝑝
				𝑞
				,
				𝛼
			

			
				=
				‖
				𝑓
				‖
			

			
				𝑞
				,
				𝛼
			

			
				+
				‖
				𝑓
				‖
			

			
				̇
				𝐾
			

			
				𝛽
				,
				𝑝
				𝛼
				,
				𝑞
			

		
	
.  Note that 
	
		
			
				̇
				𝐾
			

			
				0
				,
				𝑞
				𝛼
				,
				𝑞
			

			
				=
				𝐾
			

			
				0
				,
				𝑞
				𝛼
				,
				𝑞
			

			
				=
				𝐿
			

			

				𝑞
			

			
				(
				𝜇
			

			

				𝛼
			

			

				)
			

		
	
. 
Definition 5. Let 
	
		
			
				𝛽
				∈
				ℝ
			

		
	
, 
	
		
			
				𝑝
				∈
				]
				0
				,
				∞
				]
			

		
	
, and 
	
		
			
				𝑞
				∈
				]
				1
				,
				∞
				]
			

		
	
. The Herz-type Hardy space 
	
		
			
				𝐻
				̇
				𝐾
			

			
				𝛽
				,
				𝑝
				𝛼
				,
				𝑞
			

		
	
 is the space of distributions 
	
		
			
				𝑓
				∈
				𝑆
			

			

				
			

			
				(
				ℝ
				)
			

		
	
 such that 
	
		
			

				𝐺
			

			

				𝛼
			

			
				̇
				𝐾
				(
				𝑓
				)
				∈
			

			
				𝛽
				,
				𝑝
				𝛼
				,
				𝑞
			

		
	
. Moreover, we define 
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			
				‖
				𝑓
				‖
			

			
				𝐻
				̇
				𝐾
			

			
				𝛽
				,
				𝑝
				𝛼
				,
				𝑞
			

			
				=
				‖
				‖
				𝐺
			

			

				𝛼
			

			
				(
				‖
				‖
				𝑓
				)
			

			
				̇
				𝐾
			

			
				𝛽
				,
				𝑝
				𝛼
				,
				𝑞
			

			

				.
			

		
	

						In the same way, we define the space 
	
		
			
				𝐻
				𝐾
			

			
				𝛽
				,
				𝑝
				𝛼
				,
				𝑞
			

		
	
 for the non-homogeneous case. 
Definition 6. Let 
	
		
			
				𝑞
				∈
				]
				1
				,
				∞
				]
			

		
	
 and 
	
		
			
				𝛽
				≥
				1
				−
				1
				/
				𝑞
			

		
	
. A measurable function 
	
		
			

				𝑎
			

		
	
 on 
	
		
			

				ℝ
			

		
	
 is called a (central) 
	
		
			
				(
				𝛽
				,
				𝑞
				,
				𝑠
				)
			

		
	
-atom if it satisfies the following: (i)
	
		
			
				s
				u
				p
				p
				(
				𝑎
				)
				⊂
				[
				−
				𝑟
				,
				𝑟
				]
			

		
	
, for some 
	
		
			
				𝑟
				>
				0
			

		
	
,(ii)
	
		
			
				‖
				𝑎
				‖
			

			
				𝑞
				,
				𝛼
			

			
				≤
				𝑟
			

			
				−
				2
				(
				𝛼
				+
				1
				)
				𝛽
			

		
	
, (iii)
	
		
			

				∫
			

			

				ℝ
			

			
				𝑎
				(
				𝑥
				)
				𝑥
			

			

				𝑘
			

			
				𝑑
				𝜇
			

			

				𝛼
			

			
				(
				𝑥
				)
				=
				0
			

		
	
, 
	
		
			
				𝑘
				=
				0
				,
				1
				,
				…
				,
				𝑠
			

		
	
, where 
	
		
			
				𝑠
				=
				[
				2
				(
				𝛼
				+
				1
				)
				(
				𝛽
				−
				1
				+
				1
				/
				𝑞
				)
				]
			

		
	
 and 
	
		
			
				[
				⋅
				]
			

		
	
 denotes the integer part function. 
The following theorem is shown in [4]. 
Theorem 7.  Let 
	
		
			
				0
				<
				𝑝
				≤
				1
				<
				𝑞
				≤
				∞
			

		
	
 and 
	
		
			
				𝛽
				≥
				1
				−
				1
				/
				𝑞
			

		
	
. Then, 
	
		
			
				̇
				𝐾
				𝑓
				∈
				𝐻
			

			
				𝛽
				,
				𝑝
				𝛼
				,
				𝑞
			

		
	
 if and only if, for all 
	
		
			
				𝑗
				∈
				ℕ
				⧵
				{
				0
				}
			

		
	
, there exist a 
	
		
			
				(
				𝛽
				,
				𝑞
				,
				𝑠
				)
			

		
	
-atom 
	
		
			

				𝑎
			

			

				𝑗
			

		
	
 and 
	
		
			

				𝜆
			

			

				𝑗
			

			
				∈
				ℂ
			

		
	
, such that 
	
		
			

				∑
			

			
				∞
				𝑗
				=
				1
			

			
				|
				𝜆
			

			

				𝑗
			

			

				|
			

			

				𝑝
			

			
				<
				∞
			

		
	
 and 
	
		
			
				∑
				𝑓
				=
			

			
				∞
				𝑗
				=
				1
			

			

				𝜆
			

			

				𝑗
			

			

				𝑎
			

			

				𝑗
			

		
	
. Moreover, 
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			
				‖
				𝑓
				‖
			

			
				𝐻
				̇
				𝐾
			

			
				𝛽
				,
				𝑝
				𝛼
				,
				𝑞
			

			
				
				∼
				i
				n
				f
			

			

				∞
			

			

				
			

			
				𝑗
				=
				1
			

			
				|
				|
				𝜆
			

			

				𝑗
			

			
				|
				|
			

			

				𝑝
			

			

				
			

			
				1
				/
				𝑝
			

			

				,
			

		
	

						where the infimum is taking over all atomic decompositions of 
	
		
			

				𝑓
			

		
	
. 
 In the sequel, fix 
	
		
			
				𝑞
				=
				2
			

		
	
 and 
	
		
			
				𝛽
				=
				1
				/
				𝑝
				−
				1
				/
				2
			

		
	
.
Definition 8. For 
	
		
			
				0
				<
				𝑝
				≤
				1
			

		
	
. Set 
	
		
			
				𝑠
				≥
				[
				2
				(
				𝛼
				+
				1
				)
				(
				1
				/
				𝑝
				−
				1
				)
				]
			

		
	
, 
	
		
			
				𝜀
				>
				𝑠
				/
				2
				(
				𝛼
				+
				1
				)
			

		
	
, 
	
		
			
				1
				𝑎
				=
				1
				−
			

			
				
			
			
				𝑝
				+
				𝜀
			

		
	
, and 
	
		
			
				𝑏
				=
				1
				/
				2
				+
				𝜀
			

		
	
. A central 
	
		
			
				(
				𝑝
				,
				𝑠
				,
				𝜀
				)
			

		
	
-molecule is a function 
	
		
			
				𝑀
				∈
				𝐿
			

			

				2
			

			
				(
				𝜇
			

			

				𝛼
			

			

				)
			

		
	
 satisfying the following: (i)
	
		
			
				𝑀
				(
				𝑥
				)
				|
				𝑥
				|
			

			
				2
				(
				𝛼
				+
				1
				)
				𝑏
			

			
				∈
				𝐿
			

			

				2
			

			
				(
				𝜇
			

			

				𝛼
			

			

				)
			

		
	
, (ii)
	
		
			
				‖
				𝑀
				‖
			

			
				𝑎
				/
				𝑏
				2
				,
				𝛼
			

			
				‖
				𝑀
				(
				𝑥
				)
				|
				𝑥
				|
			

			
				2
				(
				𝛼
				+
				1
				)
				𝑏
			

			

				‖
			

			
				1
				−
				𝑎
				/
				𝑏
				2
				,
				𝛼
			

			
				≡
				𝑁
				(
				𝑀
				)
				<
				∞
			

		
	
, (iii)
	
		
			

				∫
			

			

				ℝ
			

			
				𝑀
				(
				𝑥
				)
				𝑥
			

			

				𝑘
			

			
				𝑑
				𝜇
			

			

