Boundary Stabilization of a Nonlinear Viscoelastic Equation with Interior Time-Varying Delay and Nonlinear Dissipative Boundary Feedback

Zaiyun Zhang, Jianhua Huang, Zhenhai Liu, and Mingbao Sun

1 College of Science, National University of Defense Technology, Changsha, Hunan 410083, China
2 School of Mathematics, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
3 School of Mathematics and Computer Science, Guangxi University for Nationalities, Nanning, Guangxi 530006, China

Correspondence should be addressed to Zaiyun Zhang; zhangzaiyun1226@126.com

Received 22 January 2014; Revised 2 May 2014; Accepted 16 May 2014; Published 9 June 2014

Copyright © 2014 Zaiyun Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We investigate a nonlinear viscoelastic equation with interior time-varying delay and nonlinear dissipative boundary feedback. Under suitable assumptions on the relaxation function and time-varying delay effect together with nonlinear dissipative boundary feedback, we prove the global existence of weak solutions and asymptotic behavior of the energy by using the Faedo-Galerkin method and the perturbed energy method, respectively. This result improves earlier ones in the literature, such as Kirane and Said-Houari (2011) and Ammari et al. (2010). Moreover, we give an positive answer to the open problem given by Kirane and Said-Houari (2011).

1. Introduction

In this paper, we consider the global existence and asymptotic behavior of a nonlinear viscoelastic equation with interior time-varying delay and nonlinear dissipative boundary feedback as follows:

\[u_{tt} - \Delta u + \int_0^t h(t-s) \Delta u(s) \, ds + au_t(x,t-\tau(t)) = 0, \]
\[x \in \Omega, \quad t > 0, \]
\[u(x,t) = 0, \quad \text{on} \quad \Gamma_0 \times (0,\infty), \]
\[\frac{\partial u}{\partial v} + g(u_t(x,t)) = 0, \quad \text{on} \quad \Gamma_1 \times [0,\infty), \]
\[u(x,0) = u_0(x), \quad u_t(x,0) = u_1(x), \quad x \in \Omega, \]
\[u_t(x,t-\tau(t)) = f_0(x,t), \quad x \in \Omega, \quad -\tau(0) \leq t \leq 0, \]

where \(\Omega \) is a bounded domain of \(\mathbb{R}^n \) (\(n \geq 1 \)) with a smooth boundary \(\partial \Omega \) of \(C^2 \), \(a \) is a positive real constant, \(\tau(t) \) represents the time-varying delay effect and the initial data \(u_0, u_1, f_0 \) are given functions belonging to suitable spaces, \(h(t) \) is a positive function that represents the kernel of the memory term, \(g(u_t) \) is nonlinear dissipative boundary feedback, and \(f_0, h, g \) satisfy suitable assumptions (see in Section 2).

This model appears in viscoelasticity (see [1, 2]). In the case of velocity-dependent material density (i.e., \(\rho = 0 \)) as well as presence of \(\mu_2 = 0 \) and in the absence of the memory effect (i.e., \(g = 0 \)), (1) reduces to the wave equation. There is large literature on the global existence and uniform stabilization of wave equations. We refer the readers to [3–5]. It is worth mentioning that Zhang and Miao [3] considered the nonlinear wave equation with dissipative term and boundary damping

\[u_{tt} - \Delta u + a(x)u_t + f(u) = 0, \quad \text{in} \quad \Omega \times [0,\infty), \]
\[u = 0, \quad \text{on} \quad \Gamma_1 \times [0,\infty), \]
\[\frac{\partial u}{\partial v} + g(u_t) = 0, \quad \text{on} \quad \Gamma_0 \times [0,\infty), \]
\[u(x,0) = u_0(x), \quad u_t(x,0) = u_1(x), \quad \text{in} \quad \Omega, \]

This research article is available at http://dx.doi.org/10.1155/2014/102594.
and they proved the existence and uniform decay of strong and weak solutions by using the Glerkin method and the multiplier technique, respectively. Later on, Zhang et al. [4] improved earlier ones in [3]. More precisely, they investigated the global existence and uniform stabilization of generalized dissipative Klein-Gordon equation with boundary damping

\[u_{tt} - \Delta u + b(x) u_t + f(u) + h(\nabla u) = 0, \quad \text{in } \Omega \times (0, \infty), \]

\[u = 0, \quad \text{on } \Gamma_1 \times (0, \infty), \]

\[\frac{\partial u}{\partial n} + g(u_t) = 0, \quad \text{on } \Gamma_0 \times (0, \infty), \]

\[u(x, 0) = u^0(x), \quad u_t(x, 0) = u^1(x), \quad \text{in } \Omega, \]

(3)

and they proved the existence and uniform decay of strong and weak solutions by using the nonlinear semigroup method, the perturbed energy method, and the multiplier technique. Quite recently, Cavalcanti et al. [6] considered the following model:

\[u_{tt} - \Delta_g u + a(x) g(u_t) = 0, \quad \text{on } \mathcal{M} \times (0, \infty), \]

\[u(x, 0) = u^0(x), \quad u_t(x, 0) = u^1(x), \quad \text{for } x \in \mathcal{M}, \]

(4)

where \(\mathcal{M} \) is a smooth oriented embedded compact surface without boundary in \(\mathbb{R}^3 \) and \(\Delta_g \) is the Laplace-Beltrami operator on manifold \(\mathcal{M} \); furthermore, they obtained explicit and optimal decay rates of the energy. Later on, Cavalcanti et al. [7] extended the result for \(n \)-dimensional compact Riemannian manifolds \((\mathcal{M}, g) \) with boundary in two ways: (i) by reducing arbitrarily the region where the dissipative effect lies (this gives us a totally sharp result with respect to the boundary measure and interior measure where the damping is effective) and (ii) by controlling the existence of subsets on the manifold that can be left without any dissipative mechanism, namely, a precise part of radially symmetric subsets. An analogous result holds for compact Riemannian manifolds without boundary.

In the case \(\rho = 0 \) and in the absence of delay (i.e., \(\mu_2 = 0 \)), there is large literature on the existence and decay of nonlinear viscoelastic equation during the past decades. In [8], Cavalcanti et al. considered the exponential decay for the solution of viscoelastic wave equation with localized damping

\[|u_t|^p u_{tt} - \Delta u + \int_0^t g(t - s) \Delta u(s) \, ds + a(x) u_t + u|u|^\gamma = 0, \quad x \in \Omega, \quad t > 0. \]

(5)

Under the condition that \(a(x) \geq a_0 > 0 \) on \(\omega \subset \Omega \), with \(\omega \) satisfying some geometry restrictions and

\[-\xi_1 g(t) \leq g'(t) \leq -\xi_2 g(t), \quad t \geq 0, \]

(6)

they proved an exponential decay result for the energy. Berrimi and Messaoudi [9] improved Cavalcanti’s result by introducing a differential functional which allowed to weaken the conditions on both \(a(x) \) and \(g \). In [10], Cavalcanti and Oquendo studied

\[|u_t|^p u_{tt} - k_0 \Delta u + \int_0^t \text{div} \left[a(x) g(t - s) \nabla u(s) \right] \, ds + b(x) h(u_t) + f(u) = 0, \quad x \in \Omega, \quad t > 0. \]

(7)

Under some geometric restrictions on \(\omega \) and assuming that

\[a(x) \geq a_0 > 0, \quad \forall x \in \omega, \]

\[-\xi_1 g(t) \leq g'(t) \leq -\xi_2 g(t), \quad t \geq 0, \]

(8)

\[a(x) + b(x) \geq \rho > 0, \quad \forall x \in \Omega, \]

they established an exponential stability for the relaxation function \(g \) decaying exponentially and \(h \) linear and polynomial stability for \(g \) decaying polynomially and \(h \) nonlinear. It is worth mentioning that Zhang et al. [11] studied the following initial boundary value problem:

\[u_{tt} + Au + \int_0^t g(t - s) Au \, ds = 0 \quad \text{in } \Omega \times (0, \infty), \]

\[u = 0 \quad \text{on } \Gamma \times (0, \infty), \]

\[u(0) = u_0, \quad u_t(0) = u_1, \]

(9)

Furthermore, they showed that the solutions of (9) decay uniformly in time, with rates depending on the rate of decay of the kernel \(g \). More precisely, the solution decays exponentially to zero provided that \(g \) decays exponentially to zero. When \(g \) decays polynomially, we show that the corresponding solution also decays polynomially to zero with the same rate of decay. For other related works, we refer the readers to [12–21] and the references therein.

