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Abstract. 
The purpose of this paper is to prove some common point theorems
for the generalized cyclic Meir-Keeler-type (
	
		
			
				𝛼
				,
				𝜑
				,
				𝐴
				,
				𝐵
			

		
	
)-contraction in partially ordered metric spaces. Our results generalize many recent common
point theorems in the literature.


1. Introduction and Preliminaries
Throughout this paper, by 
	
		
			

				ℝ
			

			

				+
			

		
	
, we denote the set of all nonnegative real numbers, while 
	
		
			

				ℕ
			

		
	
 is the set of all natural numbers. Let 
	
		
			
				(
				𝑋
				,
				𝑑
				)
			

		
	
 be a metric space, let 
	
		
			

				𝐷
			

		
	
 be a subset of 
	
		
			

				𝑋
			

		
	
, and let 
	
		
			
				𝑓
				∶
				𝐷
				→
				𝑋
			

		
	
 be a map. We say that 
	
		
			

				𝑓
			

		
	
 is contractive if there exists 
	
		
			
				𝛼
				∈
				[
				0
				,
				1
				)
			

		
	
 such that for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝐷
			

		
	
,
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				𝑑
				(
				𝑓
				𝑥
				,
				𝑓
				𝑦
				)
				≤
				𝛼
				⋅
				𝑑
				(
				𝑥
				,
				𝑦
				)
				.
			

		
	

					The well-known Banach fixed point theorem asserts that if 
	
		
			
				𝐷
				=
				𝑋
			

		
	
, 
	
		
			

				𝑓
			

		
	
 is contractive, and 
	
		
			
				(
				𝑋
				,
				𝑑
				)
			

		
	
 is complete, then 
	
		
			

				𝑓
			

		
	
 has a unique fixed point in 
	
		
			

				𝑋
			

		
	
. It is well known that the Banach contraction principle [1] is a very useful and classical tool in nonlinear analysis. Also, this principle has many generalizations. For instance, a mapping 
	
		
			
				𝑓
				∶
				𝑋
				→
				𝑋
			

		
	
 is called a quasicontraction if there exists 
	
		
			
				𝑘
				<
				1
			

		
	
 such that
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				𝑑
				(
				𝑓
				𝑥
				,
				𝑓
				𝑦
				)
				≤
				𝑘
				⋅
				m
				a
				x
				{
				𝑑
				(
				𝑥
				,
				𝑦
				)
				,
				𝑑
				(
				𝑥
				,
				𝑓
				𝑥
				)
				,
				𝑑
				(
				𝑦
				,
				𝑓
				𝑦
				)
				,
				𝑑
				(
				𝑥
				,
				𝑓
				𝑦
				)
				,
				𝑑
				(
				𝑦
				,
				𝑓
				𝑥
				)
				}
				,
			

		
	

					for any 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝑋
			

		
	
. In 1974, Ćirić [2] introduced these maps and proved an existence and uniqueness fixed point theorem.
The following definitions and results will be needed in the sequel. Let 
	
		
			

				𝐴
			

		
	
 and 
	
		
			

				𝐵
			

		
	
 be two nonempty subsets of a metric space 
	
		
			
				(
				𝑋
				,
				𝑑
				)
			

		
	
. A mapping 
	
		
			
				𝑓
				∶
				𝐴
				∪
				𝐵
				→
				𝐴
				∪
				𝐵
			

		
	
 is called a cyclic map if 
	
		
			
				𝑓
				(
				𝐴
				)
				⊆
				𝐵
			

		
	
 and 
	
		
			
				𝑓
				(
				𝐵
				)
				⊆
				𝐴
			

		
	
. In 2003, Kirk et al. [3, 4] proved the following fixed point theorem.
Theorem 1 (see [3, 4]).  Let 
	
		
			

				𝐴
			

		
	
 and 
	
		
			

				𝐵
			

		
	
 be two nonempty closed subsets of a complete metric space 
	
		
			
				(
				𝑋
				,
				𝑑
				)
			

		
	
, and suppose that 
	
		
			
				𝑓
				∶
				𝐴
				∪
				𝐵
				→
				𝐴
				∪
				𝐵
			

		
	
 satisfies (i)
	
		
			
				𝑓
				(
				𝐴
				)
				⊂
				𝐵
			

		
	
 and 
	
		
			
				𝑓
				(
				𝐵
				)
				⊂
				𝐴
			

		
	
, (ii)
	
		
			
				𝑑
				(
				𝑓
				𝑥
				,
				𝑓
				𝑦
				)
				≤
				𝑘
				⋅
				𝑑
				(
				𝑥
				,
				𝑦
				)
			

		
	
 for all 
	
		
			
				𝑥
				∈
				𝐴
			

		
	
, 
	
		
			
				𝑦
				∈
				𝐵
			

		
	
, and 
	
		
			
				𝑘
				∈
				(
				0
				,
				1
				)
			

		
	
.  
					Then 
	
		
			
				𝐴
				∩
				𝐵
			

		
	
 is nonempty, and 
	
		
			

				𝑓
			

		
	
 has a unique fixed point in 
	
		
			
				𝐴
				∩
				𝐵
			

		
	
.
Recently, many authors proved some fixed point theorems for cyclic maps satisfying various contractive conditions (see, [5–20]).
Let 
	
		
			

				𝑋
			

		
	
 be a nonempty set, and let 
	
		
			
				(
				𝑋
				,
				⊑
				)
			

		
	
 be a partially ordered set endowed with a metric 
	
		
			

				𝑑
			

		
	
. Then, the triple 
	
		
			
				(
				𝑋
				,
				⊑
				,
				𝑑
				)
			

		
	
 is called a partially ordered metric space. Two elements 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝑋
			

		
	
 are said to be comparable if either 
	
		
			
				𝑥
				⊑
				𝑦
			

		
	
 or 
	
		
			
				𝑦
				⊑
				𝑥
			

		
	
 holds. Altun et al. [21] introduced the notion of weakly increasing mappings and proved some existing theorems.
Definition 2 (see [21]). Let 
	
		
			
				(
				𝑋
				,
				⊑
				)
			

		
	
 be a partially ordered set and 
	
		
			
				𝑓
				,
				𝑔
				∶
				𝑋
				→
				𝑋
			

		
	
. Then 
	
		
			
				𝑓
				,
				𝑔
			

		
	
 are said to be weakly increasing if 
	
		
			
				𝑓
				𝑥
				⊑
				𝑔
				𝑓
				𝑥
			

		
	
 and 
	
		
			
				𝑔
				𝑥
				⊑
				𝑓
				𝑔
				𝑥
			

		
	
 for all 
	
		
			
				𝑥
				∈
				𝑋
			

		
	
.
And the following definition was introduced in [22].
Definition 3 (see [22]). Let 
	
		
			
				(
				𝑋
				,
				⊑
				)
			

		
	
 be a partially ordered set, let 
	
		
			
				𝐴
				,
				𝐵
			

		
	
 be closed subsets of 
	
		
			

				𝑋
			

		
	
 with 
	
		
			
				𝑋
				=
				𝐴
				∪
				𝐵
			

		
	
, and let 
	
		
			
				𝑓
				,
				𝑔
				∶
				𝑋
				→
				𝑋
			

		
	
. Then the pair 
	
		
			
				(
				𝑓
				,
				𝑔
				)
			

		
	
 is said to be 
	
		
			
				(
				𝐴
				,
				𝐵
				)
			

		
	
-weakly increasing if 
	
		
			
				𝑓
				𝑥
				⊑
				𝑔
				𝑓
				𝑥
			

		
	
 for all 
	
		
			
				𝑥
				∈
				𝐴
			

		
	
 and 
	
		
			
				𝑔
				𝑥
				⊑
				𝑓
				𝑔
				𝑥
			

		
	
 for all 
	
		
			
				𝑥
				∈
				𝐵
			

		
	
.
In this paper, we introduce the new notion of generalized cyclic Meir-Keeler-type 
	
		
			
				(
				𝛼
				,
				𝜓
				,
				𝐴
				,
				𝐵
				)
			

		
	
-contraction. The purpose of this paper is to prove some common point theorems for the generalized cyclic Meir-Keeler-type 
	
		
			
				(
				𝛼
				,
				𝜓
				,
				𝐴
				,
				𝐵
				)
			

		
	
-contraction in partially ordered metric spaces. Our results generalize many recent common point theorems in the literature.
2. Main Results
In the sequel, we denote by 
	
		
			

				Ψ
			

		
	
 the class of functions 
	
		
			
				𝜓
				∶
				ℝ
			

			
				+
				5
			

			
				→
				ℝ
			

			

				+
			

		
	
 satisfying the following conditions:  
	
		
			
				(
				𝜓
			

			

				1
			

			

				)
			

		
	

	
		
			

				𝜓
			

		
	
 is an increasing, continuous function in each coordinate;  
	
		
			
				(
				𝜓
			

			

				2
			

			

				)
			

		
	
 for all 
	
		
			
				𝑡
				∈
				ℝ
			

			

				+
			

		
	
, 
	
		
			
				𝜓
				(
				𝑡
				,
				𝑡
				,
				𝑡
				,
				0
				,
				2
				𝑡
				)
				≤
				𝑡
			

		
	
, 
	
		
			
				𝜓
				(
				𝑡
				,
				𝑡
				,
				𝑡
				,
				2
				𝑡
				,
				0
				)
				≤
				𝑡
			

		
	
, 
	
		
			
				𝜓
				(
				0
				,
				0
				,
				𝑡
				,
				𝑡
				,
				0
				)
				≤
				𝑡
			

		
	
