Research Article

Weighted Composition Operator from Mixed Norm Space to Bloch-Type Space on the Unit Ball

Yu-Xia Liang¹ and Ren-Yu Chen²

¹ School of Mathematical Sciences, Tianjin Normal University, Tianjin 300387, China
² Department of Mathematics, Tianjin University, Tianjin 300072, China

Correspondence should be addressed to Ren-Yu Chen; cheny@tju.edu.cn

Received 13 May 2014; Accepted 19 July 2014; Published 7 August 2014

Academic Editor: Henrik Kalisch

Copyright © 2014 Y.-X. Liang and R.-Y. Chen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We discuss the boundedness and compactness of the weighted composition operator from mixed norm space to Bloch-type space on the unit ball of \mathbb{C}^n.

1. Introduction

Let $H(B_n)$ be the class of all holomorphic functions on B_n and $S(B_n)$ the collection of all the holomorphic self-mappings of B_n, where B_n is the unit ball in the n-dimensional complex space \mathbb{C}^n. Let dv denote the Lebesgue measure on B_n normalized so that $v(B_n) = 1$ and $d\sigma$ the normalized rotation invariant measure on the boundary $S = \partial B_n$ of B_n.

For $f \in H(B_n)$, let

$$\Re f(z) = \sum_{j=1}^{n} z_j \frac{\partial f}{\partial z_j}(z)$$

be the radial derivative of f.

A positive continuous function μ on $[0,1)$ is called normal (see, e.g., [1]) if there exist three constants $0 \leq \delta < 1$, and $0 < a < b < \infty$, such that for $r \in [\delta,1)$

$$\frac{\mu(r)}{(1-r)^a} \downarrow 0, \quad \frac{\mu(r)}{(1-r)^b} \uparrow \infty, \quad r \to 1.$$

In the rest of this paper we always assume that μ is normal on $[0,1)$, and from now on if we say that a function $\mu : B_n \to [0,\infty)$ is normal we will also suppose that it is radial on B_n, that is, $\mu(z) = \mu(|z|)$ for $z \in B_n$.

Let $0 < p \leq \infty, 0 < q \leq \infty$, and μ be normal on $[0,1)$. f is said to belong to the mixed norm space $L(p,q,\mu)$ if f is a measurable function on B_n and $\|f\|_{p,q,\mu} < \infty$, where

$$\|f\|_{p,q,\mu} = \left\{ \int_0^1 r^{2n-1}(1-r)^{-1} \mu^p(r) M^p_q(\mu,f) \ dr \right\}^{1/p}$$

$$= \left\{ \sup_{0 \leq r < 1} \mu(r) M_q(\mu,f) \right\}^{1/q}$$

$$M_q(\mu,f) = \sup_{\zeta \in S} \|f(r\zeta)\|,$$

$$M_q(\mu,f) = \left\{ \int_0^1 |f(r\zeta)|^q d\sigma(\zeta) \right\}^{1/q}, \quad (0 < q < \infty).$$

If $0 < p = q < \infty$, then $L(p,q,\mu)$ is just the space $L^p(\mu) = \{ f \}$ is measurable function on $B_n : \int_{B_n} |f(z)|^p(\mu^p(z)/(1-|z|))dv(z) < \infty$.

Let $H(p,q,\mu) = L(p,q,\mu) \cap H(B_n)$. If $0 < p = q < \infty$, then $H(p,q,\mu)$ is just the weighted Bergman space $L^p_a(\mu)$. In particular, $H(p,q,\mu)$ is Bergman space $L^p_a(\mu)$ if $0 < p = q < \infty$ and $\mu(r) = (1-r)^{1/p}$. Otherwise, if $p = q = 2$ and $\mu(r) = (1-r)^{\beta/2}$ ($\beta < 0$), then $H(p,q,\mu(r))$ is the Dirichlet-type space.
For \(0 < p, q < \infty, -1 < \gamma < 1\), let \(\mu(r) = r^{-(2n-1)/p}(1-r)^{(y+1)/p}\); it is easy to see that the mixed norm space \(H(p, q, \mu)\), written by \(H_{p,q,\mu}\), consists of all \(f \in H(B_n)\) such that
\[
\|f\|_{H_{p,q,\mu}} = \left\{ \int_0^1 M_q^p (f, r) (1-r)^y dr \right\}^{1/p} < \infty. \tag{4}
\]
Now \(f \in H(B_n)\) is said to belong to Bloch-type space \(\mathcal{B}_\mu\) if
\[
\|f\|_{\mathcal{B}_\mu} = \sup_{z \in B_n} \mu(z) |\nabla f(z)| < \infty,
\]
where \(\nabla f(z) = (\partial f(z)/\partial z_1, \ldots, \partial f(z)/\partial z_n)\) is the complex gradient of \(f\).

