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Abstract. 
The initial-boundary value problem for the density-dependent flow of nematic
crystals is studied in a 2-D bounded smooth domain. For the initial density
away from vacuum, the existence and uniqueness is proved for the global strong
solution with the large initial velocity 
	
		
			

				𝑢
			

			

				0
			

		
	
 and small 
	
		
			
				∇
				𝑑
			

			

				0
			

		
	
. We also give a regularity
criterion 
	
		
			
				∇
				𝑑
				∈
				𝐿
			

			

				𝑝
			

			
				(
				0
				,
				𝑇
				;
				𝐿
			

			

				𝑞
			

			
				(
				Ω
				)
				)
				(
				(
				2
				/
				𝑞
				)
				+
				(
				2
				/
				𝑝
				)
				=
				1
				,
				2
				<
				𝑞
				≤
				∞
				)
			

		
	
 of the problem with the Dirichlet boundary condition 
	
		
			
				𝑢
				=
				0
			

		
	
, 
	
		
			
				𝑑
				=
				𝑑
			

			

				0
			

		
	
 on  
	
		
			
				𝜕
				Ω
			

		
	
.


1. Introduction and Main Results
Let 
	
		
			
				Ω
				⊆
				ℝ
			

			

				2
			

		
	
 be a bounded domain with smooth boundary 
	
		
			
				𝜕
				Ω
			

		
	
, and 
	
		
			

				𝜈
			

		
	
 is the unit outward normal vector on 
	
		
			
				𝜕
				Ω
			

		
	
. We consider the global strong solution to the density-dependent incompressible liquid crystal flow [1–4] as follows:
						
	
 		
 			
				(
				1
				)
			
 			
				(
				2
				)
			
 			
				(
				3
				)
			
 			
				(
				4
				)
			
 		
	

	
		
			
				𝜕
				d
				i
				v
				𝑢
				=
				0
				,
			

			

				𝑡
			

			
				𝜕
				𝜌
				+
				d
				i
				v
				(
				𝜌
				𝑢
				)
				=
				0
				,
			

			

				𝑡
			

			
				𝜕
				(
				𝜌
				𝑢
				)
				+
				d
				i
				v
				(
				𝜌
				𝑢
				⊗
				𝑢
				)
				+
				∇
				𝜋
				−
				Δ
				𝑢
				=
				−
				∇
				⋅
				(
				∇
				𝑑
				⊙
				∇
				𝑑
				)
				,
			

			

				𝑡
			

			
				|
				|
				|
				|
				𝑑
				+
				𝑢
				⋅
				∇
				𝑑
				−
				Δ
				𝑑
				=
				∇
				𝑑
			

			

				2
			

			
				𝑑
				,
			

		
	

					in 
	
		
			
				(
				0
				,
				∞
				)
				×
				Ω
			

		
	
 with initial and boundary conditions
						
	
 		
 			
				(
				5
				)
			
 			
				(
				6
				)
			
 		
	

	
		
			
				
				𝜌
				(
				𝜌
				,
				𝑢
				,
				𝑑
				)
				(
				⋅
				,
				0
				)
				=
			

			

				0
			

			
				,
				𝑢
			

			

				0
			

			
				,
				𝑑
			

			

				0
			

			
				
				i
				n
				Ω
				,
				𝑢
				=
				0
				,
				𝜕
			

			

				𝜈
			

			
				𝑑
				=
				0
				o
				n
				𝜕
				Ω
				,
			

		
	

					where 
	
		
			

				𝜌
			

		
	
 denotes the density, 
	
		
			

				𝑢
			

		
	
 the velocity, 
	
		
			

				𝑑
			

		
	
 the unit vector field that represents the macroscopic molecular orientations, and 
	
		
			

				𝜋
			

		
	
 the pressure. The symbol 
	
		
			
				∇
				𝑑
				⊙
				∇
				𝑑
			

		
	
 denotes a matrix whose 
	
		
			
				(
				𝑖
				,
				𝑗
				)
			

		
	
th entry is 
	
		
			

				𝜕
			

			

				𝑖
			

			
				𝑑
				𝜕
			

			

				𝑗
			

			

				𝑑
			

		
	
, and it is easy to find that 
	
		
			
				∇
				𝑑
				⊙
				∇
				𝑑
				=
				∇
				𝑑
			

			

				𝑇
			

			
				∇
				𝑑
			

		
	
.
When 
	
		
			

				𝑑
			

		
	
 is a given constant unit vector, then (1), (2), and (3) represent the well-known density-dependent Navier-Stokes system, which has received many studies; see [5–7] and references therein.
When 
	
		
			
				𝜌
				≡
				1
			

		
	
 and 
	
		
			
				Ω
				∶
				=
				ℝ
			

			

				2
			

		
	
, Xu and Zhang [8] proved global existence of weak solutions to the problem if 
	
		
			

				𝑢
			

			

				0
			

			
				∈
				𝐿
			

			

				2
			

			
				,
				∇
				𝑑
			

			

				0
			

			
				∈
				𝐿
			

			

				2
			

			
				,
				|
				𝑑
			

			

				0
			

			
				|
				=
				1
			

		
	
, and
						
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				
				
				‖
				‖
				𝑢
				e
				x
				p
				2
				1
				6
			

			

				0
			

			
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				1
			

			
				
			
			
				
				1
				6
			

			

				2
			

			
				
				‖
				‖
				∇
				𝑑
			

			

				0
			

			
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				<
				1
			

			
				
			
			
				.
				1
				6
			

		
	

When 
	
		
			
				𝜌
				≡
				1
			

		
	
 and (6) is replaced by
						
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				𝑢
				=
				0
				,
				𝑑
				=
				𝑑
			

			

				0
			

			
				o
				n
				𝜕
				Ω
				.
			

