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Abstract. 
We prove the generalized Hyers-Ulam stability of the wave equation, 
	
		
			
				Δ
				𝑢
				=
				(
				1
				/
				𝑐
			

			

				2
			

			
				)
				𝑢
			

			
				𝑡
				𝑡
			

		
	
, in a class of twice continuously differentiable functions under some conditions.


1. Introduction
In 1940, Ulam [1] gave a wide ranging talk before the mathematics club of the University of Wisconsin in which he discussed a number of important unsolved problems. Among those was the question concerning the stability of group homomorphisms. Let 
	
		
			

				𝐺
			

			

				1
			

		
	
 be a group and let 
	
		
			

				𝐺
			

			

				2
			

		
	
 be a metric group with the metric 
	
		
			
				𝑑
				(
				⋅
				,
				⋅
				)
			

		
	
. Given 
	
		
			
				𝜀
				>
				0
			

		
	
, does there exist a 
	
		
			
				𝛿
				>
				0
			

		
	
 such that if a function 
	
		
			
				ℎ
				∶
				𝐺
			

			

				1
			

			
				→
				𝐺
			

			

				2
			

		
	
 satisfies the inequality 
	
		
			
				𝑑
				(
				ℎ
				(
				𝑥
				𝑦
				)
				,
				ℎ
				(
				𝑥
				)
				ℎ
				(
				𝑦
				)
				)
				<
				𝛿
			

		
	
 for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝐺
			

			

				1
			

		
	
, then there exists a homomorphism 
	
		
			
				𝐻
				∶
				𝐺
			

			

				1
			

			
				→
				𝐺
			

			

				2
			

		
	
 with 
	
		
			
				𝑑
				(
				ℎ
				(
				𝑥
				)
				,
				𝐻
				(
				𝑥
				)
				)
				<
				𝜀
			

		
	
 for all 
	
		
			
				𝑥
				∈
				𝐺
			

			

				1
			

		
	
?
The case of approximately additive functions was solved by Hyers [2] under the assumption that 
	
		
			

				𝐺
			

			

				1
			

		
	
 and 
	
		
			

				𝐺
			

			

				2
			

		
	
 are Banach spaces. Indeed, he proved that each solution of the inequality 
	
		
			
				‖
				𝑓
				(
				𝑥
				+
				𝑦
				)
				−
				𝑓
				(
				𝑥
				)
				−
				𝑓
				(
				𝑦
				)
				‖
				≤
				𝜀
			

		
	
, for all 
	
		
			

				𝑥
			

		
	
 and 
	
		
			

				𝑦
			

		
	
, can be approximated by an exact solution, say an additive function. In this case, the Cauchy additive functional equation, 
	
		
			
				𝑓
				(
				𝑥
				+
				𝑦
				)
				=
				𝑓
				(
				𝑥
				)
				+
				𝑓
				(
				𝑦
				)
			

		
	
, is said to have the Hyers-Ulam stability.
Rassias [3] attempted to weaken the condition for the bound of the norm of the Cauchy difference as follows: 
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				
				‖
				𝑓
				(
				𝑥
				+
				𝑦
				)
				−
				𝑓
				(
				𝑥
				)
				−
				𝑓
				(
				𝑦
				)
				‖
				≤
				𝜀
				‖
				𝑥
				‖
			

			

				𝑝
			

			
				+
				‖
				𝑦
				‖
			

			

				𝑝
			

			

				
			

		
	

					and proved the Hyers’ theorem. That is, Rassias proved the generalized Hyers-Ulam stability (or the Hyers-Ulam-Rassias stability) of the Cauchy additive functional equation. Since then, the stability of several functional equations has been extensively investigated [4–10].
The terminologies, the generalized Hyers-Ulam stability and the Hyers-Ulam stability, can also be applied to the case of other functional equations, of differential equations, and of various integral equations.
Given a real number 
	
		
			
				𝑐
				>
				0
			

		
	
, the partial differential equation 
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				1
				Δ
				𝑢
				(
				𝑥
				,
				𝑡
				)
				−
			

			
				
			
			

				𝑐
			

			

				2
			

			

				𝑢
			

			
				𝑡
				𝑡
			

			
				(
				𝑥
				,
				𝑡
				)
				=
				0
			

		
	

					is called the wave equation, where 
	
		
			

				𝑢
			

			
				𝑡
				𝑡
			

			
				(
				𝑥
				,
				𝑡
				)
			

		
	
 and 
	
		
			
				Δ
				𝑢
				(
				𝑥
				,
				𝑡
				)
			

		
	
 denote the second time derivative and the Laplacian of 
	
		
			
				𝑢
				(
				𝑥
				,
				𝑡
				)
			

		
	
, respectively.
For an integer 
	
		
			
				𝑛
				≥
				2
			

		
	
, assume that 
	
		
			

				𝑈
			

		
	
 and 
	
		
			

				𝑇
			

		
	
 are open (connected) subsets of 
	
		
			

				ℝ
			

			

				𝑛
			

		
	
 and 
	
		
			

				ℝ
			

		
	
, respectively. Let 
	
		
			
				𝜑
				∶
				𝑈
				×
				𝑇
				→
				[
				0
				,
				∞
				)
			

		
	
 be a function. If, for each twice continuously differentiable function 
	
		
			
				𝑢
				∶
				𝑈
				×
				𝑇
				→
				ℝ
			

		
	
 satisfying
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				|
				|
				|
				1
				Δ
				𝑢
				(
				𝑥
				,
				𝑡
				)
				−
			

			
				
			
			

				𝑐
			

			

				2
			

			

				𝑢
			

			
				𝑡
				𝑡
			

			
				|
				|
				|
				(
				𝑥
				,
				𝑡
				)
				≤
				𝜑
				(
				𝑥
				,
				𝑡
				)
				(
				𝑥
				∈
				𝑈
				,
				𝑡
				∈
				𝑇
				)
				,
			

		
	

					there exist a solution 
	
		
			

				𝑢
			

			

				0
			

			
				∶
				𝑈
				×
				𝑇
				→
				ℝ
			

		
	
 of the wave equation (2) and a function 
	
		
			
				Φ
				∶
				𝑈
				×
				𝑇
				→
				[
				0
				,
				∞
				)
			

		
	
 such that 
						
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				|
				|
				𝑢
				(
				𝑥
				,
				𝑡
				)
				−
				𝑢
			

			

				0
			

			
				|
				|
				(
				𝑥
				,
				𝑡
				)
				≤
				Φ
				(
				𝑥
				,
				𝑡
				)
				(
				𝑥
				∈
				𝑈
				,
				𝑡
				∈
				𝑇
				)
				,
			

		
	

					where 
	
		
			
				Φ
				(
				𝑥
				,
				𝑡
				)
			

		
	
 is independent of 
	
		
			
				𝑢
				(
				𝑥
				,
				𝑡
				)
			

		
	
 and 
	
		
			

				𝑢
			

			

				0
			

			
				(
				𝑥
				,
				𝑡
				)
			

		
	
, then we say that the wave equation (2) has the generalized Hyers-Ulam stability (or the Hyers-Ulam-Rassias stability).
In this paper, using ideas from [11, 12], we prove the generalized Hyers-Ulam stability of the wave equation (2).
2. Main Results
For a given integer 
	
		
			
				𝑛
				≥
				2
			

		
	
, 
	
		
			

				𝑥
			

			

				𝑖
			

		
	
 denotes the 
	
		
			

				𝑖
			

		
	
th coordinate of any point 
	
		
			

				𝑥
			

		
	
 in 
	
		
			

				ℝ
			

			

				𝑛
			

		
	
; that is 
	
		
			
				𝑥
				=
				(
				𝑥
			

			

				1
			

			
				,
				…
				,
				𝑥
			

			

				𝑖
			

			
				,
				…
				,
				𝑥
			

			

				𝑛
			

			

				)
			

		
	
, and 
	
		
			
				|
				𝑥
				|
			

		
	
 denotes the Euclidean distance between 
	
		
			

				𝑥
			

		
	
 and the origin; that is,
						
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			
				
				|
				𝑥
				|
				=
			

			
				
			
			

				𝑥
			

			
				2
				1
			

			
				+
				𝑥
			

			
				2
				2
			

			
				+
				⋯
				+
				𝑥
			

			
				2
				𝑛
			

			

				.
			