It is clear that \(\mathcal{B}_\mu\) is a Banach space with norm \(\|f\|_{\mathcal{B}_\mu} = |f(0)| + \|f\|_{\mathcal{B}_\mu}\). For \(f \in H(B_n)\), we denote
\[
\|f\|_{\mathcal{B}_{\mu,1}} = \sup_{z \in B_n} \mu(z) |f(z)|,
\]
where
\[
Q^f_\mu (z) = \sup_{u \in \mathbb{C} \setminus \{0\}} \frac{\|\nabla f(z), \overline{u}\|}{G^\mu_2 (u, u)},
\]
\[
G_\mu^2 (u, u) = \frac{1}{|\sigma_\mu (0)|} \left\{ \frac{\mu^2(z)}{\sigma^2_\mu (|z|)} |u|^2 + \left(1 - \frac{\mu^2(z)}{\sigma^2_\mu (|z|)} \right) \frac{|z|^2}{|z|} \right\}^{1/2}.
\]

2. Some Lemmas

Lemma 1. Assume that \(0 < p, q < \infty, -1 < \gamma < 1\), and \(f \in H_{p,q,\gamma}\). Then there is a positive constant \(C\) which is independent of \(f\) such that
\[
|f(z)| \leq C \left(1 - |z|^2 \right)^{(\gamma+1)/p}, \tag{10}
\]
\[
|\Re f(z)| \leq C \left(1 - |z|^2 \right)^{\gamma/(\gamma+1)/p}. \tag{11}
\]

Proof. We first prove (10). By the monotonicity of the integral means and [20, Theorem 1.12] we have that
\[
\|f\|_{H_{p,q,\gamma}}^p \geq \int_{1+|z|/2}^{1+|z|/4} M_q^p (f, r) (1-r)^y dr
\]
\[
\geq CM_q^p \left(f, \frac{1+|z|}{2} \right) \int_{1+|z|/2}^{1+|z|/4} (1-r)^y dr
\]
\[
\geq CM_q^p \left(f, \frac{1+|z|}{2} \right) (1-|z|^2)^{\gamma+1},
\]
\[
\geq C(1-|z|^2)^{\gamma+1/p} |f(z)|^p,
\]
from which the desired result (10) follows.

Next we prove (11). By the monotonicity of the integral means, using the well-known asymptotic formula (e.g., [21, Theorem 2]), we obtain that
\[
\int_0^1 M_q^p (f, r) (1-r)^y dr
\]
\[
\leq |f(0)|^p + \int_0^1 M_q^p (\Re f, r) (1-r)^{\gamma/p} dr.
\]

References therein. In particular, Stević [18] gave some conditions of weighted composition operators between mixed-norm spaces and \(H^\infty_{\mu}\) spaces on the unit ball. Zhou and Chen [19] discussed weighted composition operators from \(F(p, q, s)\) to Bloch-type spaces on the unit ball. More recently, the weighted composition operator from Bers-type space to Bloch-type space on the unit ball was studied in [6]. Now in this paper, we will continue this line of research and characterize the boundedness and compactness of the weighted composition operator \(T_{\psi,\varphi}\), acting from mixed-norm spaces \(H_{p,q,\gamma}\) to Bloch-type space \(\mathcal{B}_\mu\) on the unit ball of \(\mathbb{C}^n\). The paper is organized as follows. In Section 2, we give some lemmas. The main results are given in Section 3.

Throughout the remainder of this paper, \(C\) will denote a positive constant; the exact value of which will vary from one appearance to the next. The notation \(A = B\) means that there is a positive constant \(C\) such that \(B/C \leq A \leq CB\).
By [20, Theorem 1.12], it follows that
\[
\|f\|_{H_{p,q,\gamma}}^p \geq \int_{|z|/2}^1 M_{\gamma}^p (f, r) (1 - r)^{\gamma} dr \\
\geq C \int_{|z|/2}^1 M_{\gamma}^p \left(\Re f, r \right) (1 - r)^{\gamma+p} dr \\
\geq CM_{\gamma}^p \left(\Re f, \frac{1 + |z|}{2} \right) \int_{|z|/2}^1 (1 - r)^{\gamma+p} dr \tag{14}
\]
\[
\geq CM_{\gamma}^p \left(\Re f, \frac{1 + |z|}{2} \right) (1 - |z|^2)^{\gamma+1+p} \\
\geq C (1 - |z|^2)^{\gamma+1+p+(\gamma+1)/p} |\Re f (z)|^p.
\]

Then the desired result (11) follows. This completes the proof. \(\square \)

From the above lemma, when \(f \in H_{p,q,\gamma} \), then
\[
f \in \mathcal{B}^{n/\gamma+1+(\gamma+1)/p} \quad \Rightarrow \quad \|f\|_{\mathcal{B}^{n/\gamma+1+(\gamma+1)/p}} \leq C \|f\|_{H_{p,q,\gamma}}. \tag{15}
\]

For \(z \in B_n \), \(u \in C^n \), denote the Bergman metric of \(B_n \) by
\[
H_z (u,u) = \frac{(1 - |z|^2)|u|^2 + \langle z, u \rangle^2}{(1 - |z|^2)^2}. \tag{16}
\]

Lemma 2. Let \(v(r) = (1-r^3)^{n\gamma/(n+1)+1/p} \) and \(\varphi \in S(B_n) \). Then
\[
G_{\varphi(z)} (\varphi(z), \varphi(z)) \leq \frac{CH_{\varphi(z)} (\varphi(z), \varphi(z))}{(1 - |\varphi(z)|^2)^{\gamma}} \tag{17}
\]
for all \(z \in B_n \), where \(\varphi(z) \) denotes the Jacobian matrix of \(\varphi(z) \) and
\[
\varphi(z) = \begin{pmatrix}
\frac{\partial \varphi_1}{\partial z_1} & \cdots & \frac{\partial \varphi_n}{\partial z_1} \\
\vdots & \ddots & \vdots \\
\frac{\partial \varphi_1}{\partial z_n} & \cdots & \frac{\partial \varphi_n}{\partial z_n}
\end{pmatrix}^T. \tag{18}
\]