		
	

Lin et al. [9] proved the global existence of weak solutions to the system (1)–(5) and (8), which are smooth away from at most finitely many singular times, and they also prove a regularity criterion
						
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				𝑑
				∈
				𝐿
			

			

				2
			

			
				
				0
				,
				𝑇
				;
				𝐻
			

			

				2
			

			
				
				.
				(
				Ω
				)
			

		
	

When 
	
		
			
				𝜌
				=
				1
			

		
	
 and the term 
	
		
			
				|
				∇
				𝑑
				|
			

			

				2
			

		
	
 in (4) is replaced by 
	
		
			
				(
				1
				−
				|
				𝑑
				|
			

			

				2
			

			
				)
				𝑑
			

		
	
, then the problem has been studied in [10–15]. 
Very recently, Wen and Ding [16] proved the global existence and uniqueness of strong solutions to the problem (1)–(6) with small 
	
		
			

				𝑢
			

			

				0
			

		
	
 and 
	
		
			
				∇
				𝑑
			

			

				0
			

		
	
 and the local strong solutions with large initial data when 
	
		
			
				Ω
				⊆
				ℝ
			

			

				2
			

		
	
 is a smooth bounded domain.
Fan et al. [17] studied the regularity criterion of the Cauchy problem (1)–(5) when 
	
		
			
				Ω
				∶
				=
				ℝ
			

			

				2
			

		
	
.
We will prove the following.
Theorem 1.  Let 
	
		
			
				0
				<
				𝑚
				≤
				𝜌
			

			

				0
			

			
				≤
				𝑀
				<
				∞
			

		
	
, 
	
		
			

				𝜌
			

			

				0
			

			
				∈
				𝑊
			

			
				1
				,
				𝑟
			

		
	
 for some 
	
		
			
				𝑟
				∈
				(
				2
				,
				∞
				)
			

		
	
, 
	
		
			

				𝑢
			

			

				0
			

			
				∈
				𝐻
			

			
				1
				0
			

			
				∩
				𝐻
			

			

				2
			

		
	
, and 
	
		
			

				𝑑
			

			

				0
			

			
				∈
				𝐻
			

			

				3
			

		
	
 with 
	
		
			
				d
				i
				v
				𝑢
			

			

				0
			

			
				=
				0
			

		
	
, and 
	
		
			
				|
				𝑑
			

			

				0
			

			
				|
				=
				1
			

		
	
 in 
	
		
			

				Ω
			

		
	
. If
							
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				‖
				‖
				∇
				𝑑
			

			

				0
			

			
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				⎡
				⎢
				⎢
				⎣
				𝐶
				e
				x
				p
				2
				1
				6
			

			
				2
				0
			

			
				
			
			
				𝑚
				
				‖
				‖
				√
			

			
				
			
			

				𝜌
			

			

				0
			

			

				𝑢
			

			

				0
			

			
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				1
			

			
				
			
			
				8
				𝐶
			

			
				2
				0
			

			

				
			

			

				2
			

			
				⎤
				⎥
				⎥
				⎦
				≤
				1
			

			
				
			
			
				8
				𝐶
			

			
				2
				0
			

			

				,
			

		
	

						with an absolute constant 
	
		
			

				𝐶
			

			

				0
			

		
	
 in (22), then the problem (1)–(6) has a unique global-in-time strong solution 
	
		
			
				(
				𝜌
				,
				𝑢
				,
				𝑑
				)
			

		
	
 satisfying
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				‖
				𝜌
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				0
				,
				𝑇
				;
				𝑊
			

			
				1
				,
				𝑟
			

			

				)
			

			
				‖
				‖
				𝜌
				≤
				𝐶
				,
			

			

				𝑡
			

			
				‖
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				0
				,
				𝑇
				;
				𝐿
			

			

				𝑟
			

			

				)
			

			
				≤
				𝐶
				,
				‖
				𝑢
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				0
				,
				𝑇
				;
				𝐻
			

			

				2
			

			
				)
				∩
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑊
			

			
				2
				,
				𝑠
			

			

				)
			

			
				≤
				𝐶
				,
				𝑓
				𝑜
				𝑟
				𝑠
				𝑜
				𝑚
				𝑒
				𝑠
				>
				2
				,
				‖
				𝑑
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				0
				,
				𝑇
				;
				𝐻
			

			

				3
			

			

				)
			

			
				≤
				𝐶
				.
			

		
	

Remark 2. When 
	
		
			
				Ω
				∶
				=
				ℝ
			

			

				2
			

		
	
, Theorem 1 is also correct, thus improving the result in [18], where 
	
		
			

				𝑢
			

			

				0
			

		
	
 and 
	
		
			
				∇
				𝑑
			

			

				0
			

		
	
 are assumed to be small.
Next, we consider (1)–(4) with 
	
		
			
				𝜌
				≡
				1
			

		
	
 as follows:
						
	
 		
 			
				(
				1
				2
				)
			
 			
				(
				1
				3
				)
			
 			
				(
				1
				4
				)
			
 			
				(
				1
				5
				)
			
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				𝜕
				d
				i
				v
				𝑢
				=
				0
				,
			

			

				𝑡
			

			
				𝜕
				𝑢
				+
				𝑢
				⋅
				∇
				𝑢
				+
				∇
				𝜋
				−
				Δ
				𝑢
				=
				−
				∇
				⋅
				(
				∇
				𝑑
				⊙
				∇
				𝑑
				)
				,
			

			

				𝑡
			

			
				|
				|
				|
				|
				𝑑
				+
				𝑢
				⋅
				∇
				𝑑
				−
				Δ
				𝑑
				=
				∇
				𝑑
			

			

				2
			

			
				𝑑
				,
				𝑢
				=
				0
				,
				𝑑
				=
				𝑑
			

			

				0
			

			
				
				𝑢
				o
				n
				𝜕
				Ω
				,
				(
				𝑢
				,
				𝑑
				)
				(
				⋅
				,
				0
				)
				=
			

			

				0
			

			
				,
				𝑑
			

			

				0
			

			
				
				i
				n
				Ω
				.
			