		
	

Given a real number 
	
		
			
				𝑐
				>
				0
			

		
	
, assume that real numbers 
	
		
			

				𝑎
			

		
	
 and 
	
		
			

				𝑡
			

			

				2
			

		
	
 satisfy 
	
		
			
				𝑎
				>
				𝑐
			

		
	
 and 
	
		
			
				0
				<
				𝑡
			

			

				2
			

			
				<
				∞
			

		
	
, and define 
						
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			
				
				𝑇
				∶
				=
				0
				,
				𝑡
			

			

				2
			

			
				
				
				,
				𝑈
				∶
				=
				𝑥
				∈
				ℝ
			

			

				𝑛
			

			
				∶
				|
				𝑥
				|
				>
				𝑎
				𝑡
			

			

				2
			

			
				
				,
				𝑅
				∶
				=
				(
				𝑎
				,
				∞
				)
				.
			

		
	

					We remark that 
	
		
			
				(
				𝑥
				,
				𝑡
				)
				∈
				𝑈
				×
				𝑇
			

		
	
 if and only if 
	
		
			
				|
				𝑥
				|
				/
				𝑡
				∈
				𝑅
			

		
	
. Using an idea from [11], we define a class 
	
		
			

				𝑊
			

		
	
 of all twice continuously differentiable functions 
	
		
			
				𝑢
				∶
				𝑈
				×
				𝑇
				→
				ℝ
			

		
	
 with the properties (i) 
	
		
			
				𝑢
				(
				𝑥
				,
				𝑡
				)
				=
				𝑡
				𝑣
				(
				|
				𝑥
				|
				/
				𝑡
				)
			

		
	
 for all 
	
		
			
				𝑥
				∈
				𝑈
			

		
	
 and 
	
		
			
				𝑡
				∈
				𝑇
			

		
	
 and for some 
	
		
			
				𝑣
				∶
				𝑅
				→
				ℝ
			

		
	
;(ii) 
	
		
			
				l
				i
				m
			

			
				|
				𝑥
				|
				→
				𝑎
				𝑡
			

			

				2
			

			
				l
				i
				m
			

			
				𝑡
				→
				𝑡
			

			

				2
			

			
				𝑢
				(
				𝑥
				,
				𝑡
				)
				=
				0
			

		
	
.
If we define 
						
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				
				𝑢
			

			

				1
			

			
				+
				𝑢
			

			

				2
			

			
				
				(
				𝑥
				,
				𝑡
				)
				=
				𝑢
			

			

				1
			

			
				(
				𝑥
				,
				𝑡
				)
				+
				𝑢
			

			

				2
			

			
				
				(
				𝑥
				,
				𝑡
				)
				,
				𝜆
				𝑢
			

			

				1
			

			
				
				(
				𝑥
				,
				𝑡
				)
				=
				𝜆
				𝑢
			

			

				1
			

			
				(
				𝑥
				,
				𝑡
				)
				,
			

		
	

					for all 
	
		
			

				𝑢
			

			

				1
			

			
				,
				𝑢
			

			

				2
			

			
				∈
				𝑊
			

		
	
 and 
	
		
			
				𝜆
				∈
				ℝ
			

		
	
, then 
	
		
			

				𝑊
			

		
	
 is a vector space over real numbers. That is, 
	
		
			

				𝑊
			

		
	
 is a large class such that it is a vector space.
Theorem 1.  Let a function 
	
		
			
				𝜑
				∶
				𝑈
				×
				𝑇
				→
				[
				0
				,
				∞
				)
			

		
	
 be given such that there exists a positive real number 
	
		
			

				𝑠
			

		
	
 with
							
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				𝑠
				∶
				=
				s
				u
				p
			

			
				𝑥
				∈
				𝑈
				,
				𝑡
				∈
				𝑇
			

			
				𝑡
				𝜑
				(
				𝑥
				,
				𝑡
				)
				.
			

		
	

						If a 
	
		
			
				𝑢
				∈
				𝑊
			

		
	
 satisfies the inequality 
							
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				|
				|
				|
				1
				Δ
				𝑢
				(
				𝑥
				,
				𝑡
				)
				−
			

			
				
			
			

				𝑐
			

			

				2
			

			

				𝑢
			

			
				𝑡
				𝑡
			

			
				|
				|
				|
				(
				𝑥
				,
				𝑡
				)
				≤
				𝜑
				(
				𝑥
				,
				𝑡
				)
				,
			

		
	

						for all 
	
		
			
				𝑥
				∈
				𝑈
			

		
	
 and 
	
		
			
				𝑡
				∈
				𝑇
			

		
	
, then there exists a solution 
	
		
			

				𝑢
			

			

				0
			

			
				∶
				𝑈
				×
				𝑇
				→
				ℝ
			

		
	
 of the wave equation (2) which belongs to 
	
		
			

				𝑊
			

		
	
 and satisfies 
							
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				|
				|
				𝑢
				(
				𝑥
				,
				𝑡
				)
				−
				𝑢
			

			

				0
			

			
				|
				|
				
				(
				𝑥
				,
				𝑡
				)
				≤
				𝑡
			

			
				𝑎
				|
				𝑥
				|
				/
				𝑡
			

			
				
				𝑎
			

			

				2
			

			
				
			
			

				𝑧
			

			

				2
			

			
				⋅
				𝑧
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				
			
			

				𝑎
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			

				
			

			
				∞
				𝑧
			

			

				𝑐
			

			

				2
			

			

				𝑠
			

			
				
			
			

				𝑞
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				𝑑
				𝑞
				𝑑
				𝑧
				,
			

		
	

						for all 
	
		
			
				𝑥
				∈
				𝑈
			

		
	
 and 
	
		
			
				𝑡
				∈
				𝑇
			

		
	
.
Proof. Let 
	
		
			
				𝑣
				∶
				ℝ
				→
				ℝ
			

		
	
 be a function which satisfies 
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				
				𝑢
				(
				𝑥
				,
				𝑡
				)
				=
				𝑡
				𝑣
				|
				𝑥
				|
			

			
				
			
			
				𝑡
				
				,
			

		
	

						for all 
	
		
			
				𝑥
				∈
				𝑈
			

		
	
 and 
	
		
			
				𝑡
				∈
				𝑇
			

		
	
. For any 
	
		
			
				𝑖
				∈
				{
				1
				,
				2
				,
				…
				,
				𝑛
				}
			

		
	
, we differentiate 
	
		
			
				𝑢
				(
				𝑥
				,
				𝑡
				)
			

		
	
 with respect to 
	
		
			

				𝑥
			

			

				𝑖
			

		
	
 to get 
							
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			

				𝑢
			

			

				𝑥
			

			

				𝑖
			

			
				𝑥
				(
				𝑥
				,
				𝑡
				)
				=
			

			

				𝑖
			

			
				
			
			
				𝑣
				|
				𝑥
				|
			

			

				
			

			
				
				|
				𝑥
				|
			

			
				
			
			
				𝑡
				
				.
			

		
	

						Similarly, we obtain the second partial derivative of 
	
		
			
				𝑢
				(
				𝑥
				,
				𝑡
				)
			

		
	
 with respect to 
	
		
			

				𝑥
			

			

				𝑖
			

		
	
 as follows: 
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			

				𝑢
			

			

				𝑥
			

			

				𝑖
			

			

				𝑥
			

			

				𝑖
			

			
				
				1
				(
				𝑥
				,
				𝑡
				)
				=
			

			
				
			
			
				−
				𝑥
				|
				𝑥
				|
			

			
				2
				𝑖
			

			
				
			
			
				|
				𝑥
				|
			

			

				3
			

			
				
				𝑣
			

			

				
			

			
				
				|
				𝑥
				|
			

			
				
			
			
				𝑡
				
				+
				1
			

			
				
			
			
				𝑡
				𝑥
			

			
				2
				𝑖
			

			
				
			
			
				|
				𝑥
				|
			

			

				2
			

			

				𝑣
			

			
				
				
			

			
				
				|
				𝑥
				|
			

			
				
			
			
				𝑡
				
				.
			

		
	

						Hence, we have 
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				Δ
				𝑢
				(
				𝑥
				,
				𝑡
				)
				=
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑢
			

			

				𝑥
			

			

				𝑖
			

			

				𝑥
			

			

				𝑖
			

			
				(
				𝑥
				,
				𝑡
				)
				=
				𝑛
				−
				1
			

			
				
			
			
				𝑡
				𝑡
			

			
				
			
			
				𝑣
				|
				𝑥
				|
			

			

				
			

			
				
				|
				𝑥
				|
			

			
				
			
			
				𝑡
				
				+
				1
			

			
				
			
			
				𝑡
				𝑣
			

			
				
				
			

			
				
				|
				𝑥
				|
			

			
				
			
			
				𝑡
				
				.
			