Proof. Let \(\alpha = n/\gamma + (\gamma + 1)/p \). If \(\varphi(z) = 0 \), the desired result is obvious. If \(\varphi(z) \neq 0 \), from the definition of \(\sigma_v \),
\[
\frac{1}{\sigma_v (r)} = 1 + \int_0^r \frac{dt}{(1-t)^{1/2} (1-t^2)^{\alpha+1}} = \frac{(1 - r^2)^{1/2}}{\sqrt{v(r)}}, \quad 0 \leq r < 1.
\]
Thus
\[
G_{\varphi(z)} (\varphi(z), \varphi(z)) \geq \frac{1}{v^2 (\varphi(z))} \times \left[\frac{v^2 (\varphi(z))}{\sigma_v^2 (\varphi(z))} \right] \left| \varphi(z), \varphi(z) \right|^2 \\
+ \left(1 - \frac{v^2 (\varphi(z))}{\sigma_v^2 (\varphi(z))} \right) \left| \varphi(z), \varphi(z) \right|^2 \frac{\left| \varphi(z), \varphi(z) \right|^2}{|\varphi(z)|^2} \\
\leq \frac{C}{v^2 (\varphi(z))} \times \left[(1 - |\varphi(z)|^2) \left(|\varphi(z)|^2 - \frac{|\varphi(z), \varphi(z)|^2}{|\varphi(z)|^2} \right) \\
+ \left| \varphi(z), \varphi(z) \right|^2 \frac{|\varphi(z), \varphi(z)|^2}{|\varphi(z)|^2} \right] \\
= \frac{C}{v^2 (\varphi(z))} \times \left[(1 - |\varphi(z)|^2) \left(|\varphi(z)|^2 + |\varphi(z), \varphi(z)|^2 \right) \right] \\
= C \frac{(1 - |\varphi(z)|^2)^2}{v^2 (\varphi(z))} H_{\varphi(z)} (\varphi(z), \varphi(z)) \\
= \frac{CH_{\varphi(z)} (\varphi(z), \varphi(z))}{(1 - |\varphi(z)|^2)^{2(n\gamma/(n+1)+1/p)}}.
\]

The desired result follows from (20). The proof is completed. \(\square \)

The proof of the next lemma is standard; see, for example, [4, Proposition 3.11]. Hence, it is omitted.

Lemma 3. Assume that \(0 < p,q < \infty \), \(-1 < \gamma < \infty \), \(\mu \) is a normal function, and \(\varphi \in S(B_n) \), \(\psi \in H(B_n) \). Then \(T_{\varphi,\psi} : H_{p,q,\gamma} \rightarrow \mathcal{B}_p^\mu \) is compact and only if only if for any bounded sequence \(\{f_k\}_{k \in \mathbb{N}} \) in \(H_{p,q,\gamma} \) which converges to zero uniformly on compact subsets of \(B_n \) as \(k \to \infty \); then \(\|T_{\varphi,\psi} f_k\|_{\mathcal{B}_p^\mu} \to 0 \), as \(k \to \infty \).
Lemma 4. For $\beta > -1$ and $m > 1 + \beta$, one has
\[
\int_0^1 \frac{(1-r)^\beta}{(1-\rho r)^m} dr \leq C(1-\rho)^{1+\beta-m}, \quad 0 < \rho < 1.
\] (21)

Proof.
\[
\int_0^1 \frac{(1-r)^\beta}{(1-\rho r)^m} dr = \int_0^1 \frac{(1-r)^\beta}{(1-\rho r)^{m-\beta}(1-r)^\beta} dr \\
\leq \int_0^1 \frac{(1-r)^\beta}{(1-\rho r)^{m-\beta}} dr \\
= \int_0^1 \frac{1}{p(1+\beta-m)(1-r)^{1+\beta-m}} dr \\
= C(1-\rho)^{1+\beta-m}.
\] (22)

This completes the proof. \qed

3. The Boundedness and Compactness of $T_{\psi,\varphi} : H_{p,q,\gamma} \to B_\mu$

Theorem 5. Assume that $0 < p, q < \infty$, $-1 < \gamma < \infty$, μ is a normal function, and $\varphi \in S(B_n)$, $\psi \in H(B_n)$. Then $T_{\psi,\varphi} : H_{p,q,\gamma} \to B_\mu$ is bounded if and only if
\[
M_1 := \sup_{z \in B_n} \frac{\mu(z) |\Re \psi(z)|}{(1-|\varphi(z)|^2)^{n/q+(\gamma+1)/p}} < \infty, \quad \text{(23)}
\]
\[
M_2 := \sup_{z \in B_n} \frac{\mu(z) |\varphi(z)|}{(1-|\varphi(z)|^2)^{n/q+(\gamma+1)/p}} \times \left| H_{\psi(z)}(\varphi(z) z, J\varphi(z) z) \right|^{1/2} < \infty. \quad \text{(24)}
\]

Proof

Sufficiency. Assume that (23) and (24) hold. Then for any $f \in H_{p,q,\gamma}$, if $J\varphi(z)z \neq 0$ for $z \in B_n$, by Lemma 1 and Lemma 2, it follows that
\[
\|T_{\psi,\varphi} f(z)\|_{B_\mu} = \sup_{z \in B_n} \mu(z) |\Re (T_{\psi,\varphi} f)(z)| \\
\leq \sup_{z \in B_n} \mu(z) |\Re \psi(z)| \left| f(\varphi(z)) \right| \\
\leq \sup_{z \in B_n} \frac{\mu(z) |\Re \psi(z)|}{(1-|\varphi(z)|^2)^{n/q+(\gamma+1)/p}} \left(H_{\psi(z)}(\varphi(z) z, J\varphi(z) z) \right) \\
\leq M_1 \|f\|_{H_{p,q,\gamma}} + C M_2 \|f\|_{B_{(1-|\varphi(z)|^2)^{-n/q+(\gamma+1)/p}}} \leq C \|f\|_{H_{p,q,\gamma}}.
\]

When $J\varphi(z)z = 0$ for $z \in B_n$. From (23) we can easily obtain
\[
\mu(z) |\Re (T_{\psi,\varphi} f)(z)| < M_1 \|f\|_{H_{p,q,\gamma}}. \quad \text{(26)}
\]

Combining (25) and (26), the boundedness of $T_{\psi,\varphi} : H_{p,q,\gamma} \to B_\mu$ follows.

