Research Article

Global Solutions for an m-Component System of Activator-Inhibitor Type

S. Abdelmalek, 1,2 A. Gouadria, 3 and A. Youkana 3

1 Department of Mathematics, College of Sciences, Taibah University, Yanbu, Saudi Arabia
2 Department of Mathematics, University of Tebessa, 12002 Tebessa, Algeria
3 Department of Mathematics, University of Batna, 05000 Batna, Algeria

Correspondence should be addressed to S. Abdelmalek; sallllm@gmail.com

Received 15 May 2013; Accepted 17 July 2013

Academic Editor: Khalil Ezzinbi

Copyright © 2013 S. Abdelmalek et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper deals with a reaction-diffusion system with fractional reactions modeling m-substances into interaction following activator-inhibitor’s scheme. The existence of global solutions is obtained via a judicious Lyapunov functional that generalizes the one introduced by Masuda and Takahashi.

1. Introduction

In this paper, we are concerned with the existence of global solutions to a reaction-diffusion system with m components generalizing the activator-inhibitor system:

$$
\begin{align*}
\partial_t u_1 - a_1 \Delta u_1 &= f_1(u) = \sigma - b_1 u_1 + \prod_{j=2}^{m} u_j^{p_{1j}}, \\
\partial_t u_i - a_i \Delta u_i &= f_i(u) = -b_i u_i + \prod_{j=2}^{m} u_j^{p_{ij}}, \\
&\quad i = 2, \ldots, m,
\end{align*}
$$

supplemented with Neumann boundary conditions

$$
\frac{\partial u_i}{\partial \eta} = 0, \quad \text{on } \partial \Omega \times \{t > 0\}, \quad i = 1, \ldots, m,
$$

and the positive initial data

$$
u_i (x, 0) = \varphi_i (x) \quad \text{on } \Omega, \quad i = 1, \ldots, m.
$$

Here $u = (u_1, u_2, \ldots, u_m)$, Ω is an open bounded domain of class C^1 in \mathbb{R}^N, with boundary $\partial \Omega$, and $\partial / \partial \eta$ denotes the outward normal derivative on $\partial \Omega$.

Throughout the paper, we make the following hypotheses:

The indexes a_i, p_{ij} are nonnegative for all $i, j = 1, \ldots, m$, with $\sigma > 0$:

$$
0 < p_{11} - 1 < \max_{k=2,3,\ldots,m} \left\{ p_{k1} \min \left\{ 1, \frac{p_{1k}}{p_{kk} + 1}, \frac{p_{lj}}{p_{kj}} \right\} \right\}, \quad j = 2, \ldots, m, \quad j \neq k,
$$

we set $A_{ij} = (a_i + a_j) / (2 \sqrt{a_i a_j})$ for all $i, j = 1, \ldots, m$. Let $\alpha_i, i = 1, \ldots, m$, be positive constants such that

$$
\alpha_i > 2 \max \left\{ 1, \sum_{i=1}^{m} \frac{b_j}{b_i} \right\},
$$

$$
S'_r > 0, \quad l = 2, \ldots, m,
$$

where

$$
S'_r = S'_{r-1} \cdot S'_{r-1} - \left[H'_r \right]^2, \quad r = 3, \ldots, l,
$$

$$
H'_r = \det_{1 \leq i, j \leq l} \left(A_{ij} \right)_{i \neq l, j \neq l} \prod_{k=1}^{m} (\det[k])^{2(p_{rk} - 1)}, \quad r = 3, \ldots, l - 1,
$$

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 939405, 9 pages
http://dx.doi.org/10.1155/2013/939405
Let \(\Omega \) be a bounded domain in \(\mathbb{R}^N \) (\(N = 1, 2, 3 \) in practice) with smooth boundary \(\partial \Omega \). \(a_1, a_2, \mu, \nu, \sigma > 0 \), and \(p, q, r \) and \(s \) are non-negative indexes with \(p > 1 \). Here \(u \) is the activator, and \(v \) is the inhibitor.

Global existence of solutions in \((0, \infty)\) was proved by Rothe [3], more than ten years after Gierer and Meinhardt’s original paper with special choice of the parameters: \(p = 2 \), \(q = 1 \), \(r = 2 \), \(s = 0 \), and \(N = 3 \). Masuda and Takahashi [4] were able to prove global estimates and bounds of the solution for Gierer and Meinhardt’s system in its general form. They proceeded by first proving lower bounds, then \(L^p \) bounds (for any \(p > 1 \)), then uniform estimates and bounds in appropriate Sobolev spaces. The key point is represented by the \(L^2 \) bounds, which are derived using in a subtle way the specific structure of the equations.

Li et al. [5] also studied the activator-inhibitor model.

