Research Article
The Natural Filtration of Finite Dimensional Modular Lie Superalgebras of Special Type

Keli Zheng and Yongzheng Zhang

School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China

Correspondence should be addressed to Yongzheng Zhang; zhyz@nenu.edu.cn

Received 21 May 2013; Accepted 8 July 2013

1. Introduction

Although many structural features of nonmodular Lie superalgebras (see [1–3]) are well understood, there seem to be very few general results on modular Lie superalgebras. The treatment of modular Lie superalgebras necessitates different techniques which are set forth in [4, 5]. In [6], four series of modular graded Lie superalgebras of Cartan type were constructed, which are analogous to the finite dimensional modular Lie algebras of Cartan type [7] or the four series of infinite dimensional Lie superalgebras of Cartan type defined by even differential forms over a field of characteristic zero [8]. Recent works on the modular Lie superalgebras of Cartan type can also be found in [9–13] and references therein.

It is well known that filtration techniques are of great importance in the structure and the classification theories of Lie (super)algebras (see [1–3, 14, 15]). For some classes of modular Lie (super)algebras, the filtrations have been well investigated, for example, the natural filtrations of finite dimensional modular Lie algebras of Cartan type [16, 17] and of finite dimensional simple modular Lie superalgebras W, S, and H of Cartan type [18, 19].

The original motivation for this paper comes from the researches of structures for the finite dimensional modular Lie superalgebras W(n, m) and H(n, m) which were first introduced in [20, 21], respectively. The starting point of our studies is to construct a class of finite dimensional modular Lie superalgebras of special type, which is denoted by S(n, m).

A brief summary of the relevant concepts and notations in the finite dimensional modular Lie superalgebras S(n, m) is presented in Section 2. In Section 3, by using the ad-nilpotent elements of S(n, m), we show that the natural filtration of S(n, m) is invariant under its automorphisms.

2. Preliminaries

Throughout this paper, F denotes an algebraic closed field of characteristic \(p > 2 \), and \(n \) is an integer greater than 3. In addition to the standard notation \(\mathbb{Z} \), we write \(\mathbb{N} \) and \(\mathbb{N}_0 \) to denote the sets of positive integers and nonnegative integers, respectively.

Let \(\Lambda(n) \) be the Grassmann algebra over \(F \) in \(n \) variables \(x_1, x_2, \ldots, x_n \). Set \(\mathbb{B}_k = \{ (i_1, i_2, \ldots, i_k) | 1 \leq i_1 < i_2 < \cdots < i_k \leq n \} \) and \(\mathbb{B}(n) = \bigcup_{k=0}^n \mathbb{B}_k \), where \(\mathbb{B}_0 = \emptyset \). For \(u = (i_1, i_2, \ldots, i_k) \in \mathbb{B}_k \), set \([u] = k \), \([u] = \{i_1, i_2, \ldots, i_k\} \) and \(x^u = x_{i_1} x_{i_2} \cdots x_{i_k} \). Then \(x^u \mid u \in \mathbb{B}(n) \) is an \(F \)-basis of \(\Lambda(n) \).

Let \(\Pi \) denote the prime field of \(F \); that is, \(\Pi = \{0, 1, \ldots, p-1\} \). Suppose that the set \(\{z_1, z_2, \ldots, z_m\} \) is an \(\Pi \)-linearly independent finite subset of \(F \). Let \(G = \{ \sum_{i=1}^m \lambda_i z_i | \lambda_i \in \Pi \} \). Then \(G \) is an additive subgroup of \(F \). Let \(\mathbb{F}[y_1, y_2, \ldots, y_m] \) be the truncated polynomial algebra satisfying \(y_i^p = 1 \) for all \(i = 1, 2, \ldots, m \). For every element \(\lambda = \sum_{i=1}^m \lambda_i z_i \in G \), define \(y^\lambda = y_1^{\lambda_1} y_2^{\lambda_2} \cdots y_m^{\lambda_m} \). Then \(y^\lambda y^\eta = y^\lambda y^\eta \) for all \(\lambda, \eta \in G \). Let \(\mathbb{T}(m) \) denote \(\mathbb{F}[y_1, y_2, \ldots, y_m] \). Then \(\mathbb{T}(m) = \{ \sum_{\lambda \in G} d_\lambda y^\lambda \mid d_\lambda \in \mathbb{F} \} \).
Abstract and Applied Analysis