		
	

						By a similar way, we further get the second derivative of 
	
		
			
				𝑢
				(
				𝑥
				,
				𝑡
				)
			

		
	
 with respect to 
	
		
			

				𝑡
			

		
	
 as follows:
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			

				𝑢
			

			
				𝑡
				𝑡
			

			
				1
				(
				𝑥
				,
				𝑡
				)
				=
			

			
				
			
			
				𝑡
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑡
			

			

				2
			

			

				𝑣
			

			
				
				
			

			
				
				|
				𝑥
				|
			

			
				
			
			
				𝑡
				
				.
			

		
	

						Therefore, it follows from (14) and (15) that 
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				1
				Δ
				𝑢
				(
				𝑥
				,
				𝑡
				)
				−
			

			
				
			
			

				𝑐
			

			

				2
			

			

				𝑢
			

			
				𝑡
				𝑡
			

			
				=
				(
				𝑥
				,
				𝑡
				)
				𝑛
				−
				1
			

			
				
			
			
				𝑡
				𝑡
			

			
				
			
			
				𝑣
				|
				𝑥
				|
			

			

				
			

			
				
				|
				𝑥
				|
			

			
				
			
			
				𝑡
				
				+
				1
			

			
				
			
			
				𝑡
				𝑣
			

			
				
				
			

			
				
				|
				𝑥
				|
			

			
				
			
			
				𝑡
				
				−
				1
			

			
				
			
			

				𝑐
			

			

				2
			

			
				𝑡
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑡
			

			

				2
			

			

				𝑣
			

			
				
				
			

			
				
				|
				𝑥
				|
			

			
				
			
			
				𝑡
				
				=
				𝑛
				−
				1
			

			
				
			
			
				𝑡
				1
			

			
				
			
			
				𝑟
				𝑣
			

			

				
			

			
				
				1
				(
				𝑟
				)
				+
			

			
				
			
			
				𝑡
				−
				1
			

			
				
			
			

				𝑐
			

			

				2
			

			
				𝑡
				𝑟
			

			

				2
			

			
				
				𝑣
			

			
				
				
			

			
				=
				1
				(
				𝑟
				)
			

			
				
			
			
				𝑡
				
				𝑟
				1
				−
			

			

				2
			

			
				
			
			

				𝑐
			

			

				2
			

			
				𝑣
				
				
			

			
				
				
			

			
				(
				𝑟
				)
				+
				𝑛
				−
				1
			

			
				
			
			
				𝑟
				𝑐
			

			

				2
			

			
				
			
			

				𝑐
			

			

				2
			

			
				−
				𝑟
			

			

				2
			

			

				𝑣
			

			

				
			

			
				
				,
				(
				𝑟
				)
			

		
	

						for any 
	
		
			
				𝑥
				∈
				𝑈
			

		
	
, 
	
		
			
				𝑡
				∈
				𝑇
			

		
	
, and 
	
		
			
				𝑟
				∶
				=
				|
				𝑥
				|
				/
				𝑡
				∈
				𝑅
			

		
	
, and it follows from (8) and (9) that 
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				𝑣
			

			
				
				
			

			
				(
				𝑟
				)
				+
				𝑛
				−
				1
			

			
				
			
			
				𝑟
				𝑐
			

			

				2
			

			
				
			
			

				𝑐
			

			

				2
			

			
				−
				𝑟
			

			

				2
			

			

				𝑣
			

			

				
			

			
				(
				|
				|
				|
				|
				≤
				𝑐
				𝑟
				)
			

			

				2
			

			
				
			
			

				𝑟
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				𝑐
				𝑡
				𝜑
				(
				𝑥
				,
				𝑡
				)
				≤
			

			

				2
			

			

				𝑠
			

			
				
			
			

				𝑟
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

		
	

						or 
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				𝑤
			

			

				
			

			
				(
				𝑟
				)
				+
				𝑛
				−
				1
			

			
				
			
			
				𝑟
				𝑐
			

			

				2
			

			
				
			
			

				𝑐
			

			

				2
			

			
				−
				𝑟
			

			

				2
			

			
				|
				|
				|
				|
				≤
				𝑐
				𝑤
				(
				𝑟
				)
			

			

				2
			

			

				𝑠
			

			
				
			
			

				𝑟
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			

				,
			

		
	

						for all 
	
		
			
				𝑟
				∈
				𝑅
			

		
	
, where we set 
	
		
			
				𝑤
				(
				𝑟
				)
				∶
				=
				𝑣
			

			

				
			

			
				(
				𝑟
				)
			

		
	
.Set
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				𝑔
				(
				𝑟
				)
				∶
				=
				𝑛
				−
				1
			

			
				
			
			
				𝑟
				𝑐
			

			

				2
			

			
				
			
			

				𝑐
			

			

				2
			

			
				−
				𝑟
			

			

				2
			

			
				𝑐
				,
				ℎ
				(
				𝑟
				)
				∶
				=
				0
				,
				𝜙
				(
				𝑟
				)
				∶
				=
			

			

				2
			

			

				𝑠
			

			
				
			
			

				𝑟
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			

				,
			

		
	

						for each 
	
		
			
				𝑟
				∈
				𝑅
			

		
	
. Then we have 
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			

				
			

			
				𝑟
				𝑎
			

			
				
				𝑟
				𝑔
				(
				𝑝
				)
				𝑑
				𝑝
				=
				l
				n
			

			

				2
			

			
				
			
			

				𝑎
			

			

				2
			

			
				⋅
				𝑎
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				
			
			

				𝑟
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				,
				
			

			
				∞
				𝑎
			

			
				
				ℜ
				
				
				𝜙
				(
				𝑟
				)
				e
				x
				p
			

			
				𝑟
				𝑎
			

			
				=
				
				𝑔
				(
				𝑝
				)
				𝑑
				𝑝
				
				
				𝑑
				𝑟
			

			
				∞
				𝑎
			

			
				
				𝑟
			

			

				2
			

			
				
			
			

				𝑎
			

			

				2
			

			
				⋅
				𝑎
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				
			
			

				𝑟
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			

				𝑐
			

			

				2
			

			

				𝑠
			

			
				
			
			

				𝑟
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				<
				
				𝑑
				𝑟
			

			
				∞
				𝑎
			

			

				𝑐
			

			

				2
			

			

				𝑠
			

			
				
			
			

				𝑟
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				𝑑
				𝑟
				<
				∞
				.
			

		
	

						According to (18) and [13, Theorem 1], there exists a unique real number 
	
		
			

				𝛼
			

		
	
 such that 
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
				𝑎
				𝑤
				(
				𝑟
				)
				−
				𝛼
			

			

				2
			

			
				
			
			

				𝑟
			

			

				2
			

			
				⋅
				𝑟
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				
			
			

				𝑎
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				|
				|
				|
				|
				≤
				
				𝑎
			

			

				2
			

			
				
			
			

				𝑟
			

			

				2
			

			
				⋅
				𝑟
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				
			
			

				𝑎
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				×
				
			

			
				∞
				𝑟
			

			

				𝑐
			

			

				2
			

			

				𝑠
			

			
				
			
			

				𝑞
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				
				𝑞
			

			

				2
			

			
				
			
			

				𝑎
			

			

				2
			

			
				⋅
				𝑎
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				
			
			

				𝑞
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				≤
				
				𝑎
				𝑑
				𝑞
			

			

				2
			

			
				
			
			

				𝑟
			

			

				2
			

			
				⋅
				𝑟
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				
			
			

				𝑎
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			

				
			

			
				∞
				𝑟
			

			

				𝑐
			

			

				2
			

			

				𝑠
			

			
				
			
			

				𝑞
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				𝑑
				𝑞
			

		
	

						or 
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				
				𝑎
			

			

				2
			

			
				
			
			

				𝑟
			

			

				2
			

			
				⋅
				𝑟
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				
			
			

				𝑎
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				
				
				𝛼
				−
			

			
				∞
				𝑟
			

			

				𝑐
			

			

				2
			

			

				𝑠
			

			
				
			
			

				𝑞
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				
				𝑑
				𝑞
				≤
				𝑣
			

			

				
			

			
				≤
				
				𝑎
				(
				𝑟
				)
			

			

				2
			

			
				
			
			

				𝑟
			

			

				2
			

			
				⋅
				𝑟
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				
			
			

				𝑎
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				
				
				𝛼
				+
			

			
				∞
				𝑟
			

			

				𝑐
			

			

				2
			

			

				𝑠
			

			
				
			
			

				𝑞
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				
				,
				𝑑
				𝑞
			

		
	

						for all 
	
		
			
				𝑟
				∈
				𝑅
			

		
	
.Hence, it follows from the last inequalities that
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			

				
			

			
				𝑟
				𝑎
			

			
				
				𝑎
			

			