On the other hand, concerning the study of the following nonlinear viscoelastic equation with memory, there are a substantial number of contributions:

\[|u_t|^p u_{tt} - \Delta u + \int_0^t g(t - s) \Delta u(s) \, ds + F(u, u_t, u_{tt}) = 0. \]

(10)

Recently, Han and Wang [22] investigated the following problem:

\[|u_t|^p u_{tt} - \Delta u - \Delta u_{tt} + \int_0^t g(t - s) \Delta u(s) \, ds = b|u|^{p-2} u. \]

(11)

By introducing a new functional and using potential well method, the authors established the global existence and uniform decay if the initial data are in a suitable stable set. Cavalcanti et al. [23] studied a related problem with strong damping as follows:

\[|u_t|^p u_{tt} - \Delta u - \Delta u_{tt} + \int_0^t g(t - s) \Delta u(s) \, ds - \gamma \Delta u_t = 0. \]

(12)

By assuming \(0 < \rho \leq 2/(n - 2) \), if \(n \geq 3 \) or \(\rho > 0 \) and if \(n = 1, 2 \) and \(g(t) \) decays exponentially, they established that the global
existence resulted for $\gamma \geq 0$ and the exponential decay of the energy for $\gamma > 0$. This result has been extended to a situation $\gamma = 0$ by Messaoudi and Tatar [24] and exponential decay and polynomial decay results have been shown in the absence as well as presence of a source term. Later on, inspired by the ideas of [25–27], Han and Wang [22] investigated the general decay of solutions of energy for the nonlinear viscoelastic equation

$$|u_1|^p u_{tt} - \Delta u - \Delta u_{tt} + \int_0^t g(t-s) \Delta u(s) \, ds + u_1 |u_t|^k = 0.$$

(13)

In recent years, the control of partial differential equation with time delay effects has become an active area of research; see, for instance, [28, 29] and the references therein. The presence of delay may be a source of instability. For instance, it was proved in [30–34] that an arbitrarily small delay may destabilize a system which is uniformly asymptotically stable in the absence unless additional conditions or control terms have been used. In [32], Nicaise and Pignotti examined (1) with $\rho = 0, g \equiv 0, \mu_1 > 0, \mu_2 > 0$, and $r(t) = \tau$ being a constant delay in the case of mixed homogeneous Dirichlet-Neumann boundary conditions, under a geometric condition on the Neumann part of the boundary. More precisely, they investigated the following system with linear fractional damping term and internal constant delay:

$$u_{tt}(x,t) - \Delta u(x,t) + \mu_1 u_t(x,t) + \mu_2 u_t(x,t-\tau) = 0,$$

$$x \in \Omega, \quad t > 0$$

$$u(x,t) = 0, \quad x \in \Gamma_0, \quad t > 0$$

or with boundary constant delay

$$u_{tt}(x,t) - \Delta u(x,t) = 0,$$

$$x \in \Omega, \quad t > 0$$

$$u(x,t) = 0, \quad x \in \Gamma_0, \quad t > 0,$$

$$\frac{\partial u}{\partial \nu}(x,t) + \mu_1 u_t(x,t) + \mu_2 u_t(x,t-\tau) = 0,$$

$$x \in \Gamma_1, \quad t > 0.$$

(14)

(15)

In the presence of delay ($\mu_2 > 0$), Nicaise and Pignotti [32] examined systems (14) and (15) and proved under the assumptions $\mu_2 < \mu_1$ that the energy is exponentially stable. Otherwise, they constructed a sequence of delays for which the corresponding solution is unstable. The main approach used there is an observability inequality together with a Carleman estimate. See also [35] for treatment to these problems in more general abstract form and [36] for analogous results in the case of boundary wave equation varying delay. We also recall the result by Nicaise et al. [36], where the researchers proved the same result as in [32] for the one space dimension by applying the spectral analysis approach. Recently, Kirane and Said-Houari [37] considered (1) with $\rho = 0, \mu_1 > 0, \mu_2 > 0$, and $r(t) \equiv \tau$ being a constant delay in the case of the initial and Dirichlet boundary wave equation with a linear damping and a delay term as follows:

$$u_{tt} - \Delta u + \int_0^t g(t-s) \Delta u(s) \, ds + \mu_1 u_t(x,t) + \mu_2 u_t(x,t-\tau) = 0,$$

$$x \in \Omega, \quad t > 0,$$

$$u(x,t) = 0, \quad x \in \partial \Omega, \quad t > 0,$$

$$u(x,0) = u_0(x), \quad u_t(x,0) = u_t(x), \quad x \in \Omega,$$

$$u(x,t-\tau) = f_0(x,t-\tau), \quad x \in \Omega, \quad t \in (0,\tau).$$

(16)

Under an assumption between the weight of the delay term in the feedback and the weight of the term without delay, using the Faedo-Galerkin method combined with some energy estimate, they proved the global existence of (16). Also, they proved exponential decay of (16) via suitable Lyapunov functionals.

Recently, the stability of PDEs with time-varying delays was studied in [38–44]. In [40], Nicaise and Pignotti investigated the stabilization problem by interior damping of the wave equation with internal time-varying delay feedback and established exponential stability estimates by introducing suitable Lyapunov functionals, under the condition $|\mu_i| < \sqrt{1-d\mu_i}$ in which the positivity of the coefficient μ_i is not necessary. In [41], Nicaise et al. showed the exponential stability of the heat and wave equations with time-varying boundary delay in 1-D, under the condition $0 \leq \mu_2 < \sqrt{1-d\mu_i}$, where d is a constant such that $r'(t) \leq d < 1$.

The rest of the paper is organized as follows. In Section 2, we show some assumptions and state our main result. In Section 3, we present the proof of our main result. That is, we will prove the global existence by using Faedo-Galerkin method and establish the general decay result (including exponential decay and polynomial decay) by using the perturbed energy method. Finally, in Section 4, we give further remarks on this context.

2. Some Assumptions and Main Results

In this section, before proceeding to our analysis, we present some assumptions and state the main result. We use the standard Hilbert space $L^2(\Omega)$ and the Sobolev space $H^1_0(\Omega)$ with their usual scalar products and norms. Throughout this paper, C_i is used to denote a generic positive constant from line to line.