		
	

We will prove the following.
Theorem 3.  Let 
	
		
			

				𝑢
			

			

				0
			

			
				∈
				𝐿
			

			

				2
			

		
	
 and 
	
		
			

				𝑑
			

			

				0
			

			
				∈
				𝐻
			

			

				1
			

		
	
 with 
	
		
			
				d
				i
				v
				𝑢
			

			

				0
			

			
				=
				0
			

		
	
 and 
	
		
			
				|
				𝑑
			

			

				0
			

			
				|
				=
				1
			

		
	
 in 
	
		
			

				Ω
			

		
	
 and 
	
		
			

				𝑑
			

			

				0
			

			
				∈
				𝐶
			

			
				2
				,
				𝛽
			

			
				(
				𝜕
				Ω
				)
			

		
	
 for some 
	
		
			
				𝛽
				∈
				(
				0
				,
				1
				)
			

		
	
. If 
	
		
			

				𝑑
			

		
	
 satisfies
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				∇
				𝑑
				∈
				𝐿
			

			

				𝑞
			

			
				(
				0
				,
				𝑇
				;
				𝐿
			

			

				𝑝
			

			
				2
				)
				,
			

			
				
			
			
				𝑞
				+
				2
			

			
				
			
			
				𝑝
				=
				1
				,
				2
				<
				𝑝
				≤
				∞
				,
			

		
	

						then the strong solution 
	
		
			
				(
				𝑢
				,
				𝑑
				)
			

		
	
 can be extended beyond 
	
		
			
				𝑇
				>
				0
			

		
	
.
Remark 4. In [9], the authors prove the regularity criterion (9) for the problem (12)–(16), and our condition (17) is weaker than (9). Moreover, (17) is scaling invariant for (12)–(14).
2. Proof of Theorem 1
This section is devoted to the proof of Theorem 1. Since the local-in-time well-posedness has been proved in [16], we only need to establish a priori estimates. Also, by the local well-posedness result in [16], we note that 
	
		
			
				∇
				𝑑
			

		
	
 is absolutely continuous on 
	
		
			
				[
				0
				,
				𝑇
				]
			

		
	
 for any given 
	
		
			
				𝑇
				>
				0
			

		
	
.
By the maximum principle, it follows from (1) and (2) that
						
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				0
				<
				𝑚
				≤
				𝜌
				≤
				𝑀
				<
				∞
				.
			

		
	

Testing (3) by 
	
		
			

				𝑢
			

		
	
 and using (1) and (2), we see that
						
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				2
				𝑑
			

			
				
			
			
				
				𝑑
				𝑡
				𝜌
				𝑢
			

			

				2
			

			
				
				|
				|
				|
				|
				𝑑
				𝑥
				+
				∇
				𝑢
			

			

				2
			

			
				
				𝑑
				𝑥
				=
				−
				(
				𝑢
				⋅
				∇
				)
				𝑑
				⋅
				Δ
				𝑑
				𝑑
				𝑥
				.
			

		
	

Testing (4) by 
	
		
			
				−
				Δ
				𝑑
				−
				|
				∇
				𝑑
				|
			

			

				2
			

			

				𝑑
			

		
	
, using 
	
		
			
				|
				𝑑
				|
				=
				1
			

		
	
, we find that
						
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				2
				𝑑
			

			
				
			
			
				
				|
				|
				|
				|
				𝑑
				𝑡
				∇
				𝑑
			

			

				2
			

			
				
				|
				|
				|
				|
				|
				|
				|
				𝑑
				𝑥
				+
				Δ
				𝑑
				+
				∇
				𝑑
			

			

				2
			

			
				𝑑
				|
				|
				|
			

			

				2
			

			
				
				𝑑
				𝑥
				=
				(
				𝑢
				⋅
				∇
				)
				𝑑
				⋅
				Δ
				𝑑
				𝑑
				𝑥
				.
			

		
	

Summing up (19) and (20) and integrating over 
	
		
			
				(
				0
				,
				𝑇
				)
			

		
	
, we get
						
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				
				
				𝜌
				𝑢
			

			

				2
			

			
				+
				|
				|
				|
				|
				∇
				𝑑
			

			

				2
			

			
				
				
				𝑑
				𝑥
				+
				2
			

			
				𝑇
				0
			

			
				
				
				|
				|
				|
				|
				∇
				𝑢
			

			

				2
			

			
				+
				|
				|
				|
				|
				|
				|
				|
				Δ
				𝑑
				+
				∇
				𝑑
			

			

				2
			

			
				𝑑
				|
				|
				|
				
				≤
				
				
				𝜌
				𝑑
				𝑥
				𝑑
				𝑡
			

			

				0
			

			

				𝑢
			

			
				2
				0
			

			
				+
				|
				|
				∇
				𝑑
			

			

				0
			

			
				|
				|
			

			

				2
			

			
				
				𝑑
				𝑥
				.
			

		
	

Since 
	
		
			

				𝜕
			

			

				𝜈
			

			
				𝑑
				=
				0
			

		
	
 on 
	
		
			
				(
				0
				,
				∞
				)
				×
				𝜕
				Ω
			

		
	
, we have the following Gagliardo-Nirenberg inequality:
						
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				‖
				∇
				𝑑
				‖
			

			
				2
				𝐿
			

			

				4
			

			
				≤
				𝐶
			

			

				0
			

			
				‖
				∇
				𝑑
				‖
			

			

				𝐿
			

			

				2
			

			
				‖
				Δ
				𝑑
				‖
			

			

				𝐿
			

			

				2
			

			

				.
			