, and 
	
		
			
				𝜓
				(
				𝑡
				,
				0
				,
				0
				,
				𝑡
				,
				𝑡
				)
				≤
				𝑡
			

		
	
;  
	
		
			
				(
				𝜓
			

			

				2
			

			

				)
			

		
	

	
		
			
				𝜓
				(
				𝑡
			

			

				1
			

			
				,
				𝑡
			

			

				2
			

			
				,
				𝑡
			

			

				3
			

			
				,
				𝑡
			

			

				4
			

			
				,
				𝑡
			

			

				5
			

			
				)
				=
				0
			

		
	
 if and only if 
	
		
			

				𝑡
			

			

				1
			

			
				=
				𝑡
			

			

				2
			

			
				=
				𝑡
			

			

				3
			

			
				=
				𝑡
			

			

				4
			

			
				=
				𝑡
			

			

				5
			

			
				=
				0
			

		
	
. 
We start with the following definition.
Definition 4 (see [23]). Let 
	
		
			
				𝑓
				∶
				𝑋
				→
				𝑋
			

		
	
 be a self-mapping of a set 
	
		
			

				𝑋
			

		
	
 and 
	
		
			
				𝛼
				∶
				𝑋
				×
				𝑋
				→
				ℝ
			

			

				+
			

		
	
. Then 
	
		
			

				𝑓
			

		
	
 is called 
	
		
			

				𝛼
			

		
	
-admissible if
							
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				𝑥
				,
				𝑦
				∈
				𝑋
				,
				𝛼
				(
				𝑥
				,
				𝑦
				)
				≥
				1
				⟹
				𝛼
				(
				𝑓
				𝑥
				,
				𝑓
				𝑦
				)
				≥
				1
				.
			

		
	

Definition 5. Let 
	
		
			
				𝐴
				,
				𝐵
			

		
	
 be two nonempty subsets of a set 
	
		
			

				𝑋
			

		
	
 with 
	
		
			
				𝑋
				=
				𝐴
				∪
				𝐵
			

		
	
, let 
	
		
			
				𝑓
				∶
				𝐴
				→
				𝐵
			

		
	
, 
	
		
			
				𝑔
				∶
				𝐵
				→
				𝐴
			

		
	
 with 
	
		
			
				𝑓
				(
				𝐴
				)
				⊂
				𝐵
			

		
	
 and 
	
		
			
				𝑔
				(
				𝐵
				)
				⊂
				𝐴
			

		
	
, and let 
	
		
			
				𝛼
				∶
				𝑋
				×
				𝑋
				→
				ℝ
			

			

				+
			

		
	
. Then the pair 
	
		
			
				(
				𝑓
				,
				𝑔
				)
			

		
	
 is called 
	
		
			

				𝛼
			

		
	
-admissible if the following conditions hold:  (1)
	
		
			
				𝛼
				(
				𝑓
				𝑥
				,
				𝑓
				𝑥
				)
				≥
				1
			

		
	
, 
	
		
			
				∀
				𝑥
				∈
				𝐴
				⇒
				𝛼
				(
				𝑔
				𝑓
				𝑥
				,
				𝑔
				𝑓
				𝑥
				)
				≥
				1
			

		
	
, (2)
	
		
			
				𝛼
				(
				𝑔
				𝑦
				,
				𝑔
				𝑦
				)
				≥
				1
			

		
	
, 
	
		
			
				∀
				𝑦
				∈
				𝐵
				⇒
				𝛼
				(
				𝑓
				𝑔
				𝑦
				,
				𝑓
				𝑔
				𝑦
				)
				≥
				1
			

		
	
. 
In 1969, Meir and Keeler [24] introduced the following notion of Meir-Keeler-type contraction in a metric space 
	
		
			
				(
				𝑋
				,
				𝑑
				)
			

		
	
.
Definition 6. Letting 
	
		
			
				(
				𝑋
				,
				𝑑
				)
			

		
	
 be a metric space, 
	
		
			
				𝑓
				∶
				𝑋
				→
				𝑋
			

		
	
. Then 
	
		
			

				𝑓
			

		
	
 is called a Meir-Keeler-type contraction whenever for each 
	
		
			
				𝜂
				>
				0
			

		
	
, there exists 
	
		
			
				𝛾
				>
				0
			

		
	
 such that
							
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				𝜂
				≤
				𝑑
				(
				𝑥
				,
				𝑦
				)
				<
				𝜂
				+
				𝛾
				⟹
				𝑑
				(
				𝑓
				𝑥
				,
				𝑓
				𝑦
				)
				<
				𝜂
				.
			

		
	

We now state the new notions of generalized cyclic Meir-Keeler-type (
	
		
			
				𝜓
				,
				𝐴
				,
				𝐵
			

		
	
)-contractions and generalized Meir-Keeler-type (
	
		
			
				𝛼
				,
				𝜓
				,
				𝐴
				,
				𝐵
			

		
	
)-contractions in partially ordered metric spaces as follows.
Definition 7. Let 
	
		
			
				(
				𝑋
				,
				⊑
				,
				𝑑
				)
			

		
	
 be a partially ordered metric space, let 
	
		
			
				𝐴
				,
				𝐵
			

		
	
 be two nonempty subsets of 
	
		
			

				𝑋
			

		
	
 with 
	
		
			
				𝑋
				=
				𝐴
				∪
				𝐵
			

		
	
, and let 
	
		
			
				𝑓
				∶
				𝐴
				→
				𝐵
			

		
	
, 
	
		
			
				𝑔
				∶
				𝐵
				→
				𝐴
			

		
	
 with 
	
		
			
				𝑓
				(
				𝐴
				)
				⊂
				𝐵
			

		
	
 and 
	
		
			
				𝑔
				(
				𝐵
				)
				⊂
				𝐴
			

		
	
. Then the pair 
	
		
			
				(
				𝑓
				,
				𝑔
				)
			

		
	
 is called a generalized cyclic Meir-Keeler-type 
	
		
			
				(
				𝜓
				,
				𝐴
				,
				𝐵
				)
			

		
	
-contraction; if for any comparable elements 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝑋
			

		
	
 with 
	
		
			
				𝑥
				∈
				𝐴
			

		
	
 and 
	
		
			
				𝑦
				∈
				𝐵
			

		
	
, we have that for each 
	
		
			
				𝜂
				>
				0
			

		
	
 there exists 
	
		
			
				𝛿
				>
				0
			

		
	
 such that 
							
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			
				𝜂
				≤
				𝜓
				(
				𝑑
				(
				𝑥
				,
				𝑦
				)
				,
				𝑑
				(
				𝑥
				,
				𝑓
				𝑥
				)
				,
				𝑑
				(
				𝑦
				,
				𝑔
				𝑦
				)
				,
				𝑑
				(
				𝑥
				,
				𝑔
				𝑦
				)
				,
				𝑑
				(
				𝑦
				,
				𝑓
				𝑥
				)
				)
				<
				𝜂
				+
				𝛿
				⟹
				𝑑
				(
				𝑓
				𝑥
				,
				𝑔
				𝑦
				)
				<
				𝜂
				,
			

		
	

						where 
	
		
			
				𝜓
				∈
				Ψ
			

		
	
.
Definition 8. Let 
	
		
			
				(
				𝑋
				,
				⊑
				,
				𝑑
				)
			

		
	
 be a partially ordered metric space, let 
	
		
			
				𝐴
				,
				𝐵
			

		
	
 be two nonempty subsets of 
	
		
			

				𝑋
			

		
	
 with 
	
		
			
				𝑋
				=
				𝐴
				∪
				𝐵
			

		
	
, and let 
	
		
			
				𝑓
				∶
				𝐴
				→
				𝐵
			

		
	
, 
	
		
			
				𝑔
				∶
				𝐵
				→
				𝐴
			

		
	
 with 
	
		
			
				𝑓
				(
				𝐴
				)
				⊂
				𝐵
			

		
	
 and 
	
		
			
				𝑔
				(
				𝐵
				)
				⊂
				𝐴
			

		
	
, and 
	
		
			
				𝛼
				∶
				𝑋
				×
				𝑋
				→
				ℝ
			

			

				+
			

		
	
. Then 
	
		
			
				(
				𝑓
				,
				𝑔
				)
			

		
	
 is called a generalized cyclic Meir-Keeler-type 
	
		
			
				(
				𝛼
				,
				𝜓
				,
				𝐴
				,
				𝐵
				)
			

		
	
-contraction if the following conditions hold:  (1) the pair 
	
		
			
				(
				𝑓
				,
				𝑔
				)
			

		
	
 is 
	
		
			

				𝛼
			

		
	
-admissible; (2) for any comparable elements 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝑋
			

		
	
 with 
	
		
			
				𝑥
				∈
				𝐴
			

		
	
 and 
	
		
			
				𝑦
				∈
				𝐵
			

		
	
, we have that for each 
	
		
			
				𝜂
				>
				0
			

		
	
 there exists 
	
		
			
				𝛿
				>
				0
			

		
	
 such that 
										
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			
				𝜂
				≤
				𝜓
				(
				𝑑
				(
				𝑥
				,
				𝑦
				)
				,
				𝑑
				(
				𝑥
				,
				𝑓
				𝑥
				)
				,
				𝑑
				(
				𝑦
				,
				𝑔
				𝑦
				)
				,
				𝑑
				(
				𝑥
				,
				𝑔
				𝑦
				)
				,
				𝑑
				(
				𝑦
				,
				𝑓
				𝑥
				)
				)
				<
				𝜂
				+
				𝛿
				⟹
				𝛼
				(
				𝑓
				𝑥
				,
				𝑓
				𝑥
				)
				𝛼
				(
				𝑔
				𝑦
				,
				𝑔
				𝑦
				)
				𝑑
				(
				𝑓
				𝑥
				,
				𝑔
				𝑦
				)
				<
				𝜂
				,
			