Very recently, Bernasconi [6] considered the larger system:

\[
\partial_t a(x, t) = d_1 a_{xx} + \frac{a^2(x, t)}{h(x, t)} - \mu a(x, t) + \rho,
\]

\[
\partial_t h(x, t) = d_2 h_{xx} (x, t) + a^2(x, t) - \nu h(x, t) + \epsilon s(x, t),
\]

\[
\partial_t s(x, t) = d_3 s_{xx} (x, t) + a(x, t) - \kappa s(x, t),
\]

and Meinhardt et al. [7] proposed activator-inhibitor models to describe a theory of biological pattern:

\[
\partial_t a(x, t) = d_1 a_{xx} + \frac{a^2(x, t)}{h(x, t) s(x, t)} - \mu a(x, t) + \rho,
\]

\[
\partial_t h(x, t) = d_2 h_{xx} (x, t) + a^2(x, t) - \nu h(x, t) + \epsilon s(x, t),
\]

\[
\partial_t s(x, t) = d_3 s_{xx} (x, t) + a(x, t) - \kappa s(x, t),
\]

which is Gierer and Meinhardt’s system supplemented with a third equation, where \(a(x, t) \) is the activator, \(h(x, t) \) is the inhibitor, and \(s(x, t) \) is a source that acts as an inhomogeneous inhibitor.

Our paper generalizes the system in [5] to \(m \)-components.

2. Preliminary Observations and Notations

The usual norms in the spaces \(L^p(\Omega) \), \(L^{\infty}(\Omega) \), and \(C(\overline{\Omega}) \) are denoted, respectively, by the following:

\[
\|u\|_p = \frac{1}{|\Omega|} \int_{\Omega} |u(x)|^p \, dx,
\]

\[
\|u\|_{\infty} = \text{ess sup}_{x \in \Omega} |u(x)|,
\]

\[
\|u\|_{C(\overline{\Omega})} = \max_{x \in \overline{\Omega}} |u(x)|.
\]

and initial conditions

\[
u(x, 0) = \varphi_1 (x) > 0, \quad x \in \Omega, \quad (12)
\]

where \(\Omega \subset \mathbb{R}^N \) (\(N = 1, 2, 3 \) in practice) is a bounded domain with smooth boundary \(\partial \Omega \), \(a_1, a_2, \mu, \nu, \sigma > 0 \), and \(p, q, r \) and \(s \) are non-negative indexes with \(p > 1 \). Here \(u \) is the activator, and \(v \) is the inhibitor.

Before we prove our results, let us dwell a while on the existing literature concerning Gierer-Meinhardt’s type systems.

In 1972, following an ingenious idea of Turing [1], Gierer and Meinhardt [2] proposed a mathematical model for pattern formations of spatial tissue structures of hydra in morphogenesis. It is a system of reaction-diffusion equations of the form:

\[
\partial_t u - a_1 \Delta u = \sigma - \mu u + \frac{v^p}{v^{p+1}}, \quad x \in \Omega, \quad t > 0, \tag{10}
\]

\[
\partial_t v - a_2 \Delta v = -\nu v + \frac{u^q}{v^q}, \quad x \in \Omega, \quad t > 0,
\]

with Neumann boundary conditions

\[
\frac{\partial u}{\partial \eta} = 0, \quad x \in \partial \Omega, \quad t > 0, \tag{11}
\]

and initial conditions

\[
u(x, 0) = \varphi_1 (x) > 0, \quad x \in \Omega, \quad (12)
\]
It is well known that to prove global existence of solutions to (1)–(3), it suffices to derive a uniform estimate of \(\| f_i (u_1, u_2, \ldots, u_m) \|_p \), \(i = 1, \ldots, m \) on \([0; T_{\text{max}}] \) in the space \(L^p (\Omega) \) for some \(p > n / 2 \) (see Henry [8]).

Since \(f_1 \) are continuously differentiable on \(\mathbb{R}^m_+ \) for all \(i = 1, \ldots, m \), then for any initial data in \(C(\Omega) \), the system (1)–(3) admits a unique, classical solution \((u_1, u_2, \ldots, u_m)\) on \((0, T_{\text{max}}) \times \Omega\) with the alternative

(i) either \(T_{\text{max}} = \infty \);

(ii) or \(T_{\text{max}} < \infty \), and \(\lim_{t \to T_{\text{max}}} \sum_{i=1}^m \| u_i (t, \cdot) \|_\infty = \infty \).

Using the maximum principle, one derives the lower bounds of the components of the solution \(u \) of (1)–(3):

\[
 u_i (t, x) \geq e^{-h_1} \min \left(\varphi_i (x) \right) > 0, \quad i = 1, \ldots, m. \tag{16}
\]

Our aim is to construct a Lyapunov functional that allows us to obtain \(L^p \)-bounds on \(u_i \) leading to global existence.