Necessity. Suppose that $T_{\psi,\varphi} : H_{p,q,\gamma} \to B_\mu$ is bounded. Firstly, we assume that $w \in B_n$ and $\varphi(w) = r_w e_1$, where $r_w = |\varphi(w)|$ and $e_1 = (1, 0, 0, \ldots, 0)$. If $\sqrt{(1-r_w^2)} |\eta_1|^2 + \cdots + |\eta_n|^2 \leq |\eta_1|$, where $J\varphi(w)w = (\eta_1, \ldots, \eta_n)^T$, choose the function
\[
f_w(z) = \frac{z_1-r_w}{1-r_w z_1} \left(\frac{1-r_w^2}{1-r_w z_1} \right)^{n/q+(\gamma+1)/p}.
\] (27)

By [20, Theorem 1.12] and Lemma 4 we have that
\[
M_q (f_w, r) = \left(\int_S |f_w(r \zeta)|^q d\sigma(\zeta) \right)^{1/q} \\
\leq \left(\int_S \left(\frac{1-r_w^2}{1-r_w r_w^2 \zeta_1^2} \right)^{n/q+(\gamma+1)/p} d\sigma(\zeta) \right)^{1/q} \\
\leq C \left(\frac{1-r_w^2}{1-r_w^2} \right)^{n/q+(\gamma+1)/p},
\]

where $\zeta = (\zeta_1, \ldots, \zeta_n)^T$ and σ is the Lebesgue measure on $S(\mathbb{C})$.
\[
\|f_w\|_{H^{p,q,\gamma}}^p = \int_0^1 M_{\gamma}^p (f_w, r) (1 - r)^\gamma dr \\
\leq C (1 - r_w^2)^{\frac{mpq}{2} + \frac{\gamma}{2}} \int_0^1 \frac{(1 - r)^\gamma}{(1 - rr_w^2)^{\frac{mpq}{2} + \frac{\gamma}{2}}} dr \\
\leq C (1 - r_w^2)^{\frac{mpq}{2} + \frac{\gamma}{2}} \frac{1}{(1 - r_w^2)^{\frac{mpq}{2} + \frac{\gamma}{2}}} \leq C.
\]
\[\text{(28)}\]

Then \(f_w \in H_{p,q,\gamma}\) and \(\|f_w\|_{H^{p,q,\gamma}} \leq C\). Moreover, \(f_w(\varphi(w)) = 0\) and

\[
\nabla f_w (\varphi (w)) = \left(\frac{1}{(1 - r_w^2)^{\frac{m}{q} + \frac{\gamma}{p} + 1}}, 0, \ldots, 0 \right).
\]
\[\text{(29)}\]

Thus

\[
\left\|T_{\varphi f} f_w \right\|_{B_\mu} \geq \mu (w) |\mathfrak{R} (f \circ \varphi) (w)| \\
\geq \mu (w) |\varphi (w)| \left| \mathfrak{R} \right| (f \circ \varphi) (w) | - \mu (w) |\mathfrak{R} \varphi (w)| \left| f_w (\varphi (w)) \right| \\
= \mu (w) |\varphi (w)| \left| \nabla f_w (\varphi (w), J\varphi (w) w) \right| \\
= \mu (w) |\varphi (w)| |\eta| \\
(1 - r_w^2)^{\frac{m}{q} + \frac{\gamma}{p} + 1}.
\]

By the definition of \(H_{\varphi \omega}(J\varphi (w) w, J\varphi (w) w)\) and (30) it follows that

\[
\mu (w) |\varphi (w)| \left\{ H_{\varphi \omega} (J\varphi (w) w, J\varphi (w) w) \right\}^{1/2} \\
= \left(\mu (w) |\varphi (w)| \right) \left\{ (1 - |\varphi (w)|^2) J\varphi (w) w^2 + |\varphi (w), J\varphi (w) w|^2 \right\}^{1/2} \\
\times \left(\frac{1 - |\varphi (w)|^2}{(1 - |\varphi (w)|^2)^{\frac{m}{q} + \frac{\gamma}{p} + 1}} \right) \\
= \mu (w) |\varphi (w)| \left\{ (1 - r_w^2)^2 \left| \eta_2 \right|^2 + \cdots + \left| \eta_n \right|^2 \right\}^{1/2} \\
\leq \sqrt{\mu (w) |\varphi (w)| |\eta|} \\
\leq \sqrt{2} \mu (w) |\varphi (w)| |\eta| \\
(1 - r_w^2)^{\frac{m}{q} + \frac{\gamma}{p} + 1} \leq C \left\| T_{\varphi f} f_w \right\|_{B_\mu} \leq C.
\]
\[\text{(31)}\]

This shows that when \(\sqrt{(1 - r_w^2)(\left| \eta_2 \right|^2 + \cdots + \left| \eta_n \right|^2)} \leq |\eta_1|,\) (24) follows.

