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Abstract. 
Suppose 
	
		
			
				𝑚
				,
				𝑛
				≥
				2
			

		
	
 are positive integers. Let 
	
		
			

				𝒯
			

			

				𝑛
			

		
	
 be the space of all 
	
		
			
				𝑛
				×
				𝑛
			

		
	
 complex upper triangular matrices, and let 
	
		
			

				𝜙
			

		
	
 be an injective linear map on 
	
		
			

				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
. Then 
	
		
			
				𝜙
				(
				𝐴
				⊗
				𝐵
				)
			

		
	
 is an idempotent matrix in 
	
		
			

				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
 whenever 
	
		
			
				𝐴
				⊗
				𝐵
			

		
	
 is an idempotent matrix in 
	
		
			

				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
 if and only if there exists an invertible matrix 
	
		
			
				𝑃
				∈
				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
 such that 
	
		
			
				𝜙
				(
				𝐴
				⊗
				𝐵
				)
				=
				𝑃
				(
				𝜉
			

			

				1
			

			
				(
				𝐴
				)
				⊗
				𝜉
			

			

				2
			

			
				(
				𝐵
				)
				)
				𝑃
			

			
				−
				1
			

			
				,
				∀
				𝐴
				∈
				𝒯
			

			

				𝑚
			

			
				,
				𝐵
				∈
				𝒯
			

			

				𝑛
			

		
	
, or when 
	
		
			
				𝑚
				=
				𝑛
			

		
	
, 
	
		
			
				𝜙
				(
				𝐴
				⊗
				𝐵
				)
				=
				𝑃
				(
				𝜉
			

			

				1
			

			
				(
				𝐵
				)
				⊗
				𝜉
			

			

				2
			

			
				(
				𝐴
				)
				)
				𝑃
			

			
				−
				1
			

			
				,
				∀
				𝐴
				∈
				𝒯
			

			

				𝑚
			

			
				,
				𝐵
				∈
				𝒯
			

			

				𝑚
			

		
	
, where 
	
		
			

				𝜉
			

			

				1
			

			
				(
				[
				𝑎
			

			
				𝑖
				𝑗
			

			
				]
				)
				=
				[
				𝑎
			

			
				𝑖
				𝑗
			

			

				]
			

		
	
 or 
	
		
			

				𝜉
			

			

				1
			

			
				(
				[
				𝑎
			

			
				𝑖
				𝑗
			

			
				]
				)
				=
				[
				𝑎
			

			
				𝑚
				−
				𝑖
				+
				1
				,
				𝑚
				−
				𝑗
				+
				1
			

			

				]
			

		
	
 and 
	
		
			

				𝜉
			

			

				2
			

			
				(
				[
				𝑏
			

			
				𝑖
				𝑗
			

			
				]
				)
				=
				[
				𝑏
			

			
				𝑖
				𝑗
			

			

				]
			

		
	
 or 
	
		
			

				𝜉
			

			

				2
			

			
				(
				[
				𝑏
			

			
				𝑖
				𝑗
			

			
				]
				)
				=
				[
				𝑏
			

			
				𝑛
				−
				𝑖
				+
				1
				,
				𝑛
				−
				𝑗
				+
				1
			

			
				]
				.
			

		
	



1. Introduction
Suppose 
	
		
			
				𝑚
				,
				𝑛
				≥
				2
			

		
	
 are positive integers. Let 
	
		
			

				ℳ
			

			

				𝑛
			

		
	
 be the space of all 
	
		
			
				𝑛
				×
				𝑛
			

		
	
 complex matrices, and let 
	
		
			

				𝒯
			

			

				𝑛
			

		
	
 be all upper triangular in 
	
		
			

				ℳ
			

			

				𝑛
			

		
	
. For 
	
		
			
				𝐴
				∈
				ℳ
			

			

				𝑚
			

		
	
, 
	
		
			
				𝐵
				∈
				ℳ
			

			

				𝑛
			

		
	
, we denote by 
	
		
			
				𝐴
				⊗
				𝐵
			

		
	
 their tensor product (a.k.a. Kronecker product).
Linear preserver problem is a hot area in matrix and operator theory; there are many results about this area (see [1–14]). Specially, the idempotence preservers and the rank one preservers play an important role (see [1, 2]); therefore, it is meaningful to study the idempotence preservers. Chan et al. [3] first characterize linear transformations on 
	
		
			

				ℳ
			

			

				𝑛
			

		
	
 preserving idempotent matrices. Šemrl [4] applying projective geometry gives the form of transformations on rank-1 idempotents. Tang et al.  [5] investigate injective linear idempotence preservers on 
	
		
			

				𝒯
			

			

				𝑛
			

		
	
.
In quantum information science, quantum states of a system with 
	
		
			

				𝑛
			

		
	
 physical states are represented as density matrices, that is, positive semidefinite matrices with trace one. If 
	
		
			
				𝐴
				∈
				ℳ
			

			

				𝑚
			

		
	
 and 
	
		
			
				𝐵
				∈
				ℳ
			

			

				𝑛
			

		
	
 are two quantum states in two quantum systems, then 
	
		
			
				𝐴
				⊗
				𝐵
			

		
	
 describes a joint state in bipartite system 
	
		
			

				ℳ
			

			

				𝑚
			

			
				⊗
				ℳ
			

			

				𝑛
			

		
	
. Recently, many researchers consider the problem combining linear preserver problem with quantum information science. They determine the structure of linear maps on 
	
		
			

				ℳ
			

			

				𝑚
			

			
				⊗
				ℳ
			

			

				𝑛
			

		
	
 by using information only about the images of matrices possessing tensor product form. One can see [15–18] and their references for some background on linear preserver problems on tensor spaces arising in quantum information science.
Inspired by the above, the purpose of this paper is to study injective linear maps 
	
		
			

				𝜙
			

		
	
 on 
	
		
			

				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
 satisfying 
	
		
			
				𝜙
				(
				𝐴
				⊗
				𝐵
				)
			

		
	
  is an idempotent matrix whenever 
	
		
			
				𝐴
				⊗
				𝐵
			

		
	
 is an idempotent matrix in 
	
		
			

				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
. If we remove the assumption that map is injective, then 
	
		
			

				𝜙
			

		
	
 may have various forms as follows.
Example 1. 
	
		
			
				𝐴
				⊗
				𝐵
				↦
				𝑎
			

			
				1
				1
			

			

				𝐼
			

			

				𝑚
			

			
				⊗
				𝐵
			

		
	
 is a linear idempotent preserver on 
	
		
			

				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
.
Example 2. 
	
		
			
				𝐴
				⊗
				𝐵
				↦
				𝑎
			

			
				1
				1
			

			
				(
				𝐸
			

			
				(
				𝑚
				)
				1
				1
			

			
				+
				𝐸
			

			
				(
				𝑚
				)
				2
				2
			

			
				)
				⊗
				(
				𝑏
			

			
				1
				1
			

			

				𝐸
			

			
				(
				𝑛
				)
				1
				1
			

			
				+
				𝑏
			

			
				1
				2
			

			

				𝐸
			

			
				(
				𝑛
				)
				1
				2
			

			
				+
				𝑏
			

			
				2
				2
			

			

				𝐸
			

			
				(
				𝑛
				)
				2
				2
			

			

				)
			

		
	
 is a linear idempotent preserver on 
	
		
			

				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
.
We end this section by introducing some notations which will be used in the following sections. Let 
	
		
			

				𝐂
			

		
	
 be the complex field, 
	
		
			

				𝐼
			

			

				𝑘
			

		
	
 the 
	
		
			
				𝑘
				×
				𝑘
			

		
	
 identity matrix, 
	
		
			

				0
			

		
	
 the zero matrix whose order is omitted in different matrices just for simplicity, and 
	
		
			

				𝑋
			

			

				𝑡
			

		
	
 (resp., 
	
		
			
				r
				a
				n
				k
				𝑋
			

		
	
) the transpose (resp., rank) of 
	
		
			

				𝑋
			

		
	
. 
	
		
			

				𝐸
			

			
				(
				𝑛
				)
				𝑖
				𝑗
			

		
	
, 
	
		
			
				∀
				𝑖
				,
				𝑗
				∈
				[
				1
				,
				𝑛
				]
			

		
	
 stands for the 
	
		
			
				𝑛
				×
				𝑛
			

		
	
 matrix with 
	
		
			

				1
			

		
	
 at the 
	
		
			
				(
				𝑖
				,
				𝑗
				)
			

		
	
th entry and 
	
		
			

				0
			

		
	
 otherwise. Denote by 
	
		
			

				𝐽
			

			

				𝑘
			

		
	
 (also 
	
		
			

				𝐽
			

		
	
) the matrix 
	
		
			

				𝐸
			

			
				(
				𝑘
				)
				1
				,
				𝑘
			

			
				+
				𝐸
			

			
				(
				𝑘
				)
				2
				,
				𝑘
				−
				1
			

			
				+
				⋯
				+
				𝐸
			

			
				(
				𝑘
				)
				𝑘
				,
				1
			

		
	
. Clearly, if 
	
		
			
				𝐴
				=
				[
				𝑎
			

			
				𝑖
				𝑗
			

			
				]
				∈
				𝒯
			

			

				𝑛
			

		
	
, then 
	
		
			
				𝐽
				𝐴
			

			

				𝑡
			

			
				𝐽
				=
				[
				𝑎
			

			
				𝑛
				−
				𝑗
				+
				1
				,
				𝑛
				−
				𝑖
				+
				1
			

			
				]
				∈
				𝒯
			

			

				𝑛
			

		
	
. For positive integers 
	
		
			

				𝑛
			

			

				1
			

		
	
 and 
	
		
			

				𝑛
			

			

				2
			

		
	
 with 
	
		
			

				𝑛
			

			

				1
			

			
				<
				𝑛
			

			

				2
			

		
	
, let 
	
		
			
				[
				𝑛
			

			

				1
			

			
				,
				𝑛
			

			

				2
			

			

				]
			

		
	
 be the set of all integers between 
	
		
			

				𝑛
			

			

				1
			

		
	
 and 
	
		
			

				𝑛
			

			

				2
			

		
	
. For any 
	
		
			
				(
				𝑖
				,
				𝑗
				)
				∈
				[
				1
				,
				𝑚
				]
				×
				[
				1
				,
				𝑛
				]
			

		
	
, we define 
	
		
			

				𝜌
			

		
	
 by
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				𝜌
				(
				𝑖
				,
				𝑗
				)
				=
				(
				𝑖
				−
				1
				)
				𝑛
				+
				𝑗
				.
			