				𝛼
			

			
				(
				𝑥
				)
				=
				0
			

		
	
, 
	
		
			
				𝑘
				=
				0
				,
				1
				,
				…
				,
				𝑠
			

		
	
. 
Proposition 9.  Let 
	
		
			
				(
				𝑝
				,
				𝑠
				,
				𝜀
				)
			

		
	
 be the triple cited in the previous definition. Every central 
	
		
			
				(
				𝑝
				,
				𝑠
				,
				𝜀
				)
			

		
	
-molecule 
	
		
			

				𝑀
			

		
	
 belongs to 
	
		
			
				𝐻
				̇
				𝐾
			

			
				𝛽
				,
				𝑝
				𝛼
				,
				2
			

		
	
 and 
	
		
			
				‖
				𝑀
				‖
			

			
				𝐻
				̇
				𝐾
			

			
				𝛽
				,
				𝑝
				𝛼
				,
				2
			

			
				≤
				𝐶
				𝑁
				(
				𝑀
				)
			

		
	
, where the constant 
	
		
			

				𝐶
			

		
	
 is independent of 
	
		
			

				𝑀
			

		
	
. 
 Proof. Let 
	
		
			

				𝑀
			

		
	
 be a central 
	
		
			
				(
				𝑝
				,
				𝑠
				,
				𝜀
				)
			

		
	
-molecule and suppose that 
	
		
			
				‖
				𝑀
				‖
			

			
				𝐻
				̇
				𝐾
			

			
				𝛽
				,
				𝑝
				𝛼
				,
				2
			

			
				=
				1
			

		
	
. In the general case, letting 
	
		
			

				∼
			

			
				𝑀
				=
				𝑀
				/
				‖
				𝑀
				‖
			

			
				𝐻
				̇
				𝐾
			

			
				𝛽
				,
				𝑝
				𝛼
				,
				2
			

		
	
, we have 
	
		
			

				‖
			

			

				∼
			

			
				𝑀
				‖
			

			
				𝐻
				̇
				𝐾
			

			
				𝛽
				,
				𝑝
				𝛼
				,
				2
			

			
				=
				1
			

		
	
.Let 
	
		
			

				𝐸
			

			

				0
			

			
				=
				{
				|
				𝑥
				|
				≤
				1
				}
			

		
	
, 
	
		
			

				𝐸
			

			

				𝑘
			

			
				=
				{
				2
			

			
				𝑘
				−
				1
			

			
				<
				|
				𝑥
				|
				≤
				2
			

			

				𝑘
			

			

				}
			

		
	
, and 
	
		
			

				𝑀
			

			

				𝑘
			

			
				=
				𝑀
				𝜒
			

			

				𝑘
			

		
	
, 
	
		
			
				𝑘
				=
				1
				,
				2
				,
				3
				,
				…
			

		
	
, where 
	
		
			

				𝜒
			

			

				𝑘
			

		
	
 is the characteristic function of 
	
		
			

				𝐸
			

			

				𝑘
			

		
	
. For each 
	
		
			

				𝑘
			

		
	
, there exists a unique polynomial 
	
		
			

				𝑄
			

			

				𝑘
			

		
	
, of degree at most 
	
		
			

				𝑠
			

		
	
, such that if 
	
		
			

				𝑃
			

			

				𝑘
			

			
				=
				𝑄
			

			

				𝑘
			

			

				𝜒
			

			

				𝑘
			

		
	
; then 
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			

				
			

			

				ℝ
			

			
				
				𝑀
			

			

				𝑘
			

			
				−
				𝑃
			

			

				𝑘
			

			
				
				𝑥
			

			

				𝑗
			

			
				𝑑
				𝜇
			

			

				𝛼
			

			
				(
				𝑥
				)
				=
				0
				,
				𝑗
				=
				0
				,
				1
				,
				…
				,
				𝑠
				.
			

		
	
Using some ideas in [2], we can show that each 
	
		
			
				(
				𝑀
			

			

				𝑘
			

			
				−
				𝑃
			

			

				𝑘
			

			

				)
			

		
	
 is a multiple of a central 
	
		
			
				(
				𝛽
				,
				2
				,
				𝑠
				)
			

		
	
-atom with a sequence of coefficients in 
	
		
			

				𝑙
			

			

				𝑝
			

		
	
. We also show that the sum 
	
		
			

				∑
			

			
				+
				∞
				𝑘
				=
				0
			

			

				𝑃
			

			

				𝑘
			

		
	
 can be written as an infinite linear combination of central 
	
		
			
				(
				𝛽
				,
				∞
				,
				𝑠
				)
			

		
	
-atom with a sequence of coefficients in 
	
		
			

				𝑙
			

			

				𝑝
			

		
	
. Since a 
	
		
			
				(
				𝛽
				,
				∞
				,
				𝑠
				)
			

		
	
-atom is also 
	
		
			
				(
				𝛽
				,
				2
				,
				𝑠
				)
			

		
	
-atom, hence, 
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				𝑀
				=
			

			
				+
				∞
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝑀
			

			

				𝑘
			

			

				=
			

			
				+
				∞
			

			

				
			

			
				𝑘
				=
				0
			

			
				
				𝑀
			

			

				𝑘
			

			
				−
				𝑃
			

			

				𝑘
			

			
				
				+
			

			
				+
				∞
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝑃
			

			

				𝑘
			

			

				=
			

			
				+
				∞
			

			

				
			

			
				𝑖
				=
				0
			

			

				𝜆
			

			

				𝑖
			

			

				𝑎
			

			

				𝑖
			

			

				,
			

		
	

						where 
	
		
			

				𝑎
			

			

				𝑖
			

		
	
 is a central 
	
		
			
				(
				𝛽
				,
				2
				,
				𝑠
				)
			

		
	
-atom and 
	
		
			

				∑
			

			
				+
				∞
				𝑘
				=
				0
			

			
				|
				𝜆
			

			

				𝑖
			

			

				|
			

			

				𝑝
			

			
				<
				∞
			

		
	
. It follows from Theorem 7 that 
	
		
			
				̇
				𝐾
				𝑀
				∈
				𝐻
			

			
				𝛽
				,
				𝑝
				𝛼
				,
				2
			

		
	
 and 
	
		
			
				‖
				𝑀
				‖
			

			
				𝐻
				̇
				𝐾
			

			
				𝛽
				,
				𝑝
				𝛼
				,
				2
			

			
				≤
				𝐶
				𝑁
				(
				𝑀
				)
			

		
	
. 
 The following Lemma plays an important role in the proof of the main result of this work.
Lemma 10.  Let 
	
		
			

				𝑎
			

		
	
 be a 
	
		
			
				(
				𝛽
				,
				2
				,
				𝑠
				)
			

		
	
-atom. For all integer 
	
		
			
				0
				≤
				𝑘
				≤
				𝑠
			

		
	
 and every 
	
		
			
				1
				≤
				𝑢
				≤
				∞
			

		
	
, there exists a constant 
	
		
			

				𝐶
			

		
	
 independent of 
	
		
			

				𝑎
			

		
	
, such that
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				(
				|
				|
				|
				
				ℱ
				i
				)
			

			

				𝛼
			

			
				(
				
				𝑎
				)
			

			
				(
				𝑘
				)
			

			
				(
				|
				|
				|
				|
				|
				𝑦
				|
				|
				𝑦
				)
				≤
				𝐶
			

			
				𝑠
				+
				1
				−
				𝑘
			

			
				‖
				𝑎
				‖
			

			
				𝐴
				2
				,
				𝛼
			

			
				,
				1
				𝐴
				=
				1
				−
			

			
				
			
			
				𝛽
				
				1
			

			
				
			
			
				2
				+
				𝑠
				+
				1
			

			
				
			
			
				
				‖
				‖
				‖
				
				
				ℱ
				2
				(
				𝛼
				+
				1
				)
				𝑦
				∈
				ℝ
				,
				(
				i
				i
				)
			

			

				𝛼
			

			
				
				(
				𝑎
				)
			

			
				(
				𝑘
				)
			

			
				
				(
				𝑦
				)
			

			

				2
			

			
				‖
				‖
				‖
			

			

				𝑢
			

			

				′
			

			
				,
				𝛼
			

			
				≤
				𝐶
				‖
				𝑎
				‖
			

			
				2
				−
				(
				1
				/
				𝛽
				)
				(
				(
				𝑘
				/
				𝛼
				+
				1
				)
				+
				(
				1
				/
				𝑢
				)
				)
				2
				,
				𝛼
			

			
				,
				1
			

			
				
			
			
				𝑢
				+
				1
			

			
				
			
			

				𝑢
			

			

				
			

			
				=
				1
				𝑦
				∈
				ℝ
				.
			