On the other hand, if \(\sqrt{(1 - r_w^2)(\left| \eta_2 \right|^2 + \cdots + \left| \eta_n \right|^2)} > |\eta_1|\).

For \(j = 2, \ldots, n\), let \(\theta_j = \arg \eta_j\) and \(a_j = e^{-\theta_j}\), when \(\eta_j \neq 0\); otherwise \(a_j = 0\) when \(\eta_j = 0\). Take

\[
f_w (z) = \frac{a_2 z_2 + \cdots + a_n z_n}{(1 - r_w z_1)^{\frac{m}{q} + \frac{\gamma}{p} + 1}}.
\]
\[\text{(32)}\]

By [20, Theorem 1.12] and Lemma 4 we obtain that

\[
M_{\gamma} (f_w, r) \leq C \left\{ \int_S \frac{(k_n)^q}{|1 - r_w K_{\gamma}^1|^{n+q/2} + q \frac{q}{2}} d\sigma(\zeta) \right\}^{1/q} \\
\leq C \left\{ \int_S \frac{C(k_n)^q}{|1 - r_w K_{\gamma}^1|^{n+q/2} + q \frac{q}{2}} d\sigma(\zeta) \right\}^{1/q} \\
= \left\{ \int_S \frac{C(1 - k_n)^q}{|1 - r_w K_{\gamma}^1|^{n+q/2} + q \frac{q}{2}} d\sigma(\zeta) \right\}^{1/q} \\
\leq \frac{C}{(1 - r_w^2)^{\frac{m}{q} + \frac{\gamma}{p} + 1}}.
\]

\[\|f_w\|_{H^{p,q,\gamma}}^p = \int_0^1 M_{\gamma}^p (f_w, r) (1 - r)^\gamma dr \\
= C \int_0^1 \frac{(1 - r)^\gamma}{(1 - r_r^2)^{\frac{mpq}{2} + \frac{\gamma}{2}}} dr \\
\leq C (1 - r_w^2)^{\frac{mpq}{2} + \frac{\gamma}{2}} \frac{1}{(1 - r_w^2)^{\frac{mpq}{2} + \frac{\gamma}{2}}} \leq C.
\]
\[\text{(33)}\]

Hence \(f_w \in H_{p,q,\gamma}\) and \(\|f_w\|_{H^{p,q,\gamma}} \leq C\). Moreover \(f_w(\varphi(w)) = 0\) and

\[
\nabla f_w (\varphi (w)) \\
= \left(0, \frac{a_2}{(1 - r_w^2)^{\frac{m}{q} + \frac{\gamma}{p} + 1}}, \ldots, \frac{a_n}{(1 - r_w^2)^{\frac{m}{q} + \frac{\gamma}{p} + 1}} \right).
\]
\[\text{(34)}\]

Similar to the proof of (30), we obtain that

\[
\mu (w) |\varphi (w)| \left\{ \eta_2 + \cdots + |\eta_n| \right\} \leq C \left\| T_{\varphi f} f_w \right\|_{B_\mu}.
\]
\[\text{(35)}\]

It follows from (35) that

\[
\mu (w) |\varphi (w)| \left\{ (1 - |\varphi (w)|^2)^{\frac{m}{q} + \frac{\gamma}{p} + 1} \right\}^{1/2} \\
= \left(\mu (w) |\varphi (w)| \right) \left\{ (1 - |\varphi (w)|^2)^{\frac{m}{q} + \frac{\gamma}{p} + 1} \right\}^{1/2} \\
\times \left\{ (1 - |\varphi (w)|^2) |J\varphi (w) w|^2 + |\varphi (w), J\varphi (w) w|^2 \right\}^{1/2}.
\]
\[\left(1 - |\psi(w)|^2 \right)^{n/(q+(y+1)/p)+1} \]
\[\mu(w) \left| \psi(w) \right| \left(\left(1 - r_w^2 \right) \left(|\eta_1|^2 + \cdots + |\eta_n|^2 \right) + |\eta|^2 \right)^{1/2} \]
\[\leq \mu(w) \left| \psi(w) \right| \left(\sqrt{(1 - r_w^2) \left(|\eta_1|^2 + \cdots + |\eta_n|^2 \right)} \right)^{1/2} \]
\[\leq C \left(\mu(w) \right) \left(\sqrt{(1 - r_w^2) \left(|\eta_1|^2 + \cdots + |\eta_n|^2 \right)} \right)^{1/2} \]
\[\leq \mu(w) \left| \psi(w) \right| \frac{\sqrt{(1 - r_w^2) \left(\eta_1^2 + \cdots + \eta_n^2 \right)}}{(1 - r_w^2)^{n/(q+(y+1)/p)+1}} \]
\[\leq \mu(w) \left| \psi(w) \right| \left(\sqrt{(1 - r_w^2) \left(|\eta_1|^2 + \cdots + |\eta_n|^2 \right)} \right)^{1/2} \]
\[\leq \mu(w) \left| \psi(w) \right| \left(\sqrt{(1 - r_w^2) \left(|\eta_1|^2 + \cdots + |\eta_n|^2 \right)} \right)^{1/2} \]

By [20, Theorem 1.12], it follows that
\[M_p \left(h_w(z) , r \right) \leq \frac{\left(1 - |w|^2 \right)^{b-(y+1)/p}}{(1 - r|w|^2)^b} \] (40)