For the relaxation function h, we assume that

(G1) $h(t) : (0, \infty) \rightarrow (0, \infty)$ is a nonincreasing differentiable function such that

$$1 - \int_0^{\infty} h(s) \, ds = l > 0;$$

(17)

(G2) there exists a nonincreasing differentiable function $\zeta(t)$ such that

$$h'(t) \leq -\zeta(t) h^p(t), \quad 1 \leq p < \frac{3}{2}, \quad t \geq 0.$$

(18)
We assume that ρ satisfies
\[
0 < \rho \leq \frac{2}{n-2}, \quad \text{if } n \geq 3; \quad \rho > 0, \quad \text{if } n = 1, 2.
\] (19)

For the time-varying delay, we assume that there exist positive constant $\tau_0, \bar{\tau}$ such that
\[
0 < \tau_0 \leq \tau (t) \leq \bar{\tau}, \quad \forall t > 0.
\] (20)

Furthermore, we assume that the delay satisfies
\[
\tau (t) \leq d < 1, \quad \forall t > 0,
\] (21)

that
\[
\tau (t) \in W^{2,\infty} ([0, T]), \quad \forall T > 0,
\] (22)

and that μ_1, μ_2 satisfy
\[
|\mu_2| < \sqrt{1 - d}\mu_1.
\] (23)

Remark 1. We show an example of functions satisfying (G2) as follows:
\[
h (s) = e^{-\sigma s}, \quad p = 1,
\] (24)
\[
h (s) = \theta (1 + s)^{-1/(p-1)}, \quad p > 1,
\]
for $\sigma, \theta > 0$ to be chosen properly; see [2].

Remark 2. Condition $p < 3/2$ is imposed so that
\[
\int_0^\infty h^{-p} (s) ds < \infty.
\]

Now, we are in a position to state our main results.

Theorem 3. Let (20)–(23) be satisfied and h satisfy (G2). Then, given $(u_0, u_1) \in H_0^1 (\Omega) \times L^2 (\Omega)$, $f_0 \in L^2 (\Omega \times (0, 1))$, and $T > 0$, there exists a unique weak solution $u(x, t)$ such that
\[
u \in C \left(0, T; H_0^1 (\Omega) \right) \cap C^1 \left(0, T; L^2 (\Omega) \right),
\]
\[
u_1 \in L^2 \left(0, T; H_0^1 (\Omega) \right) \cap L^2 \left(0, T; L^2 (\Omega) \times \Omega \right).
\] (25)

Moreover, if (20)–(23) hold and h satisfies (G1) and (G2), then there exist two positive constants K, k such that for any solution of the problem (1) of the energy satisfies
\[
\mathcal{E} (t) \leq Ke^{-\lambda t}, \quad p = 1, \quad t \geq t_0,
\] (26)
\[
\mathcal{E} (t) \leq K (1 + t)^{-1/(p-1)}, \quad p > 1, \quad t \geq t_0.
\] (27)

3. Proof of the Main Result

In this section, we will divide our proof into two steps. In Step 1, we prove the global existence of weak solutions by using Faedo-Galerkin method benefited from the ideas of [2, 3, 37]. In Step 2, we establish the general decay of energy by introducing the new energy functional and using the perturbed energy method inspired by the contributions; see, for instance, [2–4, 11, 39].

Step 1 (global existence of weak solutions). Let $\{\omega_j^{\infty}\}$ be an orthogonal basis of $H_0^1 (\Omega)$ with ω_j being the eigenfunction of the following problem:
\[
-\Delta \omega_j = \lambda_j \omega_j, \quad x \in \Omega,
\]
\[
\omega_j = 0, \quad x \in \partial \Omega.
\] (28)

Denote $W_n = \text{Span} \{\omega_1, \omega_2, \ldots, \omega_n\}$ for subspace generated by the first n vectors of the basis of $\{\omega_j^{\infty}\}$. Then, we construct approximation of the solution (u, z) as follows:
\[
u_n (x, t) = \sum_{j=1}^n \phi_j (x) \omega_j,
\]
\[
z_n (x, t, \rho) = \sum_{j=1}^m \phi_j (x) \rho_j (x, \rho),
\] (29)

and we choose two sequences u_{0n} and u_{1n} in W_n and a sequence z_{0n} in V_n such that $u_{0n} \to u_0$ strongly in $H_0^1 (\Omega), u_{1n} \to u_1$ strongly in $L^2 (\Omega)$, and $z_{0n} \to f_0$ strongly in $L^2 (\Omega \times (0, 1))$. Define the sequence $\phi_j (x, \rho)$ as follows:
\[
\phi_j (x, 0) = \phi_j (x).
\]

Then, from [37, pp 1069], we may extend $\phi_j (x, 0)$ by $\phi_j (x, \rho)$ over $L^2 (\Omega \times (0, 1))$ and denote $V_n = \text{Span} \{\phi_1, \phi_2, \ldots, \phi_n\}$.

To facilitate further our analysis, we introduce as in [32, 36, 39] the new variable
\[
z (x, \theta, t) = u_t (x, t - \tau (t) \theta), \quad x \in \Omega, \quad \theta \in (0, 1), \quad t > 0.
\] (30)

Then, we get
\[
\tau (t) z (x, \theta, t) + \left(1 - \tau (t) \theta \right) z_0 (x, \theta, t) = 0, \quad x \in \Omega, \quad \theta \in (0, 1), \quad t > 0.
\] (31)

Therefore, the problem (1) can be rewritten as follows:
\[
\left| u_t \right|^p u_{tt} - \Delta u + \int_0^t h (t - s) \Delta u (s) ds + \mu_1 u_t (x, t) + \mu_2 \zeta (x, 1, t) = 0, \quad x \in \Omega, \quad t > 0,
\]
\[
\tau (t) z (x, \theta, t) + \left(1 - \tau (t) \theta \right) z_0 (x, \theta, t) = 0, \quad x \in \Omega, \quad \theta \in (0, 1), \quad t > 0.
\] (32)

Therefore, the problem (1) can be rewritten as follows:
\[
u (x, t) = 0, \quad x \in \partial \Omega, \quad t > 0,
\]
\[
u (x, 0) = u_0 (x), \quad \nu_t (x, 0) = u_1 (x), \quad x \in \Omega,
\]
\[
z (x, \theta, t) = f_0 (x, -\tau (0)), \quad x \in \Omega, \quad \theta \in (0, 1), \quad -\tau (0) \leq t \leq 0.
\]
Hence, \((u_n(t), z_n(t))\) are solutions to the following Cauchy problem as follows:

\[
\int_{\Omega} |u_n|^p u_n \omega_j dx + \int_{\Omega} \nabla u_n \nabla \omega_j dx
- \int_0^t h(t-s) \nabla u(s) \nabla \omega_j ds
+ \int_{\Omega} [\mu_1 u_n(x,t) + \mu_2 z_n(x,1,t)] \omega_j dx = 0,
\]

\[z_n(x,0,t) = u_n(x,t), \quad (u_n(0),u_n(0)) = (u_{0n},u_{1n}), \quad \int_{\Omega} \tau(t) z_n(x,\theta,t) + (1-\tau(t) \theta) z_{n0}(x,\theta,t) \phi_j dx = 0, \]

\[z_{n0} = z_{0n}. \tag{34} \]

By standard method of ODE, we know that there exists only one local solution of the Cauchy problem (33) and (34) on one local solution of the Cauchy problem (33) and (34) on some interval \([0,t_n]\), \(0 < t_n < T\), for arbitrary \(T > 0\); then, this solution can be extended to the whole interval \([0,T]\) by a priori estimates below.

To facilitate further our analysis, we need some notations and technical Lemmas 4 and 6. Let us first introduce some notations

\[(\phi \ast \psi)(t) = \int_0^t \phi(t-s) \psi(s) ds;\]

\[(\phi \circ \psi)(t) = \int_0^t \phi(t-s) \psi(t) - \psi(s) ds, \tag{35} \]

\[(\phi \cdot \psi)(t) = \int_0^t \phi(t-s) \int_{\Omega} |\psi(t) - \psi(s)|^2 d\Omega ds, \tag{36} \]

with these notations; we have the following lemma given in [2, 11].

Lemma 4. For \(\phi \in C^1(\mathcal{R})\) and \(\psi \in H^1(0,T)\), one has

\[(\phi \ast \psi)(t) \cdot \psi(t) = -\frac{1}{2} \frac{d}{dt} \left((\phi \cdot \psi)(t) \right) - \frac{1}{2} \int_0^t \phi(s) ds \left| \psi(s) \right|^2 ds. \]

Remark 5. In fact, the proof of this lemma follows by differentiating the term \(g \phi \psi\). More details are presented in [2, 11, 37].