3. Preparatory Lemmas

For the proof of Theorem 1, we need some preparatory lemmas whose proofs will be in the appendix.

Lemma 3. Assume that the constants \(q_{ij} \) satisfy

\[
 q_{ii} - 1 \quad q_{kl} < \min \left(1, \frac{q_{ik}}{q_{kk} + 1} q_{lj}, \quad j = 2, \ldots, m, \ j \neq k \right). \tag{17}
\]

Then for all \(h_{i-1}, \alpha_i > 0, j, i = 1, \ldots, m \), there exist \(C = C(h_{i-1}, \alpha_i) > 0 \) and \(\theta = \theta(\alpha_i) \in (0, 1) \), such that

\[
\alpha_i U_{ij}^{q_{ii} - 1 + \alpha_i} \leq \alpha_k \frac{U_{ij}^{q_{ii} - 1 + \alpha_i}}{U_{ij}^{q_{ii} - 1 + \alpha_i}} \prod_{j=2, j \neq k}^m U_{ij}^{q_{ij} \theta_{ij}} \tag{18}
\]

\[
+ \left(\frac{U_{ij}^{q_{ii} - 1 + \alpha_i}}{U_{ij}^{q_{ii} - 1 + \alpha_i}} \right)^\theta,
\]

\(u_i \geq 0, u_i \geq h_{i-1}, i = 1, \ldots, m, k \in \{2, \ldots, m\} \).

Lemma 4 (see [9]). Let \(A = (a_{ij})_{1 \leq i, j \leq m} \). Then one has:

\[
K_m^l = \det [m] \prod_{k=1}^{m-l-2} (\det [k])^{2-\theta_{ij}}, \quad m > 2, \tag{19}
\]

where

\[
K_m^l = K_m^{l-1} \cdot K_m^{l-1} \cdot \left(H_m^{l-1} \right)^2, \quad l = 3, \ldots, m, \tag{20}
\]

\[
H_m^l = \det_{1 \leq i, j \leq m} \left(a_{ij} \right)_{i \neq l+1, j \neq l+1} \tag{21}
\]

\[
\cdot \prod_{k=1}^{m-l-2} (\det [k])^{q_{ij} - 1}, \quad l = 3, \ldots, m - 1,
\]

\[
K_m^l = a_{11} a_{mm} - (a_{1m})^2, \tag{22}
\]

\[
H_m^l = a_{11} a_{mm} - a_{12} a_{m2} - a_{22} a_{m2}. \tag{23}
\]

Lemma 5. Let \(\alpha_i > 2 \max \{1, \sum_{i=1}^m b_i / b_i \} \). One has

\[
K_m^l > S_l, \quad l = 2, \ldots, m, \tag{24}
\]

where

\[
K_m^l = K_m^{l-1} - \left(H_m^{l-1} \right)^2, \quad l = 3, \ldots, m, \tag{25}
\]

\[
H_m^l = \det_{1 \leq i, l \leq l} \left(a_{lj} \right)_{j \neq l} \tag{26}
\]

\[
\cdot \prod_{k=1}^{m-l-2} (\det [k])^{q_{ij} - 1}, \quad r = 3, \ldots, l - 1, \tag{27}
\]

\[
K_m^l = \alpha_1^2 \alpha_i^2 \alpha_1 \left[\frac{\alpha_i - 1}{\alpha_i} + 1 \right] - A_{ij}^2, \tag{28}
\]

\[
H_m^l = \alpha_1^2 \alpha_2 \alpha_1 \left[\frac{\alpha_i - 1}{\alpha_i} A_{ij}^2 \right] - A_{ij}^2 A_{ij}^2. \tag{29}
\]

Lemma 6 (see Masuda and Takahashi [4]). Let \(\mu, T > 0 \) and let \(f_i (t) \) be a nonnegative integrable function on \([0, T] \) and \(\theta_j < 1 (j = 1, \ldots, J) \). Let \(W = W(t) \) be a positive function on \([0, T] \) satisfying the inequality

\[
\frac{dW(t)}{dt} \leq -\mu W(t) + \sum_{j=1}^J f_j (t) W^\theta_j (t), \quad 0 \leq t < T. \tag{30}
\]

Then, one has

\[
W(t) \leq \kappa, \quad 0 \leq t < T, \tag{31}
\]

where \(\kappa \) is the maximal root of the algebraic equation:

\[
x - \sum_{j=1}^J \left(\sup_{0 < t < T} \int_0^t e^{-\mu (t-s)} f_j (s) d\xi \right) x^{\theta_j} = W(0). \tag{32}
\]