		
	

					For any 
	
		
			
				𝑘
				∈
				[
				1
				,
				𝑚
				𝑛
				]
			

		
	
, we define 
	
		
			
				𝜎
				(
				𝑘
				)
				∈
				[
				1
				,
				𝑚
				]
			

		
	
 and 
	
		
			
				𝜏
				(
				𝑘
				)
				∈
				[
				1
				,
				𝑛
				]
			

		
	
 such that 
	
		
			
				𝑘
				=
				(
				𝜎
				(
				𝑘
				)
				−
				1
				)
				𝑛
				+
				𝜏
				(
				𝑘
				)
			

		
	
 (it is easy to see that 
	
		
			

				𝜎
			

		
	
 and 
	
		
			

				𝜏
			

		
	
 are well defined). It is easy to see that
						
	
 		
 			
				(
				2
				)
			
 			
				(
				3
				)
			
 		
	

	
		
			

				𝐸
			

			
				(
				𝑚
				)
				𝑟
				𝑠
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				𝑢
				𝑣
			

			
				=
				𝐸
			

			
				(
				𝑚
				𝑛
				)
				(
				𝑟
				−
				1
				)
				𝑛
				+
				𝑢
				,
				(
				𝑠
				−
				1
				)
				𝑛
				+
				𝑣
			

			
				=
				𝐸
			

			
				(
				𝑚
				𝑛
				)
				𝜌
				(
				𝑟
				,
				𝑢
				)
				,
				𝜌
				(
				𝑠
				,
				𝑣
				)
			

			
				,
				𝐸
			

			
				(
				𝑚
				𝑛
				)
				𝑖
				𝑗
			

			
				=
				𝐸
			

			
				(
				𝑚
				)
				𝜎
				(
				𝑖
				)
				𝜎
				(
				𝑗
				)
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				𝜏
				(
				𝑖
				)
				𝜏
				(
				𝑗
				)
			

			

				.
			

		
	

					We define a partial ordering of 
	
		
			
				[
				1
				,
				𝑚
				]
				×
				[
				1
				,
				𝑛
				]
			

		
	
 by 
	
		
			
				(
				𝑎
				,
				𝑏
				)
				≤
				(
				𝑐
				,
				𝑑
				)
			

		
	
 if and only if 
	
		
			
				𝑎
				≤
				𝑐
			

		
	
 and 
	
		
			
				𝑏
				≤
				𝑑
			

		
	
. We say that 
	
		
			
				(
				𝑎
				,
				𝑏
				)
			

		
	
 and 
	
		
			
				(
				𝑐
				,
				𝑑
				)
			

		
	
 are comparable, if 
	
		
			
				(
				𝑎
				,
				𝑏
				)
				≤
				(
				𝑐
				,
				𝑑
				)
			

		
	
 or 
	
		
			
				(
				𝑐
				,
				𝑑
				)
				≤
				(
				𝑎
				,
				𝑏
				)
			

		
	
.
2. Preliminary Results
We need the form of injective linear idempotence preserver on 
	
		
			

				𝒯
			

			

				𝑛
			

		
	
, which was obtained in [5].
Lemma 3 (see [5, Theorem 1]).  Let 
	
		
			

				𝜓
			

		
	
 be an injective linear map on 
	
		
			

				𝒯
			

			

				𝑛
			

		
	
. Then 
	
		
			
				𝜓
				(
				𝑋
				)
			

		
	
 is an idempotent matrix in 
	
		
			

				𝒯
			

			

				𝑛
			

		
	
 whenever 
	
		
			

				𝑋
			

		
	
 is an idempotent matrix in 
	
		
			

				𝒯
			

			

				𝑛
			

		
	
 if and only if there exists an invertible matrix 
	
		
			
				𝑃
				∈
				𝒯
			

			

				𝑛
			

		
	
 such that
							
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				𝜓
				(
				𝑋
				)
				=
				𝑃
				𝜉
				(
				𝑋
				)
				𝑃
			

			
				−
				1
			

			
				,
				∀
				𝑋
				∈
				𝒯
			

			

				𝑛
			

			

				,
			

		
	

						where 
	
		
			
				𝜉
				(
				𝑋
				)
				=
				𝑋
			

		
	
 or 
	
		
			
				𝜉
				(
				𝑋
				)
				=
				𝐽
				𝑋
			

			

				𝑡
			

			

				𝐽
			

		
	
.
It is clear that 
	
		
			

				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

			
				⊊
				𝒯
			

			
				𝑚
				𝑛
			

		
	
. For example, 
	
		
			

				𝐸
			

			
				(
				4
				)
				2
				3
			

			
				∈
				𝒯
			

			

				4
			

		
	
 and
						
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			

				𝐸
			

			
				(
				4
				)
				2
				3
			

			
				∉
				𝒯
			

			

				2
			

			
				⊗
				𝒯
			

			

				2
			

			
				=
				⎧
				⎪
				⎪
				⎪
				⎪
				⎨
				⎪
				⎪
				⎪
				⎪
				⎩
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				𝑎
			

			
				1
				1
			

			

				𝑎
			

			
				1
				2
			

			

				𝑎
			

			
				1
				3
			

			

				𝑎
			

			
				1
				4
			

			
				0
				𝑎
			

			
				2
				2
			

			
				0
				𝑎
			

			
				2
				4
			

			
				0
				0
				𝑎
			

			
				3
				3
			

			

				𝑎
			

			
				3
				4
			

			
				0
				0
				0
				𝑎
			

			
				4
				4
			

			
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				∶
				𝑎
			

			
				𝑖
				𝑗
			

			
				⎫
				⎪
				⎪
				⎪
				⎪
				⎬
				⎪
				⎪
				⎪
				⎪
				⎭
				.
				∈
				𝐂
			

		
	

					It is easy to see that 
	
		
			
				(
				𝜎
				(
				2
				)
				,
				𝜏
				(
				2
				)
				)
				=
				(
				1
				,
				2
				)
			

		
	
 and 
	
		
			
				(
				𝜎
				(
				3
				)
				,
				𝜏
				(
				3
				)
				)
				=
				(
				2
				,
				1
				)
			

		
	
. In fact, we can point out the positions of elements which are in 
	
		
			

				𝒯
			

			
				𝑚
				𝑛
			

			
				⧵
				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
.
Lemma 4.  
	
		
			
				𝜆
				𝐸
			

			
				(
				𝑚
				𝑛
				)
				𝑖
				𝑗
			

			
				∈
				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
 if and only if 
	
		
			
				(
				𝜎
				(
				𝑖
				)
				,
				𝜏
				(
				𝑖
				)
				)
				≤
				(
				𝜎
				(
				𝑗
				)
				,
				𝜏
				(
				𝑗
				)
				)
			

		
	
 or 
	
		
			
				𝜆
				=
				0
			

		
	
.
Proof. It is a direct corollary of (3).
The next Lemma describes the partial ordering we defined in Section 1, which is useful to prove our main Theorem.
Lemma 5 (see [19, Theorem 1]).  Let 
	
		
			
				𝑚
				,
				𝑛
				≥
				2
			

		
	
, and let 
	
		
			

				𝐴
			

		
	
 be a matrix with 
	
		
			

				𝑚
			

		
	
 rows and 
	
		
			

				𝑛
			

		
	
 columns containing all elements of 
	
		
			
				[
				1
				,
				𝑚
				]
				×
				[
				1
				,
				𝑛
				]
			

		
	
. If every two elements of 
	
		
			

				𝐴
			

		
	
 in the same row and column are comparable, respectively, then there exist permutation matrices 
	
		
			
				𝑈
				∈
				ℳ
			

			

				𝑚
			

		
	
 and 
	
		
			
				𝑉
				∈
				ℳ
			

			

				𝑛
			

		
	
 such that
							
	
 		
 			

				(
			
 			

				I
			
 			

				)
			
 		
	

	
		
			
				=
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				𝑈
				𝐴
				𝑉
				(
				1
				,
				1
				)
				(
				1
				,
				2
				)
				⋯
				(
				1
				,
				𝑛
				−
				1
				)
				(
				1
				,
				𝑛
				)
				(
				2
				,
				1
				)
				(
				2
				,
				2
				)
				⋯
				(
				2
				,
				𝑛
				−
				1
				)
				(
				2
				,
				𝑛
				)
				⋯
				⋯
				⋯
				⋯
				⋯
				(
				𝑚
				−
				1
				,
				1
				)
				(
				𝑚
				−
				1
				,
				2
				)
				⋯
				(
				𝑚
				−
				1
				,
				𝑛
				−
				1
				)
				(
				𝑚
				−
				1
				,
				𝑛
				)
				(
				𝑚
				,
				1
				)
				(
				𝑚
				,
				2
				)
				⋯
				(
				𝑚
				,
				𝑛
				−
				1
				)
				(
				𝑚
				,
				𝑛
				)
			

		
	

						or when 
	
		
			
				𝑚
				≥
				3
			

		
	
 or 
	
		
			
				𝑛
				≥
				3
			

		
	
 
	
 		
 			

				(
			
 			
				I
				I
			
 			

				)
			
 		
	

	
		
			
				=
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				𝑈
				𝐴
				𝑉
				(
				𝑚
				,
				𝑛
				)
				(
				1
				,
				2
				)
				⋯
				(
				1
				,
				𝑛
				−
				1
				)
				(
				1
				,
				𝑛
				)
				(
				2
				,
				1
				)
				(
				2
				,
				2
				)
				⋯
				(
				2
				,
				𝑛
				−
				1
				)
				(
				2
				,
				𝑛
				)
				⋯
				⋯
				⋯
				⋯
				⋯
				(
				𝑚
				−
				1
				,
				1
				)
				(
				𝑚
				−
				1
				,
				2
				)
				⋯
				(
				𝑚
				−
				1
				,
				𝑛
				−
				1
				)
				(
				𝑚
				−
				1
				,
				𝑛
				)
				(
				𝑚
				,
				1
				)
				(
				𝑚
				,
				2
				)
				⋯
				(
				𝑚
				,
				𝑛
				−
				1
				)
				(
				1
				,
				1
				)
			