Lemma 6. Assuming that \(v \in L^{\infty}(0,T;H^1(\Omega))\), \(h\) is a continuous function such that

\[
\int_0^\infty h^{1-\alpha}(s) ds < \infty, \quad 0 \leq \alpha \leq 1. \tag{37} \]

Then, we have

\[
(h \ast v)(t) \leq 2 \left(\int_0^t \left(\int_0^s |v(s)|^2 ds + t \|v(t)\|_2^2 \right)^{(p-1)/p} \right) \times ((h \ast v)(t))^{1/p}. \tag{38} \]

Proof. It suffices to observe that, for \(q > 1, 0 \leq \alpha \leq 1\),

\[
(h \ast v)(t) = \int_0^t h(t-s) \|v(t) - v(s)\|_2^2 ds = \int_0^t h^{\alpha/(q-1)}(t-s) \|v(t) - v(s)\|_2^2 ds. \tag{39} \]

By applying Hölder inequality, we obtain

\[
(h \ast v)(t) \leq \left(\int_0^t h^{\alpha/(q-1)}(t-s) \|v(t) - v(s)\|_2^2 ds \right)^{1/q} \times \left(\int_0^t h^{\alpha/(q-1)}(t-s) \|v(t) - v(s)\|_2^2 ds \right)^{(q-1)/q}. \tag{40} \]

Taking \(q = (p-1+\alpha)/(p-1)\), we get

\[
(h \ast v)(t) \leq \left(\int_0^t h^{\alpha/(p-1)/(p-1+\alpha)}(t-s) \|v(t) - v(s)\|_2^2 ds \right)^{(p-1)/(p-1+\alpha)} \times \left(\int_0^t h^{\alpha/(p-1)/(p-1+\alpha)}(t-s) \|v(t) - v(s)\|_2^2 ds \right)^{\alpha/(p-1+\alpha)}. \tag{41} \]

Finally, taking \(\alpha = 1\) in the above equality, Lemma 6 is completed. \(\square\)

3.1. A Priori Estimate. Taking \(\omega_j = u_n\) in (33) and integrating over \((0,t)\), using integration by parts and Lemma 4, we obtain

\[
\frac{1}{2} \left(1 - \int_0^t h(s) ds \right) \|v_{u_n}\|_2^2 + \frac{2}{\rho+2} \|u_{n(t)}\|_{\rho+2}^2 + (h \circ v_{u_n})(t) \right] + \mu_1 \int_0^t \|u_{n(t)}\|_{\rho+2}^2 ds + \mu_2 \int_0^t \int_{\Omega} z_n(x,1,s) u_n(x,s) dx ds + \frac{1}{2} \int_0^t h(s) \|v_{u_n}(s)\|_2^2 ds - \frac{1}{2} \int_0^t (h' \circ v_{u_n})(s) ds = \frac{1}{2} \left(\|v_{u_0}\|_2^2 + \frac{2}{\rho+2} \|u_{1(t)}\|_{\rho+2}^2 \right). \tag{42} \]
Taking \(\phi_j = z_n(\xi/\tau(t)) \) in (34) and integrating over \((0, t)\), we get
\[
\frac{\xi}{2} \int_0^t \int_0^1 z_n^2(x, \theta, t) d\theta dx \\
+ \int \int \left(1 - \frac{\theta(t)}{\tau(t)} \right) z_n d\theta d\tau \int_0^t z_n^2(x, \theta) d\theta dx ds \tag{43}
\]
\[
= \frac{\xi}{2} \|z_n\|_{L^2(\Omega \times (0, 1))}^2.
\]
Now, integrating by parts, we obtain
\[
\int \int \left(1 - \frac{\theta(t)}{\tau(t)} \right) z_n d\theta d\tau \int_0^t z_n^2(x, \theta) d\theta dx ds \tag{44}
\]
It follows from (43) and (44) that
\[
\frac{\xi}{2} \int_0^t \int_0^1 z_n^2(x, \theta, t) d\theta dx \\
+ \int \int \left(1 - \frac{\theta(t)}{\tau(t)} \right) z_n d\theta d\tau \int_0^t z_n^2(x, \theta) d\theta dx ds \\
+ \frac{1}{2} \int_0^t \int_0^1 \left(1 - \frac{\theta(t)}{\tau(t)} \right) z_n^2(x, \theta) d\theta dx ds \\
= \frac{\xi}{2} \|z_n\|_{L^2(\Omega \times (0, 1))}^2.
\]
Summing up (42) and (45), we conclude that
\[
\mathcal{S}_n(t) + \mu_1 \int_0^t \|u_n\|_{L^2_x}^2 ds + \mu_2 \int_0^t \int_0^1 z_n(x, 1, s) u_{n, t}(x, s) d\theta dx ds \\
+ \frac{1}{2} \int_0^t \left(h(s) \|\nabla u_n(s)\|_{L^2_x}^2 - \frac{1}{2} \right) (h' \circ \nabla u_n)(s) ds \\
+ \frac{\xi}{2} \int_0^t \int_0^1 \left(1 - \frac{\theta(t)}{\tau(t)} \right) z_n^2(x, \theta, s) d\theta dx ds \\
+ \frac{1}{2} \int_0^t \int_0^1 \left(1 - \frac{\theta(t)}{\tau(t)} \right) z_n^2(x, \theta, s) d\theta dx ds \\
= \frac{1}{2} \|\nabla u_n\|_{L^2_x}^2 + \frac{1}{\rho + 2} \|u_n\|_{H^{\rho+2}_x}^\rho + \frac{\xi}{2} \|z_n\|_{L^2(\Omega \times (0, 1))}^2 = \mathcal{S}_n(0),
\]
where
\[
\mathcal{S}_n(t) = \frac{1}{2} \left(1 - \int_0^t h(s) ds \right) \|\nabla u_n\|_{L^2_x}^2 + \frac{2}{\rho + 2} \|u_n\|_{H^{\rho+2}_x}^\rho \\
+ (h \circ \nabla u_n)(t) + \frac{\xi}{2} \|z_n\|_{L^2(\Omega \times (0, 1))}^2.
\]
Using Young’s inequality and noticing (20) and (21), we arrive at
\[
\left(\mu_1 - \frac{\mu_2 \xi}{2} \right) \int_0^t \|u_n\|_{L^2_x}^2 ds \\
+ \int_0^t \int \left(1 - \frac{\theta(t)}{\tau(t)} \right) z_n^2(x, 1, s) \\
+ \frac{1}{2} \int_0^t \left(h(s) \|\nabla u_n(s)\|_{L^2_x}^2 - \frac{1}{2} \right) (h' \circ \nabla u_n)(s) ds \\
+ \frac{\xi}{2} \int_0^t \int \left(1 - \frac{\theta(t)}{\tau(t)} \right) z_n^2(x, \theta, s) dx ds = \mathcal{S}_n(t).
\]
Choosing some value of \(r(t) > 0 \) and \(\theta \) and noticing (20) and (21), we have \((r(t) - 1)/\tau(t) > 0 \). Moreover, choosing some value of \(r(t) > 0 \) and \(\xi \), we obtain
\[
\mu_1 - \frac{\mu_2 \xi}{2} > 0, \quad \frac{\xi}{2} \frac{1 - r(t)}{2 \tau(t)} - \frac{\mu_2}{2} > 0.
\]
That is,
\[
\sqrt{\frac{\mu_2 \tau(t)}{1 - \frac{r(t)}{\tau(t)}}} < \xi < \frac{2 \mu_1}{\mu_2}.
\]
In fact, by (20) and (21), we get \(\sqrt{\mu_2 \tau(t)/1 - \frac{r(t)}{\tau(t)}} < \xi < \frac{\mu_2}{\mu_2} \). From (48) and (50), (G1), and (G1) and Lemma 6, we conclude that we can find a positive \(C \) independent of \(n \), such that
\[
\mathcal{S}_n(t) \leq C.
\]
Hence, using the fact that \(1 - \int_0^t h(s) ds \geq 1 \), the estimate (51), and equality (47), we deduce
\[
u_n \text{ is uniformly bounded in } L^\infty(0, T; H^1_x(\Omega)) \),
\[
u_n \text{ is uniformly bounded in } L^\infty(0, T; L^2_x(\Omega)) \),
\[
z_n \text{ is uniformly bounded in } L^\infty(0, T; L^2_x(\Omega \times (0, 1))) \).
\]
By (52), we infer that there exist two subsequences \(u_n, z_n \) (still denoted by \(u_n, z_n \)) and two functions \(u, z \), such that
\[
u_n \rightharpoonup u \text{ weakly star in } L^\infty(0, T; H^1_x(\Omega)) \),
\[
u_n \rightharpoonup u \text{ weakly star in } L^\infty(0, T; L^2_x(\Omega)) \),
\[
z_n \rightharpoonup z \text{ weakly star in } L^\infty(0, T; L^2_x(\Omega \times (0, 1))) \).
\]
From (52), we have \(u_n \) is bounded in \(L^2(0,T;H^1_0(\Omega)) \) and \(u_{tn} \) is bounded in \(L^2(0,T;L^2(\Omega)) \). Consequently, \(u_n \) is bounded in \(L^2(0,T;L^2(\Omega)) \). More details are present in [37, pp 1072].