Applying Lemma 4 we have that
\[\| h_w \|_{H_{p,q,y}}^q \leq \int_0^1 M_p^q \left(h_w, r \right) (1 - r)^y \, dr \]
\[\leq C \int_0^1 \left(1 - |w|^2 \right)^{b-(y+1)} (1 - r)^y \, dr \]
\[= C \left(1 - |w|^2 \right)^{b-(y+1)} \int_0^1 (1 - r)^y \, dr \]
\[\leq C \left(1 - |w|^2 \right)^{b-(y+1)} (1 - |w|^2) = C. \]

Therefore \(h_w \in H_{p,q,y} \), and \(\sup_{w \in \mathbb{B}_q} \| h_w \|_{H_{p,q,y}} \leq C \). Besides,
\[h_{\psi(w)} (\varphi(w)) = \left(\frac{1}{1 - |\psi(w)|^2} \right)^{n/(q+(y+1)/p)} \]
\[\nabla h_{\psi(w)} (\varphi(w)) = \left(\frac{n}{q} + b \right) \left(\frac{\varphi_1(w)}{(1 - |\psi(w)|^2)^{n/(q+(y+1)/p)+1}} \right) \]
\[\left(\frac{\varphi_n(w)}{(1 - |\psi(w)|^2)^{n/(q+(y+1)/p)+1}} \right) \)

Therefore,
\[\infty \geq \| T_{\psi} (h_{\psi(w)}(\varphi)) \|_{\mathbb{B}_p} \geq \mu(w) \left| \Re (h_{\psi(w)} \ast \varphi)(w) \right| \]
\[= \mu(w) \left| \Re (\varphi_1) \right| h_{\psi(w)} (\varphi(w)) + \psi(w) \Re \left(h_{\psi(w)} \ast \varphi \right)(w) \]
\[\geq \mu(w) \left| \Re (\varphi_1) \right| \left(1 - |\psi(w)|^2 \right)^{n/(q+(y+1)/p)} \]
\[- \mu(w) \left| \psi(w) \right| \left| \Re \left(h_{\psi(w)} \ast \varphi \right)(w) \right|. \] (44)
It follows from (43) and (24) that
\[
\mu(w) |\psi(w)| \Re (h_{\psi(w)} \circ \varphi)(w) = \mu(w) |\psi(w)| \left| \langle \nabla h_{\psi(w)}(\varphi(w)), \varphi(w) \rangle \right|
\]
\[
= \left(\frac{n+b}{q} \right) \frac{\mu(w) |\psi(w)| |\varphi(w)|}{(1 - |\varphi(w)|^2)^{n/\gamma(q+1) + p}}
\]
\[
\leq \left(\frac{n+b}{q} \right) \frac{\mu(w) |\psi(w)|}{(1 - |\varphi(w)|^2)^{n/\gamma(q+1) + p}}
\]
\[
\times \left\{ H_{\psi(w)} \left(J\varphi(w) \varphi, J\varphi(w) \varphi \right) \right\}^{1/2}
\]
\[
\leq CM_2 < \infty.
\]
Combining (44) and (45), the desired result (23) holds. This completes the proof.

Theorem 6. Assume that \(0 < p, q < \infty, -1 < \gamma < \infty, \mu \) is a normal function, and \(\varphi \in \mathbb{S}(B_n), \psi \in H(B_n). \) Then \(\mathcal{T}_{\psi, \varphi} : H_{p,q,\gamma} \rightarrow \mathcal{R}_\mu \) is compact if and only if the followings are all satisfied:

(a) \(\psi \in \mathcal{R}_\mu \) and \(\psi \varphi_l \in \mathcal{R}_{\mu_l} \) for \(l = 1, \ldots, n; \)

(b) \(\lim_{\varphi(z) \rightarrow 1} \frac{\mu(z) |\psi(z)|}{(1 - |\varphi(z)|^2)^{n/\gamma(q+1) + p}} = 0; \)

(c) \(\lim_{|\varphi(z)| \rightarrow 1} \frac{\mu(z) |\psi(z)|}{(1 - |\varphi(z)|^2)^{n/\gamma(q+1) + p}} \times \left\{ H_{\psi(z)} \left(J\varphi(z) \varphi, J\varphi(z) \varphi \right) \right\}^{1/2} = 0. \)

Proof

Sufficiency. Suppose that (a), (b), and (c) hold. Then for any \(\varepsilon > 0, \) there is \(\delta > 0, \) such that

\[
\frac{\mu(z) |\psi(z)|}{(1 - |\varphi(z)|^2)^{n/\gamma(q+1) + p}} < \varepsilon,
\]

\[
\frac{\mu(z) |\psi(z)|}{(1 - |\varphi(z)|^2)^{n/\gamma(q+1) + p}} \times \left\{ H_{\psi(z)} \left(J\varphi(z) \varphi, J\varphi(z) \varphi \right) \right\}^{1/2} < \varepsilon,
\]

when \(|\varphi(z)| > \delta. \)

Let \(\{ f_k \}_{k \in \mathbb{N}} \) be any sequence which converges to 0 uniformly on compact subsets of \(B_n \) satisfying \(\| f_k \|_{H_{p,q,\gamma}} \leq 1. \)

Then \(f_k \) and \(\mathcal{R}_\mu f_k \) converge to 0 uniformly on \(K = \{ w \in B_n : |w| \leq \delta \}. \) Hence

\[
\sup_{z \in B_n} \mu(z) \Re \left(\mathcal{T}_{\psi, \varphi} f_k(z) \right) = \sup_{z \in B_n} \mu(z) \Re \left(\mathcal{T}_{\psi, \varphi} f_k(z) \right)
\]

\[
+ \sup_{z \in B_n} \mu(z) \Re \left(\mathcal{T}_{\psi, \varphi} f_k(z) \right).
\]