		
	
where 
	
		
			
				𝜓
				∈
				Ψ
			

		
	
. 
Remark 9. Note that if 
	
		
			

				𝑓
			

		
	
 is a generalized cyclic Meir-Keeler-type 
	
		
			
				(
				𝛼
				,
				𝜓
				,
				𝐴
				,
				𝐵
				)
			

		
	
-contraction, then we have that for any comparable elements 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝑋
			

		
	
 with 
	
		
			
				𝑥
				∈
				𝐴
			

		
	
 and 
	
		
			
				𝑦
				∈
				𝐵
			

		
	
, 
							
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				𝛼
				(
				𝑓
				𝑥
				,
				𝑓
				𝑥
				)
				𝛼
				(
				𝑔
				𝑦
				,
				𝑔
				𝑦
				)
				𝑑
				(
				𝑓
				𝑥
				,
				𝑔
				𝑦
				)
				≤
				𝜓
				(
				𝑑
				(
				𝑥
				,
				𝑦
				)
				,
				𝑑
				(
				𝑥
				,
				𝑓
				𝑥
				)
				,
				𝑑
				(
				𝑦
				,
				𝑔
				𝑦
				)
				,
				𝑑
				(
				𝑥
				,
				𝑔
				𝑦
				)
				,
				𝑑
				(
				𝑦
				,
				𝑓
				𝑥
				)
				)
				.
			

		
	

						Further, if
							
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				𝜓
				(
				𝑑
				(
				𝑥
				,
				𝑦
				)
				,
				𝑑
				(
				𝑥
				,
				𝑓
				𝑥
				)
				,
				𝑑
				(
				𝑦
				,
				𝑔
				𝑦
				)
				,
				𝑑
				(
				𝑥
				,
				𝑔
				𝑦
				)
				,
				𝑑
				(
				𝑦
				,
				𝑓
				𝑥
				)
				)
				=
				0
				,
			

		
	

						then 
	
		
			
				𝑑
				(
				𝑓
				𝑥
				,
				𝑔
				𝑦
				)
				=
				0
			

		
	
.On the other hand, if
							
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				𝜓
				(
				𝑑
				(
				𝑥
				,
				𝑦
				)
				,
				𝑑
				(
				𝑥
				,
				𝑓
				𝑥
				)
				,
				𝑑
				(
				𝑦
				,
				𝑔
				𝑦
				)
				,
				𝑑
				(
				𝑥
				,
				𝑔
				𝑦
				)
				,
				𝑑
				(
				𝑦
				,
				𝑓
				𝑥
				)
				)
				>
				0
				,
			

		
	

						then 
							
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				𝛼
				(
				𝑓
				𝑥
				,
				𝑓
				𝑥
				)
				𝛼
				(
				𝑔
				𝑦
				,
				𝑔
				𝑦
				)
				𝑑
				(
				𝑓
				𝑥
				,
				𝑔
				𝑦
				)
				<
				𝜓
				(
				𝑑
				(
				𝑥
				,
				𝑦
				)
				,
				𝑑
				(
				𝑥
				,
				𝑓
				𝑥
				)
				,
				𝑑
				(
				𝑦
				,
				𝑔
				𝑦
				)
				,
				𝑑
				(
				𝑥
				,
				𝑔
				𝑦
				)
				,
				𝑑
				(
				𝑦
				,
				𝑓
				𝑥
				)
				)
				.
			

		
	

We now state our first main result for the generalized cyclic Meir-Keeler-type 
	
		
			
				(
				𝛼
				,
				𝜓
				,
				𝐴
				,
				𝐵
				)
			

		
	
-contraction as follows.
Theorem 10.  Let 
	
		
			
				(
				𝑋
				,
				⊑
				,
				𝑑
				)
			

		
	
 be a partially ordered complete metric space, let 
	
		
			
				𝐴
				,
				𝐵
			

		
	
 be nonempty closed subsets of 
	
		
			

				𝑋
			

		
	
 with 
	
		
			
				𝑋
				=
				𝐴
				∪
				𝐵
			

		
	
, let 
	
		
			
				𝛼
				∶
				𝑋
				×
				𝑋
				→
				ℝ
			

			

				+
			

		
	
, and let 
	
		
			
				𝑓
				,
				𝑔
				∶
				𝑋
				→
				𝑋
			

		
	
 be two mappings such that the pair 
	
		
			
				(
				𝑓
				,
				𝑔
				)
			

		
	
 is a generalized cyclic Meir-Keeler-type (
	
		
			
				𝛼
				,
				𝜓
				,
				𝐴
				,
				𝐵
			

		
	
)-contraction and 
	
		
			
				(
				𝐴
				,
				𝐵
				)
			

		
	
-weakly increasing. Suppose that the following conditions hold:  (i)
	
		
			

				𝑓
			

		
	
 or 
	
		
			

				𝑔
			

		
	
 is continuous; (ii)there exists 
	
		
			

				𝑥
			

			

				0
			

			
				∈
				𝐴
			

		
	
 with 
	
		
			
				𝛼
				(
				𝑓
				𝑥
			

			

				0
			

			
				,
				𝑓
				𝑥
			

			

				0
			

			
				)
				≥
				1
			

		
	
; (iii)if 
	
		
			
				𝛼
				(
				𝑥
			

			

				𝑛
			

			
				,
				𝑥
			

			

				𝑛
			

			
				)
				≥
				1
			

		
	
 for all 
	
		
			
				𝑛
				∈
				ℕ
			

		
	
 and 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝑥
			

			

				𝑛
			

			
				=
				𝜈
			

		
	
, then 
	
		
			
				𝛼
				(
				𝑓
				𝜈
				,
				𝑓
				𝜈
				)
				≥
				1
			

		
	
 and 
	
		
			
				𝛼
				(
				𝑔
				𝜈
				,
				𝑔
				𝜈
				)
				≥
				1
			

		
	
.  
					Then 
	
		
			

				𝑓
			

		
	
 and 
	
		
			

				𝑔
			

		
	
 have a common fixed point in 
	
		
			

				𝑋
			

		
	
.
Proof. By (ii), there exists 
	
		
			

				𝑥
			

			

				0
			

			
				∈
				𝑋
			

		
	
 with 
	
		
			
				𝛼
				(
				𝑓
				𝑥
			

			

				0
			

			
				,
				𝑓
				𝑥
			

			

				0
			

			
				)
				≥
				1
			

		
	
. Since 
	
		
			
				𝑓
				(
				𝐴
				)
				⊂
				𝐵
			

		
	
 and the pair 
	
		
			
				(
				𝑓
				,
				𝑔
				)
			

		
	
 is 
	
		
			

				𝛼
			

		
	
-admissible, there exists 
	
		
			

				𝑥
			

			

				1
			

			
				∈
				𝐵
			

		
	
 such that
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			

				𝑥
			

			

				1
			

			
				=
				𝑓
				𝑥
			

			

				0
			

			
				
				,
				𝛼
				𝑔
				𝑥
			

			

				1
			

			
				,
				𝑔
				𝑥
			

			

				1
			

			
				
				
				=
				𝛼
				𝑔
				𝑓
				𝑥
			

			

				0
			

			
				,
				𝑔
				𝑓
				𝑥
			

			

				0
			

			
				
				≥
				1
				.
			

		
	

						Since 
	
		
			
				𝑔
				(
				𝐵
				)
				⊂
				𝐴
			

		
	
 and the pair 
	
		
			
				(
				𝑓
				,
				𝑔
				)
			

		
	
 is 
	
		
			

				𝛼
			

		
	
-admissible, there exists 
	
		
			

				𝑥
			

			

				2
			

			
				∈
				𝐴
			

		
	
 such that
							
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			

				𝑥
			

			

				2
			

			
				=
				𝑔
				𝑥
			

			

				1
			

			
				
				,
				𝛼
				𝑓
				𝑥
			

			

				2
			

			
				,
				𝑓
				𝑥
			

			

				2
			

			
				
				
				=
				𝛼
				𝑓
				𝑔
				𝑥
			

			

				1
			

			
				,
				𝑓
				𝑔
				𝑥
			

			

				1
			

			
				
				≥
				1
				.
			

		
	

						Continuing this process, we construct the sequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 in 
	
		
			

				𝑋
			

		
	
 such that
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			

				𝑥
			

			
				2
				𝑛
				+
				1
			

			
				=
				𝑓
				𝑥
			

			
				2
				𝑛
			

			
				,
				𝑥
			

			
				2
				𝑛
				+
				2
			

			
				=
				𝑔
				𝑥
			

			
				2
				𝑛
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑛
			

			
				∈
				𝐴
				,
				𝑥
			

			
				2
				𝑛
				+
				1
			

			
				∈
				𝐵
				,
			

		
	

						and for all 
	
		
			
				𝑛
				∈
				ℕ
				∪
				{
				0
				}
			

		
	
,
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				𝛼
				
				𝑥
			

			
				2
				𝑛
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑛
				+
				1
			

			
				
				
				=
				𝛼
				𝑓
				𝑥
			

			
				2
				𝑛
			

			
				,
				𝑓
				𝑥
			

			
				2
				𝑛
			

			
				
				𝛼
				
				𝑥
				≥
				1
				,
			

			
				2
				𝑛
				+
				2
			

			
				,
				𝑥
			

			
				2
				𝑛
				+
				2
			

			
				
				
				=
				𝛼
				𝑔
				𝑥
			

			
				2
				𝑛
				+
				1
			

			
				,
				𝑔
				𝑥
			

			
				2
				𝑛
				+
				1
			

			
				
				≥
				1
				.
			