Since the Sobolev embedding \(H^1(0,T;H^1(\Omega)) \hookrightarrow L^2(0,T;L^2(\Omega)) \) is compact, using Aubin-Lions theorem (see [45]), we can extract a subsequence of \(u_n \) (still denoted by \(u_n \)), such that

\[
\begin{align*}
 u_n & \longrightarrow u \text{ strongly in } L^2(0,T;L^2(\Omega)), \\
 u_{tn} & \longrightarrow u_t \text{ strongly in } L^2(0,T;L^2(\Omega)),
\end{align*}
\]

(54)

which implies \(u_{tn} \to u_t \) almost everywhere in \(\Omega \times (0,T) \).

Hence,

\[
|u_{tn}|^p u_{tn} \to |u_t|^p u_t \text{ almost everywhere in } \Omega \times (0,T).
\]

(55)

On the other hand, by the Sobolev embedding theorem and estimate (51), this yields

\[
\frac{1}{2} \int_0^T \int_\Omega |u_{tn}|^{2(p+1)} \, dx \, dt
\leq C_S \int_0^T \||\nabla u_{tn}\||_{L^2}^{2(p+1)} \, dt
\]

\[
\leq C_S' \int_0^T \||\nabla u\||_{L^2}^{2(p+1)} \, dt
\]

(56)

where \(C_S \) is the Sobolev embedding constant. Thus, using (55), (56), and Lions Lemma [46], we get

\[
|u_{tn}|^p u_{tn} \to |u_t|^p u_t \text{ weakly in } L^2(0,T;L^2(\Omega)).
\]

(57)

Let \(\mathcal{D}(0,T) \) be the space of \(C^\infty \) functions with compact support in \((0,T) \), multiplying the first equation in (33) by \(\Theta(t) \in \mathcal{D}(0,T) \) and integrating over \((0,T) \), we conclude that

\[
- \frac{1}{\rho + 1} \int_0^T \left(|u_{tn}|^p u_{tn}, \omega_j \right) \Theta(t) \, dt
+ \int_0^T \left(\nabla u_{tn}, \nabla \omega_j \right) \Theta(t) \, dt
- \int_0^T \int_\Omega h(t-s) \left(\nabla u_{tn}, \nabla \omega_j \right) \Theta(t) \, ds \, dt
+ \int_0^T \left(\mu_1 u_{tn} + \mu_2 z_{tn}, \omega_j \right) \Theta(t) \, dt = 0.
\]

(58)

Noticing that \(\{\omega_j\}_{j=1}^{\infty} \) is a basis of \(H^1_0(\Omega) \), via convergence (53) and (57), we can pass to the limit in (58) and obtain

\[
|u_t|^p u_t - \Delta u + \int_0^t h(t-s) \Delta u(s) \, ds + \mu_1 u_t(x,t) + \mu_2 z_t(x,1,t) = 0.
\]

(59)

Similarly, we get

\[
\tau(t) z_t(x,\theta,t) + \left(1 - \tau(t) \theta \right) z_0(x,\theta,t) = 0.
\]

(60)

From (53) and given the label of lemma in [46], we obtain

\[
\begin{align*}
 u_n(0) \to u(0) \text{ weakly in } H^1_0(\Omega); \\
 u_{tn}(0) \to u_t(0) \text{ weakly in } L^2(\Omega).
\end{align*}
\]

(61)

Therefore, we have \(u(0) = u_n, u_t(0) = u_t \). Consequently, the global existence of weak solution is established.

Step 2 (general decay of the energy). First, we introduce the new energy functional \(E(t) \) and the perturbed energy \(E_p(t) \); then we apply the perturbed energy method to establish general decay of the energy. More precisely, the method used is based on the construction of suitable Lyapunov functionals \(E(t) \) and \(E_p(t) \) satisfying

\[
\frac{d}{dt} E_p(t) \leq -C_1 E_p(t) + C_2 E(t)^{-\gamma} t
\]

(62)

for some positive constants \(C_1, C_2, R \). More details are present in [3, pp 1017] or [2, 4, 16].

Now, we introduce the new energy functional as follows:

\[
E(t) = E(u, z, t)
\]

\[
= \left(\frac{2}{\rho + 2} \int_\Omega \|u\|^{\rho+2} + \int_0^t \left(1 + \int_0^s h(s) \, ds \right) \|\nabla u\|^2 + (h \ast \|u\|)(t) \right)
+ \frac{\xi}{2} \int_{t-\tau(t)}^t \int_\Omega e^{-\lambda(t-s)} u_t^2(x,s) \, ds \, dx,
\]

(63)

where \(\xi, \lambda \) are suitable positive constants.

Next, we will fix \(\xi \) such that

\[
2\mu_1 - \frac{[\mu_2]}{\sqrt{1-d}} = \xi > 0, \quad \xi - \frac{[\mu_2]}{\sqrt{1-d}} > 0.
\]

(64)

Remark 7. In fact, the existence of such a constant \(\xi \) is guaranteed by the assumption (23).

Therefore, we have the following lemma.