		
	

By (20) and the Ladyzhenskaya inequality in 2D, we derive
						
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				2
				𝑑
			

			
				
			
			
				
				|
				|
				|
				|
				𝑑
				𝑡
				∇
				𝑑
			

			

				2
			

			
				
				|
				|
				|
				|
				|
				|
				|
				𝑑
				𝑥
				+
				Δ
				𝑑
				+
				∇
				𝑑
			

			

				2
			

			
				𝑑
				|
				|
				|
			

			

				2
			

			
				𝑑
				𝑥
				≤
				‖
				𝑢
				‖
			

			

				𝐿
			

			

				4
			

			
				‖
				∇
				𝑑
				‖
			

			

				𝐿
			

			

				4
			

			
				‖
				Δ
				𝑑
				‖
			

			

				𝐿
			

			

				2
			

			
				≤
				√
			

			
				
			
			
				2
				‖
				𝑢
				‖
			

			
				𝐿
				1
				/
				2
			

			

				2
			

			
				‖
				∇
				𝑢
				‖
			

			
				𝐿
				1
				/
				2
			

			

				2
			

			
				⋅
				√
			

			
				
			
			

				𝐶
			

			

				0
			

			
				‖
				∇
				𝑑
				‖
			

			
				𝐿
				1
				/
				2
			

			

				2
			

			
				‖
				Δ
				𝑑
				‖
			

			
				𝐿
				3
				/
				2
			

			

				2
			

			
				≤
				‖
				Δ
				𝑑
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				
			
			
				8
				+
				2
				1
				6
				𝐶
			

			
				2
				0
			

			
				‖
				𝑢
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				‖
				∇
				𝑢
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				‖
				∇
				𝑑
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				≤
				‖
				Δ
				𝑑
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				
			
			
				8
				𝐶
				+
				2
				1
				6
			

			
				2
				0
			

			
				
			
			
				𝑚
				
				‖
				‖
				√
			

			
				
			
			

				𝜌
			

			

				0
			

			

				𝑢
			

			

				0
			

			
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				‖
				‖
				∇
				𝑑
			

			

				0
			

			
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				
				‖
				∇
				𝑢
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				‖
				∇
				𝑑
				‖
			

			
				2
				𝐿
			

			

				2
			

			

				.
			

		
	

On the other hand, since 
	
		
			
				(
				𝑎
				+
				𝑏
				)
			

			

				2
			

			
				≥
				(
				𝑎
			

			

				2
			

			
				/
				2
				)
				−
				𝑏
			

			

				2
			

		
	
, we have
						
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				
				|
				|
				|
				|
				|
				|
				|
				Δ
				𝑑
				+
				∇
				𝑑
			

			

				2
			

			
				𝑑
				|
				|
				|
			

			

				2
			

			
				𝑑
				𝑥
				≥
				‖
				Δ
				𝑑
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				
			
			
				2
				−
				‖
				∇
				𝑑
				‖
			

			
				4
				𝐿
			

			

				4
			

			
				≥
				‖
				Δ
				𝑑
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				
			
			
				2
				−
				𝐶
			

			
				2
				0
			

			
				‖
				∇
				𝑑
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				‖
				Δ
				𝑑
				‖
			

			
				2
				𝐿
			

			

				2
			

			

				.
			

		
	

If the initial data 
	
		
			
				‖
				∇
				𝑑
			

			

				0
			

			

				‖
			

			
				2
				𝐿
			

			

				2
			

			
				<
				(
				1
				/
				𝐶
			

			
				2
				0
			

			
				)
				(
				1
				/
				8
				)
			

		
	
, then there exists 
	
		
			

				𝑇
			

			

				1
			

			
				>
				0
			

		
	
 such that for any 
	
		
			
				𝑡
				∈
				[
				0
				,
				𝑇
			

			

				1
			

			

				]
			

		
	
,
						
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				‖
				∇
				𝑑
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				≤
				1
			

			
				
			
			

				𝐶
			

			
				2
				0
			

			
				⋅
				1
			

			
				
			
			
				4
				.
			

		
	

We denote by 
	
		
			

				𝑇
			

			
				∗
				1
			

		
	
 the maximal time such that (25) holds on 
	
		
			
				[
				0
				,
				𝑇
			

			
				∗
				1
			

			

				]
			

		
	
. Therefore, by (23), (24), and (25), it follows that for any 
	
		
			
				𝑡
				∈
				[
				0
				,
				𝑇
			

			
				∗
				1
			

			

				]
			

		
	
,
						
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			

				𝑑
			

			
				
			
			
				
				|
				|
				|
				|
				𝑑
				𝑡
				∇
				𝑑
			

			

				2
			

			
				1
				𝑑
				𝑥
				+
			

			
				
			
			
				4
				‖
				Δ
				𝑑
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				𝐶
				≤
				4
				3
				2
			

			
				2
				0
			

			
				
			
			
				𝑚
				
				‖
				‖
				√
			

			
				
			
			

				𝜌
			

			

				0
			

			

				𝑢
			

			

				0
			

			
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				‖
				‖
				∇
				𝑑
			

			

				0
			

			
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				
				‖
				∇
				𝑢
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				‖
				∇
				𝑑
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				𝐶
				≤
				4
				3
				2
			

			
				2
				0
			

			
				
			
			
				𝑚
				
				‖
				‖
				√
			

			
				
			
			

				𝜌
			

			

				0
			

			

				𝑢
			

			

				0
			

			
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				1
			

			
				
			
			
				8
				𝐶
			

			
				2
				0
			

			
				
				‖
				∇
				𝑢
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				‖
				∇
				𝑑
				‖
			

			
				2
				𝐿
			

			

				2
			

			

				,
			

		
	

					which gives
						
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				‖
				∇
				𝑑
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				1
			

			
				
			
			
				4
				
			

			
				𝑡
				0
			

			
				‖
				Δ
				𝑑
				(
				𝜏
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				≤
				‖
				‖
				𝑑
				𝜏
				∇
				𝑑
			

			

				0
			

			
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				
				𝐶
				e
				x
				p
				4
				3
				2
			

			
				2
				0
			

			
				
			
			
				𝑚
				
				‖
				‖
				√
			

			
				
			
			

				𝜌
			

			

				0
			

			

				𝑢
			

			

				0
			

			
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				1
			

			
				
			
			
				8
				𝐶
			

			
				2
				0
			

			
				
				×
				
			

			

				𝑇
			

			
				∗
				1
			

			

				0
			

			
				‖
				∇
				𝑢
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				
				≤
				‖
				‖
				𝑑
				𝜏
				∇
				𝑑
			

			

				0
			

			
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				⎡
				⎢
				⎢
				⎣
				𝐶
				e
				x
				p
				2
				1
				6
			

			
				2
				0
			

			
				
			
			
				𝑚
				
				‖
				‖
				√
			

			
				
			
			

				𝜌
			

			

