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Abstract. 
Let 
	
		
			

				ℝ
			

		
	
 be the set of real numbers, 
	
		
			

				ℝ
			

			

				+
			

			
				=
				{
				𝑥
				∈
				ℝ
				∣
				𝑥
				>
				0
				}
			

		
	
, 
	
		
			
				𝜖
				∈
				ℝ
			

			

				+
			

		
	
, and 
	
		
			
				𝑓
				,
				𝑔
				,
				ℎ
				∶
				ℝ
			

			

				+
			

			
				→
				ℂ
			

		
	
. As classical and 
	
		
			

				𝐿
			

			

				∞
			

		
	
 versions of the Hyers-Ulam stability of the logarithmic type functional equation in a restricted domain, we consider the following inequalities: 
	
		
			
				|
				𝑓
				(
				𝑥
				+
				𝑦
				)
				−
				𝑔
				(
				𝑥
				𝑦
				)
				−
				ℎ
				(
				(
				1
				/
				𝑥
				)
				+
				(
				1
				/
				𝑦
				)
				)
				|
				≤
				𝜖
			

		
	
, and 
	
		
			
				‖
				𝑓
				(
				𝑥
				+
				𝑦
				)
				−
				𝑔
				(
				𝑥
				𝑦
				)
				−
				ℎ
				(
				(
				1
				/
				𝑥
				)
				+
				(
				1
				/
				𝑦
				)
				)
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				Γ
			

			

				𝑑
			

			

				)
			

			
				≤
				𝜖
			

		
	
 in the sectors 
	
		
			

				Γ
			

			

				𝑑
			

			
				=
				{
				(
				𝑥
				,
				𝑦
				)
				∶
				𝑥
				>
				0
				,
				𝑦
				>
				0
				,
				(
				𝑦
				/
				𝑥
				)
				>
				𝑑
				}
			

		
	
. As consequences of the results, we obtain asymptotic behaviors of the previous inequalities. We also consider its distributional version 
	
		
			
				‖
				𝑢
				∘
				𝑆
				−
				𝑣
				∘
				Π
				−
				𝑤
				∘
				𝑅
				‖
			

			

				Γ
			

			

				𝑑
			

			
				≤
				𝜖
			

		
	
, where 
	
		
			
				𝑢
				,
				𝑣
				,
				𝑤
				∈
				𝒟
			

			

				
			

			
				(
				ℝ
			

			

				+
			

			

				)
			

		
	
, 
	
		
			
				𝑆
				(
				𝑥
				,
				𝑦
				)
				=
				𝑥
				+
				𝑦
			

		
	
, 
	
		
			
				Π
				(
				𝑥
				,
				𝑦
				)
				=
				𝑥
				𝑦
			

		
	
, 
	
		
			
				𝑅
				(
				𝑥
				,
				𝑦
				)
				=
				1
				/
				𝑥
				+
				1
				/
				𝑦
			

		
	
, 
	
		
			
				𝑥
				,
				𝑦
				∈
				ℝ
			

			

				+
			

		
	
, and the inequality 
	
		
			
				‖
				⋅
				‖
			

			

				Γ
			

			

				𝑑
			

			
				≤
				𝜖
			

		
	
 means that 
	
		
			
				|
				⟨
				⋅
				,
				𝜑
				⟩
				|
				≤
				𝜖
				‖
				𝜑
				‖
			

			

				𝐿
			

			

				1
			

		
	
 for all test functions 
	
		
			
				𝜑
				∈
				𝐶
			

			
				∞
				𝑐
			

			
				(
				Γ
			

			

				𝑑
			

			

				)
			

		
	
. 


1. Introduction
The Hyers-Ulam stability problem of functional equations was originated in 1940 when Ulam proposed a question concerning the approximate homomorphisms from a group to a metric group (see [1]). A partial answer was given by Hyers et al. [2, 3] under the assumption that the target space of the involved mappings is a Banach space. It is possible to prove stability results similar to Hyers for functions that do not have bounded Cauchy difference. In 1950, Aoki [4] first proved such a result for additive functions. Bourgin [5, 6] and Aoki [4] studied the Ulam problem from 1949 to 1951. The area rested there for a while until 1978 when Rassias [7] published a generalized version of Hyers’ result on linear mappings, where the Cauchy difference was allowed to be unbounded. Rassias’ work provided an impetus for the study on the stability of functional equations (see [2, 7–31]). 
Let 
	
		
			

				ℝ
			

		
	
 be the set of real numbers, 
	
		
			

				ℝ
			

			

				+
			

		
	
 the set of positive real numbers, and 
	
		
			

				ℂ
			

		
	
 the set of complex numbers. The subset, for fixed real number 
	
		
			
				𝑑
				>
				0
			

		
	
,
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			

				Γ
			

			

				𝑑
			

			
				=
				
				𝑦
				(
				𝑥
				,
				𝑦
				)
				∶
				𝑥
				>
				0
				,
				𝑦
				>
				0
				,
			

			
				
			
			
				𝑥
				
				>
				𝑑
			

		
	

					of the plane, 
	
		
			

				ℝ
			

			

				2
			

		
	
, will be referred to as a sector. A function 
	
		
			
				𝑓
				∶
				ℝ
			

			

				+
			

			
				→
				ℂ
			

		
	
 is said to be logarithmic if and only if it satisfies the logarithmic functional equation:
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑥
				𝑦
				)
				−
				𝑓
				(
				𝑥
				)
				−
				𝑓
				(
				𝑦
				)
				=
				0
				,
				∀
				𝑥
				,
				𝑦
				∈
				ℝ
			

			

				+
			

			

				,
			

		
	

					for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				ℝ
			

			

				+
			

		
	
. There are several variants of logarithmic functional equations (see [14–16]). It was shown by Heuvers and Kannappan [16] that the logarithmic functional equation is equivalent to the following functional equation:
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				
				1
				𝑓
				(
				𝑥
				+
				𝑦
				)
				−
				𝑓
				(
				𝑥
				𝑦
				)
				−
				𝑓
			

			
				
			
			
				𝑥
				+
				1
			

			
				
			
			
				𝑦
				
				=
				0
				,
				∀
				𝑥
				,
				𝑦
				∈
				ℝ
			

			

				+
			

			

				.
			

		
	

					They have also studied the following pexiderized version of (3):
						
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				
				1
				𝑓
				(
				𝑥
				+
				𝑦
				)
				−
				𝑔
				(
				𝑥
				𝑦
				)
				−
				ℎ
			

			
				
			
			
				𝑥
				+
				1
			

			
				
			
			
				𝑦
				
				=
				0
				,
				∀
				𝑥
				,
				𝑦
				∈
				ℝ
			

			

				+
			

			

				.
			

		
	

					The general solution of the functional equation (4) has the form (see [16]) 
						
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑥
				)
				=
				𝐿
				(
				𝑥
				)
				+
				𝑐
			

			

				1
			

			
				+
				𝑐
			

			

				2
			

			
				,
				𝑔
				(
				𝑥
				)
				=
				𝐿
				(
				𝑥
				)
				+
				𝑐
			

			

				1
			

			
				,
				ℎ
				(
				𝑥
				)
				=
				𝐿
				(
				𝑥
				)
				+
				𝑐
			

			

				2
			

			

				,
			

		
	

					where 
	
		
			
				𝐿
				∶
				ℝ
			

			

				+
			

			
				→
				ℂ
			

		
	
 is a logarithmic function and 
	
		
			

				𝑐
			

			

				1
			

			
				,
				𝑐
			

			

				2
			

		
	
 are arbitrary constants.
 In this paper, we study Hyers-Ulam stability of the functional equation (4). In Section 2, we treat the Hyers-Ulam stability of the functional equation (4) in the classical sense and present its asymptotic behavior. In Section 3, we consider the stability of (4) in 
	
		
			

				𝐿
			

			

				∞
			

		
	
-sense and its asymptotic behavior. Finally, in Section 4 we present the stability of (4) in Schwartz distributions.
2. Stability of (4) in Classical Sense and Its Asymptotic Behavior
In this section, we consider the classical Hyers-Ulam stability of the functional equation (4) on the sector 
	
		
			

				Γ
			

			

				𝑑
			

		
	
 and then study its asymptotic behavior. 
The following theorem is a direct consequence of the Hyers’ result [3] (see also result of Forti [32]).
Theorem 1.  Let 
	
		
			

				𝜖
			

		
	
 be a nonnegative real number. Suppose that 
	
		
			
				𝑓
				∶
				ℝ
			

			

				+
			

			
				→
				ℂ
			

		
	
 satisfies
							
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				𝑓
				(
				𝑥
				𝑦
				)
				−
				𝑓
				(
				𝑥
				)
				−
				𝑓
				(
				𝑦
				)
				≤
				𝜖
			

		
	

						for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				ℝ
			

			

				+
			

		
	
. Then there exists a unique logarithmic function 
	
		
			
				𝐿
				∶
				ℝ
			

			

				+
			

			
				→
				ℂ
			

		
	
 such that 
							
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				𝑓
				(
				𝑥
				)
				−
				𝐿
				(
				𝑥
				)
				≤
				𝜖
				,
				∀
				𝑥
				∈
				ℝ
			

			

				+
			

			

				.
			

		
	

Next, we establish the Hyers-Ulam stability of the functional equation (4) on the restricted domain 
	
		
			

				Γ
			

			

				𝑑
			

		
	
.
Theorem 2.  Suppose that 
	
		
			
				𝜖
				≥
				0
			

		
	
, 
	
		
			
				𝑑
				>
				0
			

		
	
, and 
	
		
			

				𝑓
			

		
	
, 
	
		
			

				𝑔
			

		
	
, 
	
		
			

				ℎ
			

		
	
 satisfy the functional inequality
							
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
				1
				𝑓
				(
				𝑥
				+
				𝑦
				)
				−
				𝑔
				(
				𝑥
				𝑦
				)
				−
				ℎ
			

			
				
			
			
				𝑥
				+
				1
			

			
				
			
			
				𝑦
				
				|
				|
				|
				|
				≤
				𝜖
			

		
	

						for all 
	
		
			
				(
				𝑥
				,
				𝑦
				)
				∈
				Γ
			

			

				𝑑
			

		
	
. Then there exists a unique logarithmic function 
	
		
			
				𝐿
				∶
				ℝ
			

			

				+
			

			
				→
				ℂ
			

		
	
 such that
							
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				𝑓
				(
				𝑥
				)
				−
				𝐿
				(
				𝑥
				)
				−
				𝑓
				(
				1
				)
				≤
				4
				𝜖
				,
				𝑔
				(
				𝑥
				)
				−
				𝐿
				(
				𝑥
				)
				−
				𝑔
				(
				1
				)
				≤
				4
				𝜖
				,
				ℎ
				(
				𝑥
				)
				−
				𝐿
				(
				𝑥
				)
				−
				ℎ
				(
				1
				)
				≤
				4
				𝜖
			

		
	

						for all 
	
		
			
				𝑥
				∈
				ℝ
			

			

				+
			

		
	
.
Proof. For given 
	
		
			
				𝑡
				,
				𝑠
				>
				0
			

		
	
, choose a real number 
	
		
			
				𝑢
				>
				0
			

		
	
 such that 
							
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				
				2
				𝑢
				≥
				m
				a
				x
			

			
				
			
			

				√
			

			
				
			
			
				𝑡
				𝑠
			

			

				2
			

			
				,
				2
			

			
				
			
			

				√
			

			
				
			
			
				,
				2
				𝑡
				𝑠
			

			
				
			
			

				√
			

			
				
			
			
				𝑠
				,
				2
			

			
				
			
			
				𝑠
				
				,
				2
			

			
				
			
			

				𝑑
			

			
				
			
			
				𝑡
				𝑠
			

			

				2
			

			
				
				,
				2
			

			
				
			
			

				𝑑
			

			
				
			
			
				
				𝑡
				𝑠
				,
				2
			

			
				
			
			

				𝑑
			

			
				
			
			
				𝑠
				
				,
				2
			

			
				
			
			

				𝑑
			

			
				
			
			

				𝑠
			

			

				2
			

			
				
				,
			

		
	

						and let
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			

				𝑥
			

			

				1
			

			
				=
				√
				𝑡
				𝑠
				𝑢
				−
			

			
				
			
			

				𝑡
			

			

				2
			

			

				𝑠
			

			

				2
			

			

				𝑢
			

			

				2
			

			
				−
				4
				𝑡
			

			
				
			
			
				2
				,
				𝑦
			

			

				1
			

			
				=
				√
				𝑡
				𝑠
				𝑢
				+
			

			
				
			
			

				𝑡
			

			

				2
			

			

				𝑠
			

			

				2
			

			

				𝑢
			

			

				2
			

			
				−
				4
				𝑡
			

			
				
			
			
				2
				,
				𝑥
			

			

				2
			

			
				=
				√
				𝑡
				𝑠
				𝑢
				−
			

			
				
			
			

				𝑡
			

			

				2
			

			

				𝑠
			

			

				2
			

			

				𝑢
			

			

				2
			

			
				−
				4
				𝑡
				𝑠
			

			
				
			
			
				2
				,
				𝑦
			

			

				2
			

			
				=
				√
				𝑡
				𝑠
				𝑢
				+
			

			
				
			
			

				𝑡
			

			

				2
			

			

				𝑠
			

			

				2
			

			

				𝑢
			

			

				2
			

			
				−
				4
				𝑡
				𝑠
			

			
				
			
			
				2
				,
				𝑥
			

			

				3
			

			
				=
				√
				𝑠
				𝑢
				−
			

			
				
			
			

				𝑠
			

			

				2
			

			

				𝑢
			

			

				2
			

			
				−
				4
				𝑠
			

			
				
			
			
				2
				,
				𝑦
			

			

				3
			

			
				=
				√
				𝑠
				𝑢
				+
			

			
				
			
			

				𝑠
			

			

				2
			

			

				𝑢
			

			

				2
			

			
				−
				4
				𝑠
			

			
				
			
			
				2
				,
				𝑥
			

			

				4
			

			
				=
				√
				𝑠
				𝑢
				−
			

			
				
			
			

				𝑠
			

			

				2
			

			

				𝑢
			

			

				2
			

			
				−
				4
			

			
				
			
			
				2
				,
				𝑦
			

			

				4
			

			
				=
				√
				𝑠
				𝑢
				+
			

			
				
			
			

				𝑠
			

			

				2
			

			

				𝑢
			

			

				2
			

			
				−
				4
			

			
				
			
			
				2
				.
			

