Research Article

Nonlinear Response of Strong Nonlinear System Arisen in Polymer Cushion

Jun Wang,¹,² Li-xin Lu,¹,² Huan-xin Jiang,¹,² and Yong Zhu³

¹ Key Laboratory of Food Packaging Techniques and Safety of China National Packaging Corporation, Wuxi, Jiangsu 214122, China
² Department of Packaging Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
³ Packaging Engineering Research Institute, Jinan University, Zhuhai, Guandong 519070, China

Correspondence should be addressed to Jun Wang; wangj1982@jiangnan.edu.cn

Received 14 December 2012; Revised 30 December 2012; Accepted 30 December 2012

1. Introduction

Packaged products can be potentially damaged by dropping. In order to prevent any damage, a product and a cushioning packaging are always included in a packaging system [1, 2], and it is very important to investigate the condition for resonance. However, the oscillation in the packaging system is of inherent nonlinearity [3–5], and it remains a problem to obtain the resonance condition for nonlinear packaging system. Polymer foams, especially EPS (expanded polystyrene), are widely used for cushion or protective packaging, and the governing equations can be expressed as

\[m\ddot{x} + \beta_1 h (\beta_1 x) + \beta_4 \tan(\beta_4 x) + \beta_5 \tan^3(\beta_5 x) = 0, \]

\[x(0) = 0, \]

\[\dot{x}(0) = \sqrt{2gh}. \]

(1)

Here, the coefficient \(m \) denotes the mass of the packaged product, while \(\beta_i \) denote, respectively, the characteristic constants of polymer foams which could be obtained by compression test, and \(h \) is the dropping height.

By introducing these parameters: \(T_0 = \sqrt{m/\beta_1 \beta_3}, L = 1/\beta_1 \) and let \(X = x/L, T = t/T_0, \lambda_1 = \beta_2/\beta_1, \lambda_2 = \beta_4/\beta_3, \) and \(\lambda_3 = \beta_5/\beta_3, \) (1) can be written in the following forms

\[\ddot{X} + \omega^2 X + \lambda_2 \tan(\lambda_1 X) + \lambda_3 \tan^3(\lambda_1 X) = 0, \]

\[X(0) = 0, \]

\[\dot{X}(0) = V = \frac{T_0}{L} \sqrt{2gh} = \sqrt{\frac{2\beta_1 mgh}{\beta_3}}. \]

(2)

By using Taylor series for \(\sin X \) and \(\tan X \), (2) can be equivalently written as

\[\ddot{X} + \omega^2 X + \left(-\frac{1}{3} + \lambda_3 \lambda_1^3 + \frac{1}{3} \lambda_2 \lambda_1^3 \right) X^3 \]

\[+ \left(\frac{2}{15} + \frac{2}{15} \lambda_2 \lambda_1^5 + \lambda_3 \lambda_1^5 \right) X^5 + \frac{11}{15} \lambda_3 \lambda_1^7 X^7 = 0, \]

\[X(0) = 0, \]

\[\dot{X}(0) = V = \frac{T_0}{L} \sqrt{2gh} = \sqrt{\frac{2\beta_1 mgh}{\beta_3}}, \]

(3)
where

\[\omega_{01} = \sqrt{1 + \lambda_1 \lambda_2}. \]

(4)

2. Variational Iteration Method

The variational iteration method [6–13] has been widely applied in solving many different kinds of nonlinear equations [6–16], and is especially effective in solving nonlinear vibration problems with approximations [17–20]. Applying the variational iteration method [6–13], the following iteration formula can be constructed:

\[
X_1 = X_0 + \frac{1}{\omega_{01}} \int_0^t \sin \omega_{01} (s - t) \left\{ \ddot{X}_0 + \omega_{01}^2 X_0 + \left(\frac{2}{15} + \frac{2}{15} \lambda_1 \lambda_3 + \lambda_2 \lambda_3 \right) X_0^3 + \left(\frac{11}{15} \lambda_3 \lambda_4 X_0^7 \right) \right\} ds.
\]

(5)

Beginning with the initial solutions,

\[X_0 = A \sin (\Omega t). \]

(6)

We have

\[
X_1 = A \sin (\Omega t) - \frac{1}{\omega_{01}} \left(\Omega^2 - \omega_{01}^2 \right) \left(a A + \frac{3}{4} b A^3 + \frac{5}{256} c A^5 - \frac{637}{1024} d A^7 \right) \\
(\Omega \sin (\omega_{01} t) + \omega_{01} \sin (\Omega t)) \\
- \frac{1}{4 \omega_{01}} (9 \Omega^2 - \omega_{01}^2) \left(b A^3 + \frac{5}{64} c A^5 - \frac{189}{256} d A^7 \right) \\
(3 \Omega \sin (\omega_{01} t) + \omega_{01} \sin (3 \Omega t)) \\
+ \frac{1}{16 \omega_{01}} (25 \Omega^2 - 2 \omega_{01}^2) \left(c A^5 + \frac{7}{4} d A^7 \right) \\
(5 \Omega \sin (\omega_{01} t) + \omega_{01} \sin (5 \Omega t)) \\
- \frac{d A^7}{64 \omega_{01}} (49 \Omega^2 - 2 \omega_{01}^2) \\
\times (7 \Omega \sin (\omega_{01} t) + \omega_{01} \sin (7 \Omega t)),
\]

(7)

3. Resonance

The resonance can be expected when one of the following conditions is met:

\[\Omega = \omega_{01}, \]

\[\Omega = \frac{1}{3} \omega_{01}, \]

\[\Omega = \frac{1}{5} \omega_{01}, \]

\[\Omega = \frac{1}{7} \omega_{01}. \]

(9)

These conditions should be avoided during the cushioning packaging design procedure.

4. Conclusion

The conditions for resonance, which should be avoided in the cushioning packaging design procedure, can be easily obtained using the variational iteration method.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant no.: 51205167), the Research Fund of Young Scholars for the Doctoral Program of Higher Education of China (Grant no.: 20120093120014), and the Fundamental Research Funds for the Central Universities (Grant no.: JUSRP51302A).

References