Lemma 8. Let (20)–(23) be satisfied and \(h \) satisfy (G1). Then, for the solution of problem (1), the energy functional defined by (63) is nonincreasing and satisfies

\[
\frac{d}{dt} E(t) \leq \frac{1}{2} (h \ast \|u\|)(t) - \frac{1}{2} h(t) \int_\Omega |\nabla u| \, dx
- C_1 \int_\Omega \left[u_t^2(x,t) + u_t^2(x,t-\tau(t)) \right] \, dx
- \frac{\lambda \xi}{2} \int_{t-\tau(t)}^t \int_\Omega e^{-\lambda(t-s)} u_t^2(x,s) \, ds \, dx \leq 0,
\]

for some positive constant \(C_1 \).
Proof of Lemma 8. Differentiating (63) and noticing the first equation in (1) together with

\[(h \circ \nabla u)(t) = \int_0^t (h(t-s)|\nabla u(t) - \nabla u(s)|^2 ds \, dx, \quad (66)\]

we obtain

\[
E'(t) = \int_\Omega |u_t|_{p+1} u_t - \frac{1}{2} h(t) \int_\Omega |\nabla u|^2 dx \\
+ \left(1 - \int_0^t h(s) \, ds \right) \int_\Omega \nabla u \cdot \nabla u_t \, dx \\
+ \int_0^t (h(t-s) ds \int_\Omega [\nabla u(t) - \nabla u(s)]^2 \, ds \, dx \\
+ \frac{1}{2} \int_0^t h'(t-s) \int_\Omega [\nabla u(t) - \nabla u(s)]^2 \, ds \, dx \\
+ \frac{\xi}{2} \int_\Omega u_t^2(x,t) \, dx \\
- \frac{\xi}{2} \int_\Omega e^{-\lambda t} u_t^2(x,t-\tau(t)) \left(1 - \tau'(t) \right) \, dx \\
- \frac{\lambda \xi}{2} \int_{t-\tau(t)}^t \int_\Omega e^{-\lambda(t-s)} u_t^2(x,s) \, ds \, dx \\
+ \int_\Omega \Delta u - \int_0^t (h(t-s) \Delta u(s) ds - \mu_1 u_t(x,t) \\
- \mu_2 u_t(x,t-\tau(t)) \right] \, dx
\]

Applying Young's inequality, we obtain

\[
E'(t) \leq -\mu_1 \int_\Omega u_t^2(x,t) \, dx \\
- \mu_2 \int_\Omega u_t(x,t) u_t(x,t-\tau(t)) \, dx \\
- \frac{\xi}{2} \int_\Omega e^{-\lambda t} u_t^2(x,t) \, dx \\
- \frac{\xi}{2} \int_\Omega e^{-\lambda t} u_t^2(x,t-\tau(t)) \left(1 - \tau'(t) \right) \, dx \\
- \frac{\lambda \xi}{2} \int_{t-\tau(t)}^t \int_\Omega e^{-\lambda(t-s)} u_t^2(x,s) \, ds \, dx \\
- \frac{\xi}{2} \int_\Omega u_t^2(x,t) \, dx \\
- \frac{\xi}{2} \int_\Omega e^{-\lambda t} u_t^2(x,t) \, dx \\
- \frac{\xi}{2} \int_\Omega e^{-\lambda t} u_t^2(x,t-\tau(t)) \left(1 - \tau'(t) \right) \, dx \\
- \frac{\lambda \xi}{2} \int_{t-\tau(t)}^t \int_\Omega e^{-\lambda(t-s)} u_t^2(x,s) \, ds \, dx.
\]

Integrating by parts, using the assumption (20), (21) and (67), (68), we arrive at

\[
E'(t) \leq -\mu_1 \int_\Omega u_t^2(x,t) \, dx \\
- \mu_2 \int_\Omega u_t(x,t) u_t(x,t-\tau(t)) \, dx \\
- \frac{1}{2} h(t) \int_\Omega |\nabla u|^2 dx + \frac{1}{2} \left(h' \circ \nabla u \right)(t) \\
+ \frac{\xi}{2} \int_\Omega u_t^2(x,t) \, dx \\
- \frac{\xi}{2} \int_\Omega e^{-\lambda t} u_t^2(x,t-\tau(t)) \left(1 - \tau'(t) \right) \, dx \\
- \frac{\lambda \xi}{2} \int_{t-\tau(t)}^t \int_\Omega e^{-\lambda(t-s)} u_t^2(x,s) \, ds \, dx
\]

Combining (64) and (69) and the assumptions (G1) and (G2), (65) is established. □
Next, we introduce the following functionals:

\[\Phi(t) = \frac{1}{\rho + 1} \int_{\Omega} |u_t|^{\rho + 1} \, dx, \quad (70) \]

\[\Psi(t) = -\frac{1}{\rho + 1} \int_{\Omega} |u_t|^{\rho + 1} \int_{0}^{t} (h(t-s) [u(t) - u(s)] \, ds \, dx. \quad (71) \]

Set

\[L(t) = NE(t) + \varepsilon \Phi(t) + \Psi(t), \quad (72) \]

where \(N \) and \(\varepsilon \) are suitable positive constants to be determined later.

Remark 9. Indeed, we easily see that, for \(\varepsilon \) small enough while \(N \) large enough, there exist two positive constants \(\alpha_0, \alpha_1 \), such that

\[\alpha_0 E(t) \leq L(t) \leq \alpha_1 E(t), \quad \forall t \geq 0. \quad (73) \]

Concerning the estimates of \(\Phi(t), \Psi(t) \), we have the following lemmas.

Lemma 10. Under the assumption (G1), the functional \(\Phi(t) \) satisfies the estimate

\[\Phi'(t) \leq -\frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx \]

\[+ C_2 \int_{\Omega} \left[u^2_t(x,t) + u^2_t(x,t-\tau(t)) \right] \, dx + C_3 (h \circ \nabla u). \quad (74) \]

Proof of Lemma 10. Differentiating (70) and integrating by parts, we get

\[\Phi'(t) = \int_{\Omega} |u_t|^{\rho + 1} u_t \, dx + \frac{1}{\rho + 1} \int_{\Omega} |u_t|^{\rho + 2} \, dx \]

\[= \int_{\Omega} u \left[\Delta u - \int_{0}^{t} h(t-s) \Delta u(s) \, ds - \mu_1 u_t(x,t) \right. \]

\[\left. - \mu_2 u_t(x,t-\tau(t)) \right] \, dx \]

\[+ \frac{1}{\rho + 1} \int_{\Omega} |u_t|^{\rho + 2} \, dx \]

\[= -\int_{\Omega} |\nabla u|^2 \, dx + \int_{\Omega} \nabla u \cdot \int_{0}^{t} h(t-s) \nabla u(s) \, ds \, dx \]

\[- \mu_1 \int_{\Omega} uu_t(x,t) \, dx \]

\[- \mu_2 \int_{\Omega} uu_t(x,t-\tau(t)) \, dx \]

\[+ \frac{1}{\rho + 1} \int_{\Omega} |u_t|^{\rho + 2} \, dx. \quad (75) \]

Using Young’s inequality and (G1), we obtain (see [2])

\[\int_{\Omega} \nabla u \cdot \int_{0}^{t} h(t-s) [\nabla u(s) - \nabla u(t)] \, ds \, dx \]

\[\leq \delta \int_{\Omega} |\nabla u|^2 \, dx \]

\[+ \frac{1}{4\delta} \int_{\Omega} \left[\int_{0}^{t} h(t-s) |\nabla u(s) - \nabla u(t)| \, ds \right]^2 \, dx \]

\[\leq \delta \int_{\Omega} |\nabla u|^2 \, dx + \frac{1-\delta}{4} (h \circ \nabla u)(t), \quad \forall \delta > 0. \quad (76) \]

Also, applying Young’s and Poincaré’s inequality yields

\[-\mu_1 \int_{\Omega} uu_t(x,t) \, dx \leq \delta \int_{\Omega} |u|^2 \, dx + C(\delta) \int_{\Omega} u^2_t(x,t) \, dx, \]

\[- \mu_2 \int_{\Omega} uu_t(x,t-\tau(t)) \, dx \]

\[\leq \delta \int_{\Omega} |\nabla u|^2 \, dx + C(\delta) \int_{\Omega} u^2_t(x,t-\tau(t)) \, dx. \quad (77) \]

Noticing (75)–(77) and choosing \(\delta \) small enough, we obtain estimate (74).