		
	

						Since the pair 
	
		
			
				(
				𝑓
				,
				𝑔
				)
			

		
	
 is 
	
		
			
				(
				𝐴
				,
				𝐵
				)
			

		
	
-weakly increasing, we have that
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			

				𝑥
			

			

				1
			

			
				=
				𝑓
				𝑥
			

			

				0
			

			
				⊑
				𝑔
				𝑓
				𝑥
			

			

				0
			

			
				=
				𝑔
				𝑥
			

			

				1
			

			
				=
				𝑥
			

			

				2
			

			
				⊑
				𝑓
				𝑔
				𝑥
			

			

				1
			

			
				=
				𝑓
				𝑥
			

			

				2
			

			
				=
				𝑥
			

			

				3
			

			
				⊑
				⋯
				,
			

		
	

						and so we conclude that for all 
	
		
			
				𝑛
				∈
				ℕ
				∪
				{
				0
				}
			

		
	
,
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				𝑔
				𝑓
				𝑥
			

			
				2
				𝑛
			

			
				=
				𝑔
				𝑥
			

			
				2
				𝑛
				+
				1
			

			
				=
				𝑥
			

			
				2
				𝑛
				+
				2
			

			
				⊑
				𝑓
				𝑔
				𝑥
			

			
				2
				𝑛
				+
				1
			

			
				=
				𝑓
				𝑥
			

			
				2
				𝑛
				+
				2
			

			
				=
				𝑥
			

			
				2
				𝑛
				+
				3
			

			

				.
			

		
	
Step  1. We will show that 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 is a Cauchy sequence in 
	
		
			
				(
				𝑋
				,
				⊑
				,
				𝑑
				)
			

		
	
.Case  1. Suppose that 
	
		
			

				𝑥
			

			
				2
				𝑛
			

			
				=
				𝑥
			

			
				2
				𝑛
				+
				1
			

		
	
 for some 
	
		
			
				𝑛
				∈
				ℕ
			

		
	
 in the inequality (16). Since 
	
		
			

				𝑥
			

			
				2
				𝑛
			

		
	
 and 
	
		
			

				𝑥
			

			
				2
				𝑛
				+
				1
			

		
	
 are comparable in 
	
		
			

				𝑋
			

		
	
 with 
	
		
			

				𝑥
			

			
				2
				𝑛
			

			
				∈
				𝐴
			

		
	
 and 
	
		
			

				𝑥
			

			
				2
				𝑛
				+
				1
			

			
				∈
				𝐵
			

		
	
, by the Remark 9, we have 
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				𝑑
				
				𝑥
			

			
				2
				𝑛
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑛
				+
				2
			

			
				
				
				=
				𝑑
				𝑓
				𝑥
			

			
				2
				𝑛
			

			
				,
				𝑔
				𝑥
			

			
				2
				𝑛
				+
				1
			

			
				
				
				≤
				𝛼
				𝑓
				𝑥
			

			
				2
				𝑛
			

			
				,
				𝑓
				𝑥
			

			
				2
				𝑛
			

			
				
				𝛼
				
				𝑔
				𝑥
			

			
				2
				𝑛
				+
				1
			

			
				,
				𝑔
				𝑥
			

			
				2
				𝑛
				+
				1
			

			
				
				𝑑
				
				𝑓
				𝑥
			

			
				2
				𝑛
			

			
				,
				𝑔
				𝑥
			

			
				2
				𝑛
				+
				1
			

			
				
				
				𝑑
				
				𝑥
				≤
				𝜓
			

			
				2
				𝑛
			

			
				,
				𝑥
			

			
				2
				𝑛
				+
				1
			

			
				
				
				𝑥
				,
				𝑑
			

			
				2
				𝑛
			

			
				,
				𝑓
				𝑥
			

			
				2
				𝑛
			

			
				
				
				𝑥
				,
				𝑑
			

			
				2
				𝑛
				+
				1
			

			
				,
				𝑔
				𝑥
			

			
				2
				𝑛
				+
				1
			

			
				
				,
				𝑑
				
				𝑥
			

			
				2
				𝑛
			

			
				,
				𝑔
				𝑥
			

			
				2
				𝑛
				+
				1
			

			
				
				
				𝑥
				,
				𝑑
			

			
				2
				𝑛
				+
				1
			

			
				,
				𝑓
				𝑥
			

			
				2
				𝑛
			

			
				
				𝑑
				
				𝑥
				
				
				=
				𝜓
			

			
				2
				𝑛
			

			
				,
				𝑥
			

			
				2
				𝑛
				+
				1
			

			
				
				
				𝑥
				,
				𝑑
			

			
				2
				𝑛
			

			
				,
				𝑥
			

			
				2
				𝑛
				+
				1
			

			
				
				
				𝑥
				,
				𝑑
			

			
				2
				𝑛
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑛
				+
				2
			

			
				
				,
				𝑑
				
				𝑥
			

			
				2
				𝑛
			

			
				,
				𝑥
			

			
				2
				𝑛
				+
				2
			

			
				
				
				𝑥
				,
				𝑑
			

			
				2
				𝑛
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑛
				+
				1
			

			
				
				
				𝑥
				
				
				≤
				𝜓
				0
				,
				0
				,
				𝑑
			

			
				2
				𝑛
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑛
				+
				2
			

			
				
				
				𝑥
				,
				𝑑
			

			
				2
				𝑛
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑛
				+
				2
			

			
				
				
				.
				,
				0
			

		
	

						If 
	
		
			
				𝑑
				(
				𝑥
			

			
				2
				𝑛
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑛
				+
				2
			

			
				)
				>
				0
			

		
	
, then 
	
		
			
				𝜓
				(
				0
				,
				0
				,
				𝑑
				(
				𝑥
			

			
				2
				𝑛
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑛
				+
				2
			

			

				)
			

		
	
, 
	
		
			
				𝑑
				(
				𝑥
			

			
				2
				𝑛
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑛
				+
				2
			

			
				)
				,
				0
				)
				>
				0
			

		
	
. By Remark 9, we get a contradiction. So we conclude that 
	
		
			
				𝑑
				(
				𝑥
			

			
				2
				𝑛
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑛
				+
				2
			

			
				)
				=
				0
			

		
	
; that is, 
	
		
			

				𝑥
			

			
				2
				𝑛
				+
				1
			

			
				=
				𝑥
			

			
				2
				𝑛
				+
				2
			

		
	
. Similarly, we may show that 
	
		
			

				𝑥
			

			
				2
				𝑛
				+
				2
			

			
				=
				𝑥
			

			
				2
				𝑛
				+
				3
			

		
	
. Hence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 is a constant sequence, and so 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 is a Cauchy sequence in 
	
		
			
				(
				𝑋
				,
				⊑
				,
				𝑑
				)
			

		
	
. Case  2.  Suppose that 
	
		
			

				𝑥
			

			
				2
				𝑛
			

			
				≠
				𝑥
			

			
				2
				𝑛
				+
				1
			

		
	
 for all 
	
		
			
				𝑛
				∈
				ℕ
			

		
	
 in the inequality (16). Substep  1. We show that the sequence 
	
		
			
				{
				𝑑
				(
				𝑥
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				)
				∶
				𝑛
				∈
				ℕ
				∪
				{
				0
				}
				}
			

		
	
 is decreasing. Subcase  1. If 
	
		
			

				𝑛
			

		
	
 is even, then we let 
	
		
			
				𝑛
				=
				2
				𝑚
			

		
	
 for some 
	
		
			
				𝑚
				∈
				ℕ
			

		
	
. Since 
	
		
			

				𝑥
			

			
				2
				𝑚
			

			
				∈
				𝐴
			

		
	
, 
	
		
			

				𝑥
			

			
				2
				𝑚
				+
				1
			

			
				∈
				𝐵
			

		
	
, and 
	
		
			

				𝑥
			

			
				2
				𝑚
			

		
	
, 
	
		
			

				𝑥
			

			
				2
				𝑚
				+
				1
			

		
	
 are comparable in 
	
		
			

				𝑋
			

		
	
, we have 
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				𝑑
				
				𝑥
			

			
				𝑛
				+
				1
			

			
				,
				𝑥
			

			
				𝑛
				+
				2
			

			
				
				
				𝑥
				=
				𝑑
			

			
				2
				𝑚
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				2
			

			
				
				
				=
				𝑑
				𝑓
				𝑥
			

			
				2
				𝑚
			

			
				,
				𝑔
				𝑥
			

			
				2
				𝑚
				+
				1
			

			
				
				
				≤
				𝛼
				𝑓
				𝑥
			

			
				2
				𝑚
			

			
				,
				𝑓
				𝑥
			

			
				2
				𝑚
			

			
				
				𝛼
				
				𝑔
				𝑥
			

			
				2
				𝑚
				+
				1
			

			
				,
				𝑔
				𝑥
			

			
				2
				𝑚
				+
				1
			

			
				
				𝑑
				
				𝑓
				𝑥
			

			
				2
				𝑚
			

			
				,
				𝑔
				𝑥
			

			
				2
				𝑚
				+
				1
			

			
				