				2
			

			
				
			
			

				𝑧
			

			

				2
			

			
				⋅
				𝑧
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				
			
			

				𝑎
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				
				
				𝛼
				−
			

			
				∞
				𝑧
			

			

				𝑐
			

			

				2
			

			

				𝑠
			

			
				
			
			

				𝑞
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				
				𝑑
				𝑞
				𝑑
				𝑧
				≤
				𝑣
				(
				𝑟
				)
				−
				l
				i
				m
			

			
				𝑧
				→
				𝑎
			

			

				+
			

			
				≤
				
				𝑣
				(
				𝑧
				)
			

			
				𝑟
				𝑎
			

			
				
				𝑎
			

			

				2
			

			
				
			
			

				𝑧
			

			

				2
			

			
				⋅
				𝑧
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				
			
			

				𝑎
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				
				
				𝛼
				+
			

			
				∞
				𝑧
			

			

				𝑐
			

			

				2
			

			

				𝑠
			

			
				
			
			

				𝑞
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				
				𝑑
				𝑞
				𝑑
				𝑧
				,
			

		
	

						for any 
	
		
			
				𝑟
				∈
				𝑅
			

		
	
.Due to 
	
		
			
				(
				i
				i
				)
			

		
	
, it holds that 
	
		
			
				l
				i
				m
			

			
				𝑧
				→
				𝑎
			

			

				+
			

			
				𝑣
				(
				𝑧
				)
				=
				0
			

		
	
. Replacing 
	
		
			

				𝑟
			

		
	
 with 
	
		
			
				|
				𝑥
				|
				/
				𝑡
			

		
	
 in the last inequalities, we get 
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
				𝑢
				(
				𝑥
				,
				𝑡
				)
				−
				𝛼
				𝑡
			

			
				𝑎
				|
				𝑥
				|
				/
				𝑡
			

			
				
				𝑎
			

			

				2
			

			
				
			
			

				𝑧
			

			

				2
			

			
				⋅
				𝑧
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				
			
			

				𝑎
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				|
				|
				|
				|
				
				𝑑
				𝑧
				≤
				𝑡
			

			
				𝑎
				|
				𝑥
				|
				/
				𝑡
			

			
				
				𝑎
			

			

				2
			

			
				
			
			

				𝑧
			

			

				2
			

			
				⋅
				𝑧
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				
			
			

				𝑎
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			

				
			

			
				∞
				𝑧
			

			

				𝑐
			

			

				2
			

			

				𝑠
			

			
				
			
			

				𝑞
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				𝑑
				𝑞
				𝑑
				𝑧
				,
			

		
	

						for all 
	
		
			
				𝑥
				∈
				𝑈
			

		
	
 and 
	
		
			
				𝑡
				∈
				𝑇
			

		
	
.If we define a function 
	
		
			

				𝑢
			

			

				0
			

			
				∶
				𝑈
				×
				𝑇
				→
				ℝ
			

		
	
 by 
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			

				𝑢
			

			

				0
			

			
				
				(
				𝑥
				,
				𝑡
				)
				∶
				=
				𝛼
				𝑡
			

			
				𝑎
				|
				𝑥
				|
				/
				𝑡
			

			
				
				𝑎
			

			

				2
			

			
				
			
			

				𝑧
			

			

				2
			

			
				⋅
				𝑧
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				
			
			

				𝑎
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				𝑑
				𝑧
				,
			

		
	

						then we have 
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			

				𝜕
			

			
				
			
			
				𝜕
				𝑥
			

			

				𝑖
			

			

				𝑢
			

			

				0
			

			
				(
				𝑥
				,
				𝑡
				)
				=
				𝛼
				𝑥
			

			

				𝑖
			

			
				
			
			
				
				𝑎
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑟
			

			

				2
			

			
				⋅
				𝑟
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				
			
			

				𝑎
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				,
				𝜕
			

			

				2
			

			
				
			
			
				𝜕
				𝑥
			

			
				2
				𝑖
			

			

				𝑢
			

			

				0
			

			
				
				1
				(
				𝑥
				,
				𝑡
				)
				=
				𝛼
			

			
				
			
			
				−
				𝑥
				|
				𝑥
				|
			

			
				2
				𝑖
			

			
				
			
			
				|
				𝑥
				|
			

			

				3
			

			
				
				
				𝑎
			

			

				2
			

			
				
			
			

				𝑟
			

			

				2
			

			
				⋅
				𝑟
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				
			
			

				𝑎
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				+
				(
				𝑛
				−
				1
				)
				𝛼
				𝑎
			

			

				2
			

			

				𝑐
			

			

				2
			

			

				𝑥
			

			
				2
				𝑖
			

			
				
			
			
				
				𝑎
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				
				𝑡
				𝑟
			

			

				3
			

			
				|
				𝑥
				|
			

			

				2
			

			
				
				𝑎
			

			

				2
			

			
				
			
			

				𝑟
			

			

				2
			

			
				⋅
				𝑟
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				
			
			

				𝑎
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				3
				)
				/
				2
			

			
				,
				Δ
				𝑢
			

			

				0
			

			
				(
				𝑥
				,
				𝑡
				)
				=
				(
				𝑛
				−
				1
				)
				𝛼
				𝑎
			

			

				2
			

			
				
			
			
				
				𝑎
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				
				
				𝑎
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑟
			

			

				2
			

			
				⋅
				𝑟
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				
			
			

				𝑎
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				3
				)
				/
				2
			

			
				,
				𝜕
			

			
				
			
			
				𝑢
				𝜕
				𝑡
			

			

				0
			

			
				
				(
				𝑥
				,
				𝑡
				)
				=
				𝛼
			

			
				𝑎
				|
				𝑥
				|
				/
				𝑡
			

			
				
				𝑎
			

			

				2
			

			
				
			
			

				𝑧
			

			

				2
			

			
				⋅
				𝑧
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				
			
			

				𝑎
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				−
				𝛼
				𝑑
				𝑧
				|
				𝑥
				|
			

			
				
			
			
				𝑡
				
				𝑎
			

			

				2
			

			
				
			
			

				𝑟
			

			

				2
			

			
				⋅
				𝑟
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				
			
			

				𝑎
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				,
				𝜕
			

			

				2
			

			
				
			
			
				𝜕
				𝑡
			

			

				2
			

			

				𝑢
			

			

				0
			

			
				(
				𝑥
				,
				𝑡
				)
				=
				(
				𝑛
				−
				1
				)
				𝛼
				𝑎
			

			

				2
			

			

				𝑐
			

			

				2
			

			
				
			
			
				
				𝑎
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				
				
				𝑎
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑟
			

			

				2
			

			
				⋅
				𝑟
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				
			
			

				𝑎
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				3
				)
				/
				2
			

			

				,
			

		
	

						for all 
	
		
			
				𝑥
				∈
				𝑈
			

		
	
 and 
	
		
			
				𝑡
				∈
				𝑇
			

		
	
, which implies that 
	
		
			

				𝑢
			

			

				0
			

			
				(
				𝑥
				,
				𝑡
				)
			

		
	
 is a solution of the wave equation (2).It is now to show that 
	
		
			

				𝑢
			

			

				0
			

			
				∈
				𝑊
			

		
	
. Let 
	
		
			
				𝐹
				∶
				𝑅
				→
				ℝ
			

		
	
 be a function with the property 
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				
				
				𝑎
				𝐹
				(
				𝑟
				)
				∶
				=
			

			

				2
			

			
				
			
			

				𝑟
			

			

				2
			

			
				⋅
				𝑟
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				
			
			

				𝑎
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				𝑑
				𝑟
				.
			