		
	

						or when 
	
		
			
				𝑚
				=
				𝑛
			

		
	
 
	
 		
 			

				(
			
 			
				I
				I
				I
			
 			

				)
			
 		
	

	
		
			
				=
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				𝑈
				𝐴
				𝑉
				(
				1
				,
				1
				)
				(
				2
				,
				1
				)
				⋯
				(
				𝑚
				−
				1
				,
				1
				)
				(
				𝑚
				,
				1
				)
				(
				1
				,
				2
				)
				(
				2
				,
				2
				)
				⋯
				(
				𝑚
				−
				1
				,
				2
				)
				(
				𝑚
				,
				2
				)
				⋯
				⋯
				⋯
				⋯
				⋯
				(
				1
				,
				𝑚
				−
				1
				)
				(
				2
				,
				𝑚
				−
				1
				)
				⋯
				(
				𝑚
				−
				1
				,
				𝑚
				−
				1
				)
				(
				𝑚
				,
				𝑚
				−
				1
				)
				(
				1
				,
				𝑚
				)
				(
				2
				,
				𝑚
				)
				⋯
				(
				𝑚
				−
				1
				,
				𝑚
				)
				(
				𝑚
				,
				𝑚
				)
			

		
	

						or when 
	
		
			
				𝑚
				=
				𝑛
				≥
				3
			

		
	
 
	
 		
 			

				(
			
 			
				I
				V
			
 			

				)
			
 		
	

	
		
			
				=
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				.
				𝑈
				𝐴
				𝑉
				(
				𝑚
				,
				𝑚
				)
				(
				2
				,
				1
				)
				⋯
				(
				𝑚
				−
				1
				,
				1
				)
				(
				𝑚
				,
				1
				)
				(
				1
				,
				2
				)
				(
				2
				,
				2
				)
				⋯
				(
				𝑚
				−
				1
				,
				2
				)
				(
				𝑚
				,
				2
				)
				⋯
				⋯
				⋯
				⋯
				⋯
				(
				1
				,
				𝑚
				−
				1
				)
				(
				2
				,
				𝑚
				−
				1
				)
				⋯
				(
				𝑚
				−
				1
				,
				𝑚
				−
				1
				)
				(
				𝑚
				,
				𝑚
				−
				1
				)
				(
				1
				,
				𝑚
				)
				(
				2
				,
				𝑚
				)
				⋯
				(
				𝑚
				−
				1
				,
				𝑚
				)
				(
				1
				,
				1
				)
			

		
	

The following lemmas would make the proof of the main theorem more concise.
Lemma 6.  Suppose 
	
		
			
				𝑋
				∈
				ℳ
			

			

				𝑛
			

		
	
 is an idempotent matrix such that 
	
		
			

				0
			

			

				𝑠
			

			
				⊕
				𝐼
			

			

				𝑟
			

			
				⊕
				0
			

			
				𝑛
				−
				𝑟
				−
				𝑠
			

			
				−
				𝑋
			

		
	
 also is an idempotent matrix. Then there exists an idempotent matrix 
	
		
			

				𝑋
			

			

				𝑟
			

			
				∈
				ℳ
			

			

				𝑟
			

		
	
 such that 
	
		
			
				𝑋
				=
				0
			

			

				𝑠
			

			
				⊕
				𝑋
			

			

				𝑟
			

			
				⊕
				0
			

			
				𝑛
				−
				𝑟
				−
				𝑠
			

		
	
.
Proof. By 
	
		
			

				𝑋
			

			

				2
			

			
				=
				𝑋
			

		
	
 and 
	
		
			
				(
				0
			

			

				𝑠
			

			
				⊕
				𝐼
			

			

				𝑟
			

			
				⊕
				0
			

			
				𝑛
				−
				𝑟
				−
				𝑠
			

			
				−
				𝑋
				)
			

			

				2
			

			
				=
				0
			

			

				𝑠
			

			
				⊕
				𝐼
			

			

				𝑟
			

			
				⊕
				0
			

			
				𝑛
				−
				𝑟
				−
				𝑠
			

			
				−
				𝑋
			

		
	
, we have
							
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			
				
				0
				2
				𝑋
				=
			

			

				𝑠
			

			
				⊕
				𝐼
			

			

				𝑟
			

			
				⊕
				0
			

			
				𝑛
				−
				𝑟
				−
				𝑠
			

			
				
				
				0
				𝑋
				+
				𝑋
			

			

				𝑠
			

			
				⊕
				𝐼
			

			

				𝑟
			

			
				⊕
				0
			

			
				𝑛
				−
				𝑟
				−
				𝑠
			

			
				
				.
			

		
	

						Set
							
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				𝑋
				𝑋
				=
			

			
				1
				1
			

			

				𝑋
			

			
				1
				2
			

			

				𝑋
			

			
				1
				3
			

			

				𝑋
			

			
				2
				1
			

			

				𝑋
			

			
				2
				2
			

			

				𝑋
			

			
				2
				3
			

			

				𝑋
			

			
				3
				1
			

			

				𝑋
			

			
				3
				2
			

			

				𝑋
			

			
				3
				3
			

			
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
			

		
	

						where 
	
		
			

				𝑋
			

			
				1
				1
			

			
				∈
				ℳ
			

			

				𝑠
			

			
				,
				𝑋
			

			
				2
				2
			

			
				∈
				ℳ
			

			

				𝑟
			

		
	
. Then (6) implies
							
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				2
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				𝑋
			

			
				1
				1
			

			

				𝑋
			

			
				1
				2
			

			

				𝑋
			

			
				1
				3
			

			

				𝑋
			

			
				2
				1
			

			

				𝑋
			

			
				2
				2
			

			

				𝑋
			

			
				2
				3
			

			

				𝑋
			

			
				3
				1
			

			

				𝑋
			

			
				3
				2
			

			

				𝑋
			

			
				3
				3
			

			
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				=
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				0
				𝑋
			

			
				1
				2
			

			
				0
				𝑋
			

			
				2
				1
			

			
				2
				𝑋
			

			
				2
				2
			

			

				𝑋
			

			
				2
				3
			

			
				0
				𝑋
			

			
				3
				2
			

			
				0
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				.
			

		
	

						Hence, 
	
		
			
				𝑋
				=
				0
			

			

				𝑠
			

			
				⊕
				𝑋
			

			
				2
				2
			

			
				⊕
				0
			

			
				𝑛
				−
				𝑟
				−
				𝑠
			

		
	
; therefore, the lemma holds.
Lemma 7.  Let 
	
		
			
				𝑋
				∈
				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
 be an idempotent matrix such that 
	
		
			

				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				⊗
				𝐼
			

			

				𝑛
			

			
				−
				𝑋
			

		
	
 also is an idempotent matrix. Then there exists an idempotent 
	
		
			
				𝑌
				∈
				𝒯
			

			

				𝑛
			

		
	
 such that 
	
		
			
				𝑋
				=
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				⊗
				𝑌
			

		
	
.
Proof. The proof is similar to that of Lemma 6.
Lemma 8.  Suppose 
	
		
			
				𝑟
				,
				𝑠
				∈
				[
				1
				,
				𝑛
				−
				1
				]
			

		
	
. If for any 
	
		
			
				𝜆
				∈
				𝐂
			

		
	
, 
	
		
			

				𝐼
			

			

				𝑟
			

			
				⊕
				0
			

			
				𝑛
				−
				𝑟
			

			
				+
				𝜆
				𝑋
			

		
	
 and 
	
		
			

				0
			

			

				𝑟
			

			
				⊕
				𝐼
			

			

				𝑠
			

			
				⊕
				0
			

			
				𝑛
				−
				𝑟
				−
				𝑠
			

			
				+
				𝜆
				𝑋
			

		
	
 are idempotent in 
	
		
			

				𝒯
			

			

				𝑛
			

		
	
, then
							
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				⎡
				⎢
				⎢
				⎢
				⎣
				0
				𝑋
				=
			

			

				𝑟
			

			

				𝑋
			

			

				1
			

			
				0
				0
			

			

				𝑠
			

			
				⎤
				⎥
				⎥
				⎥
				⎦
				⊕
				0
			

			
				𝑛
				−
				𝑟
				−
				𝑠
			

			

				.
			

		
	

Proof. It follows from 
	
		
			

				𝐼
			

			

				𝑟
			

			
				⊕
				0
			

			
				𝑛
				−
				𝑟
			

			
				+
				𝜆
				𝑋
			

		
	
, 
	
		
			
				∀
				𝜆
				∈
				𝐂
			

		
	
 is idempotent that
							
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				
				𝐼
			

			

				𝑟
			

			
				⊕
				0
			

			
				𝑛
				−
				𝑟
			

			
				
				
				𝐼
				𝑋
				+
				𝑋
			

			

				𝑟
			

			
				⊕
				0
			

			
				𝑛
				−
				𝑟
			

			
				
				=
				𝑋
				.
			

		
	

						Let
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				𝑋
				𝑋
				=
			

			

				𝑟
			

			

				𝑋
			

			

				1
			

			

				𝑋
			

			

				2
			

			
				0
				𝑋
			

			

				𝑠
			

			

				𝑋
			

			

				3
			

			
				0
				0
				𝑋
			

			
				𝑛
				−
				𝑟
				−
				𝑠
			

			
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
			

		
	

						where 
	
		
			

				𝑋
			

			

				𝑟
			

			
				∈
				𝒯
			

			

				𝑟
			

		
	
, 
	
		
			

				𝑋
			

			

				𝑠
			

			
				∈
				𝒯
			

			

				𝑠
			

		
	
, then (10) implies
							
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				2
				𝑋
			

			

				𝑟
			

			

				𝑋
			

			

				1
			

			

				𝑋
			

			

				2
			

			
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				=
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				𝑋
				0
				0
				0
				0
				0
				0
			

			

				𝑟
			

			

				𝑋
			

			

				1
			

			

				𝑋
			

			

				2
			

			
				0
				𝑋
			

			

				𝑠
			

			

				𝑋
			

			

				3
			

			
				0
				0
				𝑋
			

			
				𝑛
				−
				𝑟
				−
				𝑠
			

			
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				.
			