Let \(\mathcal{U} = \Lambda(n) \otimes T(m) \). Then \(\mathcal{U} \) is an associative superalgebra with \(Z_2 \)-gradation induced by the trivial \(Z_2 \)-gradation of \(T(m) \) and the natural \(Z_2 \)-gradation of \(\Lambda(n) \); that is, \(\mathcal{U} = \mathcal{U}_0 \oplus \mathcal{U}_1 \), where \(\mathcal{U}_0 = \Lambda(n_0) \otimes T(m_0) \) and \(\mathcal{U}_1 = \Lambda(n_1) \otimes T(m_1) \).

For \(f \in \Lambda(n) \) and \(\alpha \in T(m) \), we abbreviate \(f \otimes \alpha \) as \(f \alpha \).

Then the elements \(x^\alpha y^\beta \) with \(u \in \mathfrak{B}(n) \) and \(\lambda \in G \) form an \(F \)-basis of \(\mathcal{U} \). It is easy to see that \(\mathcal{U} = \mathcal{U}_0 \oplus \mathcal{U}_1 \), where \(\mathcal{U}_0 = \Lambda(n_0) \otimes T(m_0) \) and \(\mathcal{U}_1 = \Lambda(n_1) \otimes T(m_1) \).

In this paper, \(A = \mathcal{U}_0 \oplus \mathcal{U}_1 \) is a superalgebra (or \(Z_2 \)-graded linear space), let \(\text{Der} A \) be the derivation superalgebra of \(A \) (see [1] or [2] for the definition) and \(h_g(A) = A_0 \cup A_1 \); that is, \(h_g(A) \) is the set of all \(Z_2 \)-homogeneous elements of \(A \). If deg \(x \) occurs in some expression, we regard \(x \) as a \(Z_2 \)-homogeneous element and deg \(x \) as the \(Z_2 \)-degree of \(x \).

We define \(f(\mathcal{U}) = f(U) + h_g(\mathcal{U}) \) for all \(f \in \mathcal{U} \) such that \(f(U) \) is a \(Z_2 \)-homogeneous element and \(h_g(\mathcal{U}) \) is \(Z_2 \)-graded superalgebra. If \(A_0 \) and \(A_1 \) be the linearmapsuchthatfor all \(f \in U \) and \(g \in h_g(\mathcal{U}) \), we set \(f(\mathcal{U}) = f(U) + h_g(\mathcal{U}) \). Since the multiplication of \(\mathcal{U} \) is \(Z_2 \)-graded superalgebra, the following equalities are easy to verify:

\[
D_i (f) = -2D_i (f) D_0, \\
D_{ij} (f) = D_{ij} (f), \\
[D_{ik}, D_{lj}] = -D_{ij} (D_k (f)), \\
[D_{ij}, g] = \sum_{s=1}^{2} (-1)^{\text{deg}D_s} D_s (f_i g_j).
\] (5)

By the definition of linear map \(D_{r_1 r_2} \), the following equalities are easy to verify:

\[
D_i (f) = -2D_i (f) D_0, \\
D_{ij} (f) = D_{ij} (f), \\
[D_{ik}, D_{lj}] = -D_{ij} (D_k (f)), \\
[D_{ij}, g] = \sum_{s=1}^{2} (-1)^{\text{deg}D_s} D_s (f_i g_j).
\] (4)

where \(f, g \in h_g(\mathcal{U}) \); \(i, j \in \mathbb{Y} \); and \(f_i, g_j \) and as in (3).

The equality (5) shows that \(S(n, m) \) is a subalgebra of \(W(n, m) \). Hereafter, \(S(n, m) \) and \(S(n, m) \) will be simply denoted by \(S \) and \(S \), respectively.

Put \(A = \{D_{ij}(x^\alpha y^\beta) \mid i, j \in \mathbb{Y}, \lambda \in G \} \) and \(B = \{D_{ij}(x^\alpha y^\beta) \mid i, j, k \in \mathbb{Y}, \eta \in G \} \).

Proposition 1. The Lie superalgebra \(S \) is generated by \(A \cup B \).