		
	

Proof. (i) Let 
	
		
			

				𝑎
			

		
	
 be a 
	
		
			
				(
				𝛽
				,
				2
				,
				𝑠
				)
			

		
	
-atom. Consider that 
	
		
			
				𝑟
				>
				0
			

		
	
 such that 
	
		
			
				s
				u
				p
				p
				(
				𝑎
				)
				⊂
				[
				−
				𝑟
				,
				𝑟
				]
			

		
	
 and that 
	
		
			
				‖
				𝑎
				‖
			

			
				2
				,
				𝛼
			

			
				≤
				𝑟
			

			
				−
				2
				(
				𝛼
				+
				1
				)
				𝛽
			

		
	
. From (9), (iii) of Definition (19), and the estimate for the remainder in Taylors’ formula, it follows that
							
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			
				
				ℱ
			

			

				𝛼
			

			
				
				(
				𝑎
				)
			

			
				(
				𝑘
				)
			

			
				(
				𝑦
				)
				=
				𝐶
			

			

				𝛼
			

			

				
			

			
				1
				−
				1
			

			
				
				
				(
				1
				−
				𝑡
				)
				1
				−
				𝑡
			

			

				2
			

			

				
			

			
				𝛼
				−
				1
				/
				2
			

			

				𝑡
			

			

				𝑘
			

			
				×
				
			

			
				𝑟
				−
				𝑟
			

			
				(
				𝑖
				𝑥
				)
			

			

				𝑘
			

			
				
				e
				x
				p
				(
				𝑖
				𝑥
				𝑦
				𝑡
				)
				−
			

			
				𝑠
				−
				𝑘
			

			

				
			

			
				𝑛
				=
				0
			

			
				(
				𝑖
				𝑥
				𝑦
				𝑡
				)
			

			

				𝑛
			

			
				
			
			
				
				𝑛
				!
				×
				𝑎
				(
				𝑥
				)
				𝑑
				𝜇
			

			

				𝛼
			

			
				
				|
				|
				𝑦
				|
				|
				(
				𝑥
				)
				𝑑
				𝑡
				≤
				𝐶
			

			
				𝑠
				+
				1
				−
				𝑘
			

			

				
			

			
				𝑟
				−
				𝑟
			

			
				|
				𝑥
				|
			

			
				𝑠
				+
				1
			

			
				|
				|
				|
				|
				𝑎
				(
				𝑥
				)
				𝑑
				𝜇
			

			

				𝛼
			

			
				|
				|
				𝑦
				|
				|
				(
				𝑥
				)
				≤
				𝐶
			

			
				𝑠
				+
				1
				−
				𝑘
			

			
				‖
				𝑎
				‖
			

			
				2
				,
				𝛼
			

			
				
				
			

			
				𝑟
				−
				𝑟
			

			
				|
				𝑥
				|
			

			
				2
				(
				𝑠
				+
				1
				)
			

			
				𝑑
				𝜇
			

			

				𝛼
			

			
				(
				
				𝑥
				)
			

			
				1
				/
				2
			

			
				|
				|
				𝑦
				|
				|
				≤
				𝐶
			

			
				𝑠
				+
				1
				−
				𝑘
			

			
				‖
				𝑎
				‖
			

			
				2
				,
				𝛼
			

			

				𝑟
			

			
				𝑠
				+
				𝛼
				+
				2
			

			

				.
			

		
	

						From (ii) of Definition (19), we obtain 
							
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			
				|
				|
				|
				
				ℱ
			

			

				𝛼
			

			
				(
				
				𝑎
				)
			

			
				(
				𝑘
				)
			

			
				(
				|
				|
				|
				|
				|
				𝑦
				|
				|
				𝑦
				)
				≤
				𝐶
			

			
				𝑠
				+
				1
				−
				𝑘
			

			
				‖
				𝑎
				‖
			

			
				𝐴
				2
				,
				𝛼
			

			
				,
				1
				𝐴
				=
				1
				−
			

			
				
			
			
				𝛽
				
				1
			

			
				
			
			
				2
				+
				𝑠
				+
				1
			

			
				
			
			
				
				.
				2
				(
				𝛼
				+
				1
				)
			

		
	

						(ii) For 
	
		
			
				𝑢
				=
				1
			

		
	
, 
							
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			
				
				ℱ
			

			

				𝛼
			

			
				
				(
				𝑎
				)
			

			
				(
				𝑘
				)
			

			
				
				(
				𝑦
				)
				=
			

			
				𝑟
				−
				𝑟
			

			

				𝜕
			

			
				𝑘
				𝑦
			

			

				𝐸
			

			

				𝛼
			

			
				(
				−
				𝑖
				𝑦
				𝑥
				)
				𝑎
				(
				𝑥
				)
				𝑑
				𝜇
			

			

				𝛼
			

			
				(
				𝑥
				)
				.
			

		
	

						Using (10), we get the following for all 
	
		
			
				𝑦
				∈
				ℝ
			

		
	
:
							
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			
				|
				|
				|
				
				ℱ
			

			

				𝛼
			

			
				
				(
				𝑎
				)
			

			
				(
				𝑘
				)
			

			
				|
				|
				|
				
				(
				𝑦
				)
				≤
				𝐶
			

			
				𝑟
				−
				𝑟
			

			
				|
				𝑥
				|
			

			

				𝑘
			

			
				|
				|
				𝑎
				|
				|
				(
				𝑥
				)
				𝑑
				𝜇
			

			

				𝛼
			

			
				
				
				(
				𝑥
				)
				≤
				𝐶
			

			
				𝑟
				−
				𝑟
			

			
				|
				|
				|
				|
				𝑎
				(
				𝑥
				)
			

			

				2
			

			
				𝑑
				𝜇
			

			

				𝛼
			

			
				
				(
				𝑥
				)
			

			
				1
				/
				2
			

			
				×
				
				
			

			
				𝑟
				−
				𝑟
			

			
				|
				𝑥
				|
			

			
				2
				𝑘
			

			
				𝑑
				𝜇
			

			

				𝛼
			

			
				
				(
				𝑥
				)
			

			
				1
				/
				2
			

			
				≤
				𝐶
				‖
				𝑎
				‖
			

			
				2
				,
				𝛼
			

			

				𝑟
			

			
				𝑘
				+
				𝛼
				+
				1
			

			

				.
			

		
	

						From (ii) of Definition (19), we obtain the following for all 
	
		
			
				𝑦
				∈
				ℝ
			

		
	
: 
							
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			
				|
				|
				|
				
				ℱ
			

			

				𝛼
			

			
				
				(
				𝑎
				)
			

			
				(
				𝑘
				)
			

			
				|
				|
				|
				(
				𝑦
				)
			

			

				2
			

			
				≤
				𝐶
				‖
				𝑎
				‖
			

			
				2
				−
				(
				1
				/
				𝛽
				)
				(
				𝑘
				/
				(
				𝛼
				+
				1
				)
				+
				1
				)
				2
				,
				𝛼
			

			

				.
			

		
	

						For 
	
		
			
				𝑢
				=
				∞
			

		
	
, 
							
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			

				
			

			

				ℝ
			

			
				|
				|
				|
				
				ℱ
			

			

				𝛼
			

			
				
				(
				𝑎
				)
			

			
				(
				𝑘
				)
			

			
				|
				|
				|
				(
				𝑥
				)
			

			

				2
			

			
				𝑑
				𝜇
			

			

				𝛼
			

			
				
				(
				𝑥
				)
				≤
				𝐶
			

			
				𝑟
				−
				𝑟
			

			
				|
				𝑥
				|
			

			
				2
				𝑘
			

			
				|
				|
				|
				|
				𝑎
				(
				𝑥
				)
			

			

				2
			

			
				𝑑
				𝜇
			

			

				𝛼
			

			
				(
				𝑥
				)
				≤
				𝐶
				𝑟
			

			
				2
				𝑘
			

			
				‖
				𝑎
				‖
			

			
				2
				2
				,
				𝛼
			

			
				≤
				𝐶
				‖
				𝑎
				‖
			

			
				2
				−
				(
				1
				/
				𝛽
				)
				(
				𝑘
				/
				(
				𝛼
				+
				1
				)
				)
				2
				,
				𝛼
			

			

				.
			