		
	

						Then it is easy to check that 
	
		
			

				𝑥
			

			

				𝑗
			

			
				,
				𝑦
			

			

				𝑗
			

			
				>
				0
			

		
	
, 
	
		
			

				𝑦
			

			

				𝑗
			

			
				/
				𝑥
			

			

				𝑗
			

			
				>
				𝑑
			

		
	
 for all 
	
		
			
				𝑗
				=
				1
				,
				2
				,
				3
				,
				4
			

		
	
. Replacing 
	
		
			

				𝑥
			

		
	
, 
	
		
			

				𝑦
			

		
	
 by 
	
		
			

				𝑥
			

			

				𝑗
			

		
	
, 
	
		
			

				𝑦
			

			

				𝑗
			

		
	
 in (8), respectively, for 
	
		
			
				𝑗
				=
				1
				,
				2
				,
				3
				,
				4
			

		
	
 we have
							
	
 		
 			
				(
				1
				2
				)
			
 			
				(
				1
				3
				)
			
 			
				(
				1
				4
				)
			
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				𝑓
				(
				𝑡
				𝑠
				𝑢
				)
				−
				𝑔
				(
				𝑡
				)
				−
				ℎ
				(
				𝑠
				𝑢
				)
				≤
				𝜖
				,
				𝑓
				(
				𝑡
				𝑠
				𝑢
				)
				−
				𝑔
				(
				𝑡
				𝑠
				)
				−
				ℎ
				(
				𝑢
				)
				≤
				𝜖
				,
				𝑓
				(
				𝑠
				𝑢
				)
				−
				𝑔
				(
				𝑠
				)
				−
				ℎ
				(
				𝑢
				)
				≤
				𝜖
				,
				𝑓
				(
				𝑠
				𝑢
				)
				−
				𝑔
				(
				1
				)
				−
				ℎ
				(
				𝑠
				𝑢
				)
				≤
				𝜖
				.
			

		
	

						From (12)–(15), using the triangle inequality we have
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				𝑔
				(
				𝑡
				𝑠
				)
				−
				𝑔
				(
				t
				)
				−
				𝑔
				(
				𝑠
				)
				+
				𝑔
				(
				1
				)
				≤
				4
				𝜖
			

		
	

						for all 
	
		
			
				𝑡
				,
				𝑠
				>
				0
			

		
	
. Similarly, for given 
	
		
			
				𝑡
				,
				𝑠
				>
				0
			

		
	
, choose 
	
		
			
				𝑢
				>
				0
			

		
	
 such that 
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				
				4
				𝑢
				≥
				m
				a
				x
			

			
				
			
			

				𝑡
			

			

				2
			

			
				𝑠
				,
				4
			

			
				
			
			

				𝑡
			

			

				2
			

			

				𝑠
			

			

				2
			

			
				,
				4
			

			
				
			
			

				𝑠
			

			

				2
			

			
				,
				4
			

			
				
			
			
				𝑠
				,
				4
				𝑑
			

			
				
			
			

				𝑡
			

			

				2
			

			
				𝑠
				,
				4
				𝑑
			

			
				
			
			

				𝑡
			

			

				2
			

			

				𝑠
			

			

				2
			

			
				,
				4
				𝑑
			

			
				
			
			

				𝑠
			

			

				2
			

			
				,
				4
				𝑑
			

			
				
			
			
				𝑠
				
			

		
	

						and let
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			

				𝑥
			

			

				1
			

			
				=
				√
				𝑡
				𝑠
				𝑢
				−
			

			
				
			
			

				𝑡
			

			

				2
			

			

				𝑠
			

			

				2
			

			

				𝑢
			

			

				2
			

			
				−
				4
				𝑠
				𝑢
			

			
				
			
			
				2
				,
				𝑦
			

			

				1
			

			
				=
				√
				𝑡
				𝑠
				𝑢
				+
			

			
				
			
			

				𝑡
			

			

				2
			

			

				𝑠
			

			

				2
			

			

				𝑢
			

			

				2
			

			
				−
				4
				𝑠
				𝑢
			

			
				
			
			
				2
				,
				𝑥
			

			

				2
			

			
				=
				√
				𝑡
				𝑠
				𝑢
				−
			

			
				
			
			

				𝑡
			

			

				2
			

			

				𝑠
			

			

				2
			

			

				𝑢
			

			

				2
			

			
				−
				4
				𝑢
			

			
				
			
			
				2
				,
				𝑦
			

			

				2
			

			
				=
				√
				𝑡
				𝑠
				𝑢
				+
			

			
				
			
			

				𝑡
			

			

				2
			

			

				𝑠
			

			

				2
			

			

				𝑢
			

			

				2
			

			
				−
				4
				𝑢
			

			
				
			
			
				2
				,
				𝑥
			

			

				3
			

			
				=
				√
				𝑠
				𝑢
				−
			

			
				
			
			

				𝑠
			

			

				2
			

			

				𝑢
			

			

				2
			

			
				−
				4
				𝑢
			

			
				
			
			
				2
				,
				𝑦
			

			

				3
			

			
				=
				√
				𝑠
				𝑢
				+
			

			
				
			
			

				𝑠
			

			

				2
			

			

				𝑢
			

			

				2
			

			
				−
				4
				𝑢
			

			
				
			
			
				2
				,
				𝑥
			

			

				4
			

			
				=
				√
				𝑠
				𝑢
				−
			

			
				
			
			

				𝑠
			

			

				2
			

			

				𝑢
			

			

				2
			

			
				−
				4
				𝑠
				𝑢
			

			
				
			
			
				2
				,
				𝑦
			

			

				4
			

			
				=
				√
				𝑠
				𝑢
				+
			

			
				
			
			

				𝑠
			

			

				2
			

			

				𝑢
			

			

				2
			

			
				−
				4
				𝑠
				𝑢
			

			
				
			
			
				2
				.
			

		
	

						Then it is easy to check that 
	
		
			

				𝑥
			

			

				j
			

			
				,
				𝑦
			

			

				𝑗
			

			
				>
				0
			

		
	
, 
	
		
			

				𝑦
			

			

				𝑗
			

			
				/
				𝑥
			

			

				𝑗
			

			
				>
				𝑑
			

		
	
 for all 
	
		
			
				𝑗
				=
				1
				,
				2
				,
				3
				,
				4
			

		
	
. Next, replacing 
	
		
			

				𝑥
			

		
	
, 
	
		
			

				𝑦
			

		
	
 by 
	
		
			

				𝑥
			

			

				𝑗
			

		
	
, 
	
		
			

				𝑦
			

			

				𝑗
			

		
	
 in (8), respectively, for 
	
		
			
				𝑗
				=
				1
				,
				2
				,
				3
				,
				4
			

		
	
, we have
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				𝑓
				(
				𝑡
				𝑠
				𝑢
				)
				−
				ℎ
				(
				𝑡
				)
				−
				𝑔
				(
				𝑠
				𝑢
				)
				≤
				𝜖
				,
				𝑓
				(
				𝑡
				𝑠
				𝑢
				)
				−
				ℎ
				(
				𝑡
				𝑠
				)
				−
				𝑔
				(
				𝑢
				)
				≤
				𝜖
				,
				𝑓
				(
				𝑠
				𝑢
				)
				−
				ℎ
				(
				𝑠
				)
				−
				𝑔
				(
				𝑢
				)
				≤
				𝜖
				,
				𝑓
				(
				𝑠
				𝑢
				)
				−
				ℎ
				(
				1
				)
				−
				𝑔
				(
				𝑠
				𝑢
				)
				≤
				𝜖
				.
			

		
	

						From (19), using the triangle inequality, we have
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				ℎ
				(
				𝑡
				𝑠
				)
				−
				ℎ
				(
				𝑡
				)
				−
				ℎ
				(
				𝑠
				)
				+
				ℎ
				(
				1
				)
				≤
				4
				𝜖
			

		
	

						for all 
	
		
			
				𝑡
				,
				𝑠
				>
				0
			

		
	
. Now we prove that
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				𝑓
				(
				𝑡
				𝑠
				)
				−
				𝑓
				(
				𝑡
				)
				−
				𝑓
				(
				𝑠
				)
				+
				𝑓
				(
				1
				)
				≤
				4
				𝜖
			

		
	

						for all 
	
		
			
				𝑡
				,
				𝑠
				>
				0
			

		
	
. For given 
	
		
			
				𝑡
				,
				𝑠
				>
				0
			

		
	
, choose 
	
		
			
				𝑢
				>
				0
			

		
	
 such that 
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				
				𝑡
				𝑢
				≤
				m
				i
				n
			

			

				2
			

			

				𝑠
			

			

				2
			

			
				
			
			
				4
				,
				𝑡
			

			

				2
			

			

				𝑠
			

			
				
			
			
				4
				,
				𝑠
			

			

				2
			

			
				
			
			
				4
				,
				𝑠
			

			
				
			
			
				4
				,
				𝑡
			

			

				2
			

			

				𝑠
			

			

				2
			

			
				
			
			
				,
				𝑡
				4
				𝑑
			

			

				2
			

			

				𝑠
			

			
				
			
			
				,
				𝑠
				4
				𝑑
			

			

				2
			

			
				
			
			
				,
				𝑠
				4
				𝑑
			

			
				
			
			
				
				4
				𝑑
			

		
	

						and let
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			

				𝑥
			

			

				1
			

			
				=
				√
				𝑡
				𝑠
				−
			

			
				
			
			

				𝑡
			

			

				2
			

			

				𝑠
			

			

				2
			

			
				−
				4
				𝑢
			

			
				
			
			
				2
				,
				𝑦
			

			

				1
			

			
				=
				√
				𝑡
				𝑠
				+
			

			
				
			
			

				𝑡
			

			

				2
			

			

				𝑠
			

			

				2
			

			
				−
				4
				𝑢
			

			
				
			
			
				2
				,
				𝑥
			

			

				2
			

			
				=
				√
				𝑡
				−
			

			
				
			
			

				𝑡
			

			

				2
			

			
				−
				4
				𝑢
				/
				𝑠
			

			
				
			
			
				2
				,
				𝑦
			

			

				2
			

			
				=
				√
				𝑡
				+
			

			
				
			
			

				𝑡
			

			

				2
			

			
				−
				4
				𝑢
				/
				𝑠
			

			
				
			
			
				2
				,
				𝑥
			

			

				3
			

			
				=
				√
				𝑠
				−
			

			
				
			
			

				𝑠
			

			

				2
			

			
				−
				4
				𝑢
			

			
				
			
			
				2
				,
				𝑦
			

			

				3
			

			
				=
				√
				𝑠
				+
			

			
				
			
			

				𝑠
			

			

				2
			

			
				−
				4
				𝑢
			

			
				
			
			
				2
				,
				𝑥
			

			

				4
			

			
				=
				√
				1
				−
			

			
				
			
			
				1
				−
				4
				𝑢
				/
				𝑠
			

			
				
			
			
				2
				,
				𝑦
			

			

				4
			

			
				=
				√
				1
				+
			

			
				
			
			
				1
				−
				4
				𝑢
				/
				𝑠
			

			
				
			
			
				2
				.
			

		
	

						Then 
	
		
			

				𝑥
			

			

				𝑗
			

			
				,
				𝑦
			

			

				𝑗
			

			
				>
				0
			

		
	
, 
	
		
			

				𝑦
			

			

				𝑗
			

			
				/
				𝑥
			

			

				𝑗
			

			
				>
				𝑑
			

		
	
 for all 
	
		
			
				𝑗
				=
				1
				,
				2
				,
				3
				,
				4
			

		
	
. Replacing 
	
		
			

				𝑥
			

		
	
, 
	
		
			

				𝑦
			

		
	
 by 
	
		
			

				𝑥
			

			

				𝑗
			

		
	
, 
	
		
			

				𝑦
			

			

				𝑗
			

		
	
 in (8), respectively, for 
	
		
			
				𝑗
				=
				1
				,
				2
				,
				3
				,
				4
			

		
	
, we have
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				|
				|
				|
				
				𝑓
				(
				𝑡
				𝑠
				)
				−
				𝑔
				(
				𝑢
				)
				−
				ℎ
				𝑡
				𝑠
			

			
				
			
			
				𝑢
				
				|
				|
				|
				|
				|
				|
				
				𝑢
				≤
				𝜖
				,
				𝑓
				(
				𝑡
				)
				−
				𝑔
			

			
				
			
			
				𝑠
				
				
				−
				ℎ
				𝑡
				𝑠
			

			
				
			
			
				𝑢
				
				|
				|
				|
				|
				|
				|
				
				𝑠
				≤
				𝜖
				,
				𝑓
				(
				𝑠
				)
				−
				𝑔
				(
				𝑢
				)
				−
				ℎ
			

			
				
			
			
				𝑢
				
				|
				|
				|
				|
				|
				|
				
				𝑢
				≤
				𝜖
				,
				𝑓
				(
				1
				)
				−
				𝑔
			

			
				
			
			
				𝑠
				
				
				𝑠
				−
				ℎ
			

			
				
			
			
				𝑢
				
				|
				|
				|
				≤
				𝜖
				.
			

		
	

						From (24), using the triangle inequality we get (21). Now by Theorem 1, there exist 
	
		
			

				𝐿
			

			

				𝑗
			

			
				∶
				ℝ
			

			

				+
			

			
				→
				ℂ
			

		
	
 for 
	
		
			
				𝑗
				=
				1
				,
				2
				,
				3
			

		
	
 satisfying the logarithmic functional equation
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			

				𝐿
			

			

				𝑗
			

			
				(
				𝑡
				𝑠
				)
				=
				𝐿
			

			

				𝑗
			

			
				(
				𝑡
				)
				+
				𝐿
			

			

				𝑗
			

			
				(
				𝑠
				)
				,
				𝑗
				=
				1
				,
				2
				,
				3
				,
			

		
	

						for which
							
	
 		
 			
				(
				2
				6
				)
			
 			
				(
				2
				7
				)
			
 			
				(
				2
				8
				)
			
 		
	

	
		
			
				|
				|
				𝑓
				(
				𝑡
				)
				−
				𝐿
			

			

				1
			

			
				|
				|
				|
				|
				(
				𝑡
				)
				−
				𝑓
				(
				1
				)
				≤
				4
				𝜖
				,
				𝑔
				(
				𝑡
				)
				−
				𝐿
			

			

				2
			

			
				|
				|
				|
				|
				(
				𝑡
				)
				−
				𝑔
				(
				1
				)
				≤
				4
				𝜖
				,
				ℎ
				(
				𝑡
				)
				−
				𝐿
			

			

				3
			

			
				|
				|
				(
				𝑡
				)
				−
				ℎ
				(
				1
				)
				≤
				4
				𝜖
				.
			

		
	

						Now we show that 
	
		
			

				𝐿
			

			

				1
			

			
				=
				𝐿
			

			

				2
			

			
				=
				𝐿
			

			

				3
			

		
	
. Putting 
	
		
			
				𝑠
				=
				𝑢
				=
				1
			

		
	
 and 
	
		
			
				𝑡
				=
				𝑢
				=
				1
			

		
	
 in (12) separately, we have
							
	
 		
 			
				(
				2
				9
				)
			
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				|
				|
				
				√
				𝑓
				(
				𝑡
				)
				−
				𝑔
				(
				𝑡
				)
				−
				ℎ
				(
				1
				)
				≤
				𝜖
				f
				o
				r
				𝑡
				≥
				m
				a
				x
				{
				4
				,
				4
				𝑑
				}
				,
				𝑓
				(
				𝑠
				)
				−
				ℎ
				(
				𝑠
				)
				−
				𝑔
				(
				1
				)
				≤
				𝜖
				f
				o
				r
				𝑠
				≥
				m
				a
				x
				2
				,
				2
			

			
				
			
			
				𝑑
				
				.
			

		
	

						From (26), (27), and (29), using the triangle inequality we have
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			
				|
				|
				𝐿
			

			

				1
			

			
				(
				𝑡
				)
				−
				𝐿
			

			

				2
			

			
				|
				|
				|
				|
				|
				|
				(
				𝑡
				)
				≤
				9
				𝜖
				+
				𝑓
				(
				1
				)
				−
				𝑔
				(
				1
				)
				−
				ℎ
				(
				1
				)
				∶
				=
				𝑀
				f
				o
				r
				𝑡
				≥
				m
				a
				x
				{
				4
				,
				4
				𝑑
				}
				.
			