				
				𝑑
				
				𝑥
				<
				𝜓
			

			
				2
				𝑚
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				1
			

			
				
				
				𝑥
				,
				𝑑
			

			
				2
				𝑚
			

			
				,
				𝑓
				𝑥
			

			
				2
				𝑚
			

			
				
				
				𝑥
				,
				𝑑
			

			
				2
				𝑚
				+
				1
			

			
				,
				𝑔
				𝑥
			

			
				2
				𝑚
				+
				1
			

			
				
				,
				𝑑
				
				𝑥
			

			
				2
				𝑚
			

			
				,
				𝑔
				𝑥
			

			
				2
				𝑚
				+
				1
			

			
				
				
				𝑥
				,
				𝑑
			

			
				2
				𝑚
				+
				1
			

			
				,
				𝑓
				𝑥
			

			
				2
				𝑚
			

			
				
				𝑑
				
				𝑥
				
				
				=
				𝜓
			

			
				2
				𝑚
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				1
			

			
				
				
				𝑥
				,
				𝑑
			

			
				2
				𝑚
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				1
			

			
				
				
				𝑥
				,
				𝑑
			

			
				2
				𝑚
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				2
			

			
				
				,
				𝑑
				
				𝑥
			

			
				2
				𝑚
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				2
			

			
				
				
				𝑥
				,
				𝑑
			

			
				2
				𝑚
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				1
			

			
				
				𝑑
				
				𝑥
				
				
				≤
				𝜓
			

			
				2
				𝑚
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				1
			

			
				
				
				𝑥
				,
				𝑑
			

			
				2
				𝑚
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				1
			

			
				
				
				𝑥
				,
				𝑑
			

			
				2
				𝑚
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				2
			

			
				
				,
				𝑑
				
				𝑥
			

			
				2
				𝑚
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				1
			

			
				
				
				𝑥
				+
				𝑑
			

			
				2
				𝑚
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				2
			

			
				
				
				
				𝑑
				
				𝑥
				,
				0
				=
				𝜓
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				
				𝑥
				,
				𝑑
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				
				𝑥
				,
				𝑑
			

			
				𝑛
				+
				1
			

			
				,
				𝑥
			

			
				𝑛
				+
				2
			

			
				
				,
				𝑑
				
				𝑥
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				
				𝑥
				+
				𝑑
			

			
				𝑛
				+
				1
			

			
				,
				𝑥
			

			
				𝑛
				+
				2
			

			
				
				
				.
				,
				0
			

		
	

						If 
	
		
			
				𝑑
				(
				𝑥
			

			
				2
				𝑚
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				1
			

			
				)
				<
				𝑑
				(
				𝑥
			

			
				2
				𝑚
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				2
			

			

				)
			

		
	
, then the above inequality becomes 
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				𝑑
				
				𝑥
			

			
				2
				𝑚
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				2
			

			
				
				
				𝑑
				
				𝑥
				<
				𝜓
			

			
				2
				𝑚
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				2
			

			
				
				
				𝑥
				,
				𝑑
			

			
				2
				𝑚
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				2
			

			
				
				,
				𝑑
				
				𝑥
			

			
				2
				𝑚
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				2
			

			
				
				
				𝑥
				,
				2
				𝑑
			

			
				2
				𝑚
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				2
			

			
				
				
				
				𝑥
				,
				0
				≤
				𝑑
			

			
				2
				𝑚
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				2
			

			
				
				,
			

		
	

						which is a contradiction. So we have that
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				𝑑
				
				𝑥
			

			
				2
				𝑚
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				2
			

			
				
				
				𝑥
				≤
				𝑑
			

			
				2
				𝑚
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				1
			

			
				
				.
			

		
	
Subcase  2. If 
	
		
			

				𝑛
			

		
	
 is odd, then we let 
	
		
			
				𝑛
				=
				2
				𝑚
				+
				1
			

		
	
 for some 
	
		
			
				𝑚
				∈
				ℕ
			

		
	
. Since 
	
		
			

				𝑥
			

			
				2
				𝑚
				+
				2
			

			
				∈
				𝐴
			

		
	
, 
	
		
			

				𝑥
			

			
				2
				𝑚
				+
				3
			

			
				∈
				𝐵
			

		
	
 and 
	
		
			

				𝑥
			

			
				2
				𝑚
				+
				2
			

		
	
, 
	
		
			

				𝑥
			

			
				2
				𝑚
				+
				3
			

		
	
 are comparable in 
	
		
			

				𝑋
			

		
	
, we have 
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				𝑑
				
				𝑥
			

			
				𝑛
				+
				2
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				
				𝑥
				=
				𝑑
			

			
				2
				𝑚
				+
				3
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				2
			

			
				
				
				=
				𝑑
				𝑓
				𝑥
			

			
				2
				𝑚
				+
				2
			

			
				,
				𝑔
				𝑥
			

			
				2
				𝑚
				+
				1
			

			
				
				
				≤
				𝛼
				𝑓
				𝑥
			

			
				2
				𝑚
				+
				2
			

			
				,
				𝑓
				𝑥
			

			
				2
				𝑚
				+
				2
			

			
				
				𝛼
				
				𝑔
				𝑥
			

			
				2
				𝑚
				+
				1
			

			
				,
				𝑔
				𝑥
			

			
				2
				𝑚
				+
				1
			

			
				
				
				×
				𝑑
				𝑓
				𝑥
			

			
				2
				𝑚
				+
				2
			

			
				,
				𝑔
				𝑥
			

			
				2
				𝑚
				+
				1
			

			
				
				
				𝑑
				
				𝑥
				<
				𝜓
			

			
				2
				𝑚
				+
				2
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				1
			

			
				
				
				𝑥
				,
				𝑑
			

			
				2
				𝑚
				+
				2
			

			
				,
				𝑓
				𝑥
			

			
				2
				𝑚
				+
				2
			

			
				
				,
				𝑑
				
				𝑥
			

			
				2
				𝑚
				+
				1
			

			
				,
				𝑔
				𝑥
			

			
				2
				𝑚
				+
				1
			

			
				
				
				𝑥
				,
				𝑑
			

			
				2
				𝑚
				+
				2
			

			
				,
				𝑔
				𝑥
			

			
				2
				𝑚
				+
				1
			

			
				
				,
				𝑑
				
				𝑥
			

			
				2
				𝑚
				+
				1
			

			
				,
				𝑓
				𝑥
			

			
				2
				𝑚
				+
				2
			

			
				
				𝑑
				
				𝑥
				
				
				=
				𝜓
			

			
				2
				𝑚
				+
				2
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				1
			

			
				
				
				𝑥
				,
				𝑑
			

			
				2
				𝑚
				+
				2
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				3
			

			
				
				
				𝑥
				,
				𝑑
			

			
				2
				𝑚
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				2
			

			
				
				,
				𝑑
				
				𝑥
			

			
				2
				𝑚
				+
				2
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				2
			

			
				
				
				𝑥
				,
				𝑑
			

			
				2
				𝑚
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				3
			

			
				
				𝑑
				
				𝑥
				
				
				≤
				𝜓
			

			
				2
				𝑚
				+
				2
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				1
			

			
				
				
				𝑥
				,
				𝑑
			

			
				2
				𝑚
				+
				2
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				3
			

			
				
				
				𝑥
				,
				𝑑
			

			
				2
				𝑚
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				2
			

			
				
				,
				
				𝑥
				0
				,
				𝑑
			

			
				2
				𝑚
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				2
			

			
				
				
				𝑥
				+
				𝑑
			

			
				2
				𝑚
				+
				2
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				3
			

			
				
				𝑑
				
				𝑥
				
				
				=
				𝜓
			

			
				𝑛
				+
				1
			

			
				,
				𝑥
			

			

				𝑛
			

			
				
				
				𝑥
				,
				𝑑
			

			
				𝑛
				+
				1
			

			
				,
				𝑥
			

			
				𝑛
				+
				2
			

			
				
				
				𝑥
				,
				𝑑
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				,
				
				𝑥
				0
				,
				𝑑
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				
				𝑥
				+
				𝑑
			

			
				𝑛
				+
				1
			

			
				,
				𝑥
			

			
				𝑛
				+
				2
			

			
				.
				
				
			

		
	

						If 
	
		
			
				𝑑
				(
				𝑥
			

			
				2
				𝑚
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				2
			

			
				)
				<
				𝑑
				(
				𝑥
			

			
				2
				𝑚
				+
				2
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				3
			

			

				)
			

		
	
, then the above inequality becomes 
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				𝑑
				
				𝑥
			

			
				2
				𝑚
				+
				2
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				3
			

			
				
				
				𝑑
				
				𝑥
				<
				𝜓
			

			
				2
				𝑚
				+
				2
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				3
			

			
				
				
				𝑥
				,
				𝑑
			

			
				2
				𝑚
				+
				2
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				3
			

			
				
				,
				𝑑
				
				𝑥
			

			
				2
				𝑚
				+
				3
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				3
			

			
				
				
				𝑥
				,
				0
				,
				2
				𝑑
			

			
				2
				𝑚
				+
				2
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				3
			

			
				
				𝑥
				
				
				≤
				𝑑
			

			
				2
				𝑚
				+
				2
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				3
			

			
				
				,
			

		
	

						which is a contradiction. So we have that
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				𝑑
				
				𝑥
			

			
				2
				𝑚
				+
				2
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				3
			

			
				
				
				𝑥
				<
				𝑑
			

			
				2
				𝑚
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑚
				+
				2
			

			
				
				.
			