Proof. Suppose that \(A \cup B \) generate the subalgebra \(Q \) of \(S \). Since \(A \) and \(B \) are subsets of \(S \), it follows that \(Q \subseteq S \).

Next we will consider the reverse inclusion.

It is easy to see that \(D_{ij}(x^\alpha y^\beta) = -y^\beta D_i(x^\alpha y^\beta) \) for all distinct elements \(i, k \) of \(\mathbb{Y} \) and \(\lambda \in G \). Therefore, \(zd(D_{ij}(x^\alpha y^\beta)) = -1 \) and \(S_{n-3} \subseteq Q \).

A direct calculation shows that

\[
\begin{align*}
[D_{ij}(x^\alpha y^\beta), D_{kl}(x_\gamma y_\eta)] &= [-D_j(x^\alpha y^\beta) D_k - D_k(x^\alpha y^\beta) D_j, -y^\eta D_\lambda] \\
&= (-1)^{\text{deg} D_i} (D_j(x^\alpha y^\beta) D_k + D_k(x^\alpha y^\beta) D_j) \\
&= (-1)^{\text{deg} D_i} D_i (x^\alpha y^\beta)] \in S,
\end{align*}
\]

for all distinct elements \(i, j, k, l \) of \(\mathbb{Y} \) and \(\lambda, \eta \in G \). It follows from \(zd(D_{ij}(x^\alpha y^\beta)) = n - 3 \) that \(S_{n-3} \subseteq Q \).

For distinct elements \(i, j, k, l, \) \(\alpha \) of \(\mathbb{Y} \) and \(\lambda, \eta, \zeta \in G \), we have

\[
[D_{ij}(x^\alpha y^\beta), D_{kl}(x_\gamma y_\eta)] = (-1)^{\text{deg} D_i} D_i (x^\alpha y^\beta)] \in S,
\]

and \(zd(D_{ij}(x^\alpha y^\beta)) = n - 4 \). Thus \(S_{n-4} \subseteq Q \).

By the same methods above, we may obtain \(D_{ij}(x^\alpha y^\beta) \in S \) for \(u \in \mathfrak{B}(n) \); that is, \(S_0 \subseteq Q \) for \(i < j \leq n - 5 \).

According to \(D_{ij}(x_\gamma y_\eta) D_l \in S_{l-1} \) and \(x^\gamma y^\eta D_l \in S_0 \), we have

\[
x^\gamma y^\eta D_l = [x_\gamma x_\gamma y^\eta D_l, y^\gamma D_l] \in Q.
\] (8)

Hence \(S_0 \subseteq Q \).

In conclusion, \(S \subseteq Q \). Therefore, the desired result follows immediately.
3. The Natural Filtration of \(S(n,m)\)

Adopting the notion of [22], the element \(x\) of Lie superalgebra \(S\) is called ad-nilpotent if \(adx\) is a nilpotent linear transformation. The set of all ad-nilpotent elements of \(S\) is denoted by \(\text{nil}(S)\). Let \(S_{(j)} = a_{\geq j}S_{j}\). Then

\[
S = S_{(-1)} \supseteq S_{(0)} \supseteq S_{(1)} \supseteq \cdots \supseteq S_{(n-2)} \supseteq S_{(n-1)} = 0
\]

(9)

is a descending filtration of \(S\), which is called the natural filtration of \(S\). We also call \(S_{(k)} | k \in \mathbb{Z}\) a filtration of \(S\) for short, where \(S_{(k)} = S\) if \(k \leq -1\) and \(S_{(k)} = 0\) if \(k > n - 2\). Since \(S\) is \(\mathbb{Z}\)-graded and finite dimensional, we may easily obtain \(S_{-1} \subseteq \text{nil}(S)\) and \(S_{(1)} \subseteq \text{nil}(S)\).

Let \(M_{n}(\mathbb{F})\) denote the set of all \(n \times n\) matrices over \(\mathbb{F}\). Notice that \(\dim \Gamma(m) = p^{m}\). Without loss of generality, we may suppose that \(\{y_{1}, \ldots, y_{p^{m}}\}\) is a standard \(\mathbb{F}\)-basis of \(\Gamma(m)\).