		
	

						Let 
	
		
			
				𝑡
				>
				1
			

		
	
. Then we can choose a positive integer 
	
		
			

				𝑛
			

			

				0
			

		
	
 such that 
	
		
			

				𝑡
			

			

				𝑛
			

			
				≥
				m
				a
				x
				{
				4
				,
				4
				𝑑
				}
			

		
	
 for all integers 
	
		
			
				𝑛
				≥
				𝑛
			

			

				0
			

		
	
. In view of (25), and (31) we have
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			
				|
				|
				𝐿
			

			

				1
			

			
				(
				𝑡
				)
				−
				𝐿
			

			

				2
			

			
				|
				|
				=
				1
				(
				𝑡
				)
			

			
				
			
			
				𝑛
				|
				|
				𝐿
			

			

				1
			

			
				(
				𝑡
			

			

				𝑛
			

			
				)
				−
				𝐿
			

			

				2
			

			
				(
				𝑡
			

			

				𝑛
			

			
				)
				|
				|
				≤
				𝑀
			

			
				
			
			

				𝑛
			

		
	

						for all integer 
	
		
			
				𝑛
				≥
				𝑛
			

			

				0
			

		
	
. Letting 
	
		
			
				𝑛
				→
				∞
			

		
	
 in (32), we have 
	
		
			

				𝐿
			

			

				1
			

			
				(
				𝑡
				)
				=
				𝐿
			

			

				2
			

			
				(
				𝑡
				)
			

		
	
 for all 
	
		
			
				𝑡
				>
				1
			

		
	
. For 
	
		
			
				0
				<
				𝑡
				<
				1
			

		
	
, we have 
	
		
			

				𝐿
			

			

				1
			

			
				(
				𝑡
				)
				=
				−
				𝐿
			

			

				1
			

			
				(
				1
				/
				𝑡
				)
				=
				−
				𝐿
			

			

				2
			

			
				(
				1
				/
				𝑡
				)
				=
				𝐿
			

			

				2
			

			
				(
				𝑡
				)
			

		
	
. Thus, we have 
	
		
			

				𝐿
			

			

				1
			

			
				(
				𝑡
				)
				=
				𝐿
			

			

				2
			

			
				(
				𝑡
				)
			

		
	
 for all 
	
		
			
				𝑡
				>
				0
			

		
	
. Similarly, using (26), (28), and (30) we can show that 
	
		
			

				𝐿
			

			

				1
			

			
				=
				𝐿
			

			

				3
			

		
	
. The uniqueness of the logarithmic function 
	
		
			

				𝐿
			

		
	
 is obvious. This completes the proof of the theorem.
Letting 
	
		
			
				𝑔
				=
				ℎ
				=
				𝑓
			

		
	
 in Theorem 2 and using the inequalities (12)–(14) together with the triangle inequality, we obtain 
						
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				𝑓
				(
				𝑡
				𝑠
				)
				−
				𝑓
				(
				𝑡
				)
				−
				𝑓
				(
				𝑠
				)
				≤
				3
				𝜖
			

		
	

					for all 
	
		
			
				𝑡
				,
				𝑠
				>
				0
			

		
	
. Thus, by Theorem 1 we have the following theorem.
Theorem 3.  Let 
	
		
			
				𝑑
				>
				0
			

		
	
. Suppose that 
	
		
			
				𝑓
				∶
				ℝ
			

			

				+
			

			
				→
				ℂ
			

		
	
 satisfies the functional inequality
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
				1
				𝑓
				(
				𝑥
				+
				𝑦
				)
				−
				𝑓
				(
				𝑥
				𝑦
				)
				−
				𝑓
			

			
				
			
			
				𝑥
				+
				1
			

			
				
			
			
				𝑦
				
				|
				|
				|
				|
				≤
				𝜖
			

		
	

						for all 
	
		
			
				(
				𝑥
				,
				𝑦
				)
				∈
				Γ
			

			

				𝑑
			

		
	
. Then there exists a unique logarithmic function 
	
		
			
				𝐿
				∶
				ℝ
			

			

				+
			

			
				→
				ℂ
			

		
	
 such that
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				𝑓
				(
				𝑥
				)
				−
				𝐿
				(
				𝑥
				)
				≤
				3
				𝜖
				,
				∀
				𝑥
				∈
				ℝ
			

			

				+
			

			

				.
			

		
	

Now we prove the following asymptotic result concerning (8).
Theorem 4.  Suppose that 
	
		
			
				𝑓
				,
				𝑔
				,
				ℎ
				∶
				ℝ
			

			

				+
			

			
				→
				ℂ
			

		
	
 satisfy the asymptotic condition
							
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
				1
				𝑓
				(
				𝑥
				+
				𝑦
				)
				−
				𝑔
				(
				𝑥
				𝑦
				)
				−
				ℎ
			

			
				
			
			
				𝑥
				+
				1
			

			
				
			
			
				𝑦
				
				|
				|
				|
				|
				⟶
				0
			

		
	

						as  
	
		
			
				(
				𝑦
				/
				𝑥
				)
				→
				∞
			

		
	
. Then there exists a logarithmic function 
	
		
			
				𝐿
				∶
				ℝ
			

			

				+
			

			
				→
				ℂ
			

		
	
 and 
	
		
			

				𝑐
			

			

				1
			

			
				,
				𝑐
			

			

				2
			

			
				∈
				ℂ
			

		
	
 such that 
							
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑥
				)
				=
				𝐿
				(
				𝑥
				)
				+
				𝑐
			

			

				1
			

			
				+
				𝑐
			

			

				2
			

			
				,
				𝑔
				(
				𝑥
				)
				=
				𝐿
				(
				𝑥
				)
				+
				𝑐
			

			

				1
			

			
				,
				ℎ
				(
				𝑥
				)
				=
				𝐿
				(
				𝑥
				)
				+
				𝑐
			

			

				2
			

		
	

						for all 
	
		
			
				𝑥
				>
				0
			

		
	
.
Proof. By the condition (36), for any positive integer 
	
		
			

				𝑛
			

		
	
, there exists 
	
		
			

				𝑑
			

			

				𝑛
			

			
				>
				0
			

		
	
 such that
							
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
				1
				𝑓
				(
				𝑥
				+
				𝑦
				)
				−
				𝑔
				(
				𝑥
				𝑦
				)
				−
				ℎ
			

			
				
			
			
				𝑥
				+
				1
			

			
				
			
			
				𝑦
				
				|
				|
				|
				|
				≤
				1
			

			
				
			
			

				𝑛
			

		
	

						for all 
	
		
			
				𝑥
				,
				𝑦
				>
				0
			

		
	
 with 
	
		
			
				(
				𝑦
				/
				𝑥
				)
				>
				𝑑
			

			

				𝑛
			

		
	
. By Theorem 1, there exists a logarithmic function 
	
		
			

				𝐿
			

			

				𝑛
			

			
				∶
				ℝ
			

			

				+
			

			
				→
				ℂ
			

		
	
 such that
							
	
 		
 			
				(
				3
				9
				)
			
 			
				(
				4
				0
				)
			
 			
				(
				4
				1
				)
			
 		
	

	
		
			
				|
				|
				𝑓
				(
				𝑥
				)
				−
				𝐿
			

			

				𝑛
			

			
				|
				|
				≤
				4
				(
				𝑥
				)
				−
				𝑓
				(
				1
				)
			

			
				
			
			
				𝑛
				,
				|
				|
				𝑔
				(
				𝑥
				)
				−
				𝐿
			

			

				𝑛
			

			
				|
				|
				≤
				4
				(
				𝑥
				)
				−
				𝑔
				(
				1
				)
			

			
				
			
			
				𝑛
				,
				|
				|
				ℎ
				(
				𝑥
				)
				−
				𝐿
			

			

				𝑛
			

			
				|
				|
				≤
				4
				(
				𝑥
				)
				−
				ℎ
				(
				1
				)
			

			
				
			
			

				𝑛
			

		
	

						for all 
	
		
			
				𝑥
				>
				0
			

		
	
. Replacing 
	
		
			

				𝑛
			

		
	
 by 
	
		
			

				𝑚
			

		
	
 in (39) and using the triangle inequality, we have
							
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			
				|
				|
				𝐿
			

			

				𝑛
			

			
				(
				𝑥
				)
				−
				𝐿
			

			

				𝑚
			

			
				|
				|
				≤
				4
				(
				𝑥
				)
			

			
				
			
			
				𝑛
				+
				4
			

			
				
			
			
				𝑚
				≤
				8
			

		
	

						for all 
	
		
			
				𝑥
				>
				0
			

		
	
. Thus, we obtain
							
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			
				|
				|
				𝐿
			

			

				𝑛
			

			
				(
				𝑥
				)
				−
				𝐿
			

			

				𝑚
			

			
				|
				|
				=
				1
				(
				𝑥
				)
			

			
				
			
			
				𝑘
				|
				|
				𝐿
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑘
			

			
				
				−
				𝐿
			

			

				𝑚
			

			
				
				𝑥
			

			

				𝑘
			

			
				
				|
				|
				≤
				8
			

			
				
			
			

				𝑘
			

		
	

						for all 
	
		
			
				𝑥
				>
				0
			

		
	
 and 
	
		
			
				𝑘
				∈
				ℕ
			

		
	
. Letting 
	
		
			
				𝑘
				→
				∞
			

		
	
 in (43), we have 
	
		
			

				𝐿
			

			

				𝑛
			

			
				(
				𝑥
				)
				=
				𝐿
			

			

				𝑚
			

			
				(
				𝑥
				)
				∶
				=
				𝐿
				(
				𝑥
				)
			

		
	
 for all 
	
		
			
				𝑥
				>
				0
			

		
	
. Finally, letting 
	
		
			
				𝑛
				→
				∞
			

		
	
 in (39), (40), and (41), we have
							
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑥
				)
				=
				𝐿
				(
				𝑥
				)
				+
				𝑓
				(
				1
				)
				,
				𝑔
				(
				𝑥
				)
				=
				𝐿
				(
				𝑥
				)
				+
				𝑔
				(
				1
				)
				,
				ℎ
				(
				𝑥
				)
				=
				𝐿
				(
				𝑥
				)
				+
				ℎ
				(
				1
				)
			

		
	

						for all 
	
		
			
				𝑥
				>
				0
			

		
	
. Finally, substituting (44) in (36) we get 
	
		
			
				𝑓
				(
				1
				)
				=
				𝑔
				(
				1
				)
				+
				ℎ
				(
				1
				)
			

		
	
. Letting 
	
		
			

				𝑐
			

			

				1
			

			
				=
				𝑔
				(
				1
				)
			

		
	
 and 
	
		
			

				𝑐
			

			

				2
			

			
				=
				ℎ
				(
				1
				)
			

		
	
 we obtain the asserted result.
3. Stability of (4) in 
	
		
			

				𝐿
			

			

				∞
			

		
	
-Sense and Its Asymptotic Behavior
In this section, we consider the Hyers-Ulam stability of the functional equation (4) in 
	
		
			

				𝐿
			

			

				∞
			

		
	
-sense on the sector 
	
		
			

				Γ
			

			

				𝑑
			

		
	
 and then examine its asymptotic behavior. Consider the functional inequality
						
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			
				‖
				‖
				‖
				
				1
				𝑓
				(
				𝑥
				+
				𝑦
				)
				−
				𝑔
				(
				𝑥
				𝑦
				)
				−
				ℎ
			

			
				
			
			
				𝑥
				+
				1
			

			
				
			
			
				𝑦
				
				‖
				‖
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				Γ
			

			

				𝑑
			

			

				)
			

			
				≤
				𝜖
				,
			

		
	

					where 
	
		
			

				Γ
			

			

				𝑑
			

			
				=
				{
				(
				𝑥
				,
				𝑦
				)
				∶
				𝑥
				>
				0
				,
				𝑦
				>
				0
				,
				(
				𝑦
				/
				𝑥
				)
				>
				𝑑
				}
			

		
	
 and 
	
		
			
				𝑑
				>
				1
			

		
	
 is fixed, where 
	
		
			
				‖
				⋅
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				Γ
			

			

				𝑑
			

			

				)
			

		
	
 denotes the essential supremum norm of 
	
		
			
				𝐷
				(
				𝑥
				,
				𝑦
				)
				=
				𝑓
				(
				𝑥
				+
				𝑦
				)
				−
				𝑔
				(
				𝑥
				𝑦
				)
				−
				ℎ
				(
				(
				1
				/
				𝑥
				)
				+
				(
				1
				/
				𝑦
				)
				)
			

		
	
 on the set 
	
		
			

				Γ
			

			

				𝑑
			

		
	
. We employ the function 
	
		
			

				𝛿
			

		
	
 on 
	
		
			

				ℝ
			

		
	
 defined by 
						
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			
				
				𝛿
				(
				𝑥
				)
				=
				𝑞
				𝑒
			

			
				−
				(
				1
				−
				𝑥
			

			

				2
			

			

				)
			

			
				−
				1
			

			
				,
				i
				f
				|
				𝑥
				|
				<
				1
				,
				0
				,
				i
				f
				|
				𝑥
				|
				≥
				1
				,
			

		
	

					where 
						
	
 		
 			
				(
				4
				7
				)
			
 		
	

	
		
			
				
				
				𝑞
				=
			

			
				1
				−
				1
			

			

				𝑒
			

			
				−
				(
				1
				−
				𝑥
			

			

				2
			

			

				)
			

			
				−
				1
			

			
				
				𝑑
				𝑥
			

			
				−
				1
			

			

				.
			