		
	

						Hence, 
	
		
			

				𝑋
			

			

				𝑟
			

			
				=
				0
			

		
	
, 
	
		
			

				𝑋
			

			

				𝑠
			

			
				=
				0
			

		
	
, 
	
		
			

				𝑋
			

			
				𝑛
				−
				𝑟
				−
				𝑠
			

			
				=
				0
			

		
	
, 
	
		
			

				𝑋
			

			

				3
			

			
				=
				0
			

		
	
. Similarly, from 
	
		
			

				0
			

			

				𝑟
			

			
				⊕
				𝐼
			

			

				𝑠
			

			
				⊕
				0
			

			
				𝑛
				−
				𝑟
				−
				𝑠
			

			
				+
				𝜆
				𝑋
			

		
	
 being idempotent, we have 
	
		
			

				𝑋
			

			

				2
			

			
				=
				0
			

		
	
.
Lemma 9 (see [6, Page 62, Exercise 1]).  Suppose 
	
		
			

				𝐴
			

			

				1
			

			
				,
				…
				,
				𝐴
			

			

				𝑘
			

			
				∈
				ℳ
			

			

				𝑛
			

		
	
 are idempotent matrices such that, for any 
	
		
			
				𝑖
				≠
				𝑗
				∈
				[
				1
				,
				𝑘
				]
			

		
	
, 
	
		
			

				𝐴
			

			

				𝑖
			

			
				+
				𝐴
			

			

				𝑗
			

		
	
 is idempotent. Let 
	
		
			

				𝑟
			

			

				𝑖
			

			
				=
				r
				a
				n
				k
				𝐴
			

			

				𝑖
			

		
	
. Then there exists an invertible matrix 
	
		
			
				𝑃
				∈
				ℳ
			

			

				𝑛
			

		
	
 such that
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			

				𝐴
			

			

				𝑖
			

			
				=
				𝑃
				d
				i
				a
				g
				(
				0
				,
				…
				,
				0
				,
				1
				,
				…
				,
				1
				,
				0
				,
				…
				,
				0
				)
				𝑃
			

			
				−
				1
			

			

				,
			

		
	

						where 
	
		
			
				d
				i
				a
				g
				(
				0
				,
				…
				,
				0
				,
				1
				,
				…
				,
				1
				,
				0
				,
				…
				,
				0
				)
			

		
	
 is the diagonal matrix in which all diagonal entries are zero except those in the 
	
		
			
				(
				𝑟
			

			

				1
			

			
				+
				⋯
				+
				𝑟
			

			
				𝑖
				−
				1
			

			
				+
				1
				)
			

		
	
st to the 
	
		
			
				(
				𝑟
			

			

				1
			

			
				+
				⋯
				+
				𝑟
			

			

				𝑖
			

			

				)
			

		
	
th rows.
Similar to Lemma 9, we have the following.
Lemma 10.  Let 
	
		
			

				𝐴
			

			

				1
			

			
				,
				…
				,
				𝐴
			

			
				𝑚
				𝑛
			

			
				∈
				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
 be idempotent matrices of rank-1 such that for any 
	
		
			
				𝑖
				≠
				𝑗
				∈
				[
				1
				,
				𝑚
				𝑛
				]
			

		
	
, 
	
		
			

				𝐴
			

			

				𝑖
			

			
				+
				𝐴
			

			

				𝑗
			

		
	
 is idempotent. Then there exist a permutation 
	
		
			

				𝜋
			

		
	
 on 
	
		
			
				[
				1
				,
				𝑚
				𝑛
				]
			

		
	
 and an invertible matrix 
	
		
			
				𝑃
				∈
				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
 such that
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			

				𝐴
			

			

				𝑖
			

			
				=
				𝑃
				𝐸
			

			
				(
				𝑚
				𝑛
				)
				𝜋
				(
				𝑖
				)
				𝜋
				(
				𝑖
				)
			

			

				𝑃
			

			
				−
				1
			

			
				,
				𝑖
				=
				1
				,
				…
				,
				𝑚
				𝑛
				.
			

		
	

Proof. By 
	
		
			

				𝐴
			

			

				𝑖
			

			
				∈
				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
 being an idempotent matrix of rank-1, we can assume
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			

				𝐴
			

			

				𝑖
			

			
				=
				𝐸
			

			
				(
				𝑚
				𝑛
				)
				𝜋
				(
				𝑖
				)
				𝜋
				(
				𝑖
				)
			

			
				+
				𝐵
			

			

				𝑖
			

			
				,
				𝑖
				=
				1
				,
				…
				,
				𝑚
				𝑛
				,
			

		
	

						where 
	
		
			

				𝐵
			

			

				𝑖
			

			
				∈
				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
 with zero diagonal entries. It follows from 
	
		
			

				𝐴
			

			

				𝑖
			

			
				+
				𝐴
			

			

				𝑗
			

		
	
, 
	
		
			
				∀
				𝑖
				≠
				𝑗
			

		
	
 being is idempotent that 
	
		
			
				𝜋
				(
				𝑖
				)
				≠
				𝜋
				(
				𝑗
				)
			

		
	
, 
	
		
			
				∀
				𝑖
				≠
				𝑗
			

		
	
. Hence, 
	
		
			

				𝜋
			

		
	
 is a permutation on 
	
		
			
				[
				1
				,
				𝑚
				𝑛
				]
			

		
	
. By 
	
		
			

				𝐴
			

			
				2
				𝜋
			

			
				−
				1
			

			
				(
				1
				)
			

			
				=
				𝐴
			

			

				𝜋
			

			
				−
				1
			

			
				(
				1
				)
			

		
	
, we can see 
	
		
			

				𝐴
			

			

				𝜋
			

			
				−
				1
			

			
				(
				1
				)
			

			
				=
				𝐸
			

			
				(
				𝑚
				𝑛
				)
				1
				1
			

			
				+
				Σ
			

			
				(
				𝑚
				𝑛
				)
				𝑘
				=
				2
			

			

				𝜆
			

			
				1
				𝑘
			

			

				𝐸
			

			
				(
				𝑚
				𝑛
				)
				1
				𝑘
			

		
	
. Let 
	
		
			

				𝑃
			

			

				1
			

			
				=
				𝐼
			

			
				𝑚
				𝑛
			

			
				−
				Σ
			

			
				(
				𝑚
				𝑛
				)
				𝑘
				=
				2
			

			

				𝜆
			

			
				1
				𝑘
			

			

				𝐸
			

			
				(
				𝑚
				𝑛
				)
				1
				𝑘
			

			
				∈
				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
; then 
	
		
			

				𝑃
			

			
				1
				−
				1
			

			
				=
				𝐼
			

			
				𝑚
				𝑛
			

			
				+
				Σ
			

			
				(
				𝑚
				𝑛
				)
				𝑘
				=
				2
			

			

				𝜆
			

			
				1
				𝑘
			

			

				𝐸
			

			
				(
				𝑚
				𝑛
				)
				1
				𝑘
			

		
	
 and
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			

				𝐴
			

			

				𝜋
			

			
				−
				1
			

			
				(
				1
				)
			

			
				=
				𝑃
			

			

				1
			

			

				𝐸
			

			
				(
				𝑚
				𝑛
				)
				1
				1
			

			

				𝑃
			

			
				1
				−
				1
			

			

				.
			

		
	

						By 
	
		
			

				𝐴
			

			

				𝜋
			

			
				−
				1
			

			
				(
				1
				)
			

			
				+
				𝐴
			

			

				𝜋
			

			
				−
				1
			

			
				(
				2
				)
			

		
	
 being idempotent, we obtain 
	
		
			

				𝑃
			

			
				1
				−
				1
			

			

				𝐴
			

			

				𝜋
			

			
				−
				1
			

			
				(
				2
				)
			

			

				𝑃
			

			

				1
			

			
				=
				𝐸
			

			
				(
				𝑚
				𝑛
				)
				2
				2
			

			
				+
				Σ
			

			
				(
				𝑚
				𝑛
				)
				𝑘
				=
				3
			

			

				𝜆
			

			
				2
				𝑘
			

			

				𝐸
			

			
				(
				𝑚
				𝑛
				)
				2
				𝑘
			

		
	
. Let 
	
		
			

				𝑃
			

			

				2
			

			
				=
				𝐼
			

			
				𝑚
				𝑛
			

			
				−
				Σ
			

			
				(
				𝑚
				𝑛
				)
				𝑘
				=
				3
			

			

				𝜆
			

			
				2
				𝑘
			

			

				𝐸
			

			
				(
				𝑚
				𝑛
				)
				2
				𝑘
			

		
	
; then
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			

				𝐴
			

			

				𝜋
			

			
				−
				1
			

			
				(
				1
				)
			

			
				=
				𝑃
			

			

				2
			

			

				𝑃
			

			

				1
			

			

				𝐸
			

			
				(
				𝑚
				𝑛
				)
				1
				1
			

			

				𝑃
			

			
				1
				−
				1
			

			

				𝑃
			

			
				2
				−
				1
			

			
				,
				𝐴
			

			

				𝜋
			

			
				−
				1
			

			
				(
				2
				)
			

			
				=
				𝑃
			

			

				2
			

			

				𝑃
			

			

				1
			

			

				𝐸
			

			
				(
				𝑚
				𝑛
				)
				2
				2
			

			

				𝑃
			

			
				1
				−
				1
			

			

				𝑃
			

			
				2
				−
				1
			

			

				.
			

		
	

						Continuing to do this, we can find  
	
		
			

				𝑃
			

			

				3
			

			
				,
				…
				,
				𝑃
			

			
				𝑚
				𝑛
			

		
	
. Let  
	
		
			
				𝑃
				=
				𝑃
			

			
				𝑚
				𝑛
			

			

				𝑃
			

			
				𝑚
				𝑛
				−
				1
			

			
				⋯
				𝑃
			

			

				2
			

			

				𝑃
			

			

				1
			

			
				∈
				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
; then
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			

				𝐴
			

			

				𝜋
			

			
				−
				1
			

			
				(
				𝑖
				)
			

			
				=
				𝑃
				𝐸
			

			
				(
				𝑚
				𝑛
				)
				𝑖
				𝑖
			

			

				𝑃
			

			
				−
				1
			

			
				,
				𝑖
				=
				1
				,
				…
				,
				𝑚
				𝑛
				.
			