		
	

						Then we have 
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			

				𝑢
			

			

				0
			

			
				
				𝐹
				
				(
				𝑥
				,
				𝑡
				)
				=
				𝛼
				𝑡
				|
				𝑥
				|
			

			
				
			
			
				𝑡
				
				
				,
				−
				𝐹
				(
				𝑎
				)
			

		
	

						which implies that 
	
		
			

				𝑢
			

			

				0
			

			
				(
				𝑥
				,
				𝑡
				)
			

		
	
 can be expressed as 
	
		
			
				𝑡
				𝑣
				(
				|
				𝑥
				|
				/
				𝑡
				)
			

		
	
, where 
	
		
			
				𝑣
				(
				𝑟
				)
				=
				𝛼
				𝐹
				(
				𝑟
				)
				−
				𝛼
				𝐹
				(
				𝑎
				)
			

		
	
. Moreover, we get 
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				|
				𝑥
				|
				→
				𝑎
				𝑡
			

			

				2
			

			
				l
				i
				m
			

			
				𝑡
				→
				𝑡
			

			

				2
			

			

				𝑢
			

			

				0
			

			
				(
				𝑥
				,
				𝑡
				)
				=
				l
				i
				m
			

			
				|
				𝑥
				|
				/
				𝑡
				→
				𝑎
			

			

				+
			

			
				
				𝛼
				𝑡
			

			
				𝑎
				|
				𝑥
				|
				/
				𝑡
			

			
				
				𝑎
			

			

				2
			

			
				
			
			

				𝑧
			

			

				2
			

			
				⋅
				𝑧
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				
			
			

				𝑎
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				𝑑
				𝑧
				=
				0
				,
			

		
	

						which verifies that 
	
		
			

				𝑢
			

			

				0
			

			
				∈
				𝑊
			

		
	
. Finally, by (24), the inequality (10) holds true.
Assume now that 
	
		
			

				𝑏
			

		
	
 and 
	
		
			

				𝑡
			

			

				1
			

		
	
 are given real numbers satisfying 
	
		
			
				0
				<
				𝑏
				<
				𝑐
			

		
	
 and 
	
		
			
				0
				<
				𝑡
			

			

				1
			

			
				<
				∞
			

		
	
. We then set 
						
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			

				𝑇
			

			

				
			

			
				
				𝑡
				∶
				=
			

			

				1
			

			
				
				,
				∞
				,
				𝑈
			

			

				
			

			
				
				∶
				=
				𝑥
				∈
				ℝ
			

			

				𝑛
			

			
				∶
				0
				<
				|
				𝑥
				|
				<
				𝑏
				𝑡
			

			

				1
			

			
				
				,
				𝑅
			

			

				
			

			
				∶
				=
				(
				0
				,
				𝑏
				)
			

		
	

					and define a class 
	
		
			

				𝑊
			

			

				
			

		
	
 of all twice continuously differentiable functions 
	
		
			
				𝑢
				∶
				𝑈
			

			

				
			

			
				×
				𝑇
			

			

				
			

			
				→
				ℝ
			

		
	
 with the properties (iii)
	
		
			
				𝑢
				(
				𝑥
				,
				𝑡
				)
				=
				𝑡
				𝑣
				(
				|
				𝑥
				|
				/
				𝑡
				)
			

		
	
 for all 
	
		
			
				𝑥
				∈
				𝑈
			

			

				
			

		
	
 and 
	
		
			
				𝑡
				∈
				𝑇
			

			

				
			

		
	
 and for some 
	
		
			
				𝑣
				∶
				𝑅
			

			

				
			

			
				→
				ℝ
			

		
	
;(iv)
	
		
			
				l
				i
				m
			

			
				|
				𝑥
				|
				→
				𝑏
				𝑡
			

			

				1
			

			
				l
				i
				m
			

			
				𝑡
				→
				𝑡
			

			

				1
			

			
				𝑢
				(
				𝑥
				,
				𝑡
				)
				=
				0
			

		
	
.
It might be remarked that 
	
		
			
				(
				𝑥
				,
				𝑡
				)
				∈
				𝑈
			

			

				
			

			
				×
				𝑇
			

			

				
			

		
	
 if and only if 
	
		
			
				|
				𝑥
				|
				/
				𝑡
				∈
				𝑅
			

			

				
			

		
	
. If we define
						
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			
				
				𝑢
			

			

				1
			

			
				+
				𝑢
			

			

				2
			

			
				
				(
				𝑥
				,
				𝑡
				)
				=
				𝑢
			

			

				1
			

			
				(
				𝑥
				,
				𝑡
				)
				+
				𝑢
			

			

				2
			

			
				
				(
				𝑥
				,
				𝑡
				)
				,
				𝜆
				𝑢
			

			

				1
			

			
				
				(
				𝑥
				,
				𝑡
				)
				=
				𝜆
				𝑢
			

			

				1
			

			
				(
				𝑥
				,
				𝑡
				)
				,
			

		
	

					for all 
	
		
			

				𝑢
			

			

				1
			

			
				,
				𝑢
			

			

				2
			

			
				∈
				𝑊
			

			

				
			

		
	
and 
	
		
			
				𝜆
				∈
				ℝ
			

		
	
, then 
	
		
			

				𝑊
			

			

				
			

		
	
 is a vector space over real numbers.
Theorem 2.  Let a function 
	
		
			
				𝜑
				∶
				𝑈
			

			

				
			

			
				×
				𝑇
			

			

				
			

			
				→
				[
				0
				,
				∞
				)
			

		
	
 be given such that there exists a positive real number 
	
		
			

				𝑠
			

			

				
			

		
	
 with 
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			

				𝑠
			

			

				
			

			
				∶
				=
				s
				u
				p
			

			
				𝑥
				∈
				𝑈
			

			

				′
			

			
				,
				𝑡
				∈
				𝑇
			

			

				′
			

			
				𝑡
				𝜑
				(
				𝑥
				,
				𝑡
				)
				.
			

		
	

						If a 
	
		
			
				𝑢
				∈
				𝑊
			

			

				
			

		
	
 satisfies the inequality 
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			
				|
				|
				|
				1
				Δ
				𝑢
				(
				𝑥
				,
				𝑡
				)
				−
			

			
				
			
			

				𝑐
			

			

				2
			

			

				𝑢
			

			
				𝑡
				𝑡
			

			
				|
				|
				|
				(
				𝑥
				,
				𝑡
				)
				≤
				𝜑
				(
				𝑥
				,
				𝑡
				)
				,
			

		
	

						for all 
	
		
			
				𝑥
				∈
				𝑈
			

			

				
			

		
	
 and 
	
		
			
				𝑡
				∈
				𝑇
			

			

				
			

		
	
, then there exists a solution 
	
		
			

				𝑢
			

			

				0
			

			
				∶
				𝑈
			

			

				
			

			
				×
				𝑇
			

			

				
			

			
				→
				ℝ
			

		
	
 of the wave equation (2) which belongs to 
	
		
			

				𝑊
			

			

				
			

		
	
 and satisfies 
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				|
				|
				𝑢
				(
				𝑥
				,
				𝑡
				)
				−
				𝑢
			

			

				0
			

			
				|
				|
				
				(
				𝑥
				,
				𝑡
				)
				≤
				𝑡
			

			
				𝑏
				|
				𝑥
				|
				/
				𝑡
			

			
				
				𝑏
			

			

				2
			

			
				
			
			

				𝑧
			

			

				2
			

			
				⋅
				𝑐
			

			

				2
			

			
				−
				𝑧
			

			

				2
			

			
				
			
			

				𝑐
			

			

				2
			

			
				−
				𝑏
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			

				
			

			
				𝑧
				0
			

			

				𝑐
			

			

				2
			

			

				𝑠
			

			

				
			

			
				
			
			

				𝑐
			

			

				2
			

			
				−
				𝑞
			

			

				2
			

			
				𝑑
				𝑞
				𝑑
				𝑧
			

		
	

						for all 
	
		
			
				𝑥
				∈
				𝑈
			

			

				
			

		
	
 and 
	
		
			
				𝑡
				∈
				𝑇
			

			

				
			

		
	
.
Proof. If 
	
		
			
				𝑣
				∶
				ℝ
				→
				ℝ
			

		
	
 is given by (11), then we can simply follow the lines in the first part of the proof of Theorem 1 to obtain 
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				𝑤
			

			

				
			

			
				(
				𝑟
				)
				+
				𝑛
				−
				1
			

			
				
			
			
				𝑟
				𝑐
			

			

				2
			

			
				
			
			

				𝑐
			

			

				2
			

			
				−
				𝑟
			

			

				2
			

			
				|
				|
				|
				|
				≤
				𝑐
				𝑤
				(
				𝑟
				)
			

			

				2
			

			

				𝑠
			

			

				
			

			
				
			
			

				𝑐
			

			

				2
			

			
				−
				𝑟
			

			

				2
			

			

				,
			

		
	

						for all 
	
		
			
				𝑟
				∈
				𝑅
			

			

				
			

		
	
, where 
	
		
			
				𝑤
				(
				𝑟
				)
				∶
				=
				𝑣
			

			

				
			

			
				(
				𝑟
				)
			

		
	
.Set 
							
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			
				𝑔
				(
				𝑟
				)
				∶
				=
				𝑛
				−
				1
			

			
				
			
			
				𝑟
				𝑐
			

			

				2
			

			
				
			
			

				𝑐
			

			

				2
			

			
				−
				𝑟
			

			

				2
			

			
				𝑐
				,
				ℎ
				(
				𝑟
				)
				∶
				=
				0
				,
				𝜙
				(
				𝑟
				)
				∶
				=
			