				0
			

			

				𝑢
			

			

				0
			

			
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				1
			

			
				
			
			
				8
				𝐶
			

			
				2
				0
			

			

				
			

			

				2
			

			
				⎤
				⎥
				⎥
				⎦
				≤
				1
			

			
				
			
			
				8
				𝐶
			

			
				2
				0
			

			

				,
			

		
	

					which implies that 
	
		
			

				𝑇
			

			
				∗
				1
			

			
				=
				𝑇
			

		
	
 if the initial data satisfies
						
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			
				‖
				‖
				∇
				𝑑
			

			

				0
			

			
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				⎡
				⎢
				⎢
				⎣
				𝐶
				e
				x
				p
				2
				1
				6
			

			
				2
				0
			

			
				
			
			
				𝑚
				
				‖
				‖
				√
			

			
				
			
			

				𝜌
			

			

				0
			

			

				𝑢
			

			

				0
			

			
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				1
			

			
				
			
			
				8
				𝐶
			

			
				2
				0
			

			

				
			

			

				2
			

			
				⎤
				⎥
				⎥
				⎦
				≤
				1
			

			
				
			
			
				8
				𝐶
			

			
				2
				0
			

			

				.
			

		
	

Let 
	
		
			

				𝑇
			

			

				∗
			

		
	
 be a maximal existence time for the solution 
	
		
			
				(
				𝜌
				,
				𝑢
				,
				𝑑
				)
			

		
	
. Then, (18), (21), and (27) ensure that 
	
		
			

				𝑇
			

			

				∗
			

			
				=
				∞
			

		
	
 by continuity argument.
Testing (3) by 
	
		
			

				𝑢
			

			

				𝑡
			

		
	
, using (1), (18), (21), (22), 
	
		
			
				|
				𝑑
				|
				=
				1
			

		
	
, and the Gagliardo-Nirenberg inequalities, we obtain
						
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				2
				𝑑
			

			
				
			
			
				
				|
				|
				|
				|
				𝑑
				𝑡
				∇
				𝑢
			

			

				2
			

			
				
				𝑑
				𝑥
				+
				𝜌
				𝑢
			

			
				2
				𝑡
			

			
				
				𝑑
				𝑥
				=
				−
				𝜌
				𝑢
				⋅
				∇
				𝑢
				⋅
				𝑢
			

			

				𝑡
			

			
				
				𝑢
				𝑑
				𝑥
				−
			

			

				𝑡
			

			
				‖
				‖
				√
				⋅
				∇
				𝑑
				⋅
				Δ
				𝑑
				𝑑
				𝑥
				≤
				𝐶
			

			
				
			
			
				𝜌
				𝑢
			

			

				𝑡
			

			
				‖
				‖
			

			

				𝐿
			

			

				2
			

			
				
				‖
				𝑢
				‖
			

			

				𝐿
			

			

				4
			

			
				‖
				∇
				𝑢
				‖
			

			

				𝐿
			

			

				4
			

			
				+
				‖
				∇
				𝑑
				‖
			

			

				𝐿
			

			

				4
			

			
				‖
				Δ
				𝑑
				‖
			

			

				𝐿
			

			

				4
			

			
				
				‖
				‖
				√
				≤
				𝐶
			

			
				
			
			
				𝜌
				𝑢
			

			

				𝑡
			

			
				‖
				‖
			

			

				𝐿
			

			

				2
			

			
				
				‖
				𝑢
				‖
			

			
				𝐿
				1
				/
				2
			

			

				2
			

			
				‖
				∇
				𝑢
				‖
			

			

				𝐿
			

			

				2
			

			
				
				‖
				Δ
				𝑢
				‖
			

			
				𝐿
				1
				/
				2
			

			

				2
			

			
				+
				‖
				𝑢
				‖
			

			
				𝐿
				1
				/
				2
			

			

				2
			

			
				
				+
				‖
				∇
				𝑑
				‖
			

			
				𝐿
				1
				/
				2
			

			

				2
			

			
				‖
				Δ
				𝑑
				‖
			

			

				𝐿
			

			

				2
			

			
				
				‖
				∇
				Δ
				𝑑
				‖
			

			
				𝐿
				1
				/
				2
			

			

				2
			

			
				+
				‖
				𝑑
				‖
			

			
				𝐿
				1
				/
				2
			

			

				2
			

			
				‖
				‖
				√
				
				
				≤
				𝐶
			

			
				
			
			
				𝜌
				𝑢
			

			

				𝑡
			

			
				‖
				‖
			

			

				𝐿
			

			

				2
			

			
				
				‖
				∇
				𝑢
				‖
			

			

				𝐿
			

			

				2
			

			
				‖
				Δ
				𝑢
				‖
			

			
				𝐿
				1
				/
				2
			

			

				2
			

			
				+
				‖
				∇
				𝑢
				‖
			

			

				𝐿
			

			

				2
			

			
				+
				‖
				Δ
				𝑑
				‖
			

			

				𝐿
			

			

				2
			

			
				×
				‖
				∇
				Δ
				𝑑
				‖
			

			
				𝐿
				1
				/
				2
			

			

				2
			

			
				+
				‖
				Δ
				𝑑
				‖
			

			

				𝐿
			

			

				2
			

			
				
				.
			

		
	

On the other hand, (3) can be rewritten as
						
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				−
				Δ
				𝑢
				+
				∇
				𝜋
				=
				𝑓
				∶
				=
				−
				𝜌
				𝑢
			

			

				𝑡
			

			
				−
				𝜌
				𝑢
				⋅
				∇
				𝑢
				−
				∇
				⋅
				(
				∇
				𝑑
				⊙
				∇
				𝑑
				)
				.
			