If \(z = \sum_{i=1}^{n} \sum_{t=1}^{m} a_{ij}x_{i}y_{t}D_{j} \in S_{0}\), where \(a_{ij} \in \mathbb{F}\); then let

\[
\rho(z) = \left(\begin{array}{ccc}
A_{1} & \cdots & A_{p^{m}} \\
\vdots & \ddots & \vdots \\
A_{p^{m}} & \cdots & A_{n}
\end{array}\right) \in M_{n}(\mathbb{F}).
\]

(10)

\[\text{Lemma 2. Suppose that } z = \sum_{i=1}^{n} \sum_{t=1}^{m} a_{ij}x_{i}y_{t}D_{j} \in S_{0}. \text{ If } z \text{ is ad-nilpotent, then } \rho(z) \text{ is a nilpotent matrix.}\]

\[\text{Proof. Let } \Gamma \text{ be the representation of } S_{0} \text{ with values in } S_{-1}. \text{ Then } \Gamma(z) = adz \text{ and the matrix of } \Gamma(z) \text{ over the basis } \{y_{1}D_{1}, \ldots, y_{p^{m}}D_{1}, \ldots, y_{p^{m}}D_{n}\} \text{ of } S_{-1} \text{ is } A = \left(-A_{1} \cdots -A_{p^{m}}\right) \in M_{n}(\mathbb{F}). \text{ Since } z \text{ is ad-nilpotent, the representation } \Gamma(z) \text{ is a nilpotent linear transformation. It implies that } A \text{ is nilpotent. Therefore, } \rho(z) = -A \text{ is a nilpotent matrix.}\]

\[\text{Lemma 3. Let } z = \sum_{i=k}^{n-1} z_{i}, \text{ where } z_{i} \in S_{i} \text{ and } k \leq n - 1. \text{ If } z \in \text{nil}(S) \text{ and } k \geq 0, \text{ then } z_{k+1} \in \text{nil}(S).\]

\[\text{Proof. Suppose that } z = z_{k} + z', \text{ where } z_{k} \in S_{k} \text{ and } z' \in \oplus_{i=k+1}^{n-1} S_{i} \subseteq S_{(k+1)}. \text{ Since } z \in \text{nil}(S), \text{ we may assume that } (adz)' = 0. \text{ Let } x \text{ be a } \mathbb{Z}\text{-homogeneous element of } S \text{ with } \mathbb{Z}\text{-degree } i. \text{ On the other hand,}\]

\[
(adz)'(x) = \left(ad\left(z_{k} + z'\right)\right)'(x) = (adz_{k})'(x) + h,
\]

(11)

which implies \((adz_{k})'(x) + h = 0\). It is easy to see that \((adz_{k})'(x) \in S_{(k+i)}\) and \(h \in S_{(k+i+1)} = \oplus_{j=k+i+1} S_{j}\). Thus \((adz_{k})'(x) = 0\). Since \(x\) is an arbitrary \(\mathbb{Z}\)-homogeneous element of \(S\), we have \((adz)'(S) = 0\). Then \((adz)' = 0\); that is, \(z_{k} \in \text{nil}(S)\).
we have \([z, D_{kj}(x_i x_j)] \notin \text{nil}(S)\). Then \(z \notin \Delta\). This contradicts \(z \in \Delta\). This proves our assertion. \(\square\)

Lemma 5. Let \(z = \sum_{i=1}^{n-1} z_i\), where \(z_i \in S_i\). If \(z \notin \Delta\), then \(z_0 = 0\).