			

				2
			

			

				𝑠
			

			

				
			

			
				
			
			

				𝑐
			

			

				2
			

			
				−
				𝑟
			

			

				2
			

			

				,
			

		
	

						for any 
	
		
			
				𝑟
				∈
				𝑅
			

			

				
			

		
	
. Then we get 
							
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			

				
			

			
				𝑏
				𝑟
			

			
				
				𝑏
				𝑔
				(
				𝑝
				)
				𝑑
				𝑝
				=
				l
				n
			

			

				2
			

			
				
			
			

				𝑟
			

			

				2
			

			
				⋅
				𝑐
			

			

				2
			

			
				−
				𝑟
			

			

				2
			

			
				
			
			

				𝑐
			

			

				2
			

			
				−
				𝑏
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				,
				
			

			
				𝑏
				0
			

			
				𝜙
				
				ℜ
				
				
				(
				𝑟
				)
				e
				x
				p
			

			
				𝑟
				𝑏
			

			
				𝑔
				=
				
				(
				𝑝
				)
				𝑑
				𝑝
				
				
				𝑑
				𝑟
			

			
				𝑏
				0
			

			
				
				𝑟
			

			

				2
			

			
				
			
			

				𝑏
			

			

				2
			

			
				⋅
				𝑐
			

			

				2
			

			
				−
				𝑏
			

			

				2
			

			
				
			
			

				𝑐
			

			

				2
			

			
				−
				𝑟
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			

				𝑐
			

			

				2
			

			

				𝑠
			

			

				
			

			
				
			
			

				𝑐
			

			

				2
			

			
				−
				𝑟
			

			

				2
			

			
				<
				
				𝑑
				𝑟
			

			
				𝑏
				0
			

			

				𝑐
			

			

				2
			

			

				𝑠
			

			

				
			

			
				
			
			

				𝑐
			

			

				2
			

			
				−
				𝑟
			

			

				2
			

			
				𝑑
				𝑟
				<
				∞
				.
			

		
	

						According to (35) and [13, Corollary 2], there exists a unique real number 
	
		
			

				𝛼
			

		
	
 such that 
							
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
				𝑏
				𝑤
				(
				𝑟
				)
				−
				𝛼
			

			

				2
			

			
				
			
			

				𝑟
			

			

				2
			

			
				⋅
				𝑐
			

			

				2
			

			
				−
				𝑟
			

			

				2
			

			
				
			
			

				𝑐
			

			

				2
			

			
				−
				𝑏
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				|
				|
				|
				|
				≤
				
				𝑏
			

			

				2
			

			
				
			
			

				𝑟
			

			

				2
			

			
				⋅
				𝑐
			

			

				2
			

			
				−
				𝑟
			

			

				2
			

			
				
			
			

				𝑐
			

			

				2
			

			
				−
				𝑏
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			

				
			

			
				𝑟
				0
			

			

				𝑐
			

			

				2
			

			

				𝑠
			

			

				
			

			
				
			
			

				𝑐
			

			

				2
			

			
				−
				𝑞
			

			

				2
			

			
				𝑑
				𝑞
			

		
	

						or 
							
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			
				
				𝑏
			

			

				2
			

			
				
			
			

				𝑟
			

			

				2
			

			
				⋅
				𝑐
			

			

				2
			

			
				−
				𝑟
			

			

				2
			

			
				
			
			

				𝑐
			

			

				2
			

			
				−
				𝑏
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				
				
				𝛼
				−
			

			
				𝑟
				0
			

			

				𝑐
			

			

				2
			

			

				𝑠
			

			

				
			

			
				
			
			

				𝑐
			

			

				2
			

			
				−
				𝑞
			

			

				2
			

			
				
				𝑑
				𝑞
				≤
				𝑣
			

			

				
			

			
				≤
				
				𝑏
				(
				𝑟
				)
			

			

				2
			

			
				
			
			

				𝑟
			

			

				2
			

			
				⋅
				𝑐
			

			

				2
			

			
				−
				𝑟
			

			

				2
			

			
				
			
			

				𝑐
			

			

				2
			

			
				−
				𝑏
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				
				
				𝛼
				+
			

			
				𝑟
				0
			

			

				𝑐
			

			

				2
			

			

				𝑠
			

			

				
			

			
				
			
			

				𝑐
			

			

				2
			

			
				−
				𝑞
			

			

				2
			

			
				
				,
				𝑑
				𝑞
			

		
	

						for all 
	
		
			
				𝑟
				∈
				𝑅
			

			

				
			

		
	
.From the last inequalities, it follows that 
							
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			

				
			

			
				𝑏
				𝑟
			

			
				
				𝑏
			

			

				2
			

			
				
			
			

				𝑧
			

			

				2
			

			
				⋅
				𝑐
			

			

				2
			

			
				−
				𝑧
			

			

				2
			

			
				
			
			

				𝑐
			

			

				2
			

			
				−
				𝑏
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				
				
				𝛼
				−
			

			
				𝑧
				0
			

			

				𝑐
			

			

				2
			

			

				𝑠
			

			

				
			

			
				
			
			

				𝑐
			

			

				2
			

			
				−
				𝑞
			

			

				2
			

			
				
				𝑑
				𝑞
				𝑑
				𝑧
				≤
				l
				i
				m
			

			
				𝑧
				→
				𝑏
			

			

				−
			

			
				≤
				
				𝑣
				(
				𝑧
				)
				−
				𝑣
				(
				𝑟
				)
			

			
				𝑏
				𝑟
			

			
				
				𝑏
			

			

				2
			

			
				
			
			

				𝑧
			

			

				2
			

			
				⋅
				𝑐
			

			

				2
			

			
				−
				𝑧
			

			

				2
			

			
				
			
			

				𝑐
			

			

				2
			

			
				−
				𝑏
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				
				
				𝛼
				+
			

			
				𝑧
				0
			

			

				𝑐
			

			

				2
			

			

				𝑠
			

			

				
			

			
				
			
			

				𝑐
			

			

				2
			

			
				−
				𝑞
			

			

				2
			

			
				
				𝑑
				𝑞
				𝑑
				𝑧
				,
			

		
	

						for each 
	
		
			
				𝑟
				∈
				𝑅
			

			

				
			

		
	
.On account of 
	
		
			
				(
				i
				v
				)
			

		
	
, we have 
	
		
			
				l
				i
				m
			

			
				𝑧
				→
				𝑏
			

			

				−
			

			
				𝑣
				(
				𝑧
				)
				=
				0
			

		
	
. Replacing 
	
		
			

				𝑟
			

		
	
 with 
	
		
			
				|
				𝑥
				|
				/
				𝑡
			

		
	
 in the last inequalities, we obtain 
							
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
				𝑢
				(
				𝑥
				,
				𝑡
				)
				−
				𝛼
				𝑡
			

			
				𝑏
				|
				𝑥
				|
				/
				𝑡
			

			
				
				𝑏
			

			

				2
			

			
				
			
			

				𝑧
			

			

				2
			

			
				⋅
				𝑐
			

			

				2
			

			
				−
				𝑧
			

			

				2
			

			
				
			
			

				𝑐
			

			

				2
			

			
				−
				𝑏
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				|
				|
				|
				|
				
				𝑑
				𝑧
				≤
				𝑡
			

			
				𝑏
				|
				𝑥
				|
				/
				𝑡
			

			
				
				𝑏
			

			

				2
			

			
				
			
			

				𝑧
			

			

				2
			

			
				⋅
				𝑐
			

			

				2
			

			
				−
				𝑧
			

			

				2
			

			
				
			
			

				𝑐
			

			

				2
			

			
				−
				𝑏
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			

				
			

			
				𝑧
				0
			

			

				𝑐
			

			

				2
			

			

				𝑠
			

			

				
			

			
				
			
			

				𝑐
			

			

				2
			

			
				−
				𝑞
			

			

				2
			

			
				𝑑
				𝑞
				𝑑
				𝑧
				,
			

		
	

						for all
	
		
			
				𝑥
				∈
				𝑈
			

			

				
			

		
	
and 
	
		
			
				𝑡
				∈
				𝑇
			

			

				
			

		
	
.Let us define a function 
	
		
			

				𝑢
			

			

				0
			

			
				∶
				𝑈
			

			

				
			

			
				×
				𝑇
			

			

				
			

			
				→
				ℝ
			

		
	
 by 
							
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			

				𝑢
			

			

				0
			

			
				
				(
				𝑥
				,
				𝑡
				)
				∶
				=
				𝛼
				𝑡
			

			
				𝑏
				|
				𝑥
				|
				/
				𝑡
			

			
				
				𝑏
			

			

				2
			

			
				
			
			

				𝑧
			

			

				2
			

			
				⋅
				𝑐
			

			

				2
			

			
				−
				𝑧
			

			

				2
			

			
				
			
			

				𝑐
			

			

				2
			

			
				−
				𝑏
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				𝑑
				𝑧
				.
			