		
	

					It is easy to see that 
	
		
			
				𝛿
				(
				𝑥
				)
			

		
	
 is an infinitely differentiable function with support 
	
		
			
				{
				𝑥
				∶
				|
				𝑥
				|
				≤
				1
				}
			

		
	
. Let 
	
		
			

				𝑓
			

		
	
 be a locally integrable function and 
	
		
			

				𝛿
			

			

				𝑡
			

			
				(
				𝑥
				)
				∶
				=
				𝑡
			

			
				−
				1
			

			
				𝛿
				(
				𝑥
				/
				𝑡
				)
			

		
	
,  
	
		
			
				𝑡
				>
				0
			

		
	
. Then for each 
	
		
			
				𝑡
				>
				0
			

		
	
, 
						
	
 		
 			
				(
				4
				8
				)
			
 		
	

	
		
			
				𝑓
				∗
				𝛿
			

			

				𝑡
			

			
				
				(
				𝑥
				)
				=
			

			
				∞
				−
				∞
			

			
				𝑓
				(
				𝑦
				)
				𝛿
			

			

				𝑡
			

			
				(
				𝑥
				−
				𝑦
				)
				𝑑
				𝑦
			

		
	

					is a smooth function of 
	
		
			
				𝑥
				∈
				ℝ
			

		
	
 and 
	
		
			
				𝑓
				∗
				𝛿
			

			

				𝑡
			

			
				(
				𝑥
				)
				→
				𝑓
				(
				𝑥
				)
			

		
	
 for almost every 
	
		
			
				𝑥
				∈
				ℝ
			

		
	
 as 
	
		
			
				𝑡
				→
				0
			

			

				+
			

		
	
.
 Now we prove the Hyers-Ulam stability of the functional equation (4) in 
	
		
			

				𝐿
			

			

				∞
			

		
	
-sense on the sector 
	
		
			

				Γ
			

			

				𝑑
			

		
	
.
Theorem 5.  Let 
	
		
			

				𝑓
			

		
	
, 
	
		
			

				𝑔
			

		
	
, 
	
		
			

				ℎ
			

		
	
 be locally integrable functions satisfying (45). Then there exist constants 
	
		
			

				𝑐
			

			

				1
			

			
				,
				𝑐
			

			

				2
			

			
				,
				𝑐
			

			

				3
			

			
				,
				𝑎
				∈
				ℂ
			

		
	
 such that 
							
	
 		
 			
				(
				4
				9
				)
			
 		
	

	
		
			
				‖
				‖
				𝑓
				(
				𝑥
				)
				−
				𝑐
			

			

				1
			

			
				‖
				‖
				−
				𝑎
				l
				n
				𝑥
			

			

				𝐿
			

			

				∞
			

			
				(
				𝑅
			

			

				+
			

			

				)
			

			
				‖
				‖
				≤
				4
				𝜖
				,
				𝑔
				(
				𝑥
				)
				−
				𝑐
			

			

				2
			

			
				‖
				‖
				−
				𝑎
				l
				n
				𝑥
			

			

				𝐿
			

			

				∞
			

			
				(
				𝑅
			

			

				+
			

			

				)
			

			
				‖
				‖
				≤
				4
				𝜖
				,
				ℎ
				(
				𝑥
				)
				−
				𝑐
			

			

				3
			

			
				‖
				‖
				−
				𝑎
				l
				n
				𝑥
			

			

				𝐿
			

			

				∞
			

			
				(
				𝑅
			

			

				+
			

			

				)
			

			
				≤
				4
				𝜖
				.
			

		
	

Proof. We will use the diffeomorphism
							
	
 		
 			
				(
				5
				0
				)
			
 		
	

	
		
			
				
				𝐽
				(
				𝑥
				,
				𝑦
				)
				=
				l
				n
				𝑥
				𝑦
				,
				l
				n
				𝑥
				+
				𝑦
			

			
				
			
			
				
				.
				𝑥
				𝑦
			

		
	

						Let 
	
		
			
				𝑢
				=
				l
				n
				𝑥
				𝑦
			

		
	
, 
	
		
			
				𝑣
				=
				l
				n
				(
				(
				𝑥
				+
				𝑦
				)
				/
				𝑥
				𝑦
				)
			

		
	
 and 
	
		
			
				𝑦
				/
				𝑥
				=
				𝑡
				>
				1
			

		
	
. Then, we have 
							
	
 		
 			
				(
				5
				1
				)
			
 		
	

	
		
			
				𝑢
				+
				2
				𝑣
				=
				l
				n
				𝑥
				𝑦
				+
				2
				l
				n
				𝑥
				+
				𝑦
			

			
				
			
			
				
				𝑥
				𝑥
				𝑦
				=
				l
				n
				2
				+
			

			
				
			
			
				𝑦
				+
				𝑦
			

			
				
			
			
				𝑥
				
				
				1
				=
				l
				n
				2
				+
				𝑡
				+
			

			
				
			
			
				𝑡
				
				.
			

		
	

						Thus, we have 
	
		
			
				𝐽
				(
				Γ
			

			

				𝑑
			

			
				)
				∶
				=
				𝑈
			

			

				𝑑
			

			
				=
				{
				(
				𝑢
				,
				𝑣
				)
				∶
				𝑢
				+
				2
				𝑣
				>
				l
				n
				(
				2
				+
				𝑑
				+
				1
				/
				𝑑
				)
				}
			

		
	
. Consequently, (45) is converted to
							
	
 		
 			
				(
				5
				2
				)
			
 		
	

	
		
			
				‖
				‖
				𝑓
				
				𝑒
			

			
				𝑢
				+
				𝑣
			

			
				
				−
				𝑔
				(
				𝑒
			

			

				𝑢
			

			
				)
				−
				ℎ
				(
				𝑒
			

			

				𝑣
			

			
				)
				‖
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				𝑈
			

			

				𝑑
			

			

				)
			

			
				≤
				𝜖
				.
			

		
	

						Now, let
							
	
 		
 			
				(
				5
				3
				)
			
 		
	

	
		
			
				𝐹
				(
				𝑢
				)
				=
				𝑓
				(
				𝑒
			

			

				𝑢
			

			
				)
				,
				𝐺
				(
				𝑢
				)
				=
				𝑔
				(
				𝑒
			

			

				𝑢
			

			
				)
				,
				𝐻
				(
				𝑢
				)
				=
				ℎ
				(
				𝑒
			

			

				𝑢
			

			
				)
				.
			

		
	

						Then, we have
							
	
 		
 			
				(
				5
				4
				)
			
 		
	

	
		
			
				‖
				‖
				𝐹
				(
				𝑢
				+
				𝑣
				)
				−
				𝐺
				(
				𝑢
				)
				−
				𝐻
				(
				𝑣
				)
			

			

				𝐿
			

			

				∞
			

			
				(
				𝑈
			

			

				𝑑
			

			

				)
			

			
				≤
				𝜖
				.
			

		
	
For each 
	
		
			
				𝑥
				,
				𝑦
				∈
				ℝ
			

		
	
 and 
	
		
			
				𝑡
				,
				𝑠
				>
				0
			

		
	
, we have
							
	
 		
 			
				(
				5
				5
				)
			
 		
	

	
		
			

				
			

			
				∞
				−
				∞
			

			
				𝐹
				(
				𝑢
				+
				𝑣
				)
				𝛿
			

			

				𝑡
			

			
				(
				𝑥
				−
				𝑢
				)
				𝛿
			

			

				𝑠
			

			
				=
				
				(
				𝑦
				−
				𝑣
				)
				𝑑
				𝑢
				𝑑
				𝑣
			

			
				∞
				−
				∞
			

			
				
				
				𝐹
				(
				𝑢
				)
			

			
				∞
				−
				∞
			

			

				𝛿
			

			

				𝑡
			

			
				(
				𝑥
				−
				𝑢
				+
				𝑣
				)
				𝛿
			

			

				𝑠
			

			
				
				=
				
				(
				𝑦
				−
				𝑣
				)
				𝑑
				𝑣
				𝑑
				𝑢
			

			
				∞
				−
				∞
			

			
				
				
				𝐹
				(
				𝑢
				)
			

			
				∞
				−
				∞
			

			

				𝛿
			

			

				𝑡
			

			
				(
				𝑣
				)
				𝛿
			

			

				𝑠
			

			
				
				=
				
				(
				𝑥
				+
				𝑦
				−
				𝑢
				−
				𝑣
				)
				𝑑
				𝑣
				𝑑
				𝑢
			

			
				∞
				−
				∞
			

			
				
				𝛿
				𝐹
				(
				𝑢
				)
			

			

				𝑡
			

			
				∗
				𝛿
			

			

				𝑠
			

			
				
				(
				𝑥
				+
				𝑦
				−
				𝑢
				)
				𝑑
				𝑢
				=
				𝐹
				∗
				𝛿
			

			

				𝑡
			

			
				∗
				𝛿
			

			

				𝑠
			

			
				(
				𝑥
				+
				𝑦
				)
				.
			

		
	

						We also have
							
	
 		
 			
				(
				5
				6
				)
			
 		
	

	
		
			

				
			

			
				∞
				−
				∞
			

			
				𝐺
				(
				𝑢
				)
				𝛿
			

			

				𝑡
			

			
				(
				𝑥
				−
				𝑢
				)
				𝛿
			

			

				𝑠
			

			
				=
				
				(
				𝑦
				−
				𝑣
				)
				𝑑
				𝑢
				𝑑
				𝑣
			

			
				∞
				−
				∞
			

			
				𝐺
				(
				𝑢
				)
				𝛿
			

			

				𝑡
			

			
				
				
				(
				𝑥
				−
				𝑢
				)
			

			
				∞
				−
				∞
			

			

				𝛿
			

			

				𝑠
			

			
				
				=
				
				(
				𝑦
				−
				𝑣
				)
				𝑑
				𝑣
				𝑑
				𝑢
			

			
				∞
				−
				∞
			

			
				𝐺
				(
				𝑢
				)
				𝛿
			

			

				𝑡
			

			
				(
				𝑥
				−
				𝑢
				)
				𝑑
				𝑢
				=
				𝐺
				∗
				𝛿
			

			

				𝑡
			

			
				(
				𝑥
				)
				.
			

		
	

						Similarly, we have
							
	
 		
 			
				(
				5
				7
				)
			
 		
	

	
		
			

				
			

			
				∞
				−
				∞
			

			
				𝐻
				(
				𝑣
				)
				𝛿
			

			

				𝑡
			

			
				(
				𝑥
				−
				𝑢
				)
				𝛿
			

			

				𝑠
			

			
				(
				𝑦
				−
				𝑣
				)
				𝑑
				𝑢
				𝑑
				𝑣
				=
				𝐻
				∗
				𝛿
			

			

				𝑠
			

			
				(
				𝑦
				)
				.
			

		
	

						On the other hand, let 
	
		
			
				𝑥
				+
				2
				𝑦
				>
				3
				+
				l
				n
				(
				2
				+
				𝑑
				+
				1
				/
				𝑑
				)
			

		
	
 and 
	
		
			
				0
				<
				𝑡
				<
				1
			

		
	
, 
	
		
			
				0
				<
				𝑠
				<
				1
			

		
	
. Then, we have
							
	
 		
 			
				(
				5
				8
				)
			
 		
	

	
		
			
				
				𝛿
				s
				u
				p
				p
			

			

				𝑡
			

			
				(
				𝑥
				−
				𝑢
				)
				𝛿
			

			

				𝑠
			

			
				
				(
				𝑦
				−
				𝑣
				)
				=
				{
				(
				𝑢
				,
				𝑣
				)
				∶
				𝑥
				−
				𝑡
				≤
				𝑢
				≤
				𝑥
				+
				𝑡
				,
				𝑦
				−
				𝑠
				≤
				𝑣
				≤
				𝑦
				+
				𝑠
				}
				⊂
				𝑈
			

			

				𝑑
			

			

				.
			

		
	

						Let 
	
		
			

				𝑑
			

			

				
			

			
				=
				l
				n
				(
				2
				+
				𝑑
				+
				1
				/
				𝑑
				)
			

		
	
. Then it follows from (54)~(58) that
							
	
 		
 			
				(
				5
				9
				)
			
 		
	

	
		
			
				|
				|
				𝐹
				∗
				𝛿
			

			

				𝑡
			

			
				∗
				𝛿
			

			

				𝑠
			

			
				(
				𝑥
				+
				𝑦
				)
				−
				𝐺
				∗
				𝛿
			

			

				𝑡
			

			
				(
				𝑥
				)
				−
				𝐻
				∗
				𝛿
			

			

				𝑠
			

			
				|
				|
				=
				|
				|
				|
				|
				
				(
				𝑦
				)
			

			
				∞
				−
				∞
			

			
				(
				𝐹
				(
				𝑢
				+
				𝑣
				)
				−
				𝐺
				(
				𝑢
				)
				−
				𝐻
				(
				𝑣
				)
				)
				×
				𝛿
			

			

				𝑡
			

			
				(
				𝑥
				−
				𝑢
				)
				𝛿
			

			

				𝑠
			

			
				|
				|
				|
				|
				=
				|
				|
				|
				|
				
				(
				𝑦
				−
				𝑣
				)
				𝑑
				𝑢
				𝑑
				𝑣
			

			
				∞
				−
				∞
			

			

				
			

			
				∞
				𝑑
			

			

				′
			

			
				−
				2
				𝑣
			

			
				(
				𝐹
				(
				𝑢
				+
				𝑣
				)
				−
				𝐺
				(
				𝑢
				)
				−
				𝐻
				(
				𝑣
				)
				)
				×
				𝛿
			

			

				𝑡
			

			
				(
				𝑥
				−
				𝑢
				)
				𝛿
			

			

				𝑠
			

			
				|
				|
				|
				|
				=
				
				(
				𝑦
				−
				𝑣
				)
				𝑑
				𝑢
				𝑑
				𝑣
			

			
				∞
				−
				∞
			

			

				
			

			
				∞
				𝑑
			

			

				′
			

			
				−
				2
				𝑣
			

			
				|
				|
				|
				|
				×
				|
				|
				𝛿
				𝐹
				(
				𝑢
				+
				𝑣
				)
				−
				𝐺
				(
				𝑢
				)
				−
				𝐻
				(
				𝑣
				)
			

			

				𝑡
			

			
				(
				𝑥
				−
				𝑢
				)
				𝛿
			

			

				𝑠
			

			
				(
				|
				|
				
				𝑦
				−
				𝑣
				)
				𝑑
				𝑢
				𝑑
				𝑣
				≤
				𝜖
			

			
				∞
				−
				∞
			

			
				|
				|
				𝛿
			

			

				𝑡
			

			
				(
				𝑥
				−
				𝑢
				)
				𝛿
			

			

				𝑠
			

			
				|
				|
				(
				𝑦
				−
				𝑣
				)
				𝑑
				𝑢
				𝑑
				𝑣
				=
				𝜖
				.
			