		
	

						From (20) and (23), we conclude that
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				𝑑
				
				𝑥
			

			
				+
				1
			

			
				,
				𝑥
			

			
				𝑛
				+
				2
			

			
				
				
				𝑥
				<
				𝑑
			

			
				𝑛
				+
				1
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				.
			

		
	

						From the above argument, we have that the sequence 
	
		
			
				{
				𝑑
				(
				𝑥
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				)
				∶
				𝑛
				∈
				ℕ
				∪
				{
				0
				}
				}
			

		
	
 is decreasing, and it must converge to some 
	
		
			
				𝜂
				≥
				0
			

		
	
; that is,
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝑑
				
				𝑥
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				=
				𝜂
				.
			

		
	
Substep  2. We next claim that
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝑑
				
				𝑥
			

			

				𝑛
			

			
				,
				𝑓
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				=
				0
				.
			

		
	

						Notice that 
	
		
			
				𝜂
				=
				i
				n
				f
				{
				𝑑
				(
				𝑓
				𝑥
			

			

				𝑛
			

			
				,
				𝑓
				𝑥
			

			
				𝑛
				+
				1
			

			
				)
				∶
				𝑛
				∈
				ℕ
				∪
				{
				0
				}
				}
			

		
	
. We claim that 
	
		
			
				𝜂
				=
				0
			

		
	
. Suppose, to the contrary, that 
	
		
			
				𝜂
				>
				0
			

		
	
.If 
	
		
			

				𝑛
			

		
	
 is even, by the argument of Subcase 1 and the inequality (25), we have
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝜓
				
				𝑑
				
				𝑥
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				
				𝑥
				,
				𝑑
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				
				𝑥
				,
				𝑑
			

			
				𝑛
				+
				1
			

			
				,
				𝑥
			

			
				𝑛
				+
				2
			

			
				
				,
				𝑑
				
				𝑥
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				
				𝑥
				+
				𝑑
			

			
				𝑛
				+
				1
			

			
				,
				𝑥
			

			
				𝑛
				+
				2
			

			
				
				
				,
				0
				=
				𝜂
				.
			

		
	

						Since 
	
		
			
				(
				𝑓
				,
				𝑔
				)
			

		
	
 is a generalized cyclic Meir-Keeler-type 
	
		
			
				(
				𝛼
				,
				𝜓
				,
				𝐴
				,
				𝐵
				)
			

		
	
-contraction, corresponding to 
	
		
			

				𝜂
			

		
	
 use and taking into account the above (27), there exist 
	
		
			
				𝛿
				>
				0
			

		
	
 and a natural number 
	
		
			

				𝑘
			

		
	
 such that 
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			
				
				𝑑
				
				𝑥
				𝜂
				≤
				𝜓
			

			

				𝑘
			

			
				,
				𝑥
			

			
				𝑘
				+
				1
			

			
				
				
				𝑥
				,
				𝑑
			

			

				𝑘
			

			
				,
				𝑥
			

			
				𝑘
				+
				1
			

			
				
				
				𝑥
				,
				𝑑
			

			
				𝑘
				+
				1
			

			
				,
				𝑥
			

			
				𝑘
				+
				2
			

			
				
				
				𝑥
				,
				𝑑
			

			

				𝑘
			

			
				,
				𝑥
			

			
				𝑘
				+
				1
			

			
				
				
				𝑥
				+
				𝑑
			

			
				𝑘
				+
				1
			

			
				,
				𝑥
			

			
				𝑘
				+
				2
			

			
				
				
				
				,
				0
				<
				𝜂
				+
				𝛿
				⟹
				𝛼
				𝑓
				𝑥
			

			

				𝑘
			

			
				,
				𝑓
				𝑥
			

			

				𝑘
			

			
				
				𝛼
				
				𝑔
				𝑥
			

			
				𝑘
				+
				1
			

			
				,
				𝑔
				𝑥
			

			
				𝑘
				+
				1
			

			
				
				𝑑
				
				𝑓
				𝑥
			

			

				𝑘
			

			
				,
				𝑔
				𝑥
			

			
				𝑘
				+
				1
			

			
				
				<
				𝜂
				,
			

		
	

						which implies
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				𝑑
				
				𝑓
				𝑥
			

			

				𝑘
			

			
				,
				𝑔
				𝑥
			

			
				𝑘
				+
				1
			

			
				
				
				≤
				𝛼
				𝑓
				𝑥
			

			

				𝑘
			

			
				,
				𝑓
				𝑥
			

			

				𝑘
			

			
				
				𝛼
				
				𝑔
				𝑥
			

			
				𝑘
				+
				1
			

			
				,
				𝑔
				𝑥
			

			
				𝑘
				+
				1
			

			
				
				𝑑
				
				𝑓
				𝑥
			

			

				𝑘
			

			
				,
				𝑔
				𝑥
			

			
				𝑘
				+
				1
			

			
				
				<
				𝜂
				.
			

		
	

						So we get a contradiction, since 
	
		
			
				𝜂
				=
				i
				n
				f
				{
				𝑑
				(
				𝑥
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				)
				∶
				𝑛
				∈
				ℕ
				∪
				{
				0
				}
			

		
	
. Thus we have that
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝑑
				
				𝑥
			

			

				𝑛
			

			
				,
				𝑓
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				=
				0
				.
			

		
	
If 
	
		
			

				𝑛
			

		
	
 is odd, by the argument of Subcase 2 and the inequality (25), we have
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝜓
				
				𝑑
				
				𝑥
			

			
				𝑛
				+
				1
			

			
				,
				𝑥
			

			

				𝑛
			

			
				
				
				𝑥
				,
				𝑑
			

			
				𝑛
				+
				1
			

			
				,
				𝑥
			

			
				𝑛
				+
				2
			

			
				
				
				𝑥
				,
				𝑑
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				,
				
				𝑥
				0
				,
				𝑑
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				
				𝑥
				+
				𝑑
			

			
				𝑛
				+
				1
			

			
				,
				𝑥
			

			
				𝑛
				+
				2
			

			
				
				
				=
				𝜂
				.
			

		
	

						Similarly, we can prove that
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝑑
				
				𝑥
			

			

				𝑛
			

			
				,
				𝑓
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				=
				0
				.
			

		
	
Substep  3. We show that 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 is a Cauchy sequence in 
	
		
			
				(
				𝑋
				,
				⊑
				,
				𝑑
				)
			

		
	
. It is sufficient to show that 
	
		
			
				{
				𝑥
			

			
				2
				𝑛
			

			

				}
			

		
	
 is a Cauchy sequence in 
	
		
			
				(
				𝑋
				,
				⊑
				,
				𝑑
				)
			

		
	
. Suppose, to the contrary, that 
	
		
			
				{
				𝑥
			

			
				2
				𝑛
			

			

				}
			

		
	
 is not a Cauchy sequence in 
	
		
			
				(
				𝑋
				,
				⊑
				,
				𝑑
				)
			

		
	
. Then there exist 
	
		
			
				𝜖
				>
				0
			

		
	
 and two subsequences 
	
		
			
				{
				𝑥
			

			
				2
				𝑚
				(
				𝑘
				)
			

			

				}
			

		
	
 and 
	
		
			
				{
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
			

			

				}
			

		
	
 of 
	
		
			
				{
				𝑥
			

			
				2
				𝑛
			

			

				}
			

		
	
 such that 
	
		
			
				𝑛
				(
				𝑘
				)
			

		
	
 is the smallest integer for which 
	
		
			
				𝑛
				(
				𝑘
				)
				>
				𝑚
				(
				𝑘
				)
				>
				𝑘
			

		
	
,
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			
				𝑑
				
				𝑥
			

			
				2
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
			

			
				
				
				𝑥
				≥
				𝜖
				,
				𝑑
			

			
				2
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
				−
				2
			

			
				
				<
				𝜖
				,
			

		
	

						and we get 
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				
				𝑥
				𝜖
				≤
				𝑑
			

			
				2
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
			

			
				
				
				𝑥
				≤
				𝑑
			

			
				2
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
				−
				2
			

			
				
				
				𝑥
				+
				𝑑
			

			
				2
				𝑛
				(
				𝑘
				)
				−
				2
			

			
				,
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				
				
				𝑥
				+
				𝑑
			

			
				2
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				,
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
			

			
				
				
				𝑥
				<
				𝜖
				+
				𝑑
			

			
				2
				𝑛
				(
				𝑘
				)
				−
				2
			

			
				,
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				
				
				𝑥
				+
				𝑑
			

			
				2
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				,
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
			

			
				
				.
			

		
	

						Letting 
	
		
			
				𝑘
				→
				∞
			

		
	
 in the above inequality, we get
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝑑
				
				𝑥
			

			
				2
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
			

			
				
				=
				𝜖
				.
			

		
	

						On the other hand, we also obtain that 
							
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			
				
				𝑥
				𝜖
				≤
				𝑑
			

			
				2
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
			

			
				
				
				𝑥
				≤
				𝑑
			

			
				2
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				
				
				𝑥
				+
				𝑑
			

			
				2
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				,
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
			

			
				
				
				𝑥
				≤
				𝑑
			

			
				2
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				
				
				𝑥
				+
				𝑑
			

			
				2
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑥
			

			
				2
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				
				
				𝑥
				+
				𝑑
			

			
				2
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				,
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
			

			
				
				
				𝑥
				≤
				𝑑
			

			
				2
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				
				
				𝑥
				+
				2
				𝑑
			

			
				2
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑥
			

			
				2
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				
				
				𝑥
				+
				𝑑
			

			
				2
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				,
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
			

			
				
				
				𝑥
				≤
				𝑑
			

			
				2
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
			

			
				
				
				𝑥
				+
				2
				𝑑
			

			
				2
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑥
			

			
				2
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				
				
				𝑥
				+
				2
				𝑑
			

			
				2
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				,
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
			

			
				
				.
			