4. Proofs

Proof of Theorem 1. Since \(u_1 \) satisfies \(\partial_t u_1 - a_1 \Delta u_1 > 0 \) on \(\{u_1 < \sigma / b_1\} \), the maximum principle implies \(u_1 \geq \delta := \min(\sigma / b_1, \min u_0(x)) > 0. \)
Differentiating $L(t)$ with respect to t yields

$$L'(t) = \int_\Omega \frac{d}{dt} \left(\frac{u_i^{\alpha_i}}{\prod_{j=2}^{m} u_j^{\alpha_j}} \right) dx$$

$$= \int_\Omega \left(\alpha_i \frac{u_i^{\alpha_i-1}}{\prod_{j=2}^{m} u_j^{\alpha_j}} \partial_i u_i \right. + \left. - \sum_{i=2}^{m} \alpha_i \frac{u_i^{\alpha_i+1}}{\prod_{j=2}^{m} u_j^{\alpha_j}} \partial_i u_i \right) dx. \quad (29)$$

Replacing $\partial_i u_i, i = 1, \ldots, m$, by its expression from (1), we get

$$L'(t) = \int_\Omega \left(a_i \alpha_i \frac{u_i^{\alpha_i-1}}{\prod_{j=2}^{m} u_j^{\alpha_j}} \Delta u_i \right. + \left. - \sum_{i=2}^{m} \alpha_i \frac{u_i^{\alpha_i+1}}{\prod_{j=2}^{m} u_j^{\alpha_j}} \Delta u_i \right)$$

$$- b \alpha_1 \frac{u_1^{\alpha_1}}{\prod_{j=2}^{m} u_j^{\alpha_j}} + \sum_{i=2}^{m} b_i \alpha_i \frac{u_i^{\alpha_i}}{\prod_{j=2}^{m} u_j^{\alpha_j}}$$

$$+ \alpha_1 \frac{u_1^{p_1+1+\alpha_1}}{\prod_{j=2}^{m} u_j^{p_j+\alpha_j}}$$

$$- \sum_{i=2}^{m} \alpha_i \frac{u_i^{p_i+1+\alpha_i}}{\prod_{j=2}^{m} u_j^{p_j+\alpha_j}}$$

$$+ \sigma \alpha_i \frac{u_i^{\alpha_i-1}}{\prod_{j=2}^{m} u_j^{\alpha_j}} dx \quad (30)$$

$$:= I + J,$$

where we have set

$$I = a_1 \alpha_1 \int_\Omega \frac{u_1^{\alpha_1-2}}{\prod_{j=2}^{m} u_j^{\alpha_j}} \Delta u_1 dx$$

$$- \sum_{i=2}^{m} \alpha_i \alpha_i \int_\Omega \frac{u_i^{\alpha_i-1}}{\prod_{j=2}^{m} u_j^{\alpha_j}} \Delta u_i dx,$$

$$J = \left(-b \alpha_1 + \sum_{i=2}^{m} b_i \alpha_i \right) L(t)$$

$$+ \alpha_1 \int_\Omega \frac{u_1^{p_1+1+\alpha_1}}{\prod_{j=2}^{m} u_j^{p_j+\alpha_j}} dx.$$

$$- \sum_{i=2}^{m} \alpha_i \int_\Omega \frac{u_i^{p_i+1+\alpha_i}}{\prod_{j=2}^{m} u_j^{p_j+\alpha_j}} dx \quad (32)$$

Estimation of I. We are going to show that $I \leq 0$.

Using Green’s formula, we obtain

$$I = \int_\Omega \left(a_1 \alpha_1 \left[-(\alpha_i - 1) \frac{u_i^{\alpha_i-2}}{\prod_{j=2}^{m} u_j^{\alpha_j}} |\nabla u_i|^2 + \sum_{i=2}^{m} \alpha_i \frac{u_i^{\alpha_i-1}}{\prod_{j=2}^{m} u_j^{\alpha_j}} |\nabla u_i|^2 \right] \right) dx,$$

$$= - \int_\Omega \left(\frac{u_1^{\alpha_1-2}}{\prod_{j=2}^{m} u_j^{\alpha_j}} (QT) \cdot T \right) dx,$$

where $Q = (a_{ij})_{1 \leq i, j \leq m}$ is defined in (8) and

$$T = \left(\prod_{j=2}^{m} u_j^1 \vee u_1^1, \ldots, \prod_{j=2}^{m} u_j^1 \vee u_j^1, \prod_{j=1}^{m-1} u_j \vee u_m \right)^t. \quad (31)$$

The matrix Q is positive definite if and only if all its associated minor matrices $\Delta_1, \Delta_2, \ldots, \Delta_m$ are positive. To see this, we have the following.

1. $\Delta_1 = a_1 \alpha_1 (\alpha_1 - 1) > 0$. Using (5), we get $\text{det}[1] > 0$.
2. According to Lemma 4, we have

$$\text{det}[2] = k_2^2 = a_2^2 \alpha_2^2 \alpha_2 \left[\frac{\alpha_1 - 1}{\alpha_1} \frac{\alpha_2}{\alpha_2} + A_2^2 \right]. \quad (35)$$

Using (6) and (24) for $l = 2$, we get $\text{det}[2] > 0$.