		
	

By the 
	
		
			

				𝐻
			

			

				2
			

		
	
-theory of Stokes system, we have
						
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			
				‖
				Δ
				𝑢
				‖
			

			

				𝐿
			

			

				2
			

			
				≤
				𝐶
				‖
				𝑓
				‖
			

			

				𝐿
			

			

				2
			

			
				‖
				‖
				√
				≤
				𝐶
			

			
				
			
			
				𝜌
				𝑢
			

			

				𝑡
			

			
				‖
				‖
			

			

				𝐿
			

			

				2
			

			
				+
				𝐶
				‖
				𝑢
				‖
			

			

				𝐿
			

			

				4
			

			
				‖
				∇
				𝑢
				‖
			

			

				𝐿
			

			

				4
			

			
				+
				𝐶
				‖
				∇
				𝑑
				‖
			

			

				𝐿
			

			

				4
			

			
				‖
				Δ
				𝑑
				‖
			

			

				𝐿
			

			

				4
			

			
				‖
				‖
				√
				≤
				𝐶
			

			
				
			
			
				𝜌
				𝑢
			

			

				𝑡
			

			
				‖
				‖
			

			

				𝐿
			

			

				2
			

			
				+
				𝐶
				‖
				∇
				𝑢
				‖
			

			

				𝐿
			

			

				2
			

			
				‖
				Δ
				𝑢
				‖
			

			
				𝐿
				1
				/
				2
			

			

				2
			

			
				+
				𝐶
				‖
				∇
				𝑢
				‖
			

			

				𝐿
			

			

				2
			

			
				+
				𝐶
				‖
				Δ
				𝑑
				‖
			

			

				𝐿
			

			

				2
			

			
				‖
				∇
				Δ
				𝑑
				‖
			

			
				𝐿
				1
				/
				2
			

			

				2
			

			
				+
				𝐶
				‖
				Δ
				𝑑
				‖
			

			

				𝐿
			

			

				2
			

			

				,
			

		
	

					which yields
						
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			
				‖
				Δ
				𝑢
				‖
			

			

				𝐿
			

			

				2
			

			
				‖
				‖
				√
				≤
				𝐶
			

			
				
			
			
				𝜌
				𝑢
			

			

				𝑡
			

			
				‖
				‖
			

			

				𝐿
			

			

				2
			

			
				+
				𝐶
				‖
				∇
				𝑢
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝐶
				+
				𝐶
				‖
				Δ
				𝑑
				‖
			

			

				𝐿
			

			

				2
			

			
				‖
				∇
				Δ
				𝑑
				‖
			

			
				𝐿
				1
				/
				2
			

			

				2
			

			
				+
				𝐶
				‖
				Δ
				𝑑
				‖
			

			

				𝐿
			

			

				2
			

			

				.
			

		
	

Inserting (32) into (29), we deduce that
						
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				2
				𝑑
			

			
				
			
			
				
				|
				|
				|
				|
				𝑑
				𝑡
				∇
				𝑢
			

			

				2
			

			
				
				𝑑
				𝑥
				+
				𝜌
				𝑢
			

			
				2
				𝑡
			

			
				‖
				‖
				√
				𝑑
				𝑥
				≤
				𝐶
			

			
				
			
			
				𝜌
				𝑢
			

			

				𝑡
			

			
				‖
				‖
			

			
				𝐿
				3
				/
				2
			

			

				2
			

			
				‖
				∇
				𝑢
				‖
			

			

				𝐿
			

			

				2
			

			
				‖
				‖
				√
				+
				𝐶
			

			
				
			
			
				𝜌
				𝑢
			

			

				𝑡
			

			
				‖
				‖
			

			

				𝐿
			

			

				2
			

			
				
				‖
				∇
				𝑢
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				‖
				∇
				𝑢
				‖
			

			

				𝐿
			

			

				2
			

			
				
				‖
				‖
				√
				+
				𝐶
			

			
				
			
			
				𝜌
				𝑢
			

			

				𝑡
			

			
				‖
				‖
			

			

				𝐿
			

			

				2
			

			
				‖
				Δ
				𝑑
				‖
			

			

				𝐿
			

			

				2
			

			
				‖
				∇
				Δ
				𝑑
				‖
			

			
				𝐿
				1
				/
				2
			

			

				2
			

			
				‖
				‖
				√
				+
				𝐶
			

			
				
			
			
				𝜌
				𝑢
			

			

				𝑡
			

			
				‖
				‖
			

			

				𝐿
			

			

				2
			

			
				‖
				Δ
				𝑑
				‖
			

			

				𝐿
			

			

				2
			

			
				≤
				1
			

			
				
			
			
				8
				‖
				‖
				√
			

			
				
			
			
				𝜌
				𝑢
			

			

				𝑡
			

			
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝐶
				‖
				∇
				𝑢
				‖
			

			
				4
				𝐿
			

			

				2
			

			
				1
				+
				𝐶
				+
			

			
				
			
			
				8
				‖
				∇
				Δ
				𝑑
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝐶
				‖
				Δ
				𝑑
				‖
			

			
				4
				𝐿
			

			

				2
			

			

				.
			

		
	

Applying 
	
		
			

				Δ
			

		
	
 to (4), testing by 
	
		
			
				Δ
				𝑑
			

		
	
, using 
	
		
			
				|
				𝑑
				|
				=
				1
			

		
	
, (21) and (22), and the Gagliardo-Nirenberg inequalities, we have
						
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				2
				𝑑
			

			
				
			
			
				
				|
				|
				|
				|
				𝑑
				𝑡
				Δ
				𝑑
			

			

				2
			

			
				
				|
				|
				|
				|
				𝑑
				𝑥
				+
				∇
				Δ
				𝑑
			

			

				2
			

			
				≤
				
				|
				|
				|
				∇
				
				|
				|
				|
				|
				𝑑
				𝑥
				∇
				𝑑
			

			

				2
			

			
				𝑑
				
				|
				|
				|
				|
				|
				|
				|
				
				|
				|
				|
				|
				|
				|
				|
				|
				
				∇
				Δ
				𝑑
				𝑑
				𝑥
				+
				∇
				(
				𝑢
				⋅
				∇
				𝑑
				)
				∇
				Δ
				𝑑
				𝑑
				𝑥
				≤
				𝐶
				‖
				∇
				𝑑
				‖
			

			
				3
				𝐿
			

			

				6
			

			
				+
				‖
				∇
				𝑑
				‖
			

			

				𝐿
			

			