If \(\varphi(z) \in B_n \setminus K \) and \(J\varphi(z) \varphi \neq 0, \) by Lemma 1 and Lemma 2, we have

\[
\mu(z) \Re \left(\mathcal{T}_{\psi, \varphi} f_k(z) \right) \leq \mu(z) |\psi(z)| |\Re \left(f_k \varphi \right)(z) + \mu(z) |\Re \left(\psi \right)(z)| \left| f_k \varphi \right|(z)\]

\[
\leq \left| \mu(z) \Re \left(f_k \varphi \right)(z) \right| \left(n \right) \frac{n/\gamma(q+1) + p}{n/\gamma(q+1) + p}
\]

\[
\times \left(1 - |\varphi(z)|^2 \right)^{n/\gamma(q+1) + p} \left(H_{\psi(z)} \left(J\varphi(z) \varphi, J\varphi(z) \varphi \right) \right)^{1/2}
\]

\[
\leq C \varepsilon \| f_k \|_{H_{p,q,\gamma}} \leq C \varepsilon.
\]

When \(J\varphi(z) \varphi = 0, \)

\[
\mu(z) \Re \left(\mathcal{T}_{\psi, \varphi} f_k(z) \right) \leq \varepsilon \| f_k \|_{H_{p,q,\gamma}} \leq \varepsilon.
\]

Combining (50) and (51) we obtain that

\[
\sup_{\varphi(z) \in B_n, K} \mu(z) \Re \left(\mathcal{T}_{\psi, \varphi} f_k(z) \right) \leq C \varepsilon.
\]

If \(\varphi(z) \in K, \) by (a), we have that

\[
\mu(z) \Re \left(\mathcal{T}_{\psi, \varphi} f_k(z) \right)
\]

\[
\leq \mu(z) |\psi(z)| |\Re \left(f_k \varphi \right)(z) + \mu(z) |\Re \left(\psi \right)(z)| \left| f_k \varphi \right|(z)
\]

\[
\leq \mu(z) |\psi(z)| \left| \left\{ \nabla f_k \varphi(z), J\varphi(z) \right\} \right| + \left| f_k \varphi(z) \right| \left| \psi \right| \left| \Re \left(\psi \right)(z) \right|
\]

\[
\leq \left| \nabla f_k \varphi(z) \right| \left(\sum_{l=1}^{n/\gamma(q+1) + p} \left(\mu(z) |\psi(z)| \left| \Re \left(\psi \right)(z) \right| \right)
\]

\[
+ \left| f_k \varphi(z) \right| \left| \psi \right| \left| \Re \left(\psi \right)(z) \right|
\]
Abstract and Applied Analysis

If \(\sqrt{1-r_k^2}(|\eta_2|^2 + \cdots + |\eta_n|^2) \leq |\eta_1| \), where \(J\varphi(z_k)z_k = (\eta_1, \ldots, \eta_n)^T \). Let

\[
f_k(z) = \frac{z_k - r_k}{1 - r_k^2} \left(\frac{1 - r_k^2}{(1 - r_k z_k^2)^{n/2}} \right)^{n/2}.
\]

From Theorem 5 we know that \(f_k \in H_{p,q,\gamma} \) and we notice that \(f_k \) converges to 0 uniformly on compact subsets of \(B_n \) when \(k \to \infty \). By Lemma 3 we have \(\lim_{k \to \infty} \| T_{w,w}(f_k) \|_{B_\mu} = 0 \). Then by a similar proof of (30) in Theorem 5 we have

\[
\frac{\mu(z_k)}{\nu_{n+1}(p+1)} \leq \| T_{w,w}(f_k) \|_{B_\mu} \to 0, \quad k \to \infty.
\]

And similar to the proofs of (31) and (57) we get that

\[
\frac{\mu(z_k)}{\nu_{n+1}(p+1)} \leq \| T_{w,w}(f_k) \|_{B_\mu} \to 0, \quad k \to \infty.
\]

On the other hand, we consider the case of

\[
\sqrt{1-r_k^2}(|\eta_2|^2 + \cdots + |\eta_n|^2) > |\eta_1|.
\]

For \(j = 2, \ldots, n \), let \(\theta_j = \arg \eta_j \) and \(e_j = e^{i \theta_j} \), when \(\eta_j \neq 0 \); otherwise \(e_j = 0 \) when \(\eta_j = 0 \). Take

\[
f_k(z) = \left(\frac{a_2 z_2 + \cdots + a_n z_n}{1 - r_k^2} \right) \left(\frac{1 - r_k^2}{(1 - r_k z_k^2)^{n/2}} \right)^{n/2}
\]

Then \(f_k \in H_{p,q,\gamma} \), \(k \in \mathbb{N} \), and \(f_k \) converges to 0 uniformly on compact subsets of \(B_n \) when \(k \to \infty \). By Lemma 3 we have \(\lim_{k \to \infty} \| T_{w,w}(f_k) \|_{B_\mu} = 0 \). Notice that \(f_k(q(z_k)) = 0 \) and

\[
\nabla f_{\varphi}(q(z_k)) = 0.
\]

By a similar proof of (30), it follows that

\[
\frac{\mu(z_k)}{\nu_{n+1}(p+1)} \leq \| T_{w,w}(f_k) \|_{B_\mu} \to 0, \quad k \to \infty.
\]
And similar to the proofs of (31) and (61), we obtain
\[
\frac{\mu(z_k)|\psi(z_k)|}{(1 - |\psi(z_k)|^2)^{\alpha}} \left[H_{\psi(z_k)} (J\psi(z_k) z_k, J\psi(z_k) z_k) \right]^{1/2}
\leq C \frac{\mu(z_k)|\psi(z_k)|}{(1 - |z_k|^2)^{n/2q + (\nu + 1)/p}} \rightarrow 0
\]
\[
k \rightarrow \infty.
\]
Combining (58) and (62), (47) holds under the two cases.