		
	

						Letting 
	
		
			
				𝑘
				→
				∞
			

		
	
 in the above inequality, we get 
							
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝑑
				
				𝑥
			

			
				2
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
			

			
				
				=
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝑑
				
				𝑥
			

			
				2
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				
				=
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝑑
				
				𝑥
			

			
				2
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				
				=
				𝜖
				.
			

		
	

						Since 
							
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			
				𝑑
				
				𝑥
			

			
				2
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				
				
				𝑥
				≤
				𝑑
			

			
				2
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
			

			
				
				
				𝑥
				+
				𝑑
			

			
				2
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				
				
				𝑥
				≤
				𝑑
			

			
				2
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				
				
				𝑥
				+
				2
				𝑑
			

			
				2
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				
				,
			

		
	

						letting 
	
		
			
				𝑘
				→
				∞
			

		
	
 in the above inequality, we have
							
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝑑
				
				𝑥
			

			
				2
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
			

			
				
				=
				𝜖
				.
			

		
	

						Since 
	
		
			

				𝑥
			

			
				2
				𝑚
				(
				𝑘
				)
			

			
				∈
				𝐴
			

		
	
, 
	
		
			

				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				∈
				𝐵
			

		
	
, and 
	
		
			

				𝑥
			

			
				2
				𝑚
				(
				𝑘
				)
			

		
	
, 
	
		
			

				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
				−
				1
			

		
	
 are comparable in 
	
		
			

				𝑋
			

		
	
, we have 
							
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			
				𝑑
				
				𝑥
			

			
				2
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
			

			
				
				
				=
				𝑑
				𝑓
				𝑥
			

			
				2
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				
				
				≤
				𝛼
				𝑓
				𝑥
			

			
				2
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑓
				𝑥
			

			
				2
				𝑚
				(
				𝑘
				)
			

			
				
				𝛼
				
				𝑔
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				,
				𝑔
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				
				
				×
				𝑑
				𝑓
				𝑥
			

			
				2
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				
				
				𝑑
				
				𝑥
				<
				𝜓
			

			
				2
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				
				
				𝑥
				,
				𝑑
			

			
				2
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑓
				𝑥
			

			
				2
				𝑚
				(
				𝑘
				)
			

			
				
				,
				𝑑
				
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				,
				𝑔
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				
				
				𝑥
				,
				𝑑
			

			
				2
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				
				,
				𝑑
				
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				,
				𝑓
				𝑥
			

			
				2
				𝑚
				(
				𝑘
				)
			

			
				
				𝑑
				
				𝑥
				
				
				=
				𝜓
			

			
				2
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				
				
				𝑥
				,
				𝑑
			

			
				2
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑥
			

			
				2
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				
				,
				𝑑
				
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				,
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
			

			
				
				
				𝑥
				,
				𝑑
			

			
				2
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
			

			
				
				,
				𝑑
				
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				,
				𝑥
			

			
				2
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				.
				
				
			

		
	

						Letting 
	
		
			
				𝑘
				→
				∞
			

		
	
 in the above inequality and using (37) and (39), we get
							
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			
				𝜖
				=
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝑑
				
				𝑥
			

			
				2
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				,
				𝑥
			

			
				2
				𝑛
				(
				𝑘
				)
			

			
				
				<
				𝜓
				(
				𝜖
				,
				0
				,
				0
				,
				𝜖
				,
				𝜖
				)
				≤
				𝜖
				,
			

		
	

						which implies a contradiction. So we get that 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 is a Cauchy sequence in 
	
		
			
				(
				𝑋
				,
				⊑
				,
				𝑑
				)
			

		
	
. Step  2. Finally, we prove the existence of common fixed point of 
	
		
			

				𝑓
			

		
	
 and 
	
		
			

				𝑔
			

		
	
. Since 
	
		
			
				(
				𝑋
				,
				⊑
				,
				𝑑
				)
			

		
	
 is complete and 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 is a Cauchy sequence in 
	
		
			
				(
				𝑋
				,
				⊑
				,
				𝑑
				)
			

		
	
, there exists 
	
		
			
				𝜈
				∈
				𝑋
			

		
	
 such that
							
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝑥
			

			

				𝑛
			

			
				=
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝑥
			

			
				2
				𝑛
			

			
				=
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝑥
			

			
				2
				𝑛
				−
				1
			

			
				=
				𝜈
				.
			

		
	

						From (42) and since 
	
		
			
				𝛼
				(
				𝑥
			

			

				𝑛
			

			
				,
				𝑥
			

			

				𝑛
			

			
				)
				≥
				1
			

		
	
 for all 
	
		
			
				𝑛
				∈
				ℕ
			

		
	
, we have 
	
		
			
				𝛼
				(
				𝑓
				𝜈
				,
				𝑓
				𝜈
				)
				≥
				1
			

		
	
 and 
	
		
			
				𝛼
				(
				𝑔
				𝜈
				,
				𝑔
				𝜈
				)
				≥
				1
			

		
	
.Since 
	
		
			
				{
				𝑥
			

			
				2
				𝑛
			

			

				}
			

		
	
 is a sequence in 
	
		
			

				𝐴
			

		
	
 and 
	
		
			

				𝐴
			

		
	
 is closed, by (42), we have that 
	
		
			
				𝜈
				∈
				𝐴
			

		
	
. Similarly, since 
	
		
			
				{
				𝑥
			

			
				2
				𝑛
				+
				1
			

			

				}
			

		
	
 is a sequence in 
	
		
			

				𝐵
			

		
	
 and 
	
		
			

				𝐵
			

		
	
 is closed, by (42), we have that 
	
		
			
				𝜈
				∈
				𝐵
			

		
	
. We now claim that 
	
		
			

				𝜈
			

		
	
 is a common fixed point of 
	
		
			

				𝑓
			

		
	
 and 
	
		
			

				𝑔
			

		
	
. Without loss of generality, we assume that 
	
		
			

				𝑓
			

		
	
 is continuous, and by (42), we have
							
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			

				𝑥
			

			
				2
				𝑛
				+
				1
			

			
				=
				𝑓
				𝑥
			

			
				2
				𝑛
			

			
				⟶
				𝜈
				,
				a
				s
				𝑛
				→
				∞
				.
			

		
	

						By the uniqueness of the limit, we have that 
	
		
			
				𝜈
				=
				𝑓
				𝜈
			

		
	
.Since 
	
		
			
				𝜈
				⊑
				𝜈
			

		
	
 with 
	
		
			
				𝜈
				∈
				𝐴
			

		
	
 and 
	
		
			
				𝜈
				∈
				𝐵
			

		
	
, we have 
							
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			
				𝑑
				(
				𝜈
				,
				𝑔
				𝜈
				)
				=
				𝑑
				(
				𝑓
				𝜈
				,
				𝑔
				𝜈
				)
				≤
				𝛼
				(
				𝑓
				𝜈
				,
				𝑓
				𝜈
				)
				𝛼
				(
				𝑔
				𝜈
				,
				𝑔
				𝜈
				)
				𝑑
				(
				𝑓
				𝜈
				,
				𝑔
				𝜈
				)
				<
				𝜓
				(
				𝑑
				(
				𝜈
				,
				𝜈
				)
				,
				𝑑
				(
				𝜈
				,
				𝑓
				𝜈
				)
				,
				𝑑
				(
				𝜈
				,
				𝑔
				𝜈
				)
				,
				𝑑
				(
				𝜈
				,
				𝑔
				𝜈
				)
				,
				𝑑
				(
				𝜈
				,
				𝑓
				𝜈
				)
				)
				=
				𝜓
				(
				0
				,
				0
				,
				𝑑
				(
				𝜈
				,
				𝑔
				𝜈
				)
				,
				𝑑
				(
				𝜈
				,
				𝑔
				𝜈
				)
				,
				0
				)
				≤
				𝑑
				(
				𝜈
				,
				𝑔
				𝜈
				)
				.
			