		
	

						For 
	
		
			
				1
				<
				𝑢
				<
				∞
			

		
	
,
							
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			

				
			

			

				ℝ
			

			
				|
				|
				|
				
				ℱ
			

			

				𝛼
			

			
				
				(
				𝑎
				)
			

			
				(
				𝑘
				)
			

			
				|
				|
				|
				(
				𝑦
				)
			

			
				2
				𝑢
			

			

				′
			

			
				𝑑
				𝜇
			

			

				𝛼
			

			
				=
				
				(
				𝑥
				)
			

			

				ℝ
			

			
				|
				|
				|
				
				ℱ
			

			

				𝛼
			

			
				
				(
				𝑎
				)
			

			
				(
				𝑘
				)
			

			
				|
				|
				|
				(
				𝑦
				)
			

			

				2
			

			
				|
				|
				|
				
				ℱ
			

			

				𝛼
			

			
				
				(
				𝑎
				)
			

			
				(
				𝑘
				)
			

			
				|
				|
				|
				(
				𝑦
				)
			

			
				2
				𝑢
			

			

				′
			

			
				−
				2
			

			
				𝑑
				𝜇
			

			

				𝛼
			

			
				(
				𝑥
				)
				≤
				𝐶
				‖
				𝑎
				‖
			

			
				(
				𝑢
			

			

				′
			

			
				−
				1
				)
				(
				2
				−
				(
				1
				/
				𝛽
				)
				(
				𝑘
				/
				(
				𝛼
				+
				1
				)
				)
				2
				,
				𝛼
			

			

				
			

			

				ℝ
			

			
				|
				|
				|
				
				ℱ
			

			

				𝛼
			

			
				
				(
				𝑎
				)
			

			
				(
				𝑘
				)
			

			
				|
				|
				|
				(
				𝑥
				)
			

			

				2
			

			
				𝑑
				𝜇
			

			

				𝛼
			

			
				(
				𝑥
				)
				≤
				𝐶
				‖
				𝑎
				‖
			

			

				𝑢
			

			

				′
			

			
				(
				2
				−
				(
				1
				/
				𝛽
				)
				(
				𝑘
				/
				(
				𝛼
				+
				1
				)
				+
				(
				1
				/
				𝑢
			

			

				′
			

			
				)
				)
				2
				,
				𝛼
			

			

				.
			

		
	

						Finally, we get the following for all 
	
		
			
				𝑦
				∈
				ℝ
			

		
	
: 
							
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			
				‖
				‖
				(
				(
				ℱ
			

			

				𝛼
			

			
				(
				𝑎
				)
				)
			

			
				(
				𝑘
				)
			

			
				(
				𝑦
				)
				)
			

			

				2
			

			
				‖
				‖
			

			

				𝑢
			

			

				′
			

			
				,
				𝛼
			

			
				≤
				𝐶
				‖
				𝑎
				‖
			

			
				2
				−
				(
				1
				/
				𝛽
				)
				(
				𝑘
				/
				(
				𝛼
				+
				1
				)
				+
				(
				1
				/
				𝑢
				)
				)
				2
				,
				𝛼
			

			

				.
			

		
	

3. Proof of Theorem 2
Let 
	
		
			
				0
				<
				𝑝
				≤
				1
			

		
	
 and 
	
		
			

				ℓ
			

		
	
 be an integer greater than 
	
		
			
				2
				(
				𝛼
				+
				1
				)
				𝛽
			

		
	
. Set 
	
		
			
				𝑠
				=
				[
				2
				(
				𝛼
				+
				1
				)
				(
				1
				/
				𝑝
				−
				1
				)
				]
			

		
	
, 
	
		
			
				𝜖
				=
				ℓ
				/
				2
				(
				𝛼
				+
				1
				)
				−
				(
				1
				/
				2
				)
			

		
	
, 
	
		
			
				𝑎
				=
				1
				−
				(
				1
				/
				𝑝
				)
				+
				𝜖
			

		
	
, and 
	
		
			
				𝑏
				=
				𝜖
				+
				(
				1
				/
				2
				)
			

		
	
.
We have 
	
		
			
				ℓ
				−
				1
				≥
				𝑠
			

		
	
; then, according to Proposition 9 to prove Theorem 2 it suffices to prove that, for any 
	
		
			
				(
				𝛽
				,
				2
				,
				ℓ
				)
			

		
	
-atom 
	
		
			

				𝑓
			

		
	
, 
	
		
			

				𝑇
			

			
				𝛼
				𝑚
			

			

				𝑓
			

		
	
 is a central 
	
		
			
				(
				𝑝
				,
				𝑠
				,
				𝜖
				)
			

		
	
-molecule with 
	
		
			
				𝑁
				(
				𝑇
			

			
				𝛼
				𝑚
			

			
				𝑓
				)
				<
				𝐶
			

		
	
 for some constant 
	
		
			

				𝐶
			

		
	
 independent of 
	
		
			

				𝑓
			

		
	
. In other words, we need to check that
						
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			
				(
				i
				)
				𝑇
			

			
				𝛼
				𝑚
			

			
				𝑓
				(
				𝜉
				)
				,
				𝑇
			

			
				𝛼
				𝑚
			

			
				|
				|
				𝜉
				|
				|
				𝑓
				(
				𝜉
				)
			

			

				ℓ
			

			
				∈
				𝐿
			

			

				2
			

			
				
				𝜇
			

			

				𝛼
			

			
				
				,
				‖
				‖
				𝑇
				(
				i
				i
				)
			

			
				𝛼
				𝑚
			

			
				𝑓
				‖
				‖
			

			
				𝑎
				/
				𝑏
				2
				,
				𝛼
			

			
				‖
				‖
				𝑇
			

			
				𝛼
				𝑚
			

			
				|
				|
				𝜉
				|
				|
				𝑓
				(
				𝜉
				)
			

			

				ℓ
			

			
				‖
				‖
			

			
				1
				−
				𝑎
				/
				𝑏
				2
				,
				𝛼
			

			
				
				𝑇
				≡
				𝑁
			

			
				𝛼
				𝑚
			

			
				𝑓
				
				
				<
				𝐶
				,
				(
				i
				i
				i
				)
			

			

				ℝ
			

			

				𝑇
			

			
				𝛼
				𝑚
			

			
				𝑓
				(
				𝜉
				)
				𝜉
			

			

				𝑗
			

			
				𝑑
				𝜇
			

			

				𝛼
			

			
				(
				𝜉
				)
				=
				0
				∀
				𝑗
				=
				0
				,
				1
				,
				…
				,
				𝑠
				.
			

		
	

					Firstly, we prove (i) and (ii).

	
		
			

				𝑚
			

		
	
 satisfies the Hörmander condition 
	
		
			

				𝑀
			

			

				𝛼
			

			
				(
				2
				,
				ℓ
				)
			

		
	
; then, by Theorem 1, there exists a constant 
	
		
			

				𝐶
			

		
	
 independent of 
	
		
			

				𝑓
			

		
	
, such that 
						
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			
				‖
				‖
				𝑇
			

			
				𝛼
				𝑚
			

			
				𝑓
				‖
				‖
			

			
				2
				,
				𝛼
			

			
				≤
				𝐶
				‖
				𝑓
				‖
			

			
				2
				,
				𝛼
			

			

				.
			

		
	

					From (14) and (13), we have 
						
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			

				Λ
			

			
				ℓ
				𝛼
			

			
				
				ℱ
			

			

				𝛼
			

			
				
				𝑇
			

			
				𝛼
				𝑚
			

			
				𝑓
				
				
				(
				𝜉
				)
				=
				ℱ
			

			

				𝛼
			

			
				
				(
				−
				𝑖
				𝑥
				)
			

			

				ℓ
			

			

				𝑇
			

			
				𝛼
				𝑚
			

			
				
				𝑓
				(
				𝑥
				)
				(
				𝜉
				)
				.
			