Lemma 11. Under the assumption (G1), the functional \(\Psi(t) \) satisfies the estimate

\[\Psi'(t) \leq -\left(\int_{0}^{t} h(s) \, ds - 2\delta \right) \int_{\Omega} u^2_t \, dx + \delta \int_{\Omega} |\nabla u|^2 \, dx \]

\[+ \frac{C_4}{\delta} (h \circ \nabla u)(t) - \frac{C_5}{\delta} (h' \circ \nabla u)(t) \]

\[+ \delta \int_{\Omega} u^2_t(x,t-\tau(t)) \, dx. \quad (78) \]
Proof of Lemma 11. Differentiating (71), integrating by parts, and noticing the first equation in (1), we have

\[
\Psi'(t) = - \int_\Omega |u_t|^{\rho} u_t \int_0^t (h(t-s) [u(t) - u(s)]) ds \, dx
- \frac{1}{\rho + 1} \int_\Omega |u_t|^{\rho} u_t \int_0^t h'(t-s) [u(t) - u(s)] ds \, dx
- \left(\int_0^t h(s) \, ds \right) \int_\Omega \frac{1}{\rho + 1} |u_t|^{\rho+2} \, dx
\]

\[
= \int_\Omega \left[-\Delta u + \int_0^t h(t-s) \Delta u(s) \, ds \right] \times \int_0^t h(t-s) [u(t) - u(s)] ds \, dx
- \frac{1}{\rho + 1} \int_\Omega |u_t|^{\rho} u_t \int_0^t h'(t-s) [u(t) - u(s)] ds \, dx
- \left(\int_0^t h(s) \, ds \right) \int_\Omega \frac{1}{\rho + 1} |u_t|^{\rho+2} \, dx.
\]

(80)

It follows from (79) and (80) that

\[
\Psi'(t) = \left(1 - \int_0^t h(s) \, ds \right) \int_\Omega \nabla u \cdot \int_0^t h(t-s) [\nabla u(t) - \nabla u(s)] ds \, dx
\]

\[
- \frac{1}{\rho + 1} \int_\Omega |u_t|^{\rho} u_t \int_0^t h'(t-s) [u(t) - u(s)] ds \, dx
- \left(\int_0^t h(s) \, ds \right) \int_\Omega \frac{1}{\rho + 1} |u_t|^{\rho+2} \, dx.
\]

(81)

Using Young's and Poincaré's inequality, we get (see [2])

\[
\left(1 - \int_0^t h(s) \, ds \right) \int_\Omega \nabla u \cdot \int_0^t h(t-s) [\nabla u(t) - \nabla u(s)] ds \, dx
\leq \delta \int_\Omega |\nabla u|^2 \, dx + \frac{C}{\delta} (h \circ \nabla u)(t),
\]

\[
- \frac{1}{\rho + 1} \int_\Omega |u_t|^{\rho} u_t \int_0^t h'(t-s) [u(t) - u(s)] ds \, dx
\leq \delta \int_\Omega u_t^2 \, dx - \frac{C}{\delta} (h' \circ \nabla u)(t).
\]

(82)

From (81) and (82), we derive Lemma 11.

Now, we are ready to finalize our proof of general decay of the energy. Since \(h \) is positive, we have

\[
\int_0^t h(s) \, ds \geq \int_{t_0}^t h(s) \, ds = g_0, \quad \forall t \geq t_0.
\]

(83)
It follows from (65), (72), (74), and (78) that

\[L'(t) = N\varepsilon b'(t) + \Psi'(t) \]
\[\leq N \left(h' \circ \nabla u \right)(t) - N \varepsilon \int_\Omega |\nabla u|^2 \, dx \]
\[- NC_1 \int_0^{t} \left[u^2_1(x,t) + u^2_1(x,t - \tau(t)) \right] \, dx \]
\[- \frac{\lambda \xi N}{2} \int_{t-\tau(t)}^t \int_\Omega e^{-\lambda(t-s)} u^2_1(x,s) \, ds \, dx \]
\[+ \varepsilon C_2 \int_\Omega \left[u^2_1(x,t) + u^2_1(x,t - \tau(t)) \right] \, dx \]
\[+ \frac{e_1}{2} \int_\Omega |\nabla u|^2 \, dxP + \varepsilon C_3 (h \circ \nabla u)(t) \]
\[- 2 \left(\int_0^t (h(s) \, ds - 2\delta) \right) \int_\Omega u^2_1 \, dx + \delta \int_\Omega |\nabla u|^2 \, dx \]
\[+ \frac{C_4}{\delta} (h \circ \nabla u)(t) - \frac{C_2}{\delta} \left(h' \circ \nabla u \right)(t) \]
\[+ \delta \int_\Omega u^2_1(x,t - \tau(t)) \, dx \]
\[= \left[(NC_1 + g_0) - 2\delta - \varepsilon C_2 \right] \int_\Omega u^2_1(x,t) \, dx \]
\[+ \left(\varepsilon C_3 + \frac{C_4}{\delta} \right) (h \circ \nabla u)(t) \]
\[+ \left(\frac{N}{2} - \frac{C_2}{\delta} \right) \left(h' \circ \nabla u \right)(t) \]
\[- \left(\frac{e_1}{2} - \delta \right) \int_\Omega |\nabla u|^2 \, dx \]
\[- (NC_1 - \delta - \varepsilon C_2) \int_\Omega u^2_1(x,t - \tau(t)) \]
\[- \frac{\lambda \xi N}{2} \int_{t-\tau(t)}^t \int_\Omega e^{-\lambda(t-s)} u^2_1(x,s) \, ds \, dx. \]

If we choose some constants in the inequality (84), such that

\[a_1 = (NC_1 + g_0) - 2\delta - \varepsilon C_2 > 0, \]
\[a_2 = NC_1 - \delta - \varepsilon C_2 > 0, \quad a_2 = \frac{e_1}{2} - \delta > 0, \]
\[a_4 = \frac{N}{2} - \frac{C_2}{\delta} > 0, \quad a_5 = \varepsilon C_3 + \frac{C_4}{\delta} > 0, \]
\[a_6 = \frac{\lambda \xi N}{2}, \]

then we conclude that

\[L'(t) \leq -a_1 \int_\Omega u^2_1(x,t) \, dx - a_2 \int_\Omega |\nabla u|^2 \, dx \]
\[+ a_4 \left(h' \circ \nabla u \right)(t) + a_5 (h \circ \nabla u)(t) \]
\[- a_6 \int_{t-\tau(t)}^t \int_\Omega e^{-\lambda(t-s)} u^2_1(x,s) \, ds \, dx. \]

Hence, we have two cases to consider the general decay results as follows.

Case 1 \((p = 1)\). Choosing some values of \(a_1, a_2, a_3, a_4, a_5, a_6\) and noticing the definition of \(E(t)\) (see (63)), we conclude that there exists a constant \(\beta_1 > 0\), such that

\[L'(t) \leq -\beta_1 E(t), \quad \forall t \geq 0. \]

Therefore, by Remark 9 and (87), we get

\[L'(t) \leq -\frac{\beta_1}{a_1} E(t), \quad \forall t \geq 0. \]

Integrating (88) over \((0, t)\), we obtain

\[L(t) \leq L(0) e^{-\beta_1 t}, \quad \forall t \geq 0. \]

Observing Remark 9 (i.e., \(\alpha_0 E(t) \leq L(t) \leq \alpha_1 E(t)\)) and (89), we derive

\[\alpha_0 E(t) \leq L(t) \leq L(0) e^{-\beta_1 t}, \quad \forall t \geq 0. \]

That is,

\[E(t) \leq \frac{L(0)}{\alpha_0} e^{-\left(\beta_1/\alpha_1\right) t} \leq K e^{kt}, \quad p = 1, \quad \forall t \geq 0. \]

Assuming \(K = L(0)/\alpha_0, k = \beta_1/\alpha_1\), we obtain the exponential decay of the energy. So, (26) is established.