		
	

						This completes the proof.
3. The Main Result
The main result of this paper is as follows.
Theorem 11.  Suppose 
	
		
			
				𝑚
				,
				𝑛
				≥
				2
			

		
	
 are positive integers and 
	
		
			

				𝜙
			

		
	
 is an injective linear map on 
	
		
			

				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
. Then 
	
		
			
				𝜙
				(
				𝐴
				⊗
				𝐵
				)
			

		
	
 is an idempotent matrix in 
	
		
			

				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
 whenever 
	
		
			
				𝐴
				⊗
				𝐵
			

		
	
 is an idempotent matrix in 
	
		
			

				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
 if and only if there exists an invertible matrix 
	
		
			
				𝑃
				∈
				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
 such that
							
	
 		
 			

				(
			
 			

				i
			
 			

				)
			
 		
	

	
		
			
				
				𝜉
				𝜙
				(
				𝐴
				⊗
				𝐵
				)
				=
				𝑃
			

			

				1
			

			
				(
				𝐴
				)
				⊗
				𝜉
			

			

				2
			

			
				
				𝑃
				(
				𝐵
				)
			

			
				−
				1
			

			
				,
				∀
				𝐴
				∈
				𝒯
			

			

				𝑚
			

			
				,
				𝐵
				∈
				𝒯
			

			

				𝑛
			

			

				,
			

		
	

						or when 
	
		
			
				𝑚
				=
				𝑛
			

		
	
 
	
 		
 			

				(
			
 			
				i
				i
			
 			

				)
			
 		
	

	
		
			
				
				𝜉
				𝜙
				(
				𝐴
				⊗
				𝐵
				)
				=
				𝑃
			

			

				1
			

			
				(
				𝐵
				)
				⊗
				𝜉
			

			

				2
			

			
				
				𝑃
				(
				𝐴
				)
			

			
				−
				1
			

			
				,
				∀
				𝐴
				∈
				𝒯
			

			

				𝑚
			

			
				,
				𝐵
				∈
				𝒯
			

			

				𝑚
			

			

				,
			

		
	

						where, for 
	
		
			
				𝑖
				=
				1
				,
				2
			

		
	
, 
	
		
			

				𝜉
			

			

				𝑖
			

			
				(
				𝑋
				)
				=
				𝑋
			

		
	
 or 
	
		
			

				𝜉
			

			

				𝑖
			

			
				(
				𝑋
				)
				=
				𝐽
				𝑋
			

			

				𝑡
			

			

				𝐽
			

		
	
.
Proof. The sufficiency is obvious. We will prove the necessity by the following six steps.Step  1. There exist a permutation 
	
		
			

				𝜋
			

		
	
 on 
	
		
			
				[
				1
				,
				𝑚
				𝑛
				]
			

		
	
 and an invertible matrix 
	
		
			
				𝑃
				∈
				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
 such that
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				𝜙
				
				𝐸
			

			
				(
				𝑚
				𝑛
				)
				𝑘
				𝑘
			

			
				
				=
				𝑃
				𝐸
			

			
				(
				𝑚
				𝑛
				)
				𝜋
				(
				𝑘
				)
				𝜋
				(
				𝑘
				)
			

			

				𝑃
			

			
				−
				1
			

			
				[
				]
				.
				,
				∀
				𝑘
				∈
				1
				,
				𝑚
				𝑛
			

		
	
Proof of Step  1. By Lemma 10, we only need to prove that 
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				
				𝐸
				r
				a
				n
				k
				𝜙
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				𝑗
				𝑗
			

			
				
				[
				]
				[
				]
				.
				=
				1
				,
				∀
				𝑖
				∈
				1
				,
				𝑚
				,
				𝑗
				∈
				1
				,
				𝑛
			

		
	

						And for any 
	
		
			
				(
				𝑖
				,
				𝑗
				)
				≠
				(
				𝑢
				,
				𝑣
				)
				∈
				[
				1
				,
				𝑚
				]
				×
				[
				1
				,
				𝑛
				]
			

		
	
,
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				𝜙
				
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				𝑗
				𝑗
			

			
				
				
				𝐸
				+
				𝜙
			

			
				(
				𝑚
				)
				𝑢
				𝑢
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				𝑣
				𝑣
			

			
				
				i
				s
				a
				n
				i
				d
				e
				m
				p
				o
				t
				e
				n
				t
				m
				a
				t
				r
				i
				x
				.
			

		
	
It follows from 
	
		
			

				𝐸
			

			
				(
				𝑚
				)
				1
				1
			

			
				⊗
				𝐼
			

			

				𝑛
			

			
				,
				…
				,
				𝐸
			

			
				(
				𝑚
				)
				𝑚
				𝑚
			

			
				⊗
				𝐼
			

			

				𝑛
			

		
	
 and 
	
		
			
				(
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				+
				𝐸
			

			
				(
				𝑚
				)
				𝑗
				𝑗
			

			
				)
				⊗
				𝐼
			

			

				𝑛
			

			
				,
				∀
				𝑖
				≠
				𝑗
				∈
				[
				1
				,
				𝑚
				]
			

		
	
 are idempotent matrices in 
	
		
			

				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
 that 
	
		
			
				𝜙
				(
				𝐸
			

			
				(
				𝑚
				)
				1
				1
			

			
				⊗
				𝐼
			

			

				𝑛
			

			
				)
				,
				…
				,
				𝜙
				(
				𝐸
			

			
				(
				𝑚
				)
				𝑚
				𝑚
			

			
				⊗
				𝐼
			

			

				𝑛
			

			

				)
			

		
	
 and 
	
		
			
				𝜙
				(
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				⊗
				𝐼
			

			

				𝑛
			

			
				)
				+
				𝜙
				(
				𝐸
			

			
				(
				𝑚
				)
				𝑗
				𝑗
			

			
				⊗
				𝐼
			

			

				𝑛
			

			

				)
			

		
	
, 
	
		
			
				∀
				𝑖
				≠
				𝑗
				∈
				[
				1
				,
				𝑚
				]
			

		
	
 are idempotent matrices. We obtain by using Lemma 9 that there exists an invertible matrix 
	
		
			

				𝑃
			

			

				1
			

			
				∈
				ℳ
			

			
				𝑚
				𝑛
			

		
	
 such that
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				𝜙
				
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				⊗
				𝐼
			

			

				𝑛
			

			
				
				=
				𝑃
			

			

				1
			

			
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				0
			

			

				𝑠
			

			

				𝑖
			

			
				0
				0
				0
				𝐼
			

			

				𝑟
			

			

				𝑖
			

			
				0
				0
				0
				0
			

			
				𝑚
				𝑛
				−
				𝑠
				−
				𝑟
			

			

				𝑖
			

			
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				𝑃
			

			
				1
				−
				1
			

			

				,
			

		
	

						where 
	
		
			

				𝑟
			

			

				𝑖
			

			
				=
				r
				a
				n
				k
				𝜙
				(
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				⊗
				𝐼
			

			

				𝑛
			

			

				)
			

		
	
 and 
	
		
			

				𝑠
			

			

				𝑖
			

			
				=
				𝑟
			

			

				1
			

			
				+
				⋯
				+
				𝑟
			

			
				𝑖
				−
				1
			

		
	
. For any 
	
		
			
				𝑗
				∈
				[
				1
				,
				𝑛
				]
			

		
	
, it follows from 
	
		
			

				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				𝑗
				𝑗
			

		
	
 and 
	
		
			

				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				⊗
				(
				𝐼
			

			

				𝑛
			

			
				−
				𝐸
			

			
				(
				𝑛
				)
				𝑗
				𝑗
			

			

				)
			

		
	
 being idempotent matrices in 
	
		
			

				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
 that 
	
		
			
				𝜙
				(
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				𝑗
				𝑗
			

			

				)
			

		
	
 and 
	
		
			
				𝜙
				(
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				⊗
				𝐼
			

			

				𝑛
			

			
				)
				−
				𝜙
				(
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				𝑗
				𝑗
			

			

				)
			

		
	
 are idempotent matrices; we obtain by (22) and Lemma 6 that
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				𝜙
				
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				𝑗
				𝑗
			

			
				
				=
				𝑃
			

			

				1
			

			
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				0
			

			

				𝑠
			

			

				𝑖
			

			
				0
				0
				0
				𝑋
			

			

				𝑗
			

			
				0
				0
				0
				0
			

			
				𝑚
				𝑛
				−
				𝑠
			

			

				𝑖
			

			
				−
				𝑟
			

			

				𝑖
			

			
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				𝑃
			

			
				1
				−
				1
			

			
				,
				[
				]
				,
				∀
				𝑗
				∈
				1
				,
				𝑛
			

		
	

						where 
	
		
			

				𝑋
			

			

				𝑗
			

			
				∈
				ℳ
			

			

				𝑟
			

			

				𝑖
			

		
	
 is an idempotent matrix. For any 
	
		
			
				𝑗
				≠
				𝑙
				∈
				[
				1
				,
				𝑛
				]
			

		
	
, 
	
		
			

				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				⊗
				(
				𝐸
			

			
				(
				𝑛
				)
				𝑗
				𝑗
			

			
				+
				𝐸
			

			
				(
				𝑛
				)
				𝑙
				𝑙
			

			

				)
			

		
	
 is an idempotent matrix in 
	
		
			

				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
; we have 
	
		
			
				𝜙
				(
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				𝑗
				𝑗
			

			
				)
				+
				𝜙
				(
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				𝑙
				𝑙
			

			

				)
			

		
	
 is an idempotent matrix. It follows from (23) that 
	
		
			

				𝑋
			

			

				𝑗
			

			
				+
				𝑋
			

			

				𝑙
			

		
	
 is an idempotent matrix. If 
	
		
			

				𝑟
			

			

				𝑖
			

			
				<
				𝑛
			

		
	
, by Lemma 9, we can obtain that there exists some 
	
		
			

				𝑗
			

			

				0
			

			
				∈
				[
				1
				,
				𝑛
				]
			

		
	
 such that 
	
		
			

				𝑋
			

			

				𝑗
			

			

				0
			

			
				=
				0
			

		
	
. This, together with (23), implies 
	
		
			
				𝜙
				(
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				⊗
				𝐸
			

			
				𝑗
				(
				𝑛
				)
			