		
	

					Then, by Plancherel theorem to estimate 
	
		
			
				‖
				𝑇
			

			
				𝛼
				𝑚
			

			
				𝑓
				(
				𝜉
				)
				|
				𝜉
				|
			

			

				ℓ
			

			

				‖
			

			
				2
				,
				𝛼
			

		
	
, it suffices to estimate 
	
		
			
				‖
				Λ
			

			
				ℓ
				𝛼
			

			
				(
				𝑚
				ℱ
			

			

				𝛼
			

			
				(
				𝑓
				)
				)
				‖
			

			
				2
				,
				𝛼
			

		
	
, which turns out to prove that 
						
	
 		
 			
				(
				4
				7
				)
			
 		
	

	
		
			
				‖
				‖
				Λ
			

			
				ℓ
				𝛼
			

			
				
				𝑚
				ℱ
			

			

				𝛼
			

			
				(
				
				‖
				‖
				𝑓
				)
			

			
				2
				,
				𝛼
			

			
				≤
				𝐶
				‖
				𝑓
				‖
			

			
				1
				−
				(
				ℓ
				/
				2
				(
				𝛼
				+
				1
				)
				𝛽
				)
				2
				,
				𝛼
			

			

				.
			

		
	

By induction, we have 
						
	
 		
 			
				(
				4
				8
				)
			
 		
	

	
		
			

				Λ
			

			
				ℓ
				𝛼
			

			
				
				𝑚
				ℱ
			

			

				𝛼
			

			
				
				(
				𝑓
				)
				(
				𝜉
				)
				=
			

			

				𝑙
			

			

				
			

			
				𝑟
				=
				0
			

			

				𝑎
			

			

				𝑟
			

			

				𝜉
			

			
				𝑟
				−
				ℓ
			

			
				
				𝑚
				ℱ
			

			

				𝛼
			

			
				
				(
				𝑓
				)
			

			
				(
				𝑟
				)
			

			
				+
				(
				𝜉
				)
			

			

				𝑙
			

			

				
			

			
				𝑟
				=
				0
			

			

				𝑏
			

			

				𝑟
			

			

				𝜉
			

			
				𝑟
				−
				ℓ
			

			
				
				𝑚
				ℱ
			

			

				𝛼
			

			
				
				(
				𝑓
				)
			

			
				(
				𝑟
				)
			

			
				(
				−
				𝜉
				)
				,
			

		
	

					where 
	
		
			

				𝑎
			

			

				𝑟
			

		
	
 and 
	
		
			

				𝑏
			

			

				𝑟
			

		
	
 are constants. 
But, using Leibniz formula, we have the following for 
	
		
			
				𝑟
				∈
				{
				0
				,
				1
				,
				…
				,
				ℓ
				}
			

		
	
: 
						
	
 		
 			
				(
				4
				9
				)
			
 		
	

	
		
			
				
				𝑚
				ℱ
			

			

				𝛼
			

			
				
				(
				𝑓
				)
			

			
				(
				𝑟
				)
			

			
				(
				𝜉
				)
				=
			

			

				𝑟
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝐶
			

			
				𝑘
				𝑟
			

			
				
				ℱ
			

			

				𝛼
			

			
				
				(
				𝑓
				)
			

			
				(
				𝑘
				)
			

			
				(
				𝜉
				)
				(
				𝑚
				)
			

			
				(
				𝑟
				−
				𝑘
				)
			

			
				(
				𝜉
				)
				.
			

		
	

					So, to establish (47), it suffices to claim that 
						
	
 		
 			
				(
				5
				0
				)
			
 		
	

	
		
			
				‖
				‖
				𝜉
			

			
				𝑟
				−
				ℓ
			

			
				
				ℱ
			

			

				𝛼
			

			
				
				(
				𝑓
				)
			

			
				(
				𝑘
				)
			

			
				(
				𝜉
				)
				(
				𝑚
				)
			

			
				(
				𝑟
				−
				𝑘
				)
			

			
				‖
				‖
				(
				𝜉
				)
			

			
				2
				,
				𝛼
			

			
				≤
				𝐶
				‖
				𝑓
				‖
			

			
				1
				−
				(
				ℓ
				/
				2
				(
				𝛼
				+
				1
				)
				𝛽
				)
				2
				,
				𝛼
			

			
				f
				o
				r
				a
				l
				l
				i
				n
				t
				e
				g
				e
				r
				s
				0
				≤
				𝑘
				≤
				𝑟
				≤
				ℓ
				.
			

		
	

					For the case 
	
		
			
				𝑘
				=
				ℓ
			

		
	
, we use Lemma 10 (ii) with 
	
		
			
				𝑢
				=
				∞
			

		
	
 and Lemma 3 to get the following: 
						
	
 		
 			
				(
				5
				1
				)
			
 		
	

	
		
			
				‖
				‖
				𝜉
			

			
				𝑟
				−
				ℓ
			

			
				
				ℱ
			

			

				𝛼
			

			
				
				(
				𝑓
				)
			

			
				(
				𝑘
				)
			

			
				(
				𝜉
				)
				(
				𝑚
				)
			

			
				(
				𝑟
				−
				𝑘
				)
			

			
				‖
				‖
				(
				𝜉
				)
			

			
				2
				,
				𝛼
			

			
				‖
				‖
				
				ℱ
				≤
				𝐶
			

			

				𝛼
			

			
				
				(
				𝑓
				)
			

			
				(
				𝑘
				)
			

			
				‖
				‖
			

			
				2
				,
				𝛼
			

			
				≤
				𝐶
				‖
				𝑓
				‖
			

			
				1
				−
				(
				ℓ
				/
				2
				(
				𝛼
				+
				1
				)
				𝛽
				)
				2
				,
				𝛼
			

			

				.
			

		
	

					For 
	
		
			
				0
				≤
				𝑘
				<
				ℓ
			

		
	
, we have
						
	
 		
 			
				(
				5
				2
				)
			
 		
	

	
		
			
				‖
				‖
				𝜉
			

			
				𝑟
				−
				ℓ
			

			
				
				ℱ
			

			

				𝛼
			

			
				
				(
				𝑓
				)
			

			
				(
				𝑘
				)
			

			
				(
				𝜉
				)
				(
				𝑚
				)
			

			
				(
				𝑟
				−
				𝑘
				)
			

			
				‖
				‖
				(
				𝜉
				)
			

			
				2
				2
				,
				𝛼
			

			
				=
				
			

			
				𝑗
				∈
				ℤ
			

			

				
			

			

				2
			

			

				𝑗
			

			
				<
				|
				𝜉
				|
				<
				2
			

			
				𝑗
				+
				1
			

			
				|
				|
				𝜉
				|
				|
			

			
				2
				(
				𝑟
				−
				ℓ
				)
			

			
				|
				|
				|
				
				ℱ
			

			

				𝛼
			

			
				
				(
				𝑓
				)
			

			
				(
				𝑘
				)
			

			
				|
				|
				|
				(
				𝜉
				)
			

			

				2
			

			
				×
				|
				|
				(
				𝑚
				)
			

			
				(
				𝑟
				−
				𝑘
				)
			

			
				|
				|
				(
				𝜉
				)
			

			

				2
			

			
				𝑑
				𝜇
			

			

				𝛼
			

			
				(
				𝜉
				)
				=
				𝑆
			

			

				1
			

			
				+
				𝑆
			

			

				2
			

			

				,
			

		
	

					where
						
	
 		
 			
				(
				5
				3
				)
			
 		
	

	
		
			

				𝑆
			

			

				1
			

			

				=
			

			

				𝑗
			

			

				0
			

			

				
			

			
				𝑗
				=
				−
				∞
			

			

				
			

			

				2
			

			

				𝑗
			

			
				<
				|
				𝜉
				|
				<
				2
			

			
				𝑗
				+
				1
			

			
				|
				|
				𝜉
				|
				|
			

			
				2
				(
				𝑟
				−
				ℓ
				)
			

			
				|
				|
				|
				
				ℱ
			

			

				𝛼
			

			
				
				(
				𝑓
				)
			

			
				(
				𝑘
				)
			

			
				|
				|
				|
				(
				𝜉
				)
			

			

				2
			

			
				×
				|
				|
				(
				𝑚
				)
			

			
				(
				𝑟
				−
				𝑘
				)
			

			
				|
				|
				(
				𝜉
				)
			