Abstract and Applied Analysis
(3) Again according to Lemma 4, we have
\[K_3^3 = \det[3] \det[1]. \] (36)
But \(\det[1] > 0 \), thus \(\text{sign}(K_3^3) = \text{sign}(\det[3]). \)

Using (6) and (24) for \(l = 3 \), we get \(\det[3] > 0 \).

(4) We suppose that \(\det[k] > 0, k = 1,2,\ldots,l-1 \) and prove that \(\det[l] > 0 \); thus
\[\det [k] > 0, \quad k = 1, \ldots, (l - 1) \]
\[\implies \prod_{k=1}^{k_{l-2}} (\det[k])^{(j_{l-k-2})} > 0. \] (37)

From Lemma 4,
\[K_l^i = \det [l] \prod_{k=1}^{k_{l-2}} (\det[k])^{(j_{l-k-2})}. \] (38)

This along with (37) yields
\[\text{sign} (K_l^i) = \text{sign} (\det [l]). \] (39)

But from (6) and (24) \(K_l^i > 0 \); thus \(\det[l] > 0 \).

Consequently, we have \(I \leq 0 \).

Estimation of J. We are going to estimate \(J \) by a function of \(L(t) \).

According to the maximum principle, there exists \(C_0 \) depending on \(\varphi_i(x), i = 1, \ldots, m \), such that \(u_i \geq C_0 > 0, i = 2, \ldots, m \). We then have
\[
\frac{u_1^{\alpha_i-1}}{\prod_{j=2}^{m} u_j^{\alpha_j}} \left(\frac{u_1^{\alpha_i}}{\prod_{j=2}^{m} u_j^{\alpha_j}} \right)^{(\alpha_i-1)/\alpha_i} \leq C_2 \left(\frac{\sum_{j=2}^{m} u_j^{\alpha_j}}{\prod_{j=2}^{m} u_j^{\alpha_j}} \right)^{\alpha_i/\alpha_j},
\] (40)

whereupon
\[
\frac{u_1^{\alpha_i-1}}{\prod_{j=2}^{m} u_j^{\alpha_j}} \leq C_2 \left(\frac{\sum_{j=2}^{m} u_j^{\alpha_j}}{\prod_{j=2}^{m} u_j^{\alpha_j}} \right)^{\alpha_i/\alpha_j},
\] (41)

where \(C_2 = \left(\frac{1}{C_0} \right)^{\sum_{j=2}^{m} \alpha_j/\alpha_i}. \)

We have
\[
J \leq \left(-b_1 \alpha_1 + \sum_{i=2}^{m} b_i \alpha_i \right) L(t)
\]
\[+ \alpha_1 \int_{\Omega} \left(\frac{u_1^{\alpha_i-1} u_i^{\alpha_i}}{\prod_{j=2}^{m} u_j^{\alpha_j}} \right)^{(\alpha_i-1)/\alpha_i} \frac{dx}{\prod_{j=2}^{m} u_j^{\alpha_j}}
\]
\[+ \sum_{i=2}^{m} \alpha_i \int_{\Omega} \left(\frac{u_1^{\alpha_i-1} u_i^{\alpha_i}}{\prod_{j=2}^{m} u_j^{\alpha_j}} \right)^{(\alpha_i-1)/\alpha_i} \frac{dx}{\prod_{j=2}^{m} u_j^{\alpha_j}}
\]
\[+ \sigma \alpha_1 \int_{\Omega} C_2 \left(\frac{u_1^{\alpha_i}}{\prod_{j=2}^{m} u_j^{\alpha_j}} \right)^{(\alpha_i-1)/\alpha_i} \frac{dx}{\prod_{j=2}^{m} u_j^{\alpha_j}}. \]

Using Lemma 3, we obtain
\[
J \leq \left(-b_1 \alpha_1 + \sum_{i=2}^{m} b_i \alpha_i \right) L(t)
\]
\[+ \int_{\Omega} C \left(\frac{u_1^{\alpha_i}}{\prod_{j=2}^{m} u_j^{\alpha_j}} \right)^{\theta} \frac{dx}{\prod_{j=2}^{m} u_j^{\alpha_j}}
\]
\[+ \sigma \alpha_1 \int_{\Omega} C_2 \left(\frac{u_1^{\alpha_i}}{\prod_{j=2}^{m} u_j^{\alpha_j}} \right)^{(\alpha_i-1)/\alpha_i} \frac{dx}{\prod_{j=2}^{m} u_j^{\alpha_j}}. \]