Proof. Assume that \(z_0 \neq 0\). Let \(z_0 = \sum_{i=1}^{k} \sum_{j=1}^{n} a_{ijq} x_j y_z D_j\), \(a_{ijq} \in F\), and
\[
\begin{align*}
l &= \min \{i | a_{ijq} \neq 0, i, j \in Y\}, \\
t &= \min \{j | a_{ijq} \neq 0, i, j \in Y\}.
\end{align*}
\]
(15) (i) Suppose that \(l \leq t\). Let
\[
k = \max \{j | a_{ijq} \neq 0, j \in Y\}.
\]
(16) Then \(a_{kq} \neq 0\). It is easy to see that \(t \leq k\). Since \(l \leq t\), we have \(l \leq k\). Therefore,
\[
z_0 = \sum_{j=q-1}^{k} \sum_{i=1}^{n} a_{ijq} x_j y_z D_j + \sum_{i=1}^{l} \sum_{j=q+1}^{n} a_{ijq} x_j y_z D_j.
\]
(17) Assume that \(l = k\). It follows from \(t \leq k\) that \(t \leq l\). Then we have \(t = l\) which implies that
\[
z_0 = \sum_{j=q+1}^{n} a_{ijq} x_j y_z D_j + \sum_{i=1}^{n} \sum_{j=q+1}^{n} a_{ijq} x_j y_z D_j.
\]
(18) Therefore,
\[
\rho(z_0) = a_0 E_g + \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} E_{ij}
\]
\[
+ a_{(l+n)(l+n)} E_{(l+n)(l+n)} + \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} E_{ij}
\]
\[
+ \cdots + a_{(l+n(p-1))(l+n(p-1))n} E_{(l+n(p-1))(l+n(p-1))n}
\]
\[
+ \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ijq} E_{ij}
\]
(19) where \(A_k = a_{ik} E_{(l+n)(l+n)(l+n)}\) is an \((l+n) \times (l+n)\) matrix and \(q \in \{1, \ldots, p\}\). Since \(a_0 \neq 0\), we have \(A_k\) not being a nilpotent matrix. Then \(p(z_0)\) is not a nilpotent matrix and \(z_0 \notin \text{nil}(S)\). Lemma 3 shows that \(z \notin \text{nil}(S)\). It is a contradiction of \(z \notin \Delta\); that is, \(l > k\).

Suppose that \(h \in Y\) and \(h \neq l, k\). Let \(d = [z_0, x_h D_j]\). By equality (2), we obtain
\[
d = \sum_{q=1}^{p} \left(a_{pq} x_j y_z D_j + \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ijq} x_j y_z D_j - \sum_{j=1}^{n} a_{ijq} x_j y_z D_j \right).
\]
(20) Since \(l \neq k\), \(\rho(d)\) also has the matrix form as \(p(z_0)\), it follows from \(a_{kl} \neq 0\) that \(A_k\) is not a nilpotent matrix. Then \(\rho(d)\) is not nilpotent. So \(z \notin \text{nil}(S)\) and \([z, x_h D_j] \notin \text{nil}(S)\). It is a contradiction of \(z \notin \Delta\).

(ii) Suppose that \(t < l\). Let \(k = \max \{i | a_{ik} \neq 0\}\) and \(d' = [z, x_h D_k]\). Imitating (i), we may prove that \(\rho(d')\) is also not nilpotent. Then the desired result follows. \(\square\)

Lemma 6. (i) If \(z \in S_\infty \cap \text{nil}(S)\) and \(h \in S_{(1)}\), then \(z + h \in \text{nil}(S)\).

(ii) Suppose that \(i, j\) are distinct elements of \(Y\); then \(x_i y_j D_i \in \text{nil}(S)\) for all \(\lambda \in G\).

(iii) Suppose that \(i, j, k\) are distinct elements of \(Y\); then \(ax_i y_j D_k + bx_i y^n D_k \in \text{nil}(S)\), where \(a, b \in F\) and \(\lambda, \eta\) are arbitrary elements of \(G\).

Proof. (i) A direct verification shows that \(\{adz\} \cup \{adS_{(1)}\}\) is a weakly closed subset of nilpotent elements of \(pl(S)\), where \(pl(S)\) is the general linear Lie superalgebra of \(S\). It was shown in [23, Theorem 1 of Chapter II] that each element of \(span\{\{adz\} \cup \{adS_{(1)}\}\}\) is a nilpotent linear transformation of \(S\). Then \(adz + adh\) is nilpotent. So \(z + h\) is \(ad\)-nilpotent.