			

				0
			

			

				𝑗
			

			

				0
			

			
				)
				=
				0
			

		
	
, which is a contradiction to the fact that 
	
		
			

				𝜙
			

		
	
 is injective. Hence, 
	
		
			

				𝑟
			

			

				𝑖
			

			
				=
				𝑛
			

		
	
, 
	
		
			
				∀
				𝑖
				∈
				[
				1
				,
				𝑛
				]
			

		
	
. By Lemma 9, there exists an invertible matrix 
	
		
			

				𝑄
			

			

				𝑖
			

			
				∈
				ℳ
			

			

				𝑛
			

		
	
 such that 
	
		
			

				𝑋
			

			

				𝑗
			

			
				=
				𝑄
			

			

				𝑖
			

			

				𝐸
			

			
				(
				𝑛
				)
				𝑗
				𝑗
			

			

				𝑄
			

			
				𝑖
				−
				1
			

			
				,
				∀
				𝑗
				∈
				[
				1
				,
				𝑛
				]
			

		
	
. Let 
	
		
			
				𝑄
				=
				d
				i
				a
				g
				(
				𝑄
			

			

				1
			

			
				,
				…
				,
				𝑄
			

			

				𝑚
			

			

				)
			

		
	
; it follows from (23) that
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				𝜙
				
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				𝑗
				𝑗
			

			
				
				=
				𝑃
			

			

				1
			

			
				𝑄
				
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				𝑗
				𝑗
			

			
				
				𝑄
			

			
				−
				1
			

			

				𝑃
			

			
				1
				−
				1
			

			
				,
				[
				]
				[
				]
				.
				∀
				𝑖
				∈
				1
				,
				𝑚
				,
				𝑘
				∈
				1
				,
				𝑛
			

		
	

						Hence, (20) and (21) hold. This completes the proof of Step 1.By Step  1, we may assume that for any 
	
		
			
				𝑖
				∈
				[
				1
				,
				𝑚
				]
			

		
	
, 
	
		
			
				𝑗
				∈
				[
				1
				,
				𝑛
				]
			

		
	
,
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				𝜙
				
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				𝑗
				𝑗
			

			
				
				=
				𝐸
			

			
				(
				𝑚
				𝑛
				)
				𝜋
				(
				𝜌
				(
				𝑖
				,
				𝑗
				)
				)
				𝜋
				(
				𝜌
				(
				𝑖
				,
				𝑗
				)
				)
			

			

				.
			

		
	

						From this, together with (3), we can also write
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				𝜙
				
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				𝑗
				𝑗
			

			
				
				=
				𝐸
			

			
				(
				𝑚
				)
				𝜎
				(
				𝜋
				(
				𝜌
				(
				𝑖
				,
				𝑗
				)
				)
				)
				𝜎
				(
				𝜋
				(
				𝜌
				(
				𝑖
				,
				𝑗
				)
				)
				)
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				𝜏
				(
				𝜋
				(
				𝜌
				(
				𝑖
				,
				𝑗
				)
				)
				)
				𝜏
				(
				𝜋
				(
				𝜌
				(
				𝑖
				,
				𝑗
				)
				)
				)
			

			

				.
			

		
	
Step   2. (i) For any 
	
		
			
				𝑖
				∈
				[
				1
				,
				𝑚
				]
			

		
	
, 
	
		
			

				𝑗
			

			

				1
			

			
				,
				𝑗
			

			

				2
			

			
				∈
				[
				1
				,
				𝑛
				]
			

		
	
, 
	
		
			
				(
				𝜎
				(
				𝜋
				(
				𝜌
				(
				𝑖
				,
				𝑗
			

			

				1
			

			
				)
				)
				)
				,
				𝜏
				(
				𝜋
				(
				𝜌
				(
				𝑖
				,
				𝑗
			

			

				1
			

			
				)
				)
				)
				)
			

		
	
 and 
	
		
			
				(
				𝜎
				(
				𝜋
				(
				𝜌
				(
				𝑖
				,
				𝑗
			

			

				2
			

			
				)
				)
				)
				,
				𝜏
				(
				𝜋
				(
				𝜌
				(
				𝑖
				,
				𝑗
			

			

				2
			

			
				)
				)
				)
				)
			

		
	
 are comparable.(ii) For any 
	
		
			

				𝑖
			

			

				1
			

			
				,
				𝑖
			

			

				2
			

			
				∈
				[
				1
				,
				𝑚
				]
			

		
	
, 
	
		
			
				𝑗
				∈
				[
				1
				,
				𝑛
				]
			

		
	
, 
	
		
			
				(
				𝜎
				(
				𝜋
				(
				𝜌
				(
				𝑖
			

			

				1
			

			
				,
				𝑗
				)
				)
				)
				,
				𝜏
				(
				𝜋
				(
				𝜌
				(
				𝑖
			

			

				1
			

			
				,
				𝑗
				)
				)
				)
				)
			

		
	
 and 
	
		
			
				(
				𝜎
				(
				𝜋
				(
				𝜌
				(
				𝑖
			

			

				2
			

			
				,
				𝑗
				)
				)
				)
				,
				𝜏
				(
				𝜋
				(
				𝜌
				(
				𝑖
			

			

				2
			

			
				,
				𝑗
				)
				)
				)
				)
			

		
	
 are comparable.Proof of Step  2. (i) Suppose there exist some 
	
		
			

				𝑖
			

			

				0
			

			
				∈
				[
				1
				,
				𝑚
				]
			

		
	
 and 
	
		
			

				𝑗
			

			

				1
			

			
				<
				𝑗
			

			

				2
			

			
				∈
				[
				1
				,
				𝑛
				]
			

		
	
 such that 
	
		
			
				(
				𝜎
				(
				𝜋
				(
				𝜌
				(
				𝑖
			

			

				0
			

			
				,
				𝑗
			

			

				1
			

			
				)
				)
				)
				,
				𝜏
				(
				𝜋
				(
				𝜌
				(
				𝑖
			

			

				0
			

			
				,
				𝑗
			

			

				1
			

			
				)
				)
				)
				)
			

		
	
 and 
	
		
			
				(
				𝜎
				(
				𝜋
				(
				𝜌
				(
				𝑖
			

			

				0
			

			
				,
				𝑗
			

			

				2
			

			
				)
				)
				)
				,
				𝜏
				(
				𝜋
				(
				𝜌
				(
				𝑖
			

			

				0
			

			
				,
				𝑗
			

			

				2
			

			
				)
				)
				)
				)
			

		
	
 are not comparable. Without loss of generality, we may assume that
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				𝜎
				
				𝜋
				
				𝜌
				
				𝑖
			

			

				0
			

			
				,
				𝑗
			

			

				1
			

			
				
				𝜋
				
				𝜌
				
				𝑖
				
				
				
				<
				𝜎
			

			

				0
			

			
				,
				𝑗
			

			

				2
			

			
				,
				𝜏
				
				𝜋
				
				𝜌
				
				𝑖
				
				
				
			

			

				0
			

			
				,
				𝑗
			

			

				1
			

			
				
				𝜋
				
				𝜌
				
				𝑖
				
				
				
				>
				𝜏
			

			

				0
			

			
				,
				𝑗
			

			

				2
			

			
				.
				
				
				
			

		
	

						It follows that 
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			
				𝜋
				
				𝜌
				
				𝑖
			

			

				0
			

			
				,
				𝑗
			

			

				1
			

			
				=
				
				𝜎
				
				𝜋
				
				𝜌
				
				𝑖
				
				
			

			

				0
			

			
				,
				𝑗
			

			

				1
			

			
				
				
				𝜋
				
				𝜌
				
				𝑖
				
				
				
				−
				1
				𝑛
				+
				𝜏
			

			

				0
			

			
				,
				𝑗
			

			

				1
			

			
				≤
				
				𝜎
				
				𝜋
				
				𝜌
				
				𝑖
				
				
				
			

			

				0
			

			
				,
				𝑗
			

			

				1
			

			
				
				≤
				
				𝜎
				
				𝜋
				
				𝜌
				
				𝑖
				
				
				
				−
				1
				𝑛
				+
				𝑛
			

			

				0
			

			
				,
				𝑗
			

			

				1
			

			
				𝑛
				≤
				
				𝜎
				
				𝜋
				
				𝜌
				
				𝑖
				
				
				
				
			

			

				0
			

			
				,
				𝑗
			

			

				2
			

			
				
				𝑛
				<
				
				𝜎
				
				𝜋
				
				𝜌
				
				𝑖
				
				
				
				−
				1
			

			

				0
			

			
				,
				𝑗
			

			

				2
			

			
				
				
				𝜋
				
				𝜌
				
				𝑖
				
				
				
				−
				1
				𝑛
				+
				𝜏
			

			

				0
			

			
				,
				𝑗
			

			

				2
			

			
				
				𝜌
				
				𝑖
				
				
				
				=
				𝜋
			

			

				0
			

			
				,
				𝑗
			

			

				2
			

			
				.
				