Case 2 \((1 < p < 3/2)\). Due to (G2), we easily see that

\[\int_0^\infty h^{1-r}(s) \, ds < \infty, \quad 0 \leq r \leq 2 - p. \]

From the sketch of proof of Lemma 6, we observe that

\[(h \circ \nabla u)(t) \leq C \left[\int_0^\infty h^{1-\alpha}(s) \, ds E(0)^{p-1}/(p-1) \right]^{\alpha/(p-1-\alpha)} \]
\[\times \left[(h^p \circ \nabla u)(t) \right]^{\alpha/(p-1-\alpha)}. \]

Thus, for \(\sigma > 1\), using (63) and (93), we get

\[E^\sigma(t) \leq C \left[E^{\sigma-1}(0) \left(\|u_1\|_{L^2}^2 + \|\nabla u\|_2^2 + \|u_1\|_2^2 \right) \right. \]
\[+ \left(h \circ \nabla u \right)(t) \right] \]
\[\leq CE^{\sigma-1}(0) \left(\|u_1\|_{L^2}^2 + \|\nabla u\|_2^2 + \|u_1\|_2^2 \right) \]
\[+ C \left[\left(\int_0^\infty h^{1-\alpha}(s) \, ds \right) E(0)^{p-1-\alpha}/(p-1-\alpha) \right. \]
\[\times \left. \left(h^p \circ \nabla u \right)(t) \right]^{\alpha/(p-1-\alpha)}. \]
Choosing $\alpha = 1/2, \sigma = 2p - 1$ (i.e., $\tau/(p - 1 + \alpha) = 1$).

(Eq. 94) reduces to

$$E^p(t) \leq C\left[\|u_t\|^p_{p+2} + \|\nabla u\|^2_2 + \|u_t\|^2_2 + \{(h^p \circ \nabla u)(t)\}\right].$$ \tag{95}

Combining (86) and (87) with Remark 9, we obtain

$$L'(t) \leq -\frac{B}{C} \alpha^2 L^p(t), \quad \forall t \geq 0. \tag{96}$$

A simple integration of (96) over $(0, t)$ yields

$$L'(t) \leq C_\alpha (1 + t)^{-1/(2 - \alpha)}, \quad \forall t \geq 0. \tag{97}$$

As a consequence of (97), we obtain

$$\int_0^\infty L(t) dt + \sup_{t \geq 0} tF(t) < \infty. \tag{98}$$

So, by using Lemma 6, we have

$$(h \circ \nabla u)(t)
\leq C\left[\int_0^t \|u(s)\|_{H^{1/2}((\Omega)}^p + \|t\|_{H^{1/2}((\Omega))}^p \right]^{(p-1)/p}
\times (h^p \circ \nabla u)^{1/p}(t)\tag{99}$$

$$\leq C\left[\int_0^t F(s) ds + tF(t)\right]^{(p-1)/p}(h^p \circ \nabla u)^{1/p}(t)$$

$$\leq C(h^p \circ \nabla u)^{1/p}(t),$$

which implies that

$$\{h^p \circ \nabla u\}(t) \geq C(h \circ \nabla u)^p(t). \tag{100}$$

Consequently, from (86) and (100), we have

$$L'(t) \leq -C_7 \left[\|u_t\|^p_{p+2} + \|\nabla u\|^2_2 + \|u_t\|^2_2 + (h \circ \nabla u)^p(t)\right], \quad \forall t \geq 0. \tag{101}$$

On the other hand, similarly to (95), we have

$$E^p(t) \leq C_8 \left[\|u_t\|^p_{p+2} + \|\nabla u\|^2_2 + \|u_t\|^2_2 + (h \circ \nabla u)^p(t)\right], \quad \forall t \geq 0. \tag{102}$$

Remark 12. Our novel contribution is to show that our work improves earlier result in [37] in which only the exponential decay was investigated. More precisely, Kirane and Said-Houari [37] considered the exponential decay of problem (1) with a constant delay (i.e., $\tau(t) = \tau$) and velocity-independent material density (i.e., $\rho = 0$).

Remark 13. By using the fact that energy E is bounded on $[0, t_0]$, we can easily show that estimates (26) and (27) hold for $t \geq 0$. (See, for instance, [2].)

4. Further Remarks

In this section, we address some interesting problems of nonlinear viscoelastic equation with time-varying delay effects and velocity-dependent material density. Here, we mention some of them.

1. An interesting problem is to show the well-posedness and stabilization of the nonlinear viscoelastic equation with boundary feedback with respect to time-varying delay effects. What will happen if the controller with time-varying delay effects is in the equation instead of on the boundary? More precisely, in our forthcoming work, we will investigate the well-posedness and general decay properties of the solutions for the following nonlinear viscoelastic equation with velocity-dependent material density:

$$|u_t|^p u_{tt} - \Delta u + \int_0^t h(t-s) \Delta u(s) ds = 0, \quad \text{in } \Omega \times [0, \infty),$$

$$\partial \mu \over \partial v + \mu_1 u_t (x, t) + \mu_2 u_t (x, t - \tau(t)) = 0, \quad \text{on } \Gamma_1 \times [0, \infty),$$

$$u(x, 0) = u_0(x), \quad u_t(x, 0) = u_1(x), \quad \text{in } \Omega,$$

$$u_t(x, t - \tau(t)) = f(x, t), \quad \text{on } \Gamma_1 \times (-\tau(0), 0), \tag{106}$$

where Ω is bounded domain of R^n and $n \geq 1$ with a smooth boundary Γ and let Γ_0, Γ_1 be a partition of Γ such that $\Gamma_0 \cap \Gamma_1 = \emptyset, \Gamma_0 \neq \emptyset, \Gamma_1 \neq \emptyset, v = (v_1, v_2 \cdots v_n)$ denotes the unit outward normal to Γ.

2. Another interesting problem is to give a positive answer of the open problem given by Kirane and Said-Houari [37]. That is, the linear damping term $\mu_1 u_t$ in the first equation of (16) plays a decisive role in their proofs. Thus, the problem of whether the stability properties they have proved are preserved when $\mu_1 = 0$ is open. In order to overcome the above difficulty, our main idea is to contrast the effects of the time-varying delay by using the dissipative nonlinear
boundary feedback. That is, in our future work, we investigate the following problem:
\[
\bigg|u_t\bigg|^2 u_{tt} - \Delta u + \int_0^t h(t-s) \Delta u(s) \, ds + \mu_2 u_t(x, t - \tau(t)) = 0, \quad \text{in } \Omega \times [0, \infty),
\]

\[
u(x, t) = 0, \quad \text{on } \Gamma_0 \times (0, \infty),
\]

\[
\frac{\partial u}{\partial n} + g(u_t(x, t)) = 0, \quad \text{on } \Gamma_1 \times (0, \infty),
\]

\[
u(x, 0) = u_0(x), \quad u_t(x, 0) = u_1(x), \quad \text{in } \Omega,
\]

\[
u_t(x, t - \tau(t)) = f(x, t), \quad \text{on } \Gamma_1 \times (-\tau(0), 0),
\]

where \(\mu_2\) is constant and \(g(u_t)\) is the dissipative nonlinear boundary feedback.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

The authors are greatly thankful to the anonymous referee’s valuable comments and suggestions on this paper. The authors would like to express their sincere gratitude to Dr. Professor Jianhua Huang and Dr. Professor Zhenhai Liu for their enthusiastic guidance and constant encouragement. Also, the authors would like to thank Dr. Ming Bao Sun for always helping and being concerned. This work was supported by China Postdoctoral Science Foundation no. 2013M532169, NSF of Hunan Province Grant no. 11JJ3004, and NNSF of China Grant nos. 11371367, 11271087, 11211120146, 2013M532169, NSF of Hunan Province Grant no. 11JJ3004, and NNSF of China Grant nos. 11371367, 11271087, 11211120146, and 11271118.

References

Submit your manuscripts at
http://www.hindawi.com