			

				2
			

			
				𝑑
				𝜇
			

			

				𝛼
			

			
				𝑆
				(
				𝜉
				)
				,
			

			

				2
			

			

				=
			

			
				+
				∞
			

			

				
			

			
				𝑗
				=
				𝑗
			

			

				0
			

			
				+
				1
			

			

				
			

			

				2
			

			

				𝑗
			

			
				<
				|
				𝜉
				|
				<
				2
			

			
				𝑗
				+
				1
			

			
				|
				|
				𝜉
				|
				|
			

			
				2
				(
				𝑟
				−
				ℓ
				)
			

			
				|
				|
				|
				
				ℱ
			

			

				𝛼
			

			
				
				(
				𝑓
				)
			

			
				(
				𝑘
				)
			

			
				|
				|
				|
				(
				𝜉
				)
			

			

				2
			

			
				×
				|
				|
				(
				𝑚
				)
			

			
				(
				𝑟
				−
				𝑘
				)
			

			
				|
				|
				(
				𝜉
				)
			

			

				2
			

			
				𝑑
				𝜇
			

			

				𝛼
			

			
				(
				𝜉
				)
				,
			

		
	

					and 
	
		
			

				𝑗
			

			

				0
			

		
	
 is the integer, such that 
						
	
 		
 			
				(
				5
				4
				)
			
 		
	

	
		
			

				2
			

			
				2
				(
				𝛼
				+
				1
				)
				𝑗
			

			

				0
			

			
				<
				‖
				𝑓
				‖
			

			
				1
				/
				𝛽
				2
				,
				𝛼
			

			
				≤
				2
			

			
				2
				(
				𝛼
				+
				1
				)
				(
				𝑗
			

			

				0
			

			
				+
				1
				)
			

			

				.
			

		
	

					Firstly, we estimate 
	
		
			

				𝑆
			

			

				1
			

		
	
. 
Using (i) of Lemma 10 and the fact that 
	
		
			

				𝑚
			

		
	
 satisfies the Hörmander condition 
	
		
			

				𝑀
			

			

				𝛼
			

			
				(
				2
				,
				ℓ
				)
			

		
	
, we get 
						
	
 		
 			
				(
				5
				5
				)
			
 		
	

	
		
			

				
			

			

				2
			

			

				𝑗
			

			
				<
				|
				𝜉
				|
				<
				2
			

			
				𝑗
				+
				1
			

			
				|
				|
				𝜉
				|
				|
			

			
				2
				(
				𝑟
				−
				ℓ
				)
			

			
				|
				|
				|
				
				ℱ
			

			

				𝛼
			

			
				
				(
				𝑓
				)
			

			
				(
				𝑘
				)
			

			
				|
				|
				|
				(
				𝜉
				)
			

			

				2
			

			
				|
				|
				(
				𝑚
				)
			

			
				(
				𝑟
				−
				𝑘
				)
			

			
				|
				|
				(
				𝜉
				)
			

			

				2
			

			
				𝑑
				𝜇
			

			

				𝛼
			

			
				(
				𝜉
				)
				≤
				𝐶
				‖
				𝑓
				‖
			

			
				2
				−
				(
				1
				/
				𝛽
				)
				(
				ℓ
				/
				(
				𝛼
				+
				1
				)
				+
				1
				)
				2
				,
				𝛼
			

			
				×
				
			

			

				2
			

			

				𝑗
			

			
				<
				|
				𝜉
				|
				<
				2
			

			
				𝑗
				+
				1
			

			
				|
				|
				𝜉
				|
				|
			

			
				2
				(
				𝑟
				+
				1
				−
				𝑘
				)
			

			
				|
				|
				(
				𝑚
				)
			

			
				(
				𝑟
				−
				𝑘
				)
			

			
				|
				|
				(
				𝜉
				)
			

			

				2
			

			
				𝑑
				𝜇
			

			

				𝛼
			

			
				(
				𝜉
				)
				≤
				𝐶
				‖
				𝑓
				‖
			

			
				2
				−
				(
				1
				/
				𝛽
				)
				(
				ℓ
				/
				(
				𝛼
				+
				1
				)
				+
				1
				)
				2
				,
				𝛼
			

			

				2
			

			
				2
				(
				𝛼
				+
				1
				)
				𝑗
			

			

				.
			

		
	

					By (54), we obtain
						
	
 		
 			
				(
				5
				6
				)
			
 		
	

	
		
			

				𝑆
			

			

				1
			

			
				≤
				𝐶
				‖
				𝑓
				‖
			

			
				2
				−
				(
				1
				/
				𝛽
				)
				(
				ℓ
				/
				(
				𝛼
				+
				1
				)
				+
				1
				)
				2
				,
				𝛼
			

			

				2
			

			
				2
				(
				𝛼
				+
				1
				)
				𝑗
			

			

				0
			

			
				≤
				𝐶
				‖
				𝑓
				‖
			

			
				2
				−
				(
				ℓ
				/
				(
				𝛼
				+
				1
				)
				𝛽
				)
				2
				,
				𝛼
			

			

				.
			

		
	

					Now, we estimate 
	
		
			

				𝑆
			

			

				2
			

		
	
. By Holder’s inequality, we have 
						
	
 		
 			
				(
				5
				7
				)
			
 		
	

	
		
			

				
			

			

				2
			

			

				𝑗
			

			
				<
				|
				𝜉
				|
				<
				2
			

			
				𝑗
				+
				1
			

			
				|
				|
				𝜉
				|
				|
			

			
				2
				(
				𝑟
				−
				ℓ
				)
			

			
				|
				|
				|
				
				ℱ
			

			

				𝛼
			

			
				
				(
				𝑓
				)
			

			
				(
				𝑘
				)
			

			
				|
				|
				|
				(
				𝜉
				)
			

			

				2
			

			
				|
				|
				(
				𝑚
				)
			

			
				(
				𝑟
				−
				𝑘
				)
			

			
				|
				|
				(
				𝜉
				)
			

			

				2
			

			
				𝑑
				𝜇
			

			

				𝛼
			

			
				(
				𝜉
				)
				≤
				2
			

			
				2
				𝑗
				(
				𝑟
				−
				ℓ
				)
			

			
				
				
			

			

				2
			

			

				𝑗
			

			
				<
				|
				𝜉
				|
				<
				2
			

			
				𝑗
				+
				1
			

			
				|
				|
				|
				
				ℱ
			

			

				𝛼
			

			
				
				(
				𝑓
				)
			

			
				(
				𝑘
				)
			

			
				|
				|
				|
				(
				𝜉
				)
			

			
				2
				𝑢
			

			

				′
			

			
				𝑑
				𝜇
			

			

				𝛼
			

			
				
				(
				𝜉
				)
			

			
				1
				/
				𝑢
			

			

				′
			

			
				×
				
				
			

			

				2
			

			

				𝑗
			

			
				<
				|
				𝜉
				|
				<
				2
			

			
				𝑗
				+
				1
			

			
				|
				|
				(
				𝑚
				)
			

			
				(
				𝑟
				−
				𝑘
				)
			

			
				|
				|
				(
				𝜉
				)
			

			
				2
				𝑢
			

			
				𝑑
				𝜇
			

			

				𝛼
			

			
				
				(
				𝜉
				)
			

			
				1
				/
				𝑢
			

			

				.
			

		
	

					Using (ii) of Lemmas 10 and 3, we get 
						
	
 		
 			
				(
				5
				8
				)
			
 		
	

	
		
			

				𝑆
			

			

				2
			

			
				≤
				𝐶
				‖
				𝑓
				‖
			

			
				2
				−
				(
				1
				/
				𝛽
				)
				(
				(
				𝑘
				/
				(
				𝛼
				+
				1
				)
				)
				+
				(
				1
				/
				𝑢
				)
				)
				2
				,
				𝛼
				+
				∞
			

			

				
			

			
				𝑗
				=
				𝑗
			

			

				0
			

			
				+
				1
			

			
				
				2
			

			
				(
				2
				(
				𝛼
				+
				1
				)
				/
				𝑢
				)
				−
				2
				(
				ℓ
				−
				𝑘
				)
			

			

				
			

			

				𝑗
			

			

				.
			