				
			

		
	
For any 
	
		
			
				𝑥
				∈
				𝐂
			

		
	
, by 
	
		
			

				𝐸
			

			
				𝑖
				(
				𝑚
				)
			

			

				0
			

			

				𝑖
			

			

				0
			

			
				⊗
				(
				𝐸
			

			
				𝑗
				(
				𝑛
				)
			

			

				1
			

			

				𝑗
			

			

				1
			

			
				+
				𝑥
				𝐸
			

			
				𝑗
				(
				𝑛
				)
			

			

				1
			

			

				𝑗
			

			

				2
			

			

				)
			

		
	
 and 
	
		
			

				𝐸
			

			
				𝑖
				(
				𝑚
				)
			

			

				0
			

			

				𝑖
			

			

				0
			

			
				⊗
				(
				𝐸
			

			
				𝑗
				(
				𝑛
				)
			

			

				2
			

			

				𝑗
			

			

				2
			

			
				+
				𝑥
				𝐸
			

			
				𝑗
				(
				𝑛
				)
			

			

				1
			

			

				𝑗
			

			

				2
			

			

				)
			

		
	
 being idempotent matrices in 
	
		
			

				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
, we obtain by (25) that
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			

				𝐸
			

			
				(
				𝑚
				𝑛
				)
				𝜋
				(
				𝜌
				(
				𝑖
			

			

				0
			

			
				,
				𝑗
			

			

				1
			

			
				)
				)
				𝜋
				(
				𝜌
				(
				𝑖
			

			

				0
			

			
				,
				𝑗
			

			

				1
			

			
				)
				)
			

			
				
				𝐸
				+
				𝑥
				𝜙
			

			
				𝑖
				(
				𝑚
				)
			

			

				0
			

			

				𝑖
			

			

				0
			

			
				⊗
				𝐸
			

			
				𝑗
				(
				𝑛
				)
			

			

				1
			

			

				𝑗
			

			

				2
			

			
				
				,
				𝐸
			

			
				(
				𝑚
				𝑛
				)
				𝜋
				(
				𝜌
				(
				𝑖
			

			

				0
			

			
				,
				𝑗
			

			

				2
			

			
				)
				)
				𝜋
				(
				𝜌
				(
				𝑖
			

			

				0
			

			
				,
				𝑗
			

			

				2
			

			
				)
				)
			

			
				
				𝐸
				+
				𝑥
				𝜙
			

			
				𝑖
				(
				𝑚
				)
			

			

				0
			

			

				𝑖
			

			

				0
			

			
				⊗
				𝐸
			

			
				𝑗
				(
				𝑛
				)
			

			

				1
			

			

				𝑗
			

			

				2
			

			

				
			

		
	

						are idempotent matrices in 
	
		
			

				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
; hence, by Lemma 8
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				𝜙
				
				𝐸
			

			
				𝑖
				(
				𝑚
				)
			

			

				0
			

			

				𝑖
			

			

				0
			

			
				⊗
				𝐸
			

			
				𝑗
				(
				𝑛
				)
			

			

				1
			

			

				𝑗
			

			

				2
			

			
				
				=
				𝜆
				𝐸
			

			
				(
				𝑚
				𝑛
				)
				𝜋
				(
				𝜌
				(
				𝑖
			

			

				0
			

			
				,
				𝑗
			

			

				1
			

			
				)
				)
				𝜋
				(
				𝜌
				(
				𝑖
			

			

				0
			

			
				,
				𝑗
			

			

				2
			

			
				)
				)
			

			

				.
			

		
	

						From (27), by Lemma 4, we obtain that 
	
		
			
				𝜆
				=
				0
			

		
	
, which is a contradiction to the fact that 
	
		
			

				𝜙
			

		
	
 is injective. Using a similar method, we may prove (ii) holds. This completes the proof of Step 2.Note. It is easy to see that 
	
		
			

				𝜌
			

		
	
 is a bijective map from 
	
		
			
				[
				1
				,
				𝑚
				]
				×
				[
				1
				,
				𝑛
				]
			

		
	
 to 
	
		
			
				[
				1
				,
				𝑚
				𝑛
				]
			

		
	
 with 
	
		
			

				𝜌
			

			
				−
				1
			

			

				∶
			

		
	
 
	
		
			
				𝑘
				↦
				(
				𝜎
				(
				𝑘
				)
				,
				𝜏
				(
				𝑘
				)
				)
			

		
	
 from 
	
		
			
				[
				1
				,
				𝑚
				𝑛
				]
			

		
	
 to 
	
		
			
				[
				1
				,
				𝑚
				]
				×
				[
				1
				,
				𝑛
				]
			

		
	
. This, together with 
	
		
			

				𝜋
			

		
	
, is a permutation on 
	
		
			
				[
				1
				,
				𝑚
				𝑛
				]
			

		
	
; we obtain that
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			
				[
				]
				[
				]
				}
				=
				[
				]
				×
				[
				]
				.
				{
				(
				𝜎
				(
				𝜋
				𝜌
				(
				𝑖
				,
				𝑗
				)
				)
				,
				𝜏
				(
				𝜋
				𝜌
				(
				𝑖
				,
				𝑗
				)
				)
				)
				∶
				𝑖
				∈
				1
				,
				𝑚
				,
				𝑗
				∈
				1
				,
				𝑛
				1
				,
				𝑚
				1
				,
				𝑛
			

		
	

						Let 
	
		
			

				𝑎
			

			
				𝑖
				𝑗
			

			
				=
				(
				𝜎
				(
				𝜋
				𝜌
				(
				𝑖
				,
				𝑗
				)
				)
				,
				𝜏
				(
				𝜋
				𝜌
				(
				𝑖
				,
				𝑗
				)
				)
				)
			

		
	
; then 
	
		
			
				[
				𝑎
			

			
				𝑖
				𝑗
			

			

				]
			

		
	
 forms an 
	
		
			
				𝑚
				×
				𝑛
			

		
	
 matrix containing all elements of 
	
		
			
				[
				1
				,
				𝑚
				]
				×
				[
				1
				,
				𝑛
				]
			

		
	
. Step 2 implies that every two elements of 
	
		
			
				[
				𝑎
			

			
				𝑖
				𝑗
			

			

				]
			

		
	
 in the same row and column are comparable, respectively. Thus, applying Lemma 5 to 
	
		
			
				[
				𝑎
			

			
				𝑖
				𝑗
			

			

				]
			

		
	
, we conclude that one of 
	
		
			
				(
				I
				)
			

		
	
–
	
		
			
				(
				I
				V
				)
			

		
	
 holds. If 
	
		
			
				(
				I
				)
			

		
	
 holds, then, for any but fixed 
	
		
			
				𝑖
				∈
				[
				1
				,
				𝑚
				]
			

		
	
, all 
	
		
			
				(
				𝜎
				(
				𝜋
				𝜌
				(
				𝑖
				,
				𝑗
				)
				)
				,
				𝜏
				(
				𝜋
				𝜌
				(
				𝑖
				,
				𝑗
				)
				)
				)
			

		
	
, 
	
		
			
				𝑗
				=
				1
				,
				…
				,
				𝑛
			

		
	
, are in the same row; that is, 
	
		
			
				𝜎
				(
				𝜋
				(
				𝜌
				(
				𝑖
				,
				𝑗
				)
				)
				)
				=
				𝜎
				(
				𝜋
				(
				𝜌
				(
				𝑖
				,
				1
				)
				)
				)
			

		
	
, 
	
		
			
				∀
				𝑗
				∈
				[
				1
				,
				𝑛
				]
			

		
	
 and 
	
		
			
				{
				𝜏
				(
				𝜋
				𝜌
				(
				𝑖
				,
				𝑗
				)
				)
				∶
				𝑗
				=
				1
				,
				…
				,
				𝑛
				}
				=
				[
				1
				,
				𝑛
				]
			

		
	
; hence, it follows from (26) that
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			
				𝜙
				
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				⊗
				𝐼
			

			

				𝑛
			

			
				
				=
				𝐸
			

			
				(
				𝑚
				)
				𝜎
				(
				𝜋
				(
				𝜌
				(
				𝑖
				,
				1
				)
				)
				)
				𝜎
				(
				𝜋
				(
				𝜌
				(
				𝑖
				,
				1
				)
				)
				)
			

			
				⊗
				𝐼
			

			

				𝑛
			

			

				.
			

		
	

						Similarly, if 
	
		
			
				(
				I
				I
				I
				)
			

		
	
 holds, then 
	
		
			
				𝑚
				=
				𝑛
			

		
	
 and, for any but fixed 
	
		
			
				𝑗
				∈
				[
				1
				,
				𝑚
				]
			

		
	
, all 
	
		
			
				(
				𝜎
				(
				𝜋
				𝜌
				(
				𝑖
				,
				𝑗
				)
				)
				,
				𝜏
				(
				𝜋
				𝜌
				(
				𝑖
				,
				𝑗
				)
				)
				)
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				…
				,
				𝑚
			

		
	
, are in the same row; that is, 
	
		
			
				𝜎
				(
				𝜋
				𝜌
				(
				𝑖
				,
				𝑗
				)
				)
				=
				𝜎
				(
				𝜋
				𝜌
				(
				1
				,
				𝑗
				)
				)
			

		
	
, 
	
		
			
				∀
				𝑖
				∈
				[
				1
				,
				𝑚
				]
			

		
	
 and 
	
		
			
				{
				𝜏
				(
				𝜋
				𝜌
				(
				𝑖
				,
				𝑗
				)
				)
				∶
				𝑖
				=
				1
				,
				…
				,
				𝑚
				}
				=
				[
				1
				,
				𝑚
				]
			

		
	
; hence, it follows from (26) that
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			
				𝜙
				
				𝐼
			

			

				𝑚
			

			
				⊗
				𝐸
			

			
				(
				𝑚
				)
				𝑗
				𝑗
			

			
				
				=
				𝐸
			

			
				(
				𝑚
				)
				𝜎
				(
				𝜋
				(
				𝜌
				(
				1
				,
				𝑗
				)
				)
				)
				𝜎
				(
				𝜋
				(
				𝜌
				(
				1
				,
				𝑗
				)
				)
				)
			

			
				⊗
				𝐼
			

			

				𝑚
			

			

				.
			

		
	
We claim that 
	
		
			
				(
				I
				I
				)
			

		
	
 and 
	
		
			
				(
				I
				V
				)
			

		
	
 do not hold. Indeed, if 
	
		
			
				(
				I
				I
				)
			

		
	
 holds, for convenience, we assume 
	
		
			
				𝑚
				≥
				3
			

		
	
 and we first consider the special case 
	
		
			
				𝑈
				=
				𝐼
			

			

				𝑚
			

		
	
, 
	
		
			
				𝑉
				=
				𝐼
			

			

				𝑛
			

		
	
 in 
	
		
			
				(
				I
				I
				)
			

		
	
 (one can use a similar method to prove the case of 
	
		
			
				𝑛
				≥
				3
			

		
	
). Thus, by (26), we have
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				𝜙
				
				𝐸
			

			
				(
				𝑚
				)
				1
				1
			

			
				⊗
				𝐸
			

			
				(
				𝑚
				)
				1
				1
			

			
				
				=
				𝐸
			

			
				(
				𝑚
				)
				𝑚
				𝑚
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				𝑛
				𝑛
			

			
				,
				𝜙
				
				𝐸
			

			
				(
				𝑚
				)
				𝑚
				𝑚
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				𝑛
				𝑛
			

			
				
				=
				𝐸
			

			
				(
				𝑚
				)
				1
				1
			

			
				⊗
				𝐸
			

			
				(
				𝑚
				)
				1
				1
			

			
				,
				𝜙
				
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				𝑗
				𝑗
			

			
				
				=
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				𝑗
				𝑗
			

			
				,
				∀
				(
				𝑖
				,
				𝑗
				)
				≠
				(
				1
				,
				1
				)
				,
				(
				𝑚
				,
				𝑛
				)
				.
			