		
	

						Thus, we have the functional inequality
							
	
 		
 			
				(
				6
				0
				)
			
 		
	

	
		
			
				|
				|
				𝐹
				∗
				𝛿
			

			

				𝑡
			

			
				∗
				𝛿
			

			

				𝑠
			

			
				(
				𝑥
				+
				𝑦
				)
				−
				𝐺
				∗
				𝛿
			

			

				𝑡
			

			
				(
				𝑥
				)
				−
				𝐻
				∗
				𝛿
			

			

				𝑠
			

			
				|
				|
				(
				𝑦
				)
				≤
				𝜖
			

		
	

						for all 
	
		
			
				𝑥
				+
				2
				𝑦
				>
				𝑑
			

			

				1
			

			
				∶
				=
				3
				+
				l
				n
				(
				2
				+
				𝑑
				+
				1
				/
				𝑑
				)
			

		
	
 and 
	
		
			
				0
				<
				𝑡
				<
				1
			

		
	
, 
	
		
			
				0
				<
				𝑠
				<
				1
			

		
	
. From now on, we assume that 
	
		
			
				0
				<
				𝑡
				<
				1
			

		
	
, 
	
		
			
				0
				<
				𝑠
				<
				1
			

		
	
. From (60), we have
							
	
 		
 			
				(
				6
				1
				)
			
 		
	

	
		
			
				|
				|
				𝐹
				∗
				𝛿
			

			

				𝑡
			

			
				∗
				𝛿
			

			

				𝑠
			

			
				(
				𝑥
				+
				𝑦
				+
				𝑧
				)
				−
				𝐺
				∗
				𝛿
			

			

				𝑡
			

			
				(
				𝑥
				+
				𝑦
				)
				−
				𝐻
				∗
				𝛿
			

			

				𝑠
			

			
				|
				|
				(
				𝑧
				)
				≤
				𝜖
			

		
	

						for 
	
		
			
				𝑥
				+
				𝑦
				+
				2
				𝑧
				>
				𝑑
			

			

				1
			

		
	
,
							
	
 		
 			
				(
				6
				2
				)
			
 		
	

	
		
			
				|
				|
				𝐹
				∗
				𝛿
			

			

				𝑡
			

			
				∗
				𝛿
			

			

				𝑠
			

			
				(
				𝑥
				+
				𝑦
				+
				𝑧
				)
				−
				𝐺
				∗
				𝛿
			

			

				𝑡
			

			
				(
				𝑥
				)
				−
				𝐻
				∗
				𝛿
			

			

				𝑠
			

			
				|
				|
				(
				𝑦
				+
				𝑧
				)
				≤
				𝜖
			

		
	

						for 
	
		
			
				𝑥
				+
				2
				𝑦
				+
				2
				𝑧
				>
				𝑑
			

			

				1
			

		
	
,
							
	
 		
 			
				(
				6
				3
				)
			
 		
	

	
		
			
				|
				|
				𝐹
				∗
				𝛿
			

			

				𝑡
			

			
				∗
				𝛿
			

			

				𝑠
			

			
				(
				𝑦
				+
				𝑧
				)
				−
				𝐺
				∗
				𝛿
			

			

				𝑡
			

			
				(
				𝑦
				)
				−
				𝐻
				∗
				𝛿
			

			

				𝑠
			

			
				|
				|
				(
				𝑧
				)
				≤
				𝜖
			

		
	

						for 
	
		
			
				𝑦
				+
				2
				𝑧
				>
				𝑑
			

			

				1
			

		
	
,
							
	
 		
 			
				(
				6
				4
				)
			
 		
	

	
		
			
				|
				|
				𝐹
				∗
				𝛿
			

			

				𝑡
			

			
				∗
				𝛿
			

			

				𝑠
			

			
				(
				𝑦
				+
				𝑧
				)
				−
				𝐺
				∗
				𝛿
			

			

				𝑡
			

			
				(
				0
				)
				−
				𝐻
				∗
				𝛿
			

			

				s
			

			
				|
				|
				(
				𝑦
				+
				𝑧
				)
				≤
				𝜖
			

		
	

						for 
	
		
			
				2
				𝑦
				+
				2
				𝑧
				>
				𝑑
			

			

				1
			

		
	
. For given 
	
		
			
				𝑥
				,
				𝑦
				∈
				ℝ
			

		
	
, choose 
	
		
			
				𝑧
				>
				(
				1
				/
				2
				)
				(
				𝑑
			

			

				1
			

			
				+
				|
				𝑥
				|
				+
				2
				|
				𝑦
				|
				)
			

		
	
. Then, using the triangle inequality with (61)~(64), we have
							
	
 		
 			
				(
				6
				5
				)
			
 		
	

	
		
			
				|
				|
				𝐺
				∗
				𝛿
			

			

				𝑡
			

			
				(
				𝑥
				+
				𝑦
				)
				−
				𝐺
				∗
				𝛿
			

			

				𝑡
			

			
				(
				𝑥
				)
				−
				𝐺
				∗
				𝛿
			

			

				𝑡
			

			
				(
				𝑦
				)
				+
				𝐺
				∗
				𝛿
			

			

				𝑡
			

			
				|
				|
				(
				0
				)
				≤
				4
				𝜖
			

		
	

						for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				ℝ
			

		
	
. Replacing 
	
		
			
				(
				𝑥
				,
				𝑡
				)
			

		
	
 by 
	
		
			
				(
				𝑦
				,
				𝑠
				)
			

		
	
, 
	
		
			
				(
				𝑦
				,
				𝑠
				)
			

		
	
 by 
	
		
			
				(
				𝑥
				,
				𝑡
				)
			

		
	
 in (60) and changing the roles of 
	
		
			

				𝐺
			

		
	
 and 
	
		
			

				𝐻
			

		
	
, we have
							
	
 		
 			
				(
				6
				6
				)
			
 		
	

	
		
			
				|
				|
				𝐻
				∗
				𝛿
			

			

				𝑡
			

			
				(
				𝑥
				+
				𝑦
				)
				−
				𝐻
				∗
				𝛿
			

			

				𝑡
			

			
				(
				𝑥
				)
				−
				𝐻
				∗
				𝛿
			

			

				𝑡
			

			
				(
				𝑦
				)
				+
				𝐻
				∗
				𝛿
			

			

				𝑡
			

			
				|
				|
				(
				0
				)
				≤
				4
				𝜖
			

		
	

						for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				ℝ
			

		
	
. Now we prove that
							
	
 		
 			
				(
				6
				7
				)
			
 		
	

	
		
			
				|
				|
				𝐹
				∗
				𝛿
			

			

				𝑡
			

			
				(
				𝑥
				+
				𝑦
				)
				−
				𝐹
				∗
				𝛿
			

			

				𝑡
			

			
				(
				𝑥
				)
				−
				𝐹
				∗
				𝛿
			

			

				𝑡
			

			
				(
				𝑦
				)
				+
				𝐹
				∗
				𝛿
			

			

				𝑡
			

			
				|
				|
				(
				0
				)
				≤
				4
				𝜖
			

		
	

						for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				ℝ
			

		
	
. From (60), we have
							
	
 		
 			
				(
				6
				8
				)
			
 		
	

	
		
			
				|
				|
				𝐹
				∗
				𝛿
			

			

				𝑡
			

			
				∗
				𝛿
			

			

				𝑠
			

			
				(
				𝑥
				+
				𝑦
				)
				−
				𝐺
				∗
				𝛿
			

			

				𝑡
			

			
				(
				𝑧
				)
				−
				𝐻
				∗
				𝛿
			

			

				𝑠
			

			
				|
				|
				|
				|
				(
				𝑥
				+
				𝑦
				−
				𝑧
				)
				≤
				𝜖
				,
				𝐹
				∗
				𝛿
			

			

				𝑡
			

			
				∗
				𝛿
			

			

				𝑠
			

			
				(
				𝑥
				)
				−
				𝐺
				∗
				𝛿
			

			

				𝑡
			

			
				(
				𝑧
				−
				𝑦
				)
				−
				𝐻
				∗
				𝛿
			

			

				𝑠
			

			
				|
				|
				|
				|
				(
				𝑥
				+
				𝑦
				−
				𝑧
				)
				≤
				𝜖
				,
				𝐹
				∗
				𝛿
			

			

				𝑡
			

			
				∗
				𝛿
			

			

				𝑠
			

			
				(
				𝑦
				)
				−
				𝐺
				∗
				𝛿
			

			

				𝑡
			

			
				(
				𝑧
				)
				−
				𝐻
				∗
				𝛿
			

			

				𝑠
			

			
				|
				|
				|
				|
				(
				𝑦
				−
				𝑧
				)
				≤
				𝜖
				,
				𝐹
				∗
				𝛿
			

			

				𝑡
			

			
				∗
				𝛿
			

			

				𝑠
			

			
				(
				0
				)
				−
				𝐺
				∗
				𝛿
			

			

				𝑡
			

			
				(
				𝑧
				−
				𝑦
				)
				−
				𝐻
				∗
				𝛿
			

			

				𝑠
			

			
				|
				|
				(
				𝑦
				−
				𝑧
				)
				≤
				𝜖
				,
			

		
	

						for all 
	
		
			

				𝑥
			

		
	
, 
	
		
			

				𝑦
			

		
	
, 
	
		
			

				𝑧
			

		
	
 such that 
	
		
			
				2
				𝑥
				+
				2
				𝑦
				−
				𝑧
				>
				𝑑
			

			

				1
			

		
	
, 
	
		
			
				2
				𝑥
				+
				𝑦
				−
				𝑧
				>
				𝑑
			

			

				1
			

		
	
, 
	
		
			
				2
				𝑦
				−
				𝑧
				>
				𝑑
			

			

				1
			

		
	
, and 
	
		
			
				𝑦
				−
				𝑧
				>
				𝑑
			

			

				1
			

		
	
. For given 
	
		
			
				𝑥
				,
				𝑦
				∈
				ℝ
			

		
	
, choose 
	
		
			
				𝑧
				≤
				−
				𝑑
			

			

				1
			

			
				−
				2
				|
				𝑥
				|
				−
				2
				|
				𝑦
				|
			

		
	
. Using the triangle inequality with (68), we have
							
	
 		
 			
				(
				6
				9
				)
			
 		
	

	
		
			
				|
				|
				𝐹
				∗
				𝛿
			

			

				𝑡
			

			
				∗
				𝛿
			

			

				𝑠
			

			
				(
				𝑥
				+
				𝑦
				)
				−
				𝐹
				∗
				𝛿
			

			

				𝑡
			

			
				∗
				𝛿
			

			

				𝑠
			

			
				(
				𝑥
				)
				−
				𝐹
				∗
				𝛿
			

			

				𝑡
			

			
				∗
				𝛿
			

			

				𝑠
			

			
				(
				𝑦
				)
				+
				𝐹
				∗
				𝛿
			

			

				𝑡
			

			
				∗
				𝛿
			

			

				𝑠
			

			
				|
				|
				(
				0
				)
				≤
				4
				𝜖
				.
			

		
	

						Letting 
	
		
			
				𝑠
				→
				0
			

			

				+
			

		
	
 in (69), we get (67). Applying Hyers’ stability theorem from [3] for (65), (66), and (67), we obtain that for each 
	
		
			
				0
				<
				𝑡
				<
				1
			

		
	
 there exist functions 
	
		
			

				𝐴
			

			

				𝑗
			

			
				(
				⋅
				,
				𝑡
				)
			

		
	
,  
	
		
			
				𝑗
				=
				1
				,
				2
				,
				3
			

		
	
, satisfying
							
	
 		
 			
				(
				7
				0
				)
			
 		
	

	
		
			

				𝐴
			

			

				𝑗
			

			
				(
				𝑥
				+
				𝑦
				,
				𝑡
				)
				=
				𝐴
			

			

				𝑗
			

			
				(
				𝑥
				,
				𝑡
				)
				+
				𝐴
			

			

				𝑗
			

			
				(
				𝑦
				,
				𝑡
				)
				,
				𝑥
				,
				𝑦
				∈
				ℝ
				,
			

		
	

						for which
							
	
 		
 			
				(
				7
				1
				)
			
 			
				(
				7
				2
				)
			
 			
				(
				7
				3
				)
			
 		
	

	
		
			
				|
				|
				𝐹
				∗
				𝛿
			

			

				𝑡
			

			
				(
				𝑥
				)
				−
				𝐴
			

			

				1
			

			
				(
				𝑥
				,
				𝑡
				)
				−
				𝐹
				∗
				𝛿
			

			

				𝑡
			

			
				|
				|
				|
				|
				(
				0
				)
				≤
				4
				𝜖
				,
				𝐺
				∗
				𝛿
			

			

				𝑡
			

			
				(
				𝑥
				)
				−
				𝐴
			

			

				2
			

			
				(
				𝑥
				,
				𝑡
				)
				−
				𝐺
				∗
				𝛿
			

			

				𝑡
			

			
				|
				|
				|
				|
				(
				0
				)
				≤
				4
				𝜖
				,
				𝐻
				∗
				𝛿
			

			

				𝑡
			

			
				(
				𝑥
				)
				−
				𝐴
			

			

				3
			

			
				(
				𝑥
				,
				𝑡
				)
				−
				𝐻
				∗
				𝛿
			

			

				𝑡
			

			
				|
				|
				(
				0
				)
				≤
				4
				𝜖
				,
			

		
	

						for all 
	
		
			
				𝑥
				∈
				ℝ
			

		
	
. Now we prove that 
	
		
			

				𝐴
			

			

				1
			

			
				=
				𝐴
			

			

				2
			

			
				=
				𝐴
			

			

				3
			

		
	
. From (60), using the triangle inequality we have
							
	
 		
 			
				(
				7
				4
				)
			
 		
	

	
		
			
				|
				|
				𝐺
				∗
				𝛿
			

			

				𝑡
			

			
				|
				|
				|
				|
				(
				𝑥
				)
				≤
				𝜖
				+
				𝐹
				∗
				𝛿
			

			

				𝑡
			

			
				∗
				𝛿
			

			

				𝑠
			

			
				|
				|
				+
				|
				|
				(
				𝑥
				+
				𝑦
				)
				𝐻
				∗
				𝛿
			

			

				𝑠
			

			
				|
				|
				(
				𝑦
				)
			

		
	

						for all 
	
		
			
				𝑥
				+
				2
				𝑦
				>
				𝑑
			

			

				1
			

		
	
. Since 
	
		
			
				𝐹
				∗
				𝛿
			

			

				𝑡
			

			
				∗
				𝛿
			

			

				𝑠
			

			
				(
				𝑥
				)
				→
				𝐹
				∗
				𝛿
			

			

				𝑠
			

			
				(
				𝑥
				)
			

		
	
 as 
	
		
			
				𝑡
				→
				0
			

			

				+
			

		
	
, in view of (74) it is easy to see that 
							
	
 		
 			
				(
				7
				5
				)
			
 		
	

	
		
			

				∼
			

			
				𝐺
				(
				𝑥
				)
				∶
				=
				l
				i
				m
				s
				u
				p
			

			
				𝑡
				→
				0
			

			

				+
			

			
				𝐺
				∗
				𝛿
			

			

				𝑡
			

			
				(
				𝑥
				)
			

		
	

						exists for all 
	
		
			
				𝑥
				∈
				ℝ
			

		
	
. Similarly, we can show that 
							
	
 		
 			
				(
				7
				6
				)
			
 		
	

	
		
			

				∼
			

			
				𝐻
				(
				𝑥
				)
				∶
				=
				l
				i
				m
				s
				u
				p
			

			
				𝑠
				→
				0
			

			

				+
			

			
				𝐻
				∗
				𝛿
			

			

				𝑠
			

			
				(
				𝑥
				)
			

		
	

						exists for all 
	
		
			
				𝑥
				∈
				ℝ
			

		
	
. Putting 
	
		
			
				𝑦
				=
				0
			

		
	
 in (60) and letting 
	
		
			
				𝑠
				→
				0
			

			

				+
			

		
	
 so that 
	
		
			
				𝐻
				∗
				𝛿
			

			

				𝑠
			

			
				(
				0
				)
				→
			

			

				∼
			

			
				𝐻
				(
				0
				)
			

		
	
 we have
							
	
 		
 			
				(
				7
				7
				)
			
 		
	

	
		
			
				|
				|
				|
				𝐹
				∗
				𝛿
			

			

				𝑡
			

			
				(
				𝑥
				)
				−
				𝐺
				∗
				𝛿
			

			

				𝑡
			

			
				(
				𝑥
				)
				−
			

			

				∼
			

			
				𝐻
				|
				|
				|
				(
				0
				)
				≤
				𝜖
			

		
	

						for all 
	
		
			
				𝑥
				>
				𝑑
			

			

				1
			

		
	
. Similarly, we have
							
	
 		
 			
				(
				7
				8
				)
			
 		
	

	
		
			
				|
				|
				|
				𝐹
				∗
				𝛿
			

			

				𝑡
			

			
				(
				𝑥
				)
				−
				𝐻
				∗
				𝛿
			

			

				𝑡
			

			
				(
				𝑥
				)
				−
			

			

				∼
			

			
				𝐺
				|
				|
				|
				(
				0
				)
				≤
				𝜖
			

		
	

						for all 
	
		
			
				𝑥
				>
				(
				𝑑
			

			