Applying Hölder’s inequality, we obtain
\[
\int_{\Omega} C \left(\frac{u_1^{\alpha_i}}{\prod_{j=2}^{m} u_j^{\alpha_j}} \right)^{\theta} \frac{dx}{\prod_{j=2}^{m} u_j^{\alpha_j}} \leq C_3 \left(\text{meas}(\Omega) \right)^{1-\theta}. \]

So
\[
\int_{\Omega} C \left(\frac{u_1^{\alpha_i}}{\prod_{j=2}^{m} u_j^{\alpha_j}} \right)^{\theta} \frac{dx}{\prod_{j=2}^{m} u_j^{\alpha_j}} \leq C_4 L^{\theta} (t),
\]
\[C_3 = C(\text{meas}(\Omega))^{1-\theta}. \]

Also, we have
\[
\int_{\Omega} C_2 \left(\frac{u_1^{\alpha_i}}{\prod_{j=2}^{m} u_j^{\alpha_j}} \right)^{\alpha_i/\alpha_j} \frac{dx}{\prod_{j=2}^{m} u_j^{\alpha_j}} \leq C_4 L^{\theta} (t), \]
\[\text{where } C_4 = C_2(\text{meas}(\Omega))^{1/\alpha_i}. \]

We then get
\[
J \leq \left(-b_1 \alpha_1 + \sum_{i=2}^{m} b_i \alpha_i \right) L(t) + C_4 L^{\theta} (t)
\]
\[+ \alpha_1 \sigma_4 L^{(\alpha_i-1)/\alpha_i} (t), \]
}\]
which implies
\[J \leq \left(-b_1\alpha_1 + \sum_{i=2}^{m} b_i\alpha_i \right) L(t) + C_5 \left(Lt^\alpha \right) . \tag{49} \]

This yields the differential inequality:
\[L'(t) \leq \left(-b_1\alpha_1 + \sum_{i=2}^{m} b_i\alpha_i \right) L(t) + C_5 \left(Lt^\alpha \right). \tag{50} \]

Thus under conditions (5), (6), and (8), we obtain \(-b_1\alpha_1 + \sum_{i=2}^{m} b_i\alpha_i < 0\); using Lemma 6 we deduce that \(L(t)\) is bounded on \((0, T_{\text{max}}]\) that is, \(L(t) \leq \gamma_1\), where \(\gamma_1\) depends on \(\varphi_i(x)\), \(i = 1, \ldots, m\).

\[\square \]

Proof of Corollary 2 (L^\infty -bounds). By Theorem 1, we have \(u_1^{q_1}/\prod_{j=2}^{m} u_j^{p_j} \in L^\infty((0, T_{\text{max}}], L^r(\Omega)), r > N/2\). By a simple argument relying on the variation-of-constants formula and the \(L^p-L^q\)-estimate (Proposition 48.4 see [10]), we deduce that \(u\) is uniformly bounded. Consequently, \(T_{\text{max}} = \infty\).

\[\square \]

Appendix

The purpose of this appendix is to prove the lemmas of Appendix which imply
\[J \leq \left(-b_1\alpha_1 + \sum_{i=2}^{m} b_i\alpha_i \right) L(t) + C_5 \left(Lt^\alpha \right) . \tag{49} \]

For each \(\varepsilon\) such that \(0 < \varepsilon < \min\{1, q_{1k}/(q_{kk} + 1), q_{11}/q_{kk}, j = 2, \ldots, m\text{, and } j \neq k\}\), \(- (q_{11} - 1)/q_{kk}\),
\[\alpha_1 \frac{u_1^{q_{11} - 1}}{\prod_{j=2}^{m} u_j^{q_j}} = \alpha_1 \left(\frac{u_1}{\prod_{j=2}^{m} u_j} \right)^{q_1} \times \left(\frac{h_1}{u_1^{q_1}} \right)^{q_{11} - 1}/q_{kk} - q_{11} \cdot \varepsilon \left(\frac{h_1}{u_1^{q_1}} \right)^{q_{11} - 1}/q_{kk} - q_{11} \cdot \varepsilon \right) \tag{A.3} \]

\[\times \left(\frac{1}{\alpha_1} \right) u_1^{q_1}/u_1^{q_1} \times \prod_{j=2}^{m} \left(h_1 \right)^{q_j/q_{kk} - q_{11} - q_{kk} + \varepsilon q_{kk} - q_{11} - q_{kk} \cdot \varepsilon} \times \left(\prod_{j=2}^{m} \left(\frac{u_j}{h_1} \right)^{q_j/q_{kk} - q_{11} - q_{kk} + \varepsilon q_{kk} - q_{11} - q_{kk} \cdot \varepsilon} \times \left(h_1 \right)^{q_{11} - 1}/q_{kk} + \varepsilon q_{kk} - q_{11} - q_{kk} \cdot \varepsilon} \right) \tag{A.4} \]