		
	

					To guarantee the convergence of this summation, we choose the pair 
	
		
			
				(
				𝑘
				,
				𝑢
				)
			

		
	
 as follows:(a)if 
	
		
			
				𝑙
				−
				𝑘
				>
				𝛼
				+
				1
			

		
	
, we choose 
	
		
			
				𝑢
				=
				1
			

		
	
;(b)if 
	
		
			
				0
				<
				𝑙
				−
				𝑘
				≤
				𝛼
				+
				1
			

		
	
 and 
	
		
			
				𝑘
				>
				𝛼
				+
				1
			

		
	
, we choose 
	
		
			
				𝑢
				=
				∞
			

		
	
;(c)if 
	
		
			
				0
				<
				𝑙
				−
				𝑘
				≤
				𝛼
				+
				1
			

		
	
 and 
	
		
			
				𝑘
				≤
				𝛼
				+
				1
			

		
	
, we choose 
	
		
			
				0
				<
				𝑢
				<
				∞
			

		
	
such that 
	
		
			
				𝑘
				>
				(
				𝛼
				+
				1
				)
				(
				1
				−
				(
				1
				/
				𝑢
				)
				)
			

		
	
.
Furthermore, by (54), we get 
						
	
 		
 			
				(
				5
				9
				)
			
 		
	

	
		
			

				𝑆
			

			

				2
			

			
				≤
				𝐶
				‖
				𝑓
				‖
			

			
				2
				−
				(
				1
				/
				𝛽
				)
				(
				𝑘
				/
				(
				𝛼
				+
				1
				)
				+
				(
				1
				/
				𝑢
				)
				)
				2
				,
				𝛼
			

			
				
				2
			

			
				(
				2
				(
				𝛼
				+
				1
				)
				/
				𝑢
				)
				−
				2
				(
				ℓ
				−
				𝑘
				)
			

			

				
			

			

				𝑗
			

			

				0
			

			
				+
				1
			

			
				≤
				𝐶
				‖
				𝑓
				‖
			

			
				2
				−
				(
				ℓ
				/
				(
				𝛼
				+
				1
				)
				𝛽
				)
				2
				,
				𝛼
			

			

				.
			

		
	

Finally, combining (56) and (59), we obtain (47). (i) and (ii) are hence proved.
To prove (iii), it suffices to prove that 
	
		
			

				𝑇
			

			
				𝛼
				𝑚
			

			
				𝑓
				(
				𝜉
				)
				𝜉
			

			

				𝑗
			

			
				∈
				𝐿
			

			

				1
			

			
				(
				𝜇
			

			

				𝛼
			

			

				)
			

		
	
 for all integer 
	
		
			
				0
				≤
				𝑗
				≤
				𝑠
			

		
	
 and 
	
		
			

				Λ
			

			
				𝑗
				𝛼
			

			
				(
				𝑚
				ℱ
			

			

				𝛼
			

			
				(
				𝑓
				)
				)
				(
				0
				)
				=
				0
			

		
	
: indeed if 
	
		
			

				𝑇
			

			
				𝛼
				𝑚
			

			
				𝑓
				(
				𝜉
				)
				𝜉
			

			

				𝑗
			

			
				∈
				𝐿
			

			

				1
			

			
				(
				𝜇
			

			

				𝛼
			

			

				)
			

		
	
 according to (14), which we have 
	
		
			

				Λ
			

			
				𝑗
				𝛼
			

			
				(
				ℱ
			

			

				𝛼
			

			
				(
				𝑇
			

			
				𝛼
				𝑚
			

			
				𝑓
				)
				)
				(
				𝑥
				)
				=
				𝐶
				ℱ
			

			

				𝛼
			

			
				(
				𝑇
			

			
				𝛼
				𝑚
			

			
				𝑓
				(
				𝜉
				)
				𝜉
			

			

				𝑗
			

			
				)
				(
				𝑥
				)
			

		
	
 is continuous, and hence 
	
		
			

				∫
			

			

				ℝ
			

			

				𝑇
			

			
				𝛼
				𝑚
			

			
				𝑓
				(
				𝜉
				)
				𝜉
			

			

				𝑗
			

			
				𝑑
				𝜇
			

			

				𝛼
			

			
				(
				𝜉
				)
				=
				𝐶
				Λ
			

			
				𝑗
				𝛼
			

			
				(
				𝑚
				ℱ
			

			

				𝛼
			

			
				(
				𝑓
				)
				)
				(
				0
				)
			

		
	
. 
Now, we check 
	
		
			

				𝑇
			

			
				𝛼
				𝑚
			

			
				𝑓
				(
				𝜉
				)
				𝜉
			

			

				𝑗
			

			
				∈
				𝐿
			

			

				1
			

			
				(
				𝜇
			

			

				𝛼
			

			

				)
			

		
	
. We write 
	
		
			

				∫
			

			

				ℝ
			

			
				|
				𝑇
			

			
				𝛼
				𝑚
			

			
				𝑓
				(
				𝜉
				)
				𝜉
			

			

				𝑗
			

			
				|
				𝑑
				𝜇
			

			

				𝛼
			

			
				(
				𝜉
				)
				=
				𝐼
			

			

				1
			

			
				+
				𝐼
			

			

				2
			

		
	
, where
						
	
 		
 			
				(
				6
				0
				)
			
 		
	

	
		
			

				𝐼
			

			

				1
			

			
				=
				
			

			
				|
				𝜉
				|
				≤
				1
			

			
				|
				|
				𝑇
			

			
				𝛼
				𝑚
			

			
				𝑓
				(
				𝜉
				)
				𝜉
			

			

				𝑗
			

			
				|
				|
				𝑑
				𝜇
			

			

				𝛼
			

			
				𝐼
				(
				𝜉
				)
				,
			

			

				2
			

			
				=
				
			

			
				|
				𝜉
				|
				>
				1
			

			
				|
				|
				𝑇
			

			
				𝛼
				𝑚
			

			
				𝑓
				(
				𝜉
				)
				𝜉
			

			

				𝑗
			

			
				|
				|
				𝑑
				𝜇
			

			

				𝛼
			

			
				(
				𝜉
				)
				.
			

		
	

					Using the fact that 
	
		
			

				𝑇
			

			
				𝛼
				𝑚
			

			
				𝑓
				∈
				𝐿
			

			

				2
			

			
				(
				𝜇
			

			

				𝛼
			

			

				)
			

		
	
 and Schwarz’s inequality, we get 
						
	
 		
 			
				(
				6
				1
				)
			
 		
	

	
		
			

				𝐼
			

			

				1
			

			
				≤
				
			

			
				|
				𝜉
				|
				≤
				1
			

			
				|
				|
				𝑇
			

			
				𝛼
				𝑚
			

			
				|
				|
				𝑓
				(
				𝜉
				)
				𝑑
				𝜇
			

			

				𝛼
			

			
				≤
				
				
				(
				𝜉
				)
			

			
				|
				𝜉
				|
				≤
				1
			

			
				|
				|
				𝑇
			

			
				𝛼
				𝑚
			

			
				|
				|
				𝑓
				(
				𝜉
				)
			

			

				2
			

			
				𝑑
				𝜇
			

			

				𝛼
			

			
				
				(
				𝜉
				)
			

			
				1
				/
				2
			

			
				
				
			

			
				|
				𝜉
				|
				≤
				1
			

			
				𝑑
				𝜇
			

			

				𝛼
			

			
				
				(
				𝜉
				)
			

			
				1
				/
				2
			

			
				‖
				‖
				𝑇
				≤
				𝐶
			

			
				𝛼
				𝑚
			

			
				𝑓
				‖
				‖
			

			
				2
				,
				𝛼
			

			
				≤
				∞
				.
			