				4
			

			
				‖
				Δ
				𝑑
				‖
			

			

				𝐿
			

			

				4
			

			
				+
				‖
				𝑢
				‖
			

			

				𝐿
			

			

				4
			

			
				‖
				Δ
				𝑑
				‖
			

			

				𝐿
			

			

				4
			

			
				+
				‖
				∇
				𝑢
				‖
			

			

				𝐿
			

			

				2
			

			
				‖
				∇
				𝑑
				‖
			

			

				𝐿
			

			

				∞
			

			
				
				‖
				∇
				Δ
				𝑑
				‖
			

			

				𝐿
			

			

				2
			

			
				
				≤
				𝐶
				‖
				∇
				𝑑
				‖
			

			

				𝐿
			

			

				2
			

			
				‖
				Δ
				𝑑
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				‖
				Δ
				𝑑
				‖
			

			

				𝐿
			

			

				2
			

			
				‖
				∇
				Δ
				𝑑
				‖
			

			
				𝐿
				1
				/
				2
			

			

				2
			

			
				+
				‖
				Δ
				𝑑
				‖
			

			

				𝐿
			

			

				2
			

			
				+
				‖
				∇
				𝑢
				‖
			

			
				𝐿
				1
				/
				2
			

			

				2
			

			
				‖
				Δ
				𝑑
				‖
			

			
				𝐿
				1
				/
				2
			

			

				2
			

			
				‖
				∇
				Δ
				𝑑
				‖
			

			
				𝐿
				1
				/
				2
			

			

				2
			

			
				+
				‖
				∇
				𝑢
				‖
			

			
				𝐿
				1
				/
				2
			

			

				2
			

			
				‖
				Δ
				𝑑
				‖
			

			
				𝐿
				1
				/
				2
			

			

				2
			

			
				+
				‖
				∇
				𝑢
				‖
			

			

				𝐿
			

			

				2
			

			
				×
				‖
				∇
				𝑑
				‖
			

			
				𝐿
				1
				/
				2
			

			

				2
			

			
				‖
				∇
				Δ
				𝑑
				‖
			

			
				𝐿
				1
				/
				2
			

			

				2
			

			
				
				‖
				∇
				Δ
				𝑑
				‖
			

			

				𝐿
			

			

				2
			

			
				≤
				1
			

			
				
			
			
				8
				‖
				∇
				Δ
				𝑑
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝐶
				‖
				Δ
				𝑑
				‖
			

			
				4
				𝐿
			

			

				2
			

			
				+
				𝐶
				+
				𝐶
				‖
				∇
				𝑢
				‖
			

			
				4
				𝐿
			

			

				2
			

			

				.
			

		
	

Here, we have used the Gagliardo-Nirenberg inequalities
						
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				‖
				∇
				𝑑
				‖
			

			
				3
				𝐿
			

			

				6
			

			
				≤
				𝐶
				‖
				∇
				𝑑
				‖
			

			

				𝐿
			

			

				2
			

			
				‖
				Δ
				𝑑
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				,
				‖
				∇
				𝑑
				‖
			

			
				2
				𝐿
			

			

				∞
			

			
				≤
				‖
				∇
				𝑑
				‖
			

			

				𝐿
			

			

				2
			

			
				‖
				∇
				Δ
				𝑑
				‖
			

			

				𝐿
			

			

				2
			

			
				,
				‖
				Δ
				𝑑
				‖
			

			
				2
				𝐿
			

			

				4
			

			
				≤
				𝐶
				‖
				Δ
				𝑑
				‖
			

			

				𝐿
			

			

				2
			

			
				‖
				∇
				Δ
				𝑑
				‖
			

			

				𝐿
			

			

				2
			

			
				+
				𝐶
				‖
				Δ
				𝑑
				‖
			

			

				𝐿
			

			

				2
			

			

				.
			

		
	

Combining (33) and (34) and using the Gronwall inequality, we have
						
	
 		
 			
				(
				3
				6
				)
			
 			
				(
				3
				7
				)
			
 			
				(
				3
				8
				)
			
 		
	

	
		
			
				‖
				𝑢
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				0
				,
				𝑇
				;
				𝐻
			

			

				1
			

			

				)
			

			
				+
				‖
				𝑢
				‖
			

			

				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝐻
			

			

				2
			

			

				)
			

			
				‖
				‖
				√
				≤
				𝐶
				,
			

			
				
			
			
				𝜌
				𝑢
			

			

				𝑡
			

			
				‖
				‖
			

			

				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝐿
			

			

				2
			

			

				)
			

			
				≤
				𝐶
				,
				‖
				𝑑
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				0
				,
				𝑇
				;
				𝐻
			

			

				2
			

			

				)
			

			
				+
				‖
				𝑑
				‖
			

			

				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝐻
			

			

				3
			

			

				)
			

			
				≤
				𝐶
				.
			

		
	

Now, by the similar calculations as those in [17], we arrive at
						
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			
				‖
				‖
				
				𝑢
			

			

				𝑡
			

			
				,
				∇
				𝑑
			

			

				𝑡
			

			
				
				‖
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				0
				,
				𝑇
				;
				𝐿
			

			

				2
			

			
				)
				∩
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝐻
			

			

				1
			

			

				)
			

			
				≤
				𝐶
				,
				‖
				(
				𝑢
				,
				∇
				𝑑
				)
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				0
				,
				𝑇
				;
				𝐻
			

			

				2
			

			

				)
			

			
				≤
				𝐶
				,
				‖
				𝑢
				‖
			

			

				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑊
			

			
				2
				,
				𝑠
			

			

				)
			

			
				≤
				𝐶
				f
				o
				r
				s
				o
				m
				e
				𝑠
				>
				2
				,
				‖
				𝜌
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				0
				,
				𝑇
				;
				𝑊
			

			
				1
				,
				𝑟
			

			

				)
			

			
				‖
				‖
				𝜌
				≤
				𝐶
				,
			

			

				𝑡
			

			
				‖
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				0
				,
				𝑇
				;
				𝐿
			

			

				𝑟
			

			

				)
			

			
				≤
				𝐶
				.
			