(ii) To prove \((adx_i y_j D_k)^p = 0\), we may assume without loss of generality that \(i < j\). Set \(\eta\) to be an arbitrary element of \(G\). If \(k \neq i\), then
\[
(adx_i y_j D_k)^p = (x_i y_j D_k)^p = x_i y_j D_k
\]
(21)
\[
= 0.
\]
\[
(adx_i y^k D_k)^3 = (x_i y^k D_k)
\]
(22)
\[
= [x_i y^k D_j, [x_i y^k D_j, [x_i y^k D_j, x_i y^k D_j]]]
\]
\[
= [x_i y^k D_j, [x_i y^k D_j, [x_i y^k D_j, x_i y^k D_j]]] = 0.
\]
\[
(adx_i y^k D_j)^3 = (x_i y^k D_j)^3
\]
(23)
\[
= [x_i y^k D_j, [x_i y^k D_j, [x_i y^k D_j, x_i y^k D_j]]]
\]
\[
= [x_i y^k D_j, [x_i y^k D_j, [x_i y^k D_j, x_i y^k D_j]]] = 0.
\]

For \(p > 2\) we obtain \((adx_i y^k D_j)^p(x_i y^k D_k) = 0\). Therefore \((adx_i y^k D_j)^p(S) = 0\). This yields \((adx_i y^k D_j)^p = 0\). Thus \(x_i y^k D_j \in \text{nil}(S)\).

(iii) According to (ii) and \([x_i y^k D_k, x_i y^k D_k] = 0\), \(\{adx_i y^k D_k, adx_i y^k D_k\}\) is a weakly closed subset of nilpotent elements of \(pl(S)\). So \(ax_i y^k D_k + bx_i y^n D_k \in \text{nil}(S)\), where \(a, b \in F\). \(\square\)
Lemma 7. If i, j, k are distinct elements of Y, then $x_i x_j y^k D_k \in \Delta$ for all $\lambda \in G$.

Proof. Suppose that $l \in Y \setminus \{i, j, k\}$. Then $x_i x_j y^k D_k \in S_{(1)} \subseteq \text{nil}(S)$. Let $z = \sum_{i=1}^{n-2} z_i$, where $z_i \in S_i$. Assume that $[x_i x_j y^k D_k, z] = f_0 + f_1$, where $f_0 = [x_i x_j y^k D_k, z_{-1}] \in S_0$ and $f_1 \in S_{(1)}$. Let $z_{-1} = \sum_{i=1}^{n-1} \sum_{\eta \in G} a_{\eta} y^\eta D_i$. Then

$$f_0 = \left(x_i x_j y^k D_k \right) \sum_{i=1}^{n} \sum_{\eta \in G} a_{\eta} y^\eta D_i = \sum_{\eta \in G} \left(a_{\eta} x_i x_j y^{\eta+k} D_k - a_{\eta} x_j x_i y^{\eta+k} D_k \right).$$

By (iii) of Lemma 6, we have $f_0 \in S_0 \cap \text{nil}(S)$. By (i) of Lemma 6, it follows that $f_0 + f_1 \in \text{nil}(S)$. We finally obtain $x_i x_j y^k D_k \in \Delta$ for all $\lambda \in G$.

Let $Q = \{ z \in \text{nil}(S) | \text{ad}(\Delta) \subseteq \Delta \}$.

Lemma 8. $Q = S_{(1)}$.

Proof. By the definition of Δ, we have $S_{(2)} \subseteq \Delta$. Lemmas 4 and 5 show that $\Delta \subseteq S_{(1)}$. Then $[S_{(1)}, \Delta] \subseteq [S_{(1)}, S_{(1)}] \subseteq S_{(2)} \subseteq \Delta$. Thus $S_{(1)} \subseteq Q$.

Next we will prove $Q \subseteq S_{(1)}$. Let $z \in Q$ and $z = \sum_{i=1}^{n-2} z_i$, where $z_i \in S_i$. Assume that $z_{-1} = \sum_{i=1}^{n-1} \sum_{\eta \in G} a_{\eta} y^\eta D_i \neq 0, a_{\eta} \in F$. Without loss of generality, we may suppose that $a_0 \neq 0$. Let $d = x_i x_j y^k D_k$, where i, j, k are distinct elements of Y and η is an arbitrary element of G. By Lemma 7, we have $d \in \Delta$. Let $[z, d] = h_0 + h_1$, where $h_0 = \sum_{i=1}^{n-1} d_i \in S_0$ and $h_1 \in S_{(1)}$. Since $a_0 \neq 0$, we have $h_0 = \sum_{\eta \in G} a_{\eta} x_i x_j y^{\eta+k} D_k - a_{\eta} x_j x_i y^{\eta+k} D_k \neq 0$. Lemma 5 implies that $h_0 + h_1 \notin \Delta$. It is a contradiction of $z \in Q$. Hence $z_{-1} = 0$.