		
	

						Then, a similar argument to the last part of the proof of Theorem 1 shows that 
	
		
			

				𝑢
			

			

				0
			

			
				(
				𝑥
				,
				𝑡
				)
			

		
	
 is a solution of the wave equation (2) and it belongs to 
	
		
			

				𝑊
			

			

				
			

		
	
. Finally, the validity of (34) immediately follows from (41).
3. Remarks
Remark 1. The inequality (10) in Theorem 1 can be rewritten as 
							
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			
				|
				|
				𝑢
				(
				𝑥
				,
				𝑡
				)
				−
				𝑢
			

			

				0
			

			
				|
				|
				
				(
				𝑥
				,
				𝑡
				)
				≤
				𝑡
			

			
				𝑎
				|
				𝑥
				|
				/
				𝑡
			

			
				
				𝑎
			

			

				2
			

			
				
			
			

				𝑧
			

			

				2
			

			
				⋅
				𝑧
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				
			
			

				𝑎
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			

				
			

			
				∞
				𝑧
			

			

				𝑐
			

			

				2
			

			

				𝑠
			

			
				
			
			

				𝑞
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				
				𝑑
				𝑞
				𝑑
				𝑧
				≤
				𝑡
			

			
				𝑎
				|
				𝑥
				|
				/
				𝑡
			

			
				
				𝑎
			

			

				2
			

			
				
			
			

				𝑧
			

			

				2
			

			
				⋅
				𝑧
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				
			
			

				𝑎
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				𝑐
				𝑠
			

			
				
			
			
				2
				
				l
				n
				𝑎
				+
				𝑐
			

			
				
			
			
				
				≤
				𝑎
				−
				𝑐
				𝑑
				𝑧
				𝑐
				𝑠
				𝑡
			

			
				
			
			
				2
				
				𝑎
			

			

				2
			

			
				
			
			

				𝑎
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				
				l
				n
				𝑎
				+
				𝑐
			

			
				
			
			
				
				×
				
				𝑎
				−
				𝑐
			

			
				𝑎
				|
				𝑥
				|
				/
				𝑡
			

			
				
				𝑐
				1
				−
			

			

				2
			

			
				
			
			

				𝑧
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				𝑑
				𝑧
				,
			

		
	

						for all 
	
		
			
				𝑥
				∈
				𝑈
			

		
	
 and 
	
		
			
				𝑡
				∈
				𝑇
			

		
	
. If we further substitute 
	
		
			
				s
				i
				n
				𝜃
			

		
	
 for 
	
		
			
				𝑐
				/
				𝑧
			

		
	
 in the previous inequality, then we obtain
							
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			
				|
				|
				𝑢
				(
				𝑥
				,
				𝑡
				)
				−
				𝑢
			

			

				0
			

			
				|
				|
				≤
				(
				𝑥
				,
				𝑡
				)
				𝑐
				𝑠
				𝑡
			

			
				
			
			
				2
				
				𝑎
			

			

				2
			

			
				
			
			

				𝑎
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				
				l
				n
				𝑎
				+
				𝑐
			

			
				
			
			
				
				×
				
				𝑎
				−
				𝑐
			

			
				s
				i
				n
			

			
				−
				1
			

			
				(
				𝑐
				𝑡
				/
				|
				𝑥
				|
				)
				s
				i
				n
			

			
				−
				1
			

			
				(
				𝑐
				/
				𝑎
				)
			

			
				c
				o
				s
			

			
				𝑛
				−
				1
			

			
				𝜃
				
				−
				𝑐
				c
				o
				s
				𝜃
			

			
				
			
			
				s
				i
				n
			

			

				2
			

			
				𝜃
				
				𝑐
				𝑑
				𝜃
				=
				−
			

			

				2
			

			
				𝑠
				𝑡
			

			
				
			
			
				2
				
				𝑎
			

			

				2
			

			
				
			
			

				𝑎
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				
				l
				n
				𝑎
				+
				𝑐
			

			
				
			
			
				
				×
				
				−
				𝑎
				−
				𝑐
				c
				o
				s
			

			
				𝑛
				−
				1
			

			

				𝜃
			

			
				
			
			
				
				s
				i
				n
				𝜃
			

			
				s
				i
				n
			

			
				−
				1
			

			
				(
				𝑐
				𝑡
				/
				|
				𝑥
				|
				)
				s
				i
				n
			

			
				−
				1
			

			
				(
				𝑐
				/
				𝑎
				)
			

			
				+
				(
				𝑛
				−
				1
				)
				𝑐
			

			

				2
			

			
				𝑠
				𝑡
			

			
				
			
			
				2
				×
				
				𝑎
			

			

				2
			

			
				
			
			

				𝑎
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				
				l
				n
				𝑎
				+
				𝑐
			

			
				
			
			
				
				×
				
				𝑎
				−
				𝑐
			

			
				s
				i
				n
			

			
				−
				1
			

			
				(
				𝑐
				𝑡
				/
				|
				𝑥
				|
				)
				s
				i
				n
			

			
				−
				1
			

			
				(
				𝑐
				/
				𝑎
				)
			

			
				c
				o
				s
			

			
				𝑛
				−
				2
			

			
				𝑐
				𝜃
				𝑑
				𝜃
				=
				−
			

			

				2
			

			
				𝑠
				𝑡
			

			
				
			
			
				2
				
				𝑎
			

			

				2
			

			
				
			
			

				𝑎
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				
				l
				n
				𝑎
				+
				𝑐
			

			
				
			
			
				
				×
				⎡
				⎢
				⎢
				⎣
				𝑎
				𝑎
				−
				𝑐
			

			
				
			
			
				𝑐
				
				
				𝑐
				1
				−
			

			
				
			
			
				𝑎
				
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				−
				|
				𝑥
				|
			

			
				
			
			
				
				
				𝑐
				𝑡
				1
				−
				𝑐
				𝑡
			

			
				
			
			
				
				|
				𝑥
				|
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				⎤
				⎥
				⎥
				⎦
				+
				(
				𝑛
				−
				1
				)
				𝑐
			

			

				2
			

			
				𝑠
				𝑡
			

			
				
			
			
				2
				
				𝑎
			

			

				2
			

			
				
			
			

				𝑎
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				×
				
				l
				n
				𝑎
				+
				𝑐
			

			
				
			
			
				
				
				𝑎
				−
				𝑐
			

			
				s
				i
				n
			

			
				−
				1
			

			
				(
				𝑐
				𝑡
				/
				|
				𝑥
				|
				)
				s
				i
				n
			

			
				−
				1
			

			
				(
				𝑐
				/
				𝑎
				)
			

			
				c
				o
				s
			

			
				𝑛
				−
				2
			

			
				𝜃
				𝑑
				𝜃
				,
			

		
	

						for any 
	
		
			
				𝑥
				∈
				𝑈
			

		
	
 and 
	
		
			
				𝑡
				∈
				𝑇
			

		
	
.For the case of 
	
		
			
				𝑛
				=
				3
			

		
	
, the inequality (10) can be rewritten as 
							
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			
				|
				|
				𝑢
				(
				𝑥
				,
				𝑡
				)
				−
				𝑢
			

			

				0
			

			
				|
				|
				≤
				𝑐
				(
				𝑥
				,
				𝑡
				)
			

			

				2
			

			
				𝑠
				𝑡
			

			
				
			
			
				2
				𝑎
			

			

				2
			

			
				
			
			

				𝑎
			

			

				2
			

			
				−
				𝑐
			

			

				2
			

			
				
				l
				n
				𝑎
				+
				𝑐
			

			
				
			
			
				
				×
				
				𝑎
				−
				𝑐
				𝑐
				𝑡
			

			
				
			
			
				+
				|
				𝑥
				|
				|
				𝑥
				|
			

			
				
			
			
				−
				𝑐
				𝑐
				𝑡
			

			
				
			
			
				𝑎
				−
				𝑎
			

			
				
			
			
				𝑐
				
				,
			

		
	

						for all 
	
		
			
				𝑥
				∈
				𝑈
			

		
	
 and 
	
		
			
				𝑡
				∈
				𝑇
			

		
	
.
Remark 2. As in Remark 1, the inequality (34) in Theorem 2 can be rewritten as 
							
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			
				|
				|
				𝑢
				(
				𝑥
				,
				𝑡
				)
				−
				𝑢
			