				1
			

			
				/
				2
				)
			

		
	
. Using (71), (72), (77), and the triangle inequality, we have
							
	
 		
 			
				(
				7
				9
				)
			
 		
	

	
		
			
				|
				|
				𝐴
			

			

				1
			

			
				(
				𝑥
				,
				𝑡
				)
				−
				𝐴
			

			

				2
			

			
				|
				|
				|
				|
				|
				(
				𝑥
				,
				𝑡
				)
				≤
				9
				𝜖
				+
				𝐹
				∗
				𝛿
			

			

				𝑡
			

			
				(
				0
				)
				−
				𝐺
				∗
				𝛿
			

			

				𝑡
			

			
				(
				0
				)
				−
			

			

				∼
			

			
				𝐻
				|
				|
				|
				(
				0
				)
				∶
				=
				𝑀
				(
				𝑡
				)
			

		
	

						for all 
	
		
			
				𝑥
				>
				𝑑
			

			

				1
			

		
	
. From (71) and (80), we have
							
	
 		
 			
				(
				8
				0
				)
			
 		
	

	
		
			
				|
				|
				𝐴
			

			

				1
			

			
				(
				𝑥
				,
				𝑡
				)
				−
				𝐴
			

			

				2
			

			
				|
				|
				=
				1
				(
				𝑥
				,
				𝑡
				)
			

			
				
			
			
				|
				|
				𝑘
				|
				|
				|
				|
				𝐴
			

			

				1
			

			
				(
				𝑘
				𝑥
				,
				𝑡
				)
				−
				𝐴
			

			

				2
			

			
				|
				|
				≤
				1
				(
				𝑘
				𝑥
				,
				𝑡
				)
			

			
				
			
			
				|
				|
				𝑘
				|
				|
				𝑀
				(
				𝑡
				)
			

		
	

						for all 
	
		
			
				𝑥
				∈
				ℝ
			

		
	
,  
	
		
			
				𝑥
				≠
				0
			

		
	
, and all integers 
	
		
			

				𝑘
			

		
	
 with 
	
		
			
				𝑘
				𝑥
				>
				𝑑
			

			

				1
			

		
	
. Letting 
	
		
			
				𝑘
				→
				∞
			

		
	
 if 
	
		
			
				𝑥
				>
				0
			

		
	
 and letting 
	
		
			
				𝑘
				→
				−
				∞
			

		
	
 if 
	
		
			
				𝑥
				<
				0
			

		
	
 in (80), we have 
	
		
			

				𝐴
			

			

				1
			

			
				(
				𝑥
				,
				𝑡
				)
				=
				𝐴
			

			

				2
			

			
				(
				𝑥
				,
				𝑡
				)
			

		
	
 for 
	
		
			
				𝑥
				≠
				0
			

		
	
, which implies 
	
		
			

				𝐴
			

			

				1
			

			
				=
				𝐴
			

			

				2
			

		
	
 since 
	
		
			

				𝐴
			

			

				1
			

			
				(
				0
				,
				𝑡
				)
				=
				𝐴
			

			

				2
			

			
				(
				0
				,
				𝑡
				)
				=
				0
			

		
	
. Similarly, using (71), (73), and (78) we obtain that 
	
		
			

				𝐴
			

			

				1
			

			
				=
				𝐴
			

			

				3
			

		
	
. Finally, we prove that 
	
		
			

				𝐴
			

			

				1
			

		
	
 is independent of 
	
		
			

				𝑡
			

		
	
. Fixing 
	
		
			
				𝑥
				∈
				ℝ
			

		
	
 and letting 
	
		
			
				𝑡
				→
				0
			

			

				+
			

		
	
 so that 
	
		
			
				𝐺
				∗
				𝛿
			

			

				𝑡
			

			
				(
				𝑥
				)
				→
			

			

				∼
			

			
				𝐺
				(
				𝑥
				)
			

		
	
 in (60), we have
							
	
 		
 			
				(
				8
				1
				)
			
 		
	

	
		
			
				|
				|
				|
				𝐹
				∗
				𝛿
			

			

				𝑠
			

			
				(
				𝑥
				+
				𝑦
				)
				−
			

			

				∼
			

			
				𝐺
				(
				𝑥
				)
				−
				𝐻
				∗
				𝛿
			

			

				𝑠
			

			
				|
				|
				|
				(
				𝑦
				)
				≤
				𝜖
			

		
	

						for all 
	
		
			
				𝑥
				+
				2
				𝑦
				>
				𝑑
			

			

				1
			

		
	
. From (81), using the same substitutions as in (61)~(64) we have
							
	
 		
 			
				(
				8
				2
				)
			
 		
	

	
		
			
				|
				|
				|
			

			

				∼
			

			
				𝐺
				(
				𝑥
				+
				𝑦
				)
				−
			

			

				∼
			

			
				𝐺
				(
				𝑥
				)
				−
			

			

				∼
			

			
				𝐺
				(
				𝑦
				)
				+
			

			

				∼
			

			
				𝐺
				|
				|
				|
				(
				0
				)
				≤
				4
				𝜖
				.
			

		
	

						By Hyers’ stability theorem [3], there exists a unique function 
	
		
			

				𝐴
			

		
	
 satisfying the Cauchy functional equation
							
	
 		
 			
				(
				8
				3
				)
			
 		
	

	
		
			
				𝐴
				(
				𝑥
				+
				𝑦
				)
				−
				𝐴
				(
				𝑥
				)
				−
				𝐴
				(
				𝑦
				)
				=
				0
			

		
	

						for which
							
	
 		
 			
				(
				8
				4
				)
			
 		
	

	
		
			
				|
				|
				|
			

			

				∼
			

			
				𝐺
				(
				𝑥
				)
				−
				𝐴
				(
				𝑥
				)
				−
			

			

				∼
			

			
				𝐺
				|
				|
				|
				(
				0
				)
				≤
				4
				𝜖
				.
			

		
	

						Now we show that 
	
		
			

				𝐴
			

			

				1
			

			
				(
				𝑥
				,
				𝑡
				)
				=
				𝐴
				(
				𝑥
				)
			

		
	
 for all 
	
		
			
				𝑥
				∈
				ℝ
			

		
	
 and 
	
		
			
				0
				<
				𝑡
				<
				1
			

		
	
. Putting 
	
		
			
				𝑦
				=
				0
			

		
	
 in (81), we have
							
	
 		
 			
				(
				8
				5
				)
			
 		
	

	
		
			
				|
				|
				|
				𝐹
				∗
				𝛿
			

			

				𝑠
			

			
				(
				𝑥
				)
				−
			

			

				∼
			

			
				𝐺
				(
				𝑥
				)
				−
				𝐻
				∗
				𝛿
			

			

				𝑠
			

			
				|
				|
				|
				(
				0
				)
				≤
				𝜖
			

		
	

						for all 
	
		
			
				𝑥
				>
				𝑑
			

			

				1
			

		
	
. From (71), (84), and (85), using the triangle inequality we have
							
	
 		
 			
				(
				8
				6
				)
			
 		
	

	
		
			
				|
				|
				𝐴
			

			

				1
			

			
				|
				|
				|
				|
				|
				(
				𝑥
				,
				𝑡
				)
				−
				𝐴
				(
				𝑥
				)
				≤
				9
				𝜖
				+
				𝐹
				∗
				𝛿
			

			

				𝑡
			

			
				(
				0
				)
				−
				𝐻
				∗
				𝛿
			

			

				𝑡
			

			
				(
				0
				)
				−
			

			

				∼
			

			
				𝐺
				|
				|
				|
				(
				0
				)
			

		
	

						for all 
	
		
			
				𝑥
				>
				𝑑
			

			

				1
			

		
	
. From (86), using the method of proving 
	
		
			

				𝐴
			

			

				1
			

			
				=
				𝐴
			

			

				2
			

		
	
 we can show that 
	
		
			

				𝐴
			

			

				1
			

			
				(
				𝑥
				,
				𝑡
				)
				=
				𝐴
				(
				𝑥
				)
			

		
	
 for all 
	
		
			
				𝑥
				∈
				ℝ
			

		
	
 and 
	
		
			
				0
				<
				𝑡
				<
				1
			

		
	
. Thus, we have 
	
		
			

				𝐴
			

			

				1
			

			
				=
				𝐴
			

			

				2
			

			
				=
				𝐴
			

			

				3
			

			
				∶
				=
				𝐴
			

		
	
. Letting 
	
		
			
				𝑡
				→
				0
			

			

				+
			

		
	
 in (72) so that 
	
		
			
				𝐺
				∗
				𝛿
			

			

				𝑡
			

			
				(
				0
				)
				→
			

			

				∼
			

			
				𝐺
				(
				0
				)
			

		
	
, we have
							
	
 		
 			
				(
				8
				7
				)
			
 		
	

	
		
			
				‖
				‖
				‖
				𝐺
				(
				𝑥
				)
				−
				𝐴
				(
				𝑥
				)
				−
			

			

				∼
			

			
				𝐺
				‖
				‖
				‖
				(
				0
				)
			

			

				𝐿
			

			

				∞
			

			
				≤
				4
				𝜖
				.
			

		
	

						Similarly, letting 
	
		
			
				𝑡
				→
				0
			

			

				+
			

		
	
 in (73) so that 
	
		
			
				𝐻
				∗
				𝛿
			

			

				𝑡
			

			
				(
				0
				)
				→
			

			

				∼
			

			
				𝐻
				(
				0
				)
			

		
	
, we have
							
	
 		
 			
				(
				8
				8
				)
			
 		
	

	
		
			
				‖
				‖
				‖
				𝐻
				(
				𝑥
				)
				−
				𝐴
				(
				𝑥
				)
				−
			

			

				∼
			

			
				𝐻
				‖
				‖
				‖
				(
				0
				)
			

			

				𝐿
			

			

				∞
			

			
				≤
				4
				𝜖
				.
			

		
	

						Now we prove the inequality
							
	
 		
 			
				(
				8
				9
				)
			
 		
	

	
		
			
				‖
				‖
				‖
				𝐹
				(
				𝑥
				)
				−
				𝐴
				(
				𝑥
				)
				−
			

			

				∼
			

			
				𝐹
				‖
				‖
				‖
				(
				0
				)
			

			

				𝐿
			

			

				∞
			

			
				≤
				4
				𝜖
				.
			

		
	

						For given 
	
		
			
				𝑥
				∈
				ℝ
			

		
	
, choosing 
	
		
			

				𝑧
			

		
	
 such that 
	
		
			
				𝑥
				+
				𝑧
				>
				𝑑
			

			

				1
			

		
	
 replacing 
	
		
			

				𝑥
			

		
	
 by 
	
		
			
				𝑥
				−
				𝑧
			

		
	
 and 
	
		
			

				𝑦
			

		
	
 by 
	
		
			

				𝑧
			

		
	
 in (81), and using the triangle inequality, we have
							
	
 		
 			
				(
				9
				0
				)
			
 		
	

	
		
			
				|
				|
				𝐹
				∗
				𝛿
			

			

				𝑠
			

			
				|
				|
				|
				|
				|
				(
				𝑥
				)
				≤
				𝜖
				+
			

			

				∼
			

			
				𝐺
				(
				𝑥
				−
				𝑧
				)
				+
				𝐻
				∗
				𝛿
			

			

				𝑠
			

			
				|
				|
				|
				.
				(
				𝑧
				)
			

		
	

						From (90), it is easy to see that 
							
	
 		
 			
				(
				9
				1
				)
			
 		
	

	
		
			

				∼
			

			
				𝐹
				(
				𝑥
				)
				∶
				=
				l
				i
				m
				s
				u
				p
			

			
				𝑠
				→
				0
			

			

				+
			

			
				𝐹
				∗
				𝛿
			

			

				𝑠
			

			
				(
				𝑥
				)
			

		
	

						exists for all 
	
		
			
				𝑥
				∈
				ℝ
			

		
	
. Letting 
	
		
			
				𝑡
				→
				0
			

			

				+
			

		
	
 in (71) so that 
	
		
			
				𝐹
				∗
				𝛿
			

			

				𝑡
			

			
				(
				0
				)
				→
			

			

				∼
			

			
				𝐹
				(
				0
				)
			

		
	
, we get (89). Replacing 
	
		
			

				𝑥
			

		
	
 by 
	
		
			
				l
				n
				𝑥
			

		
	
 in (87), (88), and (89), we have
							
	
 		
 			
				(
				9
				2
				)
			
 		
	

	
		
			
				‖
				‖
				‖
				𝑓
				(
				𝑥
				)
				−
				𝐴
				(
				l
				n
				𝑥
				)
				−
			

			

				∼
			

			
				𝐹
				‖
				‖
				‖
				(
				0
				)
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
			

			

				+
			

			

				)
			

			
				‖
				‖
				‖
				≤
				4
				𝜖
				,
				𝑔
				(
				𝑥
				)
				−
				𝐴
				(
				l
				n
				𝑥
				)
				−
			

			

				∼
			

			
				𝐺
				‖
				‖
				‖
				(
				0
				)
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
			

			

				+
			

			

				)
			

			
				‖
				‖
				‖
				≤
				4
				𝜖
				,
				ℎ
				(
				𝑥
				)
				−
				𝐴
				(
				l
				n
				𝑥
				)
				−
			

			

				∼
			

			
				𝐻
				‖
				‖
				‖
				(
				0
				)
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
			

			

				+
			

			

				)
			

			
				≤
				4
				𝜖
				.
			

		
	

						Finally, we show that the solution 
	
		
			

				𝐴
			

		
	
 of the Cauchy equation (83) has the form 
	
		
			
				𝐴
				(
				𝑥
				)
				=
				𝑐
				𝑥
			

		
	
 for some 
	
		
			
				𝑐
				∈
				ℂ
			

		
	
. Since 
	
		
			

				∼
			

			

				𝐺
			

		
	
 is the supremum limit of a collection of continuous functions 
	
		
			
				𝐺
				∗
				𝛿
			

			

				𝑡
			

		
	
,  
	
		
			
				0
				<
				𝑡
				<
				1
			

		
	
,  
	
		
			

				∼
			

			

				𝐺
			

		
	
 is a Lebesgue measurable function. Also, as we see in the proof of Hyers-Ulam stability theorem (see [3]), the function 
	
		
			

				𝐴
			

		
	
 is given by 
							
	
 		
 			
				(
				9
				3
				)
			
 		
	

	
		
			
				𝐴
				(
				𝑥
				)
				=
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				2
			

			
				∼
				−
				𝑛
			

			
				𝐺
				(
				2
			

			

				𝑛
			

			
				𝑥
				)
				.
			