		
	
Since, for any 
	
		
			
				𝑥
				∈
				𝐂
			

		
	
, 
	
		
			
				(
				𝐸
			

			
				(
				𝑚
				)
				1
				1
			

			
				+
				𝑥
				𝐸
			

			
				(
				𝑚
				)
				1
				2
			

			
				)
				⊗
				𝐸
			

			
				(
				𝑛
				)
				1
				1
			

		
	
, 
	
		
			

				𝐸
			

			
				(
				𝑚
				)
				1
				1
			

			
				⊗
				(
				𝐸
			

			
				(
				𝑛
				)
				1
				1
			

			
				+
				𝑥
				𝐸
			

			
				(
				𝑛
				)
				1
				2
			

			

				)
			

		
	
 and 
	
		
			
				(
				𝐸
			

			
				(
				𝑚
				)
				2
				2
			

			
				+
				𝑥
				𝐸
			

			
				(
				𝑚
				)
				1
				2
			

			
				)
				⊗
				𝐸
			

			
				(
				𝑛
				)
				1
				1
			

		
	
, 
	
		
			

				𝐸
			

			
				(
				𝑚
				)
				1
				1
			

			
				⊗
				(
				𝐸
			

			
				(
				𝑛
				)
				2
				2
			

			
				+
				𝑥
				𝐸
			

			
				(
				𝑛
				)
				1
				2
			

			

				)
			

		
	
 are idempotent matrices in 
	
		
			

				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
, we obtain by (34) that
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			

				𝐸
			

			
				(
				𝑚
				)
				𝑚
				𝑚
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				𝑛
				𝑛
			

			
				
				𝐸
				+
				𝑥
				𝜙
			

			
				(
				𝑚
				)
				1
				2
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				1
				1
			

			
				
				,
				𝐸
			

			
				(
				𝑚
				)
				𝑚
				𝑚
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				𝑛
				𝑛
			

			
				
				𝐸
				+
				𝑥
				𝜙
			

			
				(
				𝑚
				)
				1
				1
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				1
				2
			

			
				
				,
				𝐸
			

			
				(
				𝑚
				)
				2
				2
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				1
				1
			

			
				
				𝐸
				+
				𝑥
				𝜙
			

			
				(
				𝑚
				)
				1
				2
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				1
				1
			

			
				
				,
				𝐸
			

			
				(
				𝑚
				)
				1
				1
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				2
				2
			

			
				
				𝐸
				+
				𝑥
				𝜙
			

			
				(
				𝑚
				)
				1
				1
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				1
				2
			

			

				
			

		
	

						are idempotent matrices in 
	
		
			

				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
. This, together with Lemma 8, implies
							
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			
				𝜙
				
				𝐸
			

			
				(
				𝑚
				)
				1
				2
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				1
				1
			

			
				
				=
				𝜆
				𝐸
			

			
				(
				𝑚
				𝑛
				)
				(
				𝑛
				+
				1
				)
				,
				𝑚
				𝑛
			

			
				𝜙
				
				𝐸
				≠
				0
				,
			

			
				(
				𝑚
				)
				1
				1
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				1
				2
			

			
				
				=
				𝜇
				𝐸
			

			
				(
				𝑚
				𝑛
				)
				2
				,
				𝑚
				𝑛
			

			
				≠
				0
				.
			

		
	

						For any 
	
		
			
				𝑥
				∈
				𝐂
			

		
	
, 
	
		
			
				(
				𝐸
			

			
				(
				𝑚
				)
				1
				1
			

			
				+
				𝑥
				𝐸
			

			
				(
				𝑚
				)
				1
				2
			

			
				)
				⊗
				(
				𝐸
			

			
				(
				𝑛
				)
				1
				1
			

			
				+
				𝐸
			

			
				(
				𝑛
				)
				1
				2
			

			

				)
			

		
	
 is an idempotent matrix in 
	
		
			

				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
. Thus, by (34) and (36)
							
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			
				𝜙
				
				𝐸
			

			
				(
				𝑚
				)
				1
				2
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				1
				2
			

			
				
				=
				Σ
			

			

				𝑘
			

			

				𝛽
			

			

				𝑘
			

			

				𝐸
			

			
				(
				𝑚
				𝑛
				)
				𝑘
				,
				𝑚
				𝑛
			

			

				.
			

		
	

						Similarly, since for any 
	
		
			
				𝑥
				∈
				𝐂
			

		
	
, 
	
		
			
				(
				𝐸
			

			
				(
				𝑚
				)
				2
				2
			

			
				+
				𝑥
				𝐸
			

			
				(
				𝑚
				)
				1
				2
			

			
				)
				⊗
				𝐸
			

			
				(
				𝑛
				)
				2
				2
			

		
	
, 
	
		
			
				(
				𝐸
			

			
				(
				𝑚
				)
				1
				1
			

			
				+
				𝑥
				𝐸
			

			
				(
				𝑚
				)
				1
				2
			

			
				)
				⊗
				𝐸
			

			
				(
				𝑛
				)
				2
				2
			

		
	
 and 
	
		
			

				𝐸
			

			
				(
				𝑚
				)
				2
				2
			

			
				⊗
				(
				𝐸
			

			
				(
				𝑛
				)
				2
				2
			

			
				+
				𝑥
				𝐸
			

			
				(
				𝑛
				)
				1
				2
			

			

				)
			

		
	
, 
	
		
			

				𝐸
			

			
				(
				𝑚
				)
				2
				2
			

			
				⊗
				(
				𝐸
			

			
				(
				𝑛
				)
				1
				1
			

			
				+
				𝑥
				𝐸
			

			
				(
				𝑛
				)
				1
				2
			

			

				)
			

		
	
 are idempotent matrices in 
	
		
			

				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
, we have
							
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			
				𝜙
				
				𝐸
			

			
				(
				𝑚
				)
				1
				2
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				2
				2
			

			
				
				=
				𝜆
			

			

				′
			

			

				𝐸
			

			
				(
				𝑚
				𝑛
				)
				2
				,
				(
				𝑛
				+
				2
				)
			

			
				𝜙
				
				𝐸
				≠
				0
				,
			

			
				(
				𝑚
				)
				2
				2
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				1
				2
			

			
				
				=
				𝜇
			

			

				′
			

			

				𝐸
			

			
				(
				𝑚
				𝑛
				)
				(
				𝑛
				+
				1
				)
				,
				(
				𝑛
				+
				2
				)
			

			
				≠
				0
				.
			

		
	

						For any 
	
		
			
				𝑥
				∈
				𝐂
			

		
	
, 
	
		
			
				(
				𝐸
			

			
				(
				𝑚
				)
				2
				2
			

			
				+
				𝐸
			

			
				(
				𝑚
				)
				1
				2
			

			
				)
				⊗
				(
				𝐸
			

			
				(
				𝑛
				)
				2
				2
			

			
				+
				𝐸
			

			
				(
				𝑛
				)
				1
				2
			

			

				)
			

		
	
 is an idempotent matrix in 
	
		
			

				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
; we obtain
							
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			
				𝜙
				
				𝐸
			

			
				(
				𝑚
				)
				1
				2
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				1
				2
			

			
				
				=
				Σ
			

			

				𝑘
			

			

				𝛽
			

			

				′
			

			

				𝑘
			

			

				𝐸
			

			
				(
				𝑚
				𝑛
				)
				𝑘
				,
				(
				𝑛
				+
				2
				)
			

			

				.
			

		
	

						It follows from (37) and (39) that 
	
		
			
				𝜙
				(
				𝐸
			

			
				(
				𝑚
				)
				1
				2
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				1
				2
			

			
				)
				=
				0
			

		
	
, which is a contradiction to that 
	
		
			

				𝜙
			

		
	
 is injective.For general case, by 
	
		
			
				(
				I
				I
				)
			

		
	
, we can choose a permutation 
	
		
			

				𝑝
			

			

				1
			

			
				,
				…
				,
				𝑝
			

			

				𝑚
			

		
	
 of 
	
		
			
				[
				1
				,
				𝑚
				]
			

		
	
 and a permutation 
	
		
			

				𝑞
			

			

				1
			

			
				,
				…
				,
				𝑞
			

			

				𝑛
			

		
	
 of 
	
		
			
				[
				1
				,
				𝑛
				]
			

		
	
 such that
							
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			
				
				𝜎
				
				𝜋
				
				𝜌
				
				𝑝
			

			

				1
			

			
				,
				𝑞
			

			

				1
			

			
				
				𝜋
				
				𝜌
				
				𝑝
				
				
				
				,
				𝜏
			

			

				1
			

			
				,
				𝑞
			

			

				1
			

			
				
				𝜎
				
				𝜋
				
				𝜌
				
				𝑝
				
				
				
				
				=
				(
				𝑚
				,
				𝑛
				)
				,
			

			

				𝑚
			

			
				,
				𝑞
			

			

				𝑛
			

			
				
				𝜋
				
				𝜌
				
				𝑝
				
				
				
				,
				𝜏
			

			

				𝑚
			

			
				,
				𝑞
			

			

				𝑛
			

			
				
				𝜎
				
				𝜋
				
				𝜌
				
				𝑝
				
				
				
				
				=
				(
				1
				,
				1
				)
				,
			

			

				𝑖
			

			
				,
				𝑞
			

			

				𝑗
			

			
				
				𝜋
				
				𝜌
				
				𝑝
				
				
				
				,
				𝜏
			

			

				𝑖
			

			
				,
				𝑞
			

			

				𝑗
			

			
				
				
				
				
				=
				(
				𝑖
				,
				𝑗
				)
				,
				∀
				(
				𝑖
				,
				𝑗
				)
				≠
				(
				1
				,
				1
				)
				,
				(
				𝑚
				,
				𝑛
				)
				.
			

		
	

						From this, together with (26), we obtain
							
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			
				𝜙
				
				𝐸
			