		
	

						This implies that 
	
		
			
				𝜈
				=
				𝑔
				𝜈
			

		
	
. So we complete the proof.
Applying Theorem 10 and if we let 
	
		
			
				𝛼
				(
				𝑥
				,
				𝑦
				)
				=
				1
			

		
	
, then we immediately get the following theorem.
Theorem 11.  Let 
	
		
			
				(
				𝑋
				,
				⊑
				,
				𝑑
				)
			

		
	
 be a partially ordered complete metric space, let 
	
		
			
				𝐴
				,
				𝐵
			

		
	
 be nonempty closed subsets of 
	
		
			

				𝑋
			

		
	
 with 
	
		
			
				𝑋
				=
				𝐴
				∪
				𝐵
			

		
	
, and let 
	
		
			
				𝑓
				,
				𝑔
				∶
				𝑋
				→
				𝑋
			

		
	
 be two mappings such that the pair 
	
		
			
				(
				𝑓
				,
				𝑔
				)
			

		
	
 is a generalized cyclic Meir-Keeler-type 
	
		
			
				(
				𝜓
				,
				𝐴
				,
				𝐵
				)
			

		
	
-contraction and 
	
		
			
				(
				𝐴
				,
				𝐵
				)
			

		
	
-weakly increasing. If 
	
		
			

				𝑓
			

		
	
 or 
	
		
			

				𝑔
			

		
	
 is continuous, then 
	
		
			

				𝑓
			

		
	
 and 
	
		
			

				𝑔
			

		
	
 have a common fixed point in 
	
		
			

				𝑋
			

		
	
.
We next state our second main result for the generalized cyclic Meir-Keeler-type 
	
		
			
				(
				𝛼
				,
				𝜓
				,
				𝐴
				,
				𝐵
				)
			

		
	
-contraction as follows.
Theorem 12.  Let 
	
		
			
				(
				𝑋
				,
				⊑
				,
				𝑑
				)
			

		
	
 be a partially ordered complete metric space, let 
	
		
			
				𝐴
				,
				𝐵
			

		
	
 be nonempty closed subsets of 
	
		
			

				𝑋
			

		
	
 with 
	
		
			
				𝑋
				=
				𝐴
				∪
				𝐵
			

		
	
, let 
	
		
			
				𝛼
				∶
				𝑋
				×
				𝑋
				→
				ℝ
			

			

				+
			

		
	
, and let 
	
		
			
				𝑓
				,
				𝑔
				∶
				𝑋
				→
				𝑋
			

		
	
 be two mappings such that the pair 
	
		
			
				(
				𝑓
				,
				𝑔
				)
			

		
	
 is a generalized cyclic Meir-Keeler-type 
	
		
			
				(
				𝛼
				,
				𝜓
				,
				𝐴
				,
				𝐵
				)
			

		
	
-contraction and 
	
		
			
				(
				𝐴
				,
				𝐵
				)
			

		
	
-weakly increasing. Suppose that the following conditions hold:  (i)if 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 is a nondecreasing sequence in 
	
		
			

				𝑋
			

		
	
 and 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝑥
			

			

				𝑛
			

			
				=
				𝜈
			

		
	
, then 
	
		
			

				𝑥
			

			

				𝑛
			

			
				⊑
				𝜈
			

		
	
; (ii)there exists 
	
		
			

				𝑥
			

			

				0
			

			
				∈
				𝐴
			

		
	
 with 
	
		
			
				𝛼
				(
				𝑓
				𝑥
			

			

				0
			

			
				,
				𝑓
				𝑥
			

			

				0
			

			
				)
				≥
				1
			

		
	
; (iii)if 
	
		
			
				𝛼
				(
				𝑥
			

			

				𝑛
			

			
				,
				𝑥
			

			

				𝑛
			

			
				)
				≥
				1
			

		
	
 for all 
	
		
			
				𝑛
				∈
				ℕ
			

		
	
 and 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝑥
			

			

				𝑛
			

			
				=
				𝜈
			

		
	
, then 
	
		
			
				𝛼
				(
				𝑓
				𝜈
				,
				𝑓
				𝜈
				)
				≥
				1
			

		
	
 and 
	
		
			
				𝛼
				(
				𝑔
				𝜈
				,
				𝑔
				𝜈
				)
				≥
				1
			

		
	
.  
					Then 
	
		
			

				𝑓
			

		
	
 and 
	
		
			

				𝑔
			

		
	
 have a common fixed point in 
	
		
			

				𝑋
			

		
	
.
Proof. From the same proof’s process of Theorem 10, we can construct a nondecreasing sequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 in 
	
		
			

				𝑋
			

		
	
 with 
	
		
			

				𝑥
			

			
				2
				𝑛
			

			
				∈
				𝐴
			

		
	
, 
	
		
			

				𝑥
			

			
				2
				𝑛
				+
				1
			

			
				∈
				𝐵
			

		
	
, and 
	
		
			

				𝑥
			

			

				𝑛
			

			
				→
				𝜈
			

		
	
 for some 
	
		
			
				𝜈
				∈
				𝑋
			

		
	
. Since 
	
		
			

				𝑥
			

			

				𝑛
			

			
				→
				𝜈
			

		
	
 and 
	
		
			

				𝐴
			

		
	
, 
	
		
			

				𝐵
			

		
	
 are nonempty closed subsets of 
	
		
			

				𝑋
			

		
	
, we have 
	
		
			

				𝑥
			

			
				2
				𝑛
			

			
				→
				𝜈
			

		
	
, 
	
		
			

				𝑥
			

			
				2
				𝑛
				+
				1
			

			
				→
				𝜈
			

		
	
, and 
	
		
			
				𝜈
				∈
				𝐴
				∩
				𝐵
			

		
	
. By the condition (i), we get 
	
		
			

				𝑥
			

			

				𝑛
			

			
				⊑
				𝜈
			

		
	
 for all 
	
		
			
				𝑛
				∈
				ℕ
			

		
	
.Since 
	
		
			

				𝑥
			

			
				2
				𝑛
			

			
				∈
				𝐴
			

		
	
 and 
	
		
			
				𝜈
				∈
				𝐵
			

		
	
, we have 
							
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			
				𝑑
				
				𝑥
			

			
				2
				𝑛
				+
				1
			

			
				
				
				,
				𝑔
				𝜈
				=
				𝑑
				𝑓
				𝑥
			

			
				2
				𝑛
			

			
				
				
				,
				𝑔
				𝜈
				≤
				𝛼
				𝑓
				𝑥
			

			
				2
				𝑛
			

			
				,
				𝑓
				𝑥
			

			
				2
				𝑛
			

			
				
				
				𝛼
				(
				𝑔
				𝜈
				,
				𝑔
				𝜈
				)
				𝑑
				𝑓
				𝑥
			

			
				2
				𝑛
			

			
				
				
				𝑑
				
				𝑥
				,
				𝑔
				𝜈
				<
				𝜓
			

			
				2
				𝑛
			

			
				
				
				𝑥
				,
				𝜈
				,
				𝑑
			

			
				2
				𝑛
			

			
				,
				𝑓
				𝑥
			

			
				2
				𝑛
			

			
				
				𝑑
				
				𝑥
				,
				𝑑
				(
				𝜈
				,
				𝑔
				𝜈
				)
				,
			

			
				2
				𝑛
			

			
				
				
				,
				𝑔
				𝜈
				,
				𝑑
				𝜈
				,
				𝑓
				𝑥
			

			
				2
				𝑛
			

			
				
				𝑑
				
				𝑥
				
				
				=
				𝜓
			

			
				2
				𝑛
			

			
				
				
				𝑥
				,
				𝜈
				,
				𝑑
			

			
				2
				𝑛
			

			
				,
				𝑥
			

			
				2
				𝑛
				+
				1
			

			
				
				𝑑
				
				𝑥
				,
				𝑑
				(
				𝜈
				,
				𝑔
				𝜈
				)
				,
			

			
				2
				𝑛
			

			
				
				
				,
				𝑔
				𝜈
				,
				𝑑
				𝜈
				,
				𝑥
			

			
				2
				𝑛
				+
				1
			

			
				.
				
				
			

		
	

						Letting 
	
		
			
				𝑛
				→
				∞
			

		
	
 in the above inequality, we get
							
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			
				𝑑
				(
				𝜈
				,
				𝑔
				𝜈
				)
				<
				𝜓
				(
				0
				,
				0
				,
				𝑑
				(
				𝜈
				,
				𝑔
				𝜈
				)
				,
				𝑑
				(
				𝜈
				,
				𝑔
				𝜈
				)
				,
				0
				)
				≤
				𝑑
				(
				𝜈
				,
				𝑔
				𝜈
				)
				.
			

		
	

						This implies that 
	
		
			
				𝑑
				(
				𝜈
				,
				𝑔
				𝜈
				)
				=
				0
			

		
	
; that is, 
	
		
			
				𝜈
				=
				𝑔
				𝜈
			

		
	
. Similarly, we may show that 
	
		
			
				𝜈
				=
				𝑓
				𝜈
			

		
	
. So 
	
		
			

				𝜈
			

		
	
 is a common fixed point of 
	
		
			

				𝑓
			

		
	
 and 
	
		
			

				𝑔
			

		
	
.
Applying Theorem 12, it is easy to get the following theorem.
Theorem 13.  Let 
	
		
			
				(
				𝑋
				,
				⊑
				,
				𝑑
				)
			

		
	
 be a partially ordered complete metric space, let 
	
		
			
				𝐴
				,
				𝐵
			

		
	
 be nonempty closed subsets of 
	
		
			

				𝑋
			

		
	
 with 
	
		
			
				𝑋
				=
				𝐴
				∪
				𝐵
			

		
	
, and let 
	
		
			
				𝑓
				,
				𝑔
				∶
				𝑋
				→
				𝑋
			

		
	
 be two mappings such that the pair 
	
		
			
				(
				𝑓
				,
				𝑔
				)
			

		
	
 is a generalized cyclic Meir-Keeler-type 
	
		
			
				(
				𝜓
				,
				𝐴
				,
				𝐵
				)
			

		
	
-contraction and 
	
		
			
				(
				𝐴
				,
				𝐵
				)
			

		
	
-weakly increasing. Suppose that the following condition holds:  if 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 is a nondecreasing sequence in 
	
		
			

				𝑋
			

		
	
 and 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝑥
			

			

				𝑛
			

			
				=
				𝜈
			

		
	
, then 
	
		
			

				𝑥
			

			

				𝑛
			

			
				⊑
				𝜈
			

		
	
.  
					Then 
	
		
			

				𝑓
			

		
	
 and 
	
		
			

				𝑔
			

		
	
 have a common fixed point in 
	
		
			

				𝑋
			

		
	
.
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