Assume that $0 \neq z_0 = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} a_{ij} x_i y^k D_j - a_{ij} D_j \in F$, and suppose that l and t are as the definitions in (15). We may suppose that $l < t$ (the proof is similar to the case $t < l$) and let k be as the definition in (16). In a similar way to the first part of the proof in Lemma 5, we have $l < k$. Suppose that $h \in Y \setminus \{l, k, t\}$ and $d_1 = x_l x_k D_l$. Lemma 7 shows that $d_1 \in \Delta$. Let $\{z, d_1\} = g_1 + g_2$, where $g_1 = [z_0, d_1] \in S_1$ and $g_2 \in S_{(2)}$.

Using equality (2), we have

$$g_1 = \sum_{q=1}^{n} \left(a_{kq} x_l y^q D_l \right) - \sum_{i=1}^{n} a_{ij} x_i y^k D_k - \sum_{j=1}^{k} a_{ij} x_l y^k D_j - a_{ij} D_j = \sum_{q=1}^{n} \left(a_{kq} x_l y^q D_l \right).$$

If $h < t$, then $a_{ihq} = 0$ in the above equality, where $i \in Y \setminus \{1, \ldots, l - 1\}$. Thus

$$[D_h, g_1] = -\sum_{q=1}^{n} \left(a_{kq} x_l y^q D_l + \sum_{i=1}^{n} a_{ihq} x_i y^q D_l \right).$$

By equality (12), the matrix $\rho([D_h, g_1])$ has the matrix form as in Lemma 5. Since $a_{bhq} \neq 0$, A_1 is not a nilpotent matrix. It implies that $\rho([D_h, g_1])$ is not nilpotent. Hence $[D_h, g_1] \notin \text{nil}(S)$. Lemma 3 shows that $[D_h, g_1 + g_2] \notin \text{nil}(S)$; that is, $[D_h, g_1 + g_2] \notin \Delta$. It contradicts $z \in Q$. Thus $z_0 = 0$. Therefore, $z \in S_{(1)}$, and $Q \subseteq S_{(1)}$.

According to the fact that Δ and Q are invariant subspaces under the automorphisms of S and Lemma 8, $S_{(1)}$ is also invariant under the automorphisms of S. Since

$$S_{(0)} = \{ x \in S | [x, S_{(1)}] \subseteq S_{(1)} \},$$

$$S_{(0)} = \{ x \in S_{(1)} | [x, S] \subseteq S_{(1)} \},$$

we may easily obtain the following theorem.

Theorem 9. The natural filtration of S is invariant under the automorphisms of S.

Let $S_i = S_{(i)}/S_{(i+1)}$ for $-1 \leq i \leq n - 2$. Then S_i is a Z-graded space. Suppose that $\mathcal{G} := \oplus_{i=-2}^{n} S_i$; then \mathcal{G} is also a Z-graded space. Let $x + S_{(i+1)} \in S_i$ and $y + S_{(i+1)} \in S_j$. Define

$$[x + S_{(i+1)}, y + S_{(j+1)}] := [x, y] + S_{(i+j+1)}.$$
By virtue of Lemma 8, we have $Q = S_{(1)}$ and $Q' = S'_{(1)}$. Thus $\sigma(S_{(i)}) = S'_{(i)}$. By equalities (26), the desired result $\sigma(S_{(i)}) = S'_{(i)}$ for all $i \geq -1$ is obtained.

Lemma 12. Suppose that $S \equiv S'$ and σ is an isomorphism from S to S'; then σ induces an isomorphism $\tilde{\sigma}$ from \mathcal{S} to \mathcal{S}' such that $\tilde{\sigma}(S_{(i)}) = S'_{(i)}$ for all $i \geq -1$.