where
\[C_1 = \alpha_1 \left(\frac{u_1}{\prod_{j=2}^{m} u_j} \right)^{q_1} \times \left(\frac{h_1}{u_1^{q_1}} \right)^{q_{11} - 1}/q_{kk} - q_{11} \cdot \varepsilon \right) \times \left(\frac{1}{\alpha_1} \right) u_1^{q_1}/u_1^{q_1} \times \prod_{j=2}^{m} \left(h_1 \right)^{q_j/q_{kk} - q_{11} - q_{kk} + \varepsilon q_{kk} - q_{11} - q_{kk} \cdot \varepsilon} \times \left(h_1 \right)^{q_{11} - 1}/q_{kk} + \varepsilon q_{kk} - q_{11} - q_{kk} \cdot \varepsilon} \right) \tag{A.5} \]

Using Young's inequality for (A.3) with
\[C = C_1 \left(\frac{q_{11} - 1}{q_{kk} + q_{kk} - q_{11} - q_{kk} + \varepsilon q_{kk} - q_{11} - q_{kk} \cdot \varepsilon} \right) \tag{A.5} \]

where \(\varepsilon\) is sufficiently small, we get inequality (18).

\[\square \]

Proof of Lemma 4. We prove this lemma by induction.

For \(m = 2\), we have \(K^2 = \det[2]\).

We consider the case \(m = 3\).
By using the well-known Dodgson condensation [11] for the symmetric 3-square matrix:

\[
\begin{align*}
\det[1] \det[3] &= \det[2] \left[\det_{1 \leq i,j \leq 3} \left[(a_{i,j})_{i \neq 2,j \neq 2} \right] \right] \\
&\quad - \left[\det_{1 \leq i,j \leq 3} \left[(a_{i,j})_{i \neq 3,j \neq 2} \right] \right]^2.
\end{align*}
\] (A.6)

But

\[
\det[2] = K^2_2,
\]

\[
\det_{1 \leq i,j \leq 3} \left[(a_{i,j})_{i \neq 2,j \neq 2} \right] = a_{13}^2 = K^2_3,
\] (A.7)

\[
\det_{1 \leq i,j \leq 3} \left[(a_{i,j})_{i \neq 3,j \neq 2} \right] = a_{12}a_{23} - a_{13}a_{21} = H^2_3.
\]

So

\[
\] (A.8)

Hence by using formula (20), formula (19) is correct for \(m = 3 \).

When \(m \geq 4 \), we suppose that formula (19) is correct for \(m-1 \), \(m-2 \), \(m-3 \), \ldots, \(4 \), and we prove it for \(m \).

It is sufficient to prove that

\[
K^{m-1}_m = \det_{1 \leq i,j \leq m} \left((a_{i,j})_{i \neq m-1,j \neq m-1} \right) \prod_{k=1}^{m-3} (\det[k])^{(m-k-3)}.
\] (A.9)

By putting \(l = m-1 \) in formula (21), we get

\[
H^{m-1}_m = \det_{1 \leq i,j \leq m} \left((a_{i,j})_{i \neq m,j \neq m-1} \right) \prod_{k=1}^{m-3} (\det[k])^{(m-k-3)}.
\] (A.10)

From the mathematical induction proof, we have

\[
K^{(m-1)}_{m-1} = \det [m-1] \prod_{k=1}^{m-3} (\det[k])^{(m-k-3)}.
\] (A.11)

By putting \(l = m \) in formula (20), we get

\[
K^m_m = K^{m-1}_m \cdot K^{m-1}_m - [H^{m-1}_m]^2.
\] (A.12)

By replacing (A.9), (A.10), and (A.11) in (A.12), we obtain

\[
K^m_m = \prod_{k=1}^{m-3} (\det[k])^{(m-k-2)} \cdot \det [m-2] \cdot \det [m] \cdot (\det[k])^{(m-k-2)},
\] (A.13)

\[
= \det [m] \prod_{k=1}^{m-2} (\det[k])^{(m-k-2)},
\]

and thus formula (19) is correct for \(m \).

Now, we prove formula (A.9); we may generalize formula (A.9) as follows:

\[
K^l_m = \det_{1 \leq i,j \leq m} \left((a_{i,j})_{i \neq m-l,j \neq m-l} \right) \prod_{k=l-2}^{l-1} (\det[k])^{(m-l-k)},
\] (A.14)

\[
l = 3, \ldots, m - 1.
\]

Also, we prove formula (A.14) by induction. It is a second inductive proof included in the first one.

It is evident for \(l = 2 \).