			

				0
			

			
				|
				|
				≤
				(
				𝑥
				,
				𝑡
				)
				𝑐
				𝑠
			

			

				
			

			

				𝑡
			

			
				
			
			
				2
				
				𝑏
			

			

				2
			

			
				
			
			

				𝑐
			

			

				2
			

			
				−
				𝑏
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				×
				
				l
				n
				𝑐
				+
				𝑏
			

			
				
			
			
				
				
				𝑐
				−
				𝑏
			

			
				𝑏
				|
				𝑥
				|
				/
				𝑡
			

			
				
				𝑐
			

			

				2
			

			
				
			
			

				𝑧
			

			

				2
			

			
				
				−
				1
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				𝑑
				𝑧
				,
			

		
	

						for all 
	
		
			
				𝑥
				∈
				𝑈
			

			

				
			

		
	
 and 
	
		
			
				𝑡
				∈
				𝑇
			

			

				
			

		
	
. If we substitute 
	
		
			
				𝑐
				c
				o
				s
				𝜃
			

		
	
 for 
	
		
			

				𝑧
			

		
	
 in the previous inequality, then we get 
							
	
 		
 			
				(
				4
				7
				)
			
 		
	

	
		
			
				|
				|
				𝑢
				(
				𝑥
				,
				𝑡
				)
				−
				𝑢
			

			

				0
			

			
				|
				|
				(
				𝑥
				,
				𝑡
				)
				≤
				−
				𝑐
				𝑠
			

			

				
			

			

				𝑡
			

			
				
			
			
				2
				
				𝑏
			

			

				2
			

			
				
			
			

				𝑐
			

			

				2
			

			
				−
				𝑏
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				
				l
				n
				𝑐
				+
				𝑏
			

			
				
			
			
				
				×
				
				1
				𝑐
				−
				𝑏
			

			
				
			
			
				𝑡
				
				𝑐
			

			

				2
			

			

				𝑡
			

			

				2
			

			
				−
				|
				𝑥
				|
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				
			
			
				|
				𝑥
				|
			

			
				𝑛
				−
				2
			

			
				−
				
				𝑐
			

			

				2
			

			
				−
				𝑏
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				
			
			

				𝑏
			

			
				𝑛
				−
				2
			

			
				
				−
				(
				𝑛
				−
				1
				)
				𝑐
			

			

				2
			

			

				𝑠
			

			

				
			

			

				𝑡
			

			
				
			
			
				2
				
				𝑏
			

			

				2
			

			
				
			
			

				𝑐
			

			

				2
			

			
				−
				𝑏
			

			

				2
			

			

				
			

			
				(
				𝑛
				−
				1
				)
				/
				2
			

			
				×
				
				l
				n
				𝑐
				+
				𝑏
			

			
				
			
			
				
				
				𝑐
				−
				𝑏
			

			
				c
				o
				s
			

			
				−
				1
			

			
				(
				𝑏
				/
				𝑐
				)
				c
				o
				s
			

			
				−
				1
			

			
				(
				|
				𝑥
				|
				/
				𝑐
				𝑡
				)
			

			
				s
				i
				n
			

			
				𝑛
				−
				2
			

			

				𝜃
			

			
				
			
			
				c
				o
				s
			

			
				𝑛
				−
				1
			

			
				𝜃
				𝑑
				𝜃
				,
			

		
	

						for any 
	
		
			
				𝑥
				∈
				𝑈
			

			

				
			

		
	
 and 
	
		
			
				𝑡
				∈
				𝑇
			

			

				
			

		
	
.For the case of 
	
		
			
				𝑛
				=
				3
			

		
	
, the inequality (34) can be rewritten as 
							
	
 		
 			
				(
				4
				8
				)
			
 		
	

	
		
			
				|
				|
				𝑢
				(
				𝑥
				,
				𝑡
				)
				−
				𝑢
			

			

				0
			

			
				|
				|
				≤
				𝑐
				(
				𝑥
				,
				𝑡
				)
			

			

				2
			

			

				𝑠
			

			

				
			

			

				𝑡
			

			
				
			
			
				2
				𝑏
			

			

				2
			

			
				
			
			

				𝑐
			

			

				2
			

			
				−
				𝑏
			

			

				2
			

			
				
				l
				n
				𝑐
				+
				𝑏
			

			
				
			
			
				
				
				𝑐
				−
				𝑏
				𝑐
				𝑡
			

			
				
			
			
				+
				|
				𝑥
				|
				|
				𝑥
				|
			

			
				
			
			
				−
				𝑏
				𝑐
				𝑡
			

			
				
			
			
				𝑐
				−
				𝑐
			

			
				
			
			
				𝑏
				
				,
			

		
	

						for all 
	
		
			
				𝑥
				∈
				𝑈
			

			

				
			

		
	
 and 
	
		
			
				𝑡
				∈
				𝑇
			

			

				
			

		
	
.
Remark 3. It is an open problem whether the wave equation (2) has the generalized Hyers-Ulam stability for the case of either 
	
		
			
				𝑇
				=
				(
				0
				,
				𝑡
			

			

				2
			

			

				)
			

		
	
 and 
	
		
			
				𝑈
				=
				{
				𝑥
				∈
				ℝ
			

			

				𝑛
			

			
				∶
				0
				<
				|
				𝑥
				|
				<
				𝑎
				𝑡
			

			

				2
			

			

				}
			

		
	
 or 
	
		
			
				𝑇
				=
				(
				𝑡
			

			

				1
			

			
				,
				∞
				)
			

		
	
 and 
	
		
			
				𝑈
				=
				{
				𝑥
				∈
				ℝ
			

			

				𝑛
			

			
				∶
				|
				𝑥
				|
				>
				𝑏
				𝑡
			

			

				1
			

			

				}
			

		
	
 or 
	
		
			
				𝑇
				=
				(
				0
				,
				∞
				)
			

		
	
 and 
	
		
			
				𝑈
				=
				{
				𝑥
				∈
				ℝ
			

			

				𝑛
			

			
				∶
				|
				𝑥
				|
				>
				0
				}
			

		
	
.
 Conflict of Interests 
The author declares that there is no conflict of interests regarding the publication of this paper.
Acknowledgments
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (no. 2013R1A1A2005557). This work was also supported by the 2011 Hongik University Research Fund.
References
	S. M. Ulam, A Collection of Mathematical Problems, Interscience, New York, NY, USA, 1960.
	D. H. Hyers, “On the stability of the linear functional equation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 27, pp. 222–224, 1941.
	T. M. Rassias, “On the stability of the linear mapping in Banach spaces,” Proceedings of the American Mathematical Society, vol. 72, no. 2, pp. 297–300, 1978.
	N. Brillouët-Belluot, J. Brzdęk, and K. Ciepliński, “On some recent developments in Ulam's type stability,” Abstract and Applied Analysis, vol. 2012, Article ID 716936, 41 pages, 2012.
	G. L. Forti, “Hyers-Ulam stability of functional equations in several variables,” Aequationes Mathematicae, vol. 50, no. 1-2, pp. 143–190, 1995.
	P. Găvruţa, “A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings,” Journal of Mathematical Analysis and Applications, vol. 184, no. 3, pp. 431–436, 1994.
	D. H. Hyers, G. Isac, and T. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäauser, Boston, Mass, USA, 1998.
	D. H. Hyers and T. M. Rassias, “Approximate homomorphisms,” Aequationes Mathematicae, vol. 44, no. 2-3, pp. 125–153, 1992.
	S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, vol. 48, Springer, New York, NY, USA, 2011.
	T. M. Rassias, “On the stability of functional equations and a problem of Ulam,” Acta Applicandae Mathematicae, vol. 62, no. 1, pp. 23–130, 2000.
	L. C. Evans, Partial Differential Equations, vol. 19, American Mathematical Society, Providence, RI, USA, 1998.
	B. Hegyi and S.-M. Jung, “On the stability of Laplace's equation,” Applied Mathematics Letters, vol. 26, no. 5, pp. 549–552, 2013.
	S.-M. Jung, “Hyers-Ulam stability of linear differential equations of first order. II,” Applied Mathematics Letters, vol. 19, no. 9, pp. 854–858, 2006.


OEBPS/page-template.xpgt
 

   


     
	 
    

     
	 
    


     
	 
    


     
         
             
             
             
        
    

  





OEBPS/pageMap.xml
 
                                 
                                



OEBPS/Fonts/xits-italic.otf


OEBPS/Fonts/xits-bolditalic.otf


OEBPS/Fonts/xits-regular.otf


OEBPS/Fonts/xits-math.otf