		
	

This completes the proof.
3. Proof of Theorem 3
This section is devoted to the proof of Theorem 3. By the results in [9], we only need to prove (9).
Similar to (21), we still have
						
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			
				
				
				𝑢
			

			

				2
			

			
				+
				|
				|
				|
				|
				∇
				𝑑
			

			

				2
			

			
				
				
				𝑑
				𝑥
				+
				2
			

			
				𝑇
				0
			

			
				
				
				|
				|
				|
				|
				∇
				𝑢
			

			

				2
			

			
				+
				|
				|
				|
				|
				|
				|
				|
				Δ
				𝑑
				+
				∇
				𝑑
			

			

				2
			

			
				𝑑
				|
				|
				|
				
				≤
				
				
				𝑢
				𝑑
				𝑥
				𝑑
				𝑡
			

			
				2
				0
			

			
				+
				|
				|
				∇
				𝑑
			

			

				0
			

			
				|
				|
			

			

				2
			

			
				
				𝑑
				𝑥
				.
			

		
	

We will use the following Gagliardo-Nirenberg inequalities:
						
	
 		
 			
				(
				4
				1
				)
			
 			
				(
				4
				2
				)
			
 		
	

	
		
			
				‖
				𝑢
				‖
			

			

				𝐿
			

			
				2
				𝑝
				/
				(
				𝑝
				−
				2
				)
			

			
				≤
				𝐶
				‖
				𝑢
				‖
			

			
				𝐿
				1
				−
				(
				2
				/
				𝑝
				)
			

			

				2
			

			
				‖
				∇
				𝑢
				‖
			

			
				𝐿
				2
				/
				𝑝
			

			

				2
			

			
				,
				‖
				∇
				𝑑
				‖
			

			

				𝐿
			

			
				2
				𝑝
				/
				(
				𝑝
				−
				2
				)
			

			
				≤
				𝐶
				‖
				∇
				𝑑
				‖
			

			
				𝐿
				1
				−
				(
				2
				/
				𝑝
				)
			

			

				2
			

			
				‖
				Δ
				𝑑
				‖
			

			
				𝐿
				2
				/
				𝑝
			

			

				2
			

			
				+
				𝐶
				‖
				∇
				𝑑
				‖
			

			

				𝐿
			

			

				2
			

			

				.
			

		
	

Testing (14) by 
	
		
			
				−
				Δ
				𝑑
			

		
	
, using 
	
		
			
				|
				𝑑
				|
				=
				1
			

		
	
, (40), (41), and (42), we have
						
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				2
				𝑑
			

			
				
			
			
				
				|
				|
				|
				|
				𝑑
				𝑡
				∇
				𝑑
			

			

				2
			

			
				
				|
				|
				|
				|
				𝑑
				𝑥
				+
				Δ
				𝑑
			

			

				2
			

			
				=
				
				
				|
				|
				|
				|
				𝑑
				𝑥
				𝑢
				⋅
				∇
				𝑑
				−
				∇
				𝑑
			

			

				2
			

			
				𝑑
				
				≤
				
				Δ
				𝑑
				𝑑
				𝑥
				‖
				𝑢
				‖
			

			

				𝐿
			

			
				2
				𝑝
				/
				(
				𝑝
				−
				2
				)
			

			
				‖
				∇
				𝑑
				‖
			

			

				𝐿
			

			

				𝑝
			

			
				+
				‖
				∇
				𝑑
				‖
			

			

				𝐿
			

			

				𝑝
			

			
				‖
				∇
				𝑑
				‖
			

			

				𝐿
			

			
				2
				𝑝
				/
				(
				𝑝
				−
				2
				)
			

			
				
				‖
				Δ
				𝑑
				‖
			

			

				𝐿
			

			

				2
			

			
				≤
				𝐶
				‖
				∇
				𝑑
				‖
			

			

				𝐿
			

			

				𝑝
			

			
				
				‖
				𝑢
				‖
			

			
				𝐿
				1
				−
				(
				2
				/
				𝑝
				)
			

			

				2
			

			
				‖
				∇
				𝑢
				‖
			

			
				𝐿
				2
				/
				𝑝
			

			

				2
			

			
				+
				‖
				∇
				𝑑
				‖
			

			

				𝐿
			

			

				2
			

			
				+
				‖
				∇
				𝑑
				‖
			

			
				𝐿
				1
				−
				(
				2
				/
				𝑝
				)
			

			

				2
			

			
				‖
				Δ
				𝑑
				‖
			

			
				𝐿
				2
				/
				𝑝
			

			

				2
			

			
				
				‖
				Δ
				𝑑
				‖
			

			

				𝐿
			

			

				2
			

			
				≤
				𝐶
				‖
				∇
				𝑑
				‖
			

			

				𝐿
			

			

				𝑝
			

			
				
				‖
				∇
				𝑢
				‖
			

			
				𝐿
				2
				/
				𝑝
			

			

				2
			

			
				+
				1
				+
				‖
				Δ
				𝑑
				‖
			

			
				𝐿
				2
				/
				𝑝
			

			

				2
			

			
				
				‖
				Δ
				𝑑
				‖
			

			

				𝐿
			

			

				2
			

			
				≤
				1
			

			
				
			
			
				4
				‖
				Δ
				𝑑
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝐶
				‖
				∇
				𝑑
				‖
			

			
				2
				𝐿
			

			

				𝑝
			

			
				
				‖
				∇
				𝑢
				‖
			

			
				𝐿
				4
				/
				𝑝
			

			

				2
			

			
				+
				1
				+
				‖
				Δ
				𝑑
				‖
			

			
				𝐿
				4
				/
				𝑝
			

			

				2
			

			
				
				≤
				1
			

			
				
			
			
				2
				‖
				Δ
				𝑑
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				‖
				∇
				𝑢
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				+
				𝐶
				‖
				∇
				𝑑
				‖
			

			
				𝐿
				2
				𝑝
				/
				(
				𝑝
				−
				2
				)
			

			

				𝑝
			

			
				+
				𝐶
				,
			

		
	

					which gives (9).
This completes the proof.
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