For \(l = 3 \), formula (20) will be:

\[
K^3_m = K^2_2 \cdot K^2_3 - [H^2_3]^2.
\] (A.15)

Since we already know that

\[
K^2_2 = \det[2],
\]

\[
K^2_m = \det_{1 \leq i,j \leq m} \left((a_{i,j})_{i \neq m-1,j \neq m-1} \right),
\] (A.16)

\[
H^2_m = \det_{1 \leq i,j \leq m} \left((a_{i,j})_{i \neq m,j \neq m-1} \right),
\]

simple substitution of these three formulas in the formula (A.15) followed by the application of the modified well-known Dodgson condensation which has been modified in [11] will lead to formula (A.14) for \(l = 3 \), directly.

When \(l \geq 4 \), we suppose that formula (A.14) is correct for \(l-1 \), and we prove it for \(l \).

Formula (20) for \(l-1 \) reads

\[
K^l_{m-1} = K^{l-1}_{m-1} \cdot K^{l-1}_{m-1} - [H^{l-1}_{m-1}]^2.
\] (A.17)

According to the first induction, we have

\[
K^{(l-1)}_{m-1} = \det [l-1] \prod_{k=1}^{m-3} (\det[k])^{(m-k-3)}.
\] (A.18)

According to the second induction, we have

\[
K^{l}_{m-1} = \det_{1 \leq i,j \leq m} \left((a_{i,j})_{i \neq m-1,j \neq m-1} \right) \prod_{k=1}^{l-3} (\det[k])^{(m-l-k)}.
\] (A.19)

According to formula (21), we have:

\[
H^{l}_{m-1} = \det_{1 \leq i,j \leq m} \left((a_{i,j})_{i \neq m,j \neq m-1} \right) \prod_{k=1}^{l-3} (\det[k])^{(m-l-k)}.
\] (A.20)
By replacing (A.18), (A.19), and (A.20) in (A.17) and by using the well-known Dodgson condensation, we obtain formula (A.14) for \(l \). Therefore, the second inductive proof is finished and consequently the first one.

Proof of Lemma 5. We prove this lemma by induction:

\[
K^l_i > S^l_i, \quad l = 2, \ldots, m. \tag{A.21}
\]

For \(l = 2 \), we have

\[
K^2_i = a_1^2a_2^2a_3^2a_4^2 \frac{\alpha_1 - 1}{2\alpha_2} = \frac{1}{2\alpha_2} - A_{12}^2.
\]

Because

\[
\frac{\alpha_1 - 1}{\alpha_2} > \frac{1}{2\alpha_2}. \tag{A.23}
\]

Assuming \(l \geq 3 \), we suppose (24) is true for \((l - 1), l - 2, l - 3, \ldots, 3\), and we prove it for \(l \). Hence, we aim to prove

\[
K^l_i > S^l_i, \quad K^{l-1}_i > S^{l-1}_i, \quad K^{l-2}_i > S^{l-2}_i, \ldots, \tag{A.24}
\]

\[
K^{l-1}_i > S^{l-1}_i \implies K^l_i > S^l_i. \tag{A.25}
\]

Recall that

\[
K^l_i = K^{l-1}_i K^{l-1}_i - [H^{l-1}_i]^2. \tag{A.26}
\]

It is then sufficient to prove

\[
K^{l-1}_i > S^{l-1}_i, \tag{A.27}
\]

which will satisfy the inequality

\[
K^l_i = K^{l-1}_i K^{l-1}_i - [H^{l-1}_i]^2 > S^{l-1}_i S^{l-1}_i - [H^{l-1}_i]^2 = S^l_i. \tag{A.28}
\]

In order to prove (A.26), we first generalize it in the form

\[
K^r_i > S^r_i, \quad r = 2, \ldots, l - 1. \tag{A.29}
\]

This can be proven by mathematical induction. It is a secondary inductive proof inside the primary one. For \(r = 2 \), it is evident that

\[
K^2_i > S^2_i. \tag{A.30}
\]

For \(r = 3 \), the formula

\[
K^3_i = K^2_i K^2_i - [H^2_i]^2 > S^2_i S^2_i - [H^2_i]^2 = S^3_i \tag{A.31}
\]

is evident too.

When \(r \geq 4 \), we suppose formula (A.28) true for \(l = 2 \):

\[
K^{l-2}_i > S^{l-2}_i \tag{A.32}
\]

and we prove it for \(l = 1 \):

\[
K^{l-1}_i > S^{l-1}_i. \tag{A.33}
\]

We have

\[
K^{l-1}_i = K^{l-2}_i K^{l-2}_i - [H^{l-2}_i]^2 > S^{l-2}_i S^{l-2}_i - [H^{l-2}_i]^2 = S^{l-1}_i. \tag{A.34}
\]

Accordingly, we have

\[
K^l_i > S^l_i. \tag{A.35}
\]

This finishes the proof.

Acknowledgment

The authors would like to express their deepest gratitude for Professor Kirane (Université de la Rochelle, France) for all his valuable input and guidance throughout the research and authoring of this paper.

References

