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Abstract. 
Ji-Huan He systematically studied the inverse problem of calculus of variations. This note reveals that the semi-inverse method also works for a generalized KdV-mKdV equation with nonlinear terms of any orders.


1. Introduction 
In [1], the semi-inverse method is systematically studied and many examples are given to show how to establish a variational formulation for a nonlinear equation. From the given examples, we found that it is difficult to find a variational principle for nonlinear evolution equations with nonlinear terms of any orders. 
For example, consider the following generalized KdV-mKdV equation:
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 is a positive number. Equation (1) is an important model in plasma physics and solid state physics. 
2. Variational Principle by He’s Semi-Inverse Method 
For (1), we introduce a potential function 
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					In order to use the semi-inverse method [1–4] to establish a Lagrangian for  (2), we first check  some simple cases: 
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					We can easily obtain a variational principle for (2)  for 
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					Now, according to the semi-inverse method [1–4], we construct a trial functional for (2):
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 and/or its derivatives. 
Making the trial-functional, (5), stationary with respect to 
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 results in the following Euler-Lagrange equation: 
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					We rewrite (6) in the form
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					Comparison of  (8) and (2) leads to the following results:
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3.  Conclusion 
This note shows that the semi-inverse method in [1] works also for the present problem, and it is concluded that the semi-inverse method is a powerful mathematical tool to the construction of a variational formulation for a nonlinear equation; illustrating examples are available in [5–10].  
The semi-inverse method can be extended to fractional calculus [11–14].   
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