		
	

						Thus, 
	
		
			

				𝐴
			

		
	
 is a Lebesgue measurable function since it is the limit of a sequence of Lebesgue measurable functions. It is well known that every Lebesgue measurable solution 
	
		
			

				𝐴
			

		
	
 of the Cauchy functional equation (83) has the form 
	
		
			
				𝐴
				(
				𝑥
				)
				=
				𝑎
				𝑥
			

		
	
 for some 
	
		
			
				𝑎
				∈
				ℂ
			

		
	
. Letting 
	
		
			

				𝑐
			

			

				1
			

			

				=
			

			

				∼
			

			
				𝐹
				(
				0
				)
			

		
	
,  
	
		
			

				𝑐
			

			

				2
			

			

				=
			

			

				∼
			

			
				𝐺
				(
				0
				)
			

		
	
,  
	
		
			

				𝑐
			

			

				3
			

			

				=
			

			

				∼
			

			
				𝐻
				(
				0
				)
			

		
	
 we get the asserted result.
Now we discuss an asymptotic behavior of the inequality (45).
Theorem 6.  Let 
	
		
			
				𝑓
				,
				𝑔
				,
				ℎ
				∶
				ℝ
			

			

				+
			

			
				→
				ℂ
			

		
	
,  
	
		
			
				𝑗
				=
				1
				,
				2
				,
				3
			

		
	
, be locally integrable functions satisfying
							
	
 		
 			
				(
				9
				4
				)
			
 		
	

	
		
			
				‖
				‖
				‖
				
				1
				𝑓
				(
				𝑥
				+
				𝑦
				)
				−
				𝑔
				(
				𝑥
				𝑦
				)
				−
				ℎ
			

			
				
			
			
				𝑥
				+
				1
			

			
				
			
			
				𝑦
				
				‖
				‖
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				Γ
			

			

				𝑑
			

			

				)
			

			
				⟶
				0
			

		
	

						as 
	
		
			
				𝑑
				→
				∞
			

		
	
. Then there exist constants 
	
		
			
				𝑎
				,
				𝑐
			

			

				1
			

			
				,
				𝑐
			

			

				2
			

			
				,
				𝑐
			

			

				3
			

			
				∈
				ℂ
			

		
	
 such that
							
	
 		
 			
				(
				9
				5
				)
			
 		
	

	
		
			
				‖
				‖
				𝑓
				(
				𝑥
				)
				−
				𝑐
			

			

				1
			

			
				‖
				‖
				−
				𝑎
				l
				n
				𝑥
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
			

			

				+
			

			

				)
			

			
				‖
				‖
				=
				0
				,
				𝑔
				(
				𝑥
				)
				−
				𝑐
			

			

				2
			

			
				‖
				‖
				−
				𝑎
				l
				n
				𝑥
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
			

			

				+
			

			

				)
			

			
				‖
				‖
				=
				0
				,
				ℎ
				(
				𝑥
				)
				−
				𝑐
			

			

				3
			

			
				‖
				‖
				−
				𝑎
				l
				n
				𝑥
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
			

			

				+
			

			

				)
			

			
				=
				0
				.
			

		
	

Proof. By the condition (94), for any positive integer 
	
		
			

				𝑛
			

		
	
 there exists 
	
		
			

				𝑑
			

			

				𝑛
			

			
				>
				1
			

		
	
 such that
							
	
 		
 			
				(
				9
				6
				)
			
 		
	

	
		
			
				‖
				‖
				‖
				
				1
				𝑓
				(
				𝑥
				+
				𝑦
				)
				−
				𝑔
				(
				𝑥
				𝑦
				)
				−
				ℎ
			

			
				
			
			
				𝑥
				+
				1
			

			
				
			
			
				𝑦
				
				‖
				‖
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				Γ
			

			

				𝑑
			

			

				)
			

			
				≤
				1
			

			
				
			
			

				𝑛
			

		
	

						for all 
	
		
			
				𝑥
				,
				𝑦
				>
				0
			

		
	
 with 
	
		
			
				(
				𝑦
				/
				𝑥
				)
				>
				𝑑
			

			

				𝑛
			

		
	
. Now by Theorem 5, there exist constants 
	
		
			
				𝑎
				,
				𝑐
			

			

				1
			

			
				,
				𝑐
			

			

				2
			

			
				,
				𝑐
			

			

				3
			

			
				∈
				ℂ
			

		
	
 (which are independent of 
	
		
			

				𝑛
			

		
	
) such that
							
	
 		
 			
				(
				9
				7
				)
			
 		
	

	
		
			
				‖
				‖
				𝑓
				(
				𝑥
				)
				−
				𝑐
			

			

				1
			

			
				‖
				‖
				−
				𝑎
				l
				n
				𝑥
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
			

			

				+
			

			

				)
			

			
				≤
				4
			

			
				
			
			
				𝑛
				,
				‖
				‖
				𝑔
				(
				𝑥
				)
				−
				𝑐
			

			

				2
			

			
				‖
				‖
				−
				𝑎
				l
				n
				𝑥
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
			

			

				+
			

			

				)
			

			
				≤
				4
			

			
				
			
			
				𝑛
				,
				‖
				‖
				ℎ
				(
				𝑥
				)
				−
				𝑐
			

			

				3
			

			
				‖
				‖
				−
				𝑎
				l
				n
				𝑥
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
			

			

				+
			

			

				)
			

			
				≤
				4
			

			
				
			
			
				𝑛
				.
			

		
	

						Letting 
	
		
			
				𝑛
				→
				∞
			

		
	
 in (97), we obtain the asserted result.
As a direct consequence of the previous result we have found the solution of functional equation (4) in the 
	
		
			

				𝐿
			

			

				∞
			

		
	
-sense.
Corollary 7.  Let 
	
		
			
				𝑓
				,
				𝑔
				,
				ℎ
				∶
				ℝ
			

			

				+
			

			
				→
				ℂ
			

		
	
 be locally integrable functions satisfying
							
	
 		
 			
				(
				9
				8
				)
			
 		
	

	
		
			
				‖
				‖
				‖
				
				1
				𝑓
				(
				𝑥
				+
				𝑦
				)
				−
				𝑔
				(
				𝑥
				𝑦
				)
				−
				ℎ
			

			
				
			
			
				𝑥
				+
				1
			

			
				
			
			
				𝑦
				
				‖
				‖
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				Γ
			

			

				𝑑
			

			

				)
			

			
				=
				0
			

		
	

						for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				ℝ
			

			

				+
			

		
	
. Then there exist 
	
		
			
				𝑎
				,
				𝑐
			

			

				1
			

			
				,
				𝑐
			

			

				2
			

			
				,
				𝑐
			

			

				3
			

			
				∈
				ℂ
			

		
	
 such that
							
	
 		
 			
				(
				9
				9
				)
			
 		
	

	
		
			
				‖
				‖
				𝑓
				(
				𝑥
				)
				−
				𝑐
			

			

				1
			

			
				‖
				‖
				−
				𝑎
				l
				n
				𝑥
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
			

			

				+
			

			

				)
			

			
				‖
				‖
				=
				0
				,
				𝑔
				(
				𝑥
				)
				−
				𝑐
			

			

				2
			

			
				‖
				‖
				−
				𝑎
				l
				n
				𝑥
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
			

			

				+
			

			

				)
			

			
				‖
				‖
				=
				0
				,
				ℎ
				(
				𝑥
				)
				−
				𝑐
			

			

				3
			

			
				‖
				‖
				−
				𝑎
				l
				n
				𝑥
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
			

			

				+
			

			

				)
			

			
				=
				0
				.
			

		
	

Finally, we discuss the locally integrable solution 
	
		
			
				𝑓
				,
				𝑔
				,
				ℎ
				∶
				ℝ
			

			

				+
			

			
				→
				ℂ
			

		
	
 of the functional equation (c.f. [16])
						
	
 		
 			
				(
				1
				0
				0
				)
			
 		
	

	
		
			
				
				1
				𝑓
				(
				𝑥
				+
				𝑦
				)
				−
				𝑔
				(
				𝑥
				𝑦
				)
				−
				ℎ
			

			
				
			
			
				𝑥
				+
				1
			

			
				
			
			
				𝑦
				
				=
				0
			

		
	

					for all 
	
		
			
				(
				𝑥
				,
				𝑦
				)
				∈
				Γ
			

			

				𝑑
			

		
	
. The following result is a direct consequence of Theorem 2. However, we introduce an alternative proof using Corollary 7. The following method of proof will be useful when we know only regular solution in 
	
		
			

				𝐿
			

			

				∞
			

		
	
-sense.
Corollary 8.  Every locally integrable solution 
	
		
			
				𝑓
				,
				𝑔
				,
				ℎ
				∶
				ℝ
			

			

				+
			

			
				→
				ℂ
			

		
	
 of the functional equation (100) has the form
							
	
 		
 			
				(
				1
				0
				1
				)
			
 			
				(
				1
				0
				2
				)
			
 			
				(
				1
				0
				3
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑥
				)
				=
				𝑐
			

			

				1
			

			
				+
				𝑐
			

			

				2
			

			
				+
				𝑎
				l
				n
				𝑥
				,
				𝑔
				(
				𝑥
				)
				=
				𝑐
			

			

				1
			

			
				ℎ
				+
				𝑎
				l
				n
				𝑥
				,
				(
				𝑥
				)
				=
				𝑐
			

			

				2
			

			
				+
				𝑎
				l
				n
				𝑥
			

		
	

						for some constants 
	
		
			
				𝑎
				,
				𝑐
			

			

				1
			

			
				,
				𝑐
			

			

				2
			

			
				∈
				ℂ
			

		
	
.
Proof. It follows from Corollary 7 that (101), (102), and (103) hold in almost everywhere sense; that is, there exists a subset 
	
		
			
				Ω
				⊂
				ℝ
			

			

				+
			

		
	
 with Lebesgue measure 
	
		
			
				𝑚
				(
				Ω
			

			

				𝑐
			

			
				)
				=
				0
			

		
	
 such that (101), (102), and (103) hold for all 
	
		
			
				𝑥
				∈
				Ω
			

		
	
. For given 
	
		
			
				𝑥
				>
				0
			

		
	
, let 
	
		
			
				𝑝
				,
				𝑞
				∶
				(
				0
				,
				𝑥
				)
				→
				ℝ
			

		
	
 by 
	
		
			
				𝑝
				(
				𝑡
				)
				=
				(
				1
				/
				𝑡
				)
				+
				(
				1
				/
				(
				𝑥
				−
				𝑡
				)
				)
			

		
	
,  
	
		
			
				𝑞
				(
				𝑡
				)
				=
				𝑡
				(
				𝑥
				−
				𝑡
				)
			

		
	
. Since 
	
		
			
				𝑚
				[
				(
				𝑝
			

			
				−
				1
			

			
				(
				Ω
				)
				∩
				𝑞
			

			
				−
				1
			

			
				(
				Ω
				)
				)
			

			

				𝑐
			

			
				]
				=
				𝑚
				[
				𝑝
			

			
				−
				1
			

			
				(
				Ω
			

			

				𝑐
			

			
				)
				∪
				𝑞
			

			
				−
				1
			

			
				(
				Ω
			

			

				𝑐
			

			
				)
				]
				=
				0
			

		
	
, we can choose 
	
		
			
				𝑦
				∈
				𝑝
			

			
				−
				1
			

			
				(
				Ω
				)
				∩
				𝑞
			

			
				−
				1
			

			
				(
				Ω
				)
			

		
	
. Let 
	
		
			
				𝑧
				=
				𝑥
				−
				𝑦
			

		
	
. Then 
	
		
			
				𝑦
				+
				𝑧
				=
				𝑥
			

		
	
 and 
	
		
			
				𝑦
				𝑧
			

		
	
,  
	
		
			
				(
				1
				/
				𝑦
				)
				+
				(
				1
				/
				𝑧
				)
				∈
				Ω
			

		
	
. Thus, we can write
							
	
 		
 			
				(
				1
				0
				4
				)
			
 		
	

	
		
			
				
				1
				𝑓
				(
				𝑥
				)
				=
				𝑔
				(
				𝑦
				𝑧
				)
				+
				ℎ
			

			
				
			
			
				𝑦
				+
				1
			

			
				
			
			
				𝑧
				
				=
				𝑐
			

			

				1
			

			
				+
				𝑎
				l
				n
				(
				𝑦
				𝑧
				)
				+
				𝑐
			

			

				2
			

			
				
				1
				+
				𝑎
				l
				n
			

			
				
			
			
				𝑦
				+
				1
			

			
				
			
			
				𝑧
				
				=
				𝑐
			

			

				1
			

			
				+
				𝑐
			

			

				2
			

			
				+
				𝑎
				l
				n
				(
				𝑦
				+
				𝑧
				)
				=
				𝑐
			

			

				1
			

			
				+
				𝑐
			

			

				2
			

			
				+
				𝑎
				l
				n
				𝑥
				,
			

		
	

						which gives (101). For given 
	
		
			
				𝑥
				>
				0
			

		
	
, let 
	
		
			
				𝑝
				∶
				ℝ
			

			

				+
			

			
				→
				ℝ
			

		
	
 by 
	
		
			
				𝑝
				(
				𝑡
				)
				=
				(
				1
				/
				𝑡
				)
				+
				(
				𝑡
				/
				𝑥
				)
			

		
	
. Then, we have 
	
		
			

				𝑝
			

			
				−
				1
			

			
				(
				Ω
				)
				≠
				∅
			

		
	
. Choose 
	
		
			
				𝑦
				∈
				𝑝
			

			
				−
				1
			

			
				(
				Ω
				)
			

		
	
 and let 
	
		
			
				𝑧
				=
				(
				𝑥
				/
				𝑦
				)
			

		
	
. Then 
	
		
			
				𝑦
				𝑧
				=
				𝑥
			

		
	
, 
	
		
			
				(
				1
				/
				𝑦
				)
				+
				(
				1
				/
				𝑧
				)
				∈
				Ω
			

		
	
. Thus, using (101) we can write
							
	
 		
 			
				(
				1
				0
				5
				)
			
 		
	

	
		
			
				
				1
				𝑔
				(
				𝑥
				)
				=
				𝑓
				(
				𝑦
				+
				𝑧
				)
				−
				ℎ
			

			
				
			
			
				𝑦
				+
				1
			

			
				
			
			
				𝑧
				
				=
				𝑐
			

			

				1
			

			
				+
				𝑐
			

			

				2
			

			
				+
				𝑎
				l
				n
				(
				𝑦
				+
				𝑧
				)
				−
				𝑐
			

			

				2
			

			
				
				1
				−
				𝑎
				l
				n
			

			
				
			
			
				𝑦
				+
				1
			

			
				
			
			
				𝑧
				
				=
				𝑐
			

			

				1
			

			
				+
				𝑎
				l
				n
				(
				𝑦
				𝑧
				)
				=
				𝑐
			

			

				1
			

			
				+
				𝑎
				l
				n
				𝑥
				,
			

		
	

						which gives (102). Finally, (103) follows from (100), (101), and (102). This completes the proof of the corollary.
4. Stability of (4) in Schwartz Distributions
Let 
	
		
			

				Ω
			

		
	
 be an open subset of 
	
		
			

				ℝ
			

			

				𝑛
			

		
	
. We briefly introduce the space 
	
		
			

				𝒟
			

			

				
			

			
				(
				Ω
				)
			

		
	
 of distributions. We denote 
	
		
			
				𝛼
				=
				(
				𝛼
			

			

				1
			

			
				,
				…
				,
				𝛼
			

			

				𝑛
			

			
				)
				∈
				ℕ
			

			
				𝑛
				0
			

		
	
, where 
	
		
			

				ℕ
			

			

				0
			

		
	
 is the set of nonnegative integers and 
	
		
			
				|
				𝛼
				|
				=
				𝛼
			

			

				1
			

			
				+
				⋯
				+
				𝛼
			

			

				𝑛
			

		
	
,  
	
		
			

				𝜕
			

			

				𝛼
			

			
				=
				𝜕
			

			

				𝛼
			

			