Proof. Define a linear map $\tilde{\sigma} : \mathcal{S} \to \mathcal{S}'$ such that
\[
\tilde{\sigma}(x + S_{(i+1)}) = \sigma(x) + S'_{(i+1)},
\]
where $x + S_{(i+1)} \in \mathcal{S}$. Using Proposition 11, the definition of $\tilde{\sigma}$ is reasonable and
\[
\tilde{\sigma}\left([x + S_{(i+1)}, y + S_{(j+1)}]\right) = \sigma([x, y]) + S'_{(i+j+1)}
\]
\[
= \left[\sigma(x) + S'_{(i+1)}, \sigma(y) + S'_{(j+1)}\right] = \left[\tilde{\sigma}(x + S'_{(i+1)}), \tilde{\sigma}(y + S'_{(j+1)})\right].
\]
Thus $\tilde{\sigma}$ is a homomorphism from \mathcal{S} to \mathcal{S}'. Clearly, $\tilde{\sigma}(\mathcal{S}_{(i)}) = \mathcal{S}'_{(i)}$ for all $i \geq -1$. It follows that $\tilde{\sigma}$ is an epimorphism.

Suppose that $y \in \ker \tilde{\sigma}$; then $y \in \mathcal{S}$. So we may suppose that $y = \sum_{i=1}^{n-1} y_i$ and $y_i \in \mathcal{S}$. Since $\mathcal{S}_{(i)} = S_{(i)}/S_{(i+1)}$, let $y_i = z_i + S_{(i+1)}$, where $z_i \in S_{(i)}$. Hence $\tilde{\sigma}(y_i) = \sigma(z_i) + S'_{(i+1)}$. It follows from $\tilde{\sigma}(y) = 0$ that $\sum_{i=1}^{n-1} \tilde{\sigma}(y_i) = 0$. Thus $\tilde{\sigma}(y_i) = 0$; that is, $\sigma(z_i) + S'_{(i+1)} = 0$. It follows that $\sigma(z_i) \in S'_{(i+1)}$. By Proposition 11, we have $z_i \in \sigma^{-1}(S'_{(i+1)}) = S_{(i+1)}$. Then $y_i = z_i + S_{(i+1)} = 0$ for $-1 \leq i \leq n - 2$. Therefore, $y = 0$ and $\ker \tilde{\sigma} = 0$. Consequently, $\tilde{\sigma}$ is an isomorphism induced by σ such that $\tilde{\sigma}(\mathcal{S}) = \mathcal{S}'$ for all $i \geq -1$.

Theorem 13. $S \equiv S'$ if and only if $m = m'$ and $n = n'$.

Proof. Because the sufficiency is obvious, it suffices to prove the necessity. Suppose that $\phi : S \to \mathcal{S}$ is the isomorphism given in the proof of Lemma 10. Similarly, there also exists the $\phi' : S' \to \mathcal{S}'$. According to the equality (28) and Lemma 12, we have
\[
\phi(S_{(i)}) = \mathcal{S}_{(i)}, \quad \phi'(S'_{(i)}) = \mathcal{S}'_{(i)}, \quad \tilde{\sigma}(\mathcal{S}_{(i)}) = \mathcal{S}'_{(i)}
\]
for $-1 \leq i \leq n - 2$. Let $\psi = (\phi')^{-1} \tilde{\sigma} \phi$. Then
\[
\psi(S_{(i)}) = (\phi')^{-1} \tilde{\sigma} \phi(S_{(i)}) = (\phi')^{-1} \sigma(S_{(i)}) = (\phi')^{-1} \mathcal{S}_{(i)} = S'_{(i)}.
\]
In particular, $\psi(S_{(-1)}) = S'_{-1}$. It follows from $\dim S_{-1} = \dim S'_{-1}$ that $np^m = n'p^{m'}$. By virtue of the definition of $S_{(i)}$, we have
\[
S_0 = \text{span}_{\mathbb{C}} \left\{ D_{x_i}(x_j x_k) : x_i \in S \right\},
\]
where $D_{x_i}(x_j x_k) = x_i x_j x_k$. Similarly, $S'_{0} = (n^2 - 1)p^{m'}$. According to $\dim S_0 = \dim S'_{0}$ and $np^{m} = n'p^{m'}$, we have $n = n'$. In conclusion, the proof is completed.

Acknowledgments

The authors thank Yang Jiang for the helpful comments and suggestions. They also give their special thanks to the referees for many helpful suggestions. This work was supported by the National Natural Science Foundation of China (Grant no. 11171055) and the Fundamental Research Funds for the Central Universities (no. 12SSXT139).

References