For the general situation, if there exists \(\varphi(z_k) \) such that \(\varphi(z_k) \neq |\varphi(z_k)|e_1 \), then there is a unitary transformation \(U_k \) such that \(\varphi(z_k) = r_k e_1 U_k, k \in \{1, 2, \ldots, n\} \). And we can prove (47) by taking the function sequence \(g_k = f_k \circ U_k^{-1} \) and the details are omitted.

Next we prove (46). Let \(\{z_k \} \) be a sequence in \(B_n \) such that \(|\varphi(z_k)| \rightarrow 1 \) as \(k \rightarrow \infty \). Choose
\[
h_k(z) = \frac{1 - |\varphi(z_k)|^2}{1 - \langle z, \varphi(z_k) \rangle} \left(b - \frac{(\nu + 1)}{p} \right) \frac{1}{n/\sqrt{q} + b^2}.
\]
Then \(h_k \in H_{p,q,y} \), \(k \in \mathbb{N} \), and \(\|h_k\|_{H_{p,q,y}} \leq C \). It is obvious that \(h_k \rightarrow 0 \) uniformly on compact subsets of \(B_n \) as \(k \rightarrow \infty \). By Lemma 3 we have that \(\lim_{k \rightarrow \infty} \|T_{\psi h_k}(z)\|_{\mathcal{B}_u} = 0 \).

Then by the similar proof of (44) we obtain
\[
\|T_{\psi h_k}(z)\|_{\mathcal{B}_u} \geq \frac{\mu(z_k)|R\psi(z_k)|}{(1 - |\psi(z_k)|^2)^{n/2q + (\nu + 1)/p}}
- \frac{\mu(z_k)|\psi(z_k)|}{(1 - |\psi(z_k)|^2)^{n/2q + (\nu + 1)/p}} \left| R(h_k \circ \varphi)(z_k) \right|.
\]

From the similar proof of (45) it follows that
\[
\mu(z_k)|\psi(z_k)| \left| R(h_k \circ \varphi)(z_k) \right|
\leq \left(\frac{n}{q} + b \right) \frac{\mu(z_k)|\psi(z_k)|}{(1 - |\psi(z_k)|^2)^{n/2q + (\nu + 1)/p}}
\times \left\{ H_{\psi(z_k)} (J\psi(z_k) z_k, J\psi(z_k) z_k) \right\}^{1/2} \rightarrow 0,
\]
k \rightarrow \infty.

Combining (64) and (65) we obtain (46). This completes the proof.

Corollary 8. Assume that \(0 < p, q < \infty, -1 < \gamma < \infty, \mu \) is a normal function, and \(\varphi \in S(B_n) \). Then \(C_{\varphi} : H_{p,q,y} \rightarrow \mathcal{B}_u \) is compact if and only if
\[
\lim_{|z| \rightarrow 1} \frac{\mu(z) \left\{ H_{\varphi(z)} (J\psi(z) z, J\varphi(z) z) \right\}^{1/2}}{(1 - |\varphi(z)|^2)^{n/2q + (\nu + 1)/p}} = 0.
\]

And \(\varphi_i \in \mathcal{B}_u \) for \(l \in \{1, \ldots, n\} \).

Corollary 9. Assume that \(0 < p, q < \infty, -1 < \gamma < \infty, \mu \) is a normal function, and \(\psi \in H(B_n) \). Then \(M_{\psi} : H_{p,q,y} \rightarrow \mathcal{B}_u \) is compact if and only if
\[
\sup_{z \in B_n} \frac{\mu(z) |R\psi(z)|}{(1 - |z|^2)^{n/2q + (\nu + 1)/p}} < \infty,
\]
\[
\sup_{z \in B_n} \frac{\mu(z) |\psi(z)|}{(1 - |z|^2)^{n/2q + (\nu + 1)/p + 1}} < \infty.
\]

Corollary 10. Assume that \(0 < p, q < \infty, -1 < \gamma < \infty, \mu \) is a normal function, and \(\psi \in H(B_n) \). Then \(M_{\psi} : H_{p,q,y} \rightarrow \mathcal{B}_u \) is compact if and only if the following are all satisfied:

(a) \(\psi \in \mathcal{B}_u \) and \(\varphi_l \in \mathcal{B}_u \) for any \(l \in \{1, \ldots, n\} \);

(b) \[
\lim_{|z| \rightarrow 1} \left(\frac{\mu(z) |R\psi(z)|}{(1 - |z|^2)^{n/2q + (\nu + 1)/p}} \right) = 0;
\]

(c) \[
\lim_{|z| \rightarrow 1} \left(\frac{\mu(z) |\psi(z)|}{(1 - |z|^2)^{n/2q + (\nu + 1)/p + 1}} \right) = 0.
\]

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

This work was supported in part by the National Natural Science Foundation of China (Grants nos. 11371276; 11301373; and 11201331).

References