				1
			

			

				1
			

			
				⋯
				𝜕
			

			

				𝛼
			

			

				𝑛
			

			

				𝑛
			

		
	
,  
	
		
			

				𝜕
			

			

				𝑗
			

			
				=
				(
				𝜕
				/
				𝜕
				𝑥
			

			

				𝑗
			

			

				)
			

		
	
,  
	
		
			
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑛
			

		
	
.
Definition 9. Let 
	
		
			

				𝐶
			

			
				∞
				𝑐
			

			
				(
				Ω
				)
			

		
	
 be the set of all infinitely differentiable functions on 
	
		
			

				Ω
			

		
	
 with compact supports. A distribution 
	
		
			

				𝑢
			

		
	
 is a linear form on 
	
		
			

				𝐶
			

			
				∞
				𝑐
			

			
				(
				Ω
				)
			

		
	
 such that for every compact set 
	
		
			
				𝐾
				⊂
				Ω
			

		
	
 there exist constants 
	
		
			
				𝐶
				>
				0
			

		
	
 and 
	
		
			
				𝑘
				∈
				ℕ
			

			

				0
			

		
	
 for which 
							
	
 		
 			
				(
				1
				0
				6
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
				⟨
				𝑢
				,
				𝜑
				⟩
				≤
				𝐶
			

			
				|
				𝛼
				|
				≤
				𝑘
			

			
				|
				|
				𝜕
				s
				u
				p
			

			

				𝛼
			

			
				𝜑
				|
				|
			

		
	

						holds for all 
	
		
			
				𝜑
				∈
				𝐶
			

			
				∞
				𝑐
			

			
				(
				Ω
				)
			

		
	
 with supports contained in 
	
		
			

				𝐾
			

		
	
. The set of all distributions is denoted by 
	
		
			

				𝒟
			

			

				
			

			
				(
				Ω
				)
			

		
	
.
Let 
	
		
			

				Ω
			

			

				𝑗
			

		
	
 be open subsets of 
	
		
			

				ℝ
			

			

				𝑛
			

			

				𝑗
			

		
	
 for 
	
		
			
				𝑗
				=
				1
				,
				2
			

		
	
, with 
	
		
			

				𝑛
			

			

				1
			

			
				≥
				𝑛
			

			

				2
			

		
	
.
Definition 10. Let 
	
		
			

				𝑢
			

			

				𝑗
			

			
				∈
				𝒟
			

			

				
			

			
				(
				Ω
			

			

				𝑗
			

			

				)
			

		
	
 and let 
	
		
			
				𝜆
				∶
				Ω
			

			

				1
			

			
				→
				Ω
			

			

				2
			

		
	
 be a smooth function such that for each 
	
		
			
				𝑥
				∈
				Ω
			

			

				1
			

		
	
 the derivative 
	
		
			

				𝜆
			

			

				
			

			
				(
				𝑥
				)
			

		
	
 is surjective; that is, the Jacobian matrix 
	
		
			
				∇
				𝜆
			

		
	
 of 
	
		
			

				𝜆
			

		
	
 has rank 
	
		
			

				𝑛
			

			

				2
			

		
	
. Then there exists a unique continuous linear map 
	
		
			

				𝜆
			

			

				∗
			

			
				∶
				𝒟
			

			

				
			

			
				(
				Ω
			

			

				2
			

			
				)
				→
				𝒟
			

			

				
			

			
				(
				Ω
			

			

				1
			

			

				)
			

		
	
 such that 
	
		
			

				𝜆
			

			

				∗
			

			
				𝑢
				=
				𝑢
				∘
				𝜆
			

		
	
 when 
	
		
			

				𝑢
			

		
	
 is a continuous function. We call 
	
		
			

				𝜆
			

			

				∗
			

			

				𝑢
			

		
	
 the pullback of 
	
		
			

				𝑢
			

		
	
 by 
	
		
			

				𝜆
			

		
	
 and it is usually denoted by 
	
		
			
				𝑢
				∘
				𝜆
			

		
	
.
If 
	
		
			

				𝜆
			

		
	
 is a diffeomorphism (a bijection with 
	
		
			
				𝜆
				,
				𝜆
			

			
				−
				1
			

		
	
 smooth functions) the pullback 
	
		
			
				𝑢
				∘
				𝜆
			

		
	
 can be written as
						
	
 		
 			
				(
				1
				0
				7
				)
			
 		
	

	
		
			
				
				
				⟨
				𝑢
				∘
				𝜆
				,
				𝜑
				⟩
				=
				𝑢
				,
				𝜑
				∘
				𝜆
			

			
				−
				1
			

			
				
				|
				|
				(
				𝑥
				)
				∇
				𝜆
			

			
				−
				1
			

			
				|
				|
				
				.
				(
				𝑥
				)
			

		
	

For more details of distributions we refer the reader to [29, 33]. 
In this section, we consider the Hyers-Ulam stability of the functional equation of (4) in Schwartz distributions, that is, the functional inequality
						
	
 		
 			
				(
				1
				0
				8
				)
			
 		
	

	
		
			
				‖
				𝑢
				∘
				𝑆
				−
				𝑣
				∘
				Π
				−
				𝑤
				∘
				𝑅
				‖
			

			

				Γ
			

			

				𝑑
			

			
				≤
				𝜖
				,
			

		
	

					where 
	
		
			
				𝑢
				,
				𝑣
				,
				𝑤
				∈
				𝒟
			

			

				
			

			
				(
				ℝ
			

			

				+
			

			

				)
			

		
	
,  
	
		
			
				Π
				∶
				ℝ
			

			

				2
			

			
				→
				ℝ
			

		
	
,  and 
	
		
			
				𝑅
				∶
				ℝ
			

			

				2
			

			
				→
				ℝ
			

		
	
 are defined by 
						
	
 		
 			
				(
				1
				0
				9
				)
			
 		
	

	
		
			
				1
				𝑆
				(
				𝑥
				,
				𝑦
				)
				=
				𝑥
				+
				𝑦
				,
				Π
				(
				𝑥
				,
				𝑦
				)
				=
				𝑥
				𝑦
				,
				𝑅
				(
				𝑥
				,
				𝑦
				)
				=
			

			
				
			
			
				𝑥
				+
				1
			

			
				
			
			

				𝑦
			

		
	

					and the inequality 
	
		
			
				‖
				⋅
				‖
			

			

				Γ
			

			

				𝑑
			

			
				≤
				𝜖
			

		
	
 in (108) means that 
	
		
			
				|
				⟨
				⋅
				,
				𝜑
				⟩
				|
				≤
				𝜖
				‖
				𝜑
				‖
			

			

				𝐿
			

			

				1
			

		
	
 for all test functions 
	
		
			
				𝜑
				∈
				𝐶
			

			
				∞
				𝑐
			

			
				(
				Γ
			

			

				𝑑
			

			

				)
			

		
	
. For each 
	
		
			
				𝑡
				>
				0
			

		
	
, 
	
		
			
				𝑢
				∗
				𝛿
			

			

				𝑡
			

			
				(
				𝑥
				)
				=
				⟨
				𝑢
			

			

				𝑦
			

			
				,
				𝛿
			

			

				𝑡
			

			
				(
				𝑥
				−
				𝑦
				)
				⟩
			

		
	
 is a smooth function of 
	
		
			
				𝑥
				∈
				ℝ
			

			

				𝑛
			

		
	
 and 
	
		
			
				𝑢
				∗
				𝛿
			

			

				𝑡
			

			
				(
				𝑥
				)
				→
				𝑢
			

		
	
 as 
	
		
			
				𝑡
				→
				0
			

			

				+
			

		
	
 in the sense that 
						
	
 		
 			
				(
				1
				1
				0
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑡
				→
				0
			

			

				+
			

			

				
			

			
				∞
				−
				∞
			

			
				
				𝑢
				∗
				𝛿
			

			

				𝑡
			

			
				
				(
				𝑥
				)
				𝜑
				(
				𝑥
				)
				𝑑
				𝑥
				=
				⟨
				𝑢
				,
				𝜑
				⟩
			

		
	

					for all 
	
		
			
				𝜑
				∈
				𝐶
			

			
				∞
				𝑐
			

			
				(
				ℝ
			

			

				𝑛
			

			

				)
			

		
	
.
Theorem 11.  Let 
	
		
			
				𝑢
				,
				𝑣
				,
				𝑤
				∈
				𝒟
			

			

				
			

			
				(
				ℝ
			

			

				+
			

			

				)
			

		
	
 satisfy (108). Then there exist constants 
	
		
			
				𝑎
				,
				𝑐
			

			

				1
			

			
				,
				𝑐
			

			

				2
			

			
				,
				𝑐
			

			

				3
			

			
				∈
				ℂ
			

		
	
 such that 
							
	
 		
 			
				(
				1
				1
				1
				)
			
 		
	

	
		
			
				‖
				‖
				𝑢
				−
				𝑐
			

			

				1
			

			
				‖
				‖
				‖
				‖
				−
				𝑎
				l
				n
				𝑥
				≤
				4
				𝜖
				,
				𝑣
				−
				𝑐
			

			

				2
			

			
				‖
				‖
				‖
				‖
				−
				𝑎
				l
				n
				𝑥
				≤
				4
				𝜖
				,
				𝑤
				−
				𝑐
			

			

				3
			

			
				‖
				‖
				−
				𝑎
				l
				n
				𝑥
				≤
				4
				𝜖
				.
			

		
	

Proof. The idea of the following proof is essentially the same as that of Theorem 5, only with different terminologies. For the reader we give a sketch of proof. Let 
	
		
			

				𝑢
			

			

				𝑑
			

		
	
 and 
	
		
			
				𝐽
				∶
				Γ
			

			

				𝑑
			

			
				→
				𝑈
			

			

				𝑑
			

		
	
 be the set and mapping in the proof of Theorem 5, respectively. Then, 
	
		
			

				𝐽
			

			
				−
				1
			

			
				∶
				𝑈
			

			

				𝑑
			

			
				→
				Γ
			

			

				𝑑
			

		
	
 is given by 
							
	
 		
 			
				(
				1
				1
				2
				)
			
 		
	

	
		
			

				𝐽
			

			
				−
				1
			

			
				=
				
				𝑒
				(
				𝑥
				,
				𝑦
				)
			

			
				𝑥
				+
				𝑦
			

			
				+
				√
			

			
				
			
			

				𝑒
			

			
				2
				𝑥
				+
				2
				𝑦
			

			
				−
				4
				𝑒
			

			

				𝑥
			

			
				
			
			
				2
				,
				𝑒
			

			
				𝑥
				+
				𝑦
			

			
				−
				√
			

			
				
			
			

				𝑒
			

			
				2
				𝑥
				+
				2
				𝑦
			

			
				−
				4
				𝑒
			

			

				𝑥
			

			
				
			
			
				2
				
				.
			

		
	

						Taking pullback by 
	
		
			

				𝐽
			

			
				−
				1
			

		
	
 in (108), we have
							
	
 		
 			
				(
				1
				1
				3
				)
			
 		
	

	
		
			
				‖
				‖
				𝑢
				∘
				𝐸
				∘
				𝑆
				−
				𝑣
				∘
				𝐸
				∘
				𝑃
			

			

				1
			

			
				−
				𝑤
				∘
				𝐸
				∘
				𝑃
			

			

				2
			

			
				‖
				‖
			

			

				𝑈
			

			

				𝑑
			

			
				≤
				𝜖
				,
			

		
	

						where 
	
		
			
				𝐸
				∶
				ℝ
				→
				ℝ
			

		
	
,  
	
		
			
				𝑆
				,
				𝑃
			

			

				1
			

			
				,
				𝑃
			

			

				2
			

			
				∶
				ℝ
			

			

				2
			

			
				→
				ℝ
			

		
	
 are given by 
							
	
 		
 			
				(
				1
				1
				4
				)
			
 		
	

	
		
			
				𝐸
				(
				𝑥
				)
				=
				𝑒
			

			

				𝑥
			

			
				𝑃
				,
				𝑆
				(
				𝑥
				,
				𝑦
				)
				=
				𝑥
				+
				𝑦
				,
			

			

				1
			

			
				(
				𝑥
				,
				𝑦
				)
				=
				𝑥
				,
				𝑃
			

			

				2
			

			
				(
				𝑥
				,
				𝑦
				)
				=
				𝑦
				.
			

		
	

						Thus, instead of (54) we have the inequality
							
	
 		
 			
				(
				1
				1
				5
				)
			
 		
	

	
		
			
				‖
				‖
				‖
			

			

				∼
			

			
				𝑢
				∘
				𝑆
				−
			

			

				∼
			

			
				𝑣
				∘
				𝑃
			

			

				1
			

			

				−
			

			

				∼
			

			
				𝑤
				∘
				𝑃
			

			

				2
			

			
				‖
				‖
				‖
			

			

				𝑈
			

			

				𝑑
			

			
				≤
				𝜖
				,
			

		
	

						where 
	
		
			

				∼
			

			
				𝑢
				=
				𝑢
				∘
				𝐸
			

		
	
,  
	
		
			

				∼
			

			
				𝑣
				=
				𝑣
				∘
				𝐸
			

		
	
,  and 
	
		
			

				∼
			

			
				𝑤
				=
				𝑤
				∘
				𝐸
			

		
	
. Using the same approach as in the proof of Theorem 5, we have
							
	
 		
 			
				(
				1
				1
				6
				)
			
 		
	

	
		
			
				‖
				‖
				‖
			

			

				∼
			

			
				𝑢
				−
				𝑐
				𝑥
				−
				𝑐
			

			

				1
			

			
				‖
				‖
				‖
				‖
				‖
				‖
				≤
				4
				𝜖
				,
			

			

				∼
			

			
				𝑣
				−
				𝑐
				𝑥
				−
				𝑐
			

			

				2
			

			
				‖
				‖
				‖
				‖
				‖
				‖
				≤
				4
				𝜖
				,
			

			

				∼
			

			
				𝑤
				−
				𝑐
				𝑥
				−
				𝑐
			

			

				3
			

			
				‖
				‖
				‖
				≤
				4
				𝜖
			

		
	

						for some 
	
		
			
				𝑐
				∈
				ℂ
			

		
	
. Taking pullback by 
	
		
			

				𝐸
			

			
				−
				1
			

			
				(
				𝑥
				)
				=
				l
				n
				𝑥
			

		
	
 in (116), we have 
							
	
 		
 			
				(
				1
				1
				7
				)
			
 		
	

	
		
			
				‖
				‖
				𝑢
				−
				𝑎
				l
				n
				𝑥
				−
				𝑐
			

			

				1
			

			
				‖
				‖
				‖
				‖
				≤
				4
				𝜖
				,
				𝑣
				−
				𝑎
				l
				n
				𝑥
				−
				𝑐
			

			

				2
			

			
				‖
				‖
				‖
				‖
				≤
				4
				𝜖
				,
				𝑤
				−
				𝑎
				l
				n
				𝑥
				−
				𝑐
			

			

				3
			

			
				‖
				‖
				≤
				4
				𝜖
				,
			

		
	

						for some constants 
	
		
			
				𝑎
				,
				𝑐
			

			

				1
			

			
				,
				𝑐
			

			

				2
			

			
				,
				𝑐
			

			

				3
			

			
				∈
				ℂ
			

		
	
. This completes the proof of the theorem.
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