		
	

					For 
	
		
			
				0
				≤
				𝑗
				≤
				𝑠
			

		
	
, we have 
						
	
 		
 			
				(
				6
				2
				)
			
 		
	

	
		
			

				𝐼
			

			

				2
			

			
				≤
				
			

			
				|
				𝜉
				|
				>
				1
			

			
				|
				|
				𝑇
			

			
				𝛼
				𝑚
			

			
				𝑓
				(
				𝜉
				)
				𝜉
			

			

				𝑠
			

			
				|
				|
				𝑑
				𝜇
			

			

				𝛼
			

			
				≤
				
				
				(
				𝜉
				)
			

			
				|
				𝜉
				|
				>
				1
			

			
				|
				|
				𝑇
			

			
				𝛼
				𝑚
			

			
				|
				|
				𝑓
				(
				𝜉
				)
			

			

				2
			

			
				|
				|
				𝜉
			

			
				2
				ℓ
			

			
				|
				|
				𝑑
				𝜇
			

			

				𝛼
			

			
				
				(
				𝜉
				)
			

			
				1
				/
				2
			

			
				×
				
				
			

			
				|
				𝜉
				|
				>
				1
			

			
				|
				|
				𝜉
			

			
				2
				(
				𝑠
				−
				ℓ
				)
			

			
				|
				|
				𝑑
				𝜇
			

			

				𝛼
			

			
				
				(
				𝜉
				)
			

			
				1
				/
				2
			

			
				=
				‖
				‖
				𝑇
			

			
				𝛼
				𝑚
			

			
				|
				|
				𝜉
				|
				|
				𝑓
				(
				𝜉
				)
			

			

				𝑙
			

			
				‖
				‖
			

			
				2
				,
				𝛼
			

			
				
				
			

			
				|
				𝜉
				|
				>
				1
			

			
				|
				|
				𝜉
			

			
				2
				(
				𝑠
				−
				ℓ
				)
			

			
				|
				|
				𝑑
				𝜇
			

			

				𝛼
			

			
				
				(
				𝜉
				)
			

			
				1
				/
				2
			

			

				.
			

		
	

					Using the fact that 
	
		
			
				𝑠
				−
				ℓ
				<
				𝛼
				+
				1
			

		
	
, we get 
	
		
			

				𝐼
			

			

				2
			

			
				≤
				𝐶
			

		
	
.
Finally, we check 
						
	
 		
 			
				(
				6
				3
				)
			
 		
	

	
		
			

				Λ
			

			
				𝑗
				𝛼
			

			
				
				𝑚
				ℱ
			

			

				𝛼
			

			
				
				(
				𝑓
				)
				(
				0
				)
				=
				0
				,
				0
				≤
				𝑗
				≤
				𝑠
				.
			

		
	

					We have 
						
	
 		
 			
				(
				6
				4
				)
			
 		
	

	
		
			

				Λ
			

			
				𝑗
				𝛼
			

			
				
				𝑚
				ℱ
			

			

				𝛼
			

			
				
				(
				𝑓
				)
				(
				ℎ
				)
				=
			

			

				𝑗
			

			

				
			

			
				𝑟
				=
				0
			

			

				𝑎
			

			

				𝑟
			

			

				ℎ
			

			
				𝑟
				−
				𝑗
			

			
				
				𝑚
				ℱ
			

			

				𝛼
			

			
				
				(
				𝑓
				)
			

			
				(
				𝑟
				)
			

			
				+
				(
				ℎ
				)
			

			

				𝑗
			

			

				
			

			
				𝑟
				=
				0
			

			

				𝑏
			

			

				𝑟
			

			

				ℎ
			

			
				𝑟
				−
				𝑗
			

			
				
				𝑚
				ℱ
			

			

				𝛼
			

			
				
				(
				𝑓
				)
			

			
				(
				𝑟
				)
			

			
				(
				−
				ℎ
				)
				,
			

		
	

					where 
	
		
			

				𝑎
			

			

				𝑟
			

		
	
 and 
	
		
			

				𝑏
			

			

				𝑟
			

		
	
 are constants. Then, to prove (63), it suffices to prove that 
						
	
 		
 			
				(
				6
				5
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				ℎ
				→
				0
			

			
				|
				|
				|
				ℎ
			

			
				𝑟
				−
				𝑗
			

			

				𝑚
			

			
				(
				𝑟
				−
				𝑘
				)
			

			
				(
				
				ℱ
				ℎ
				)
			

			

				𝛼
			

			
				(
				
				𝑓
				)
			

			
				(
				𝑘
				)
			

			
				(
				|
				|
				|
				ℎ
				)
				=
				0
				,
				f
				o
				r
				a
				l
				l
				i
				n
				t
				e
				g
				e
				r
				s
				0
				≤
				𝑘
				≤
				𝑟
				≤
				𝑗
				≤
				𝑠
				.
			

		
	

					By (i) of Lemma 10, we have 
						
	
 		
 			
				(
				6
				6
				)
			
 		
	

	
		
			
				|
				|
				|
				ℎ
			

			
				𝑟
				−
				𝑗
			

			

				𝑚
			

			
				(
				𝑟
				−
				𝑘
				)
			

			
				(
				
				ℱ
				ℎ
				)
			

			

				𝛼
			

			
				(
				
				𝑓
				)
			

			
				(
				𝑘
				)
			

			
				(
				|
				|
				|
				|
				|
				ℎ
				|
				|
				ℎ
				)
				≤
				𝐶
			

			
				𝑠
				+
				1
				−
				𝑗
			

			
				|
				|
				ℎ
				|
				|
			

			
				𝑟
				−
				𝑘
			

			
				|
				|
				𝑚
			

			
				(
				𝑟
				−
				𝑘
				)
			

			
				|
				|
				(
				ℎ
				)
				‖
				𝑓
				‖
			

			
				𝐴
				2
				,
				𝛼
			

			

				.
			

		
	

					According to Lemma 3, we have 
	
		
			
				|
				ℎ
				|
			

			
				𝑟
				−
				𝑘
			

			
				|
				𝑚
			

			
				(
				𝑟
				−
				𝑘
				)
			

			
				(
				ℎ
				)
				|
				≤
				𝐶
			

		
	
; indeed 
	
		
			
				2
				(
				𝑟
				−
				𝑘
				−
				ℓ
				)
				+
				𝛼
				+
				1
				<
				0
			

		
	
; then, we obtain
						
	
 		
 			
				(
				6
				7
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				ℎ
				→
				0
			

			
				|
				|
				|
				ℎ
			

			
				𝑟
				−
				𝑗
			

			

				𝑚
			

			
				(
				𝑟
				−
				𝑘
				)
			

			
				(
				
				ℱ
				ℎ
				)
			

			

				𝛼
			

			
				(
				
				𝑓
				)
			

			
				(
				𝑘
				)
			

			
				(
				|
				|
				|
				ℎ
				)
				≤
				𝐶
				l
				i
				m
			

			
				ℎ
				→
				0
			

			
				|
				|
				ℎ
				|
				|
			

			
				𝑠
				+
				1
				−
				𝑗
			

			
				=
				0
				,
			

		
	

					where (63) is hence proved. This finishes the proof of Theorem 2.
Corollary 11.  Let 
	
		
			
				0
				<
				𝑝
				≤
				1
			

		
	
. Then, the generalized Hilbert transform 
	
		
			

				𝐻
			

			

				𝛼
			

		
	
 defined by 
							
	
 		
 			
				(
				6
				8
				)
			
 		
	

	
		
			

				𝐻
			

			

				𝛼
			

			
				(
				𝑓
				)
				=
				Γ
				(
				𝛼
				+
				(
				3
				/
				2
				)
				)
			

			
				
			
			

				√
			

			
				
			
			
				𝜋
				Γ
				(
				𝛼
				+
				1
				)
				l
				i
				m
			

			
				𝜀
				→
				0
			

			

				
			

			
				|
				𝑦
				|
				>
				𝜀
			

			

				𝜏
			

			

				𝑥
			

			
				(
				𝑓
				)
				(
				−
				𝑦
				)
			

			
				
			
			
				𝑦
				𝑑
				𝑦
				,
			

		
	

						where 
	
		
			

				𝜏
			

			

				𝑥
			

		
	
 is given by (19), is bounded on 
	
		
			
				𝐻
				̇
				𝐾
			

			
				𝛽
				,
				𝑝
				𝛼
				,
				2
			

		
	
. 
Proof. From Proposition 3.6 in [3], the generalized Hilbert transform 
	
		
			

				𝐻
			

			

				𝛼
			

		
	
 is a multiplier operator 
	
		
			

				𝑇
			

			
				𝛼
				𝑚
			

		
	
 with 
	
		
			
				𝑚
				(
				𝜉
				)
				=
				−
				s
				i
				g
				n
				(
				𝜉
				)
			

		
	
; then the proof of the corollary follows from Theorem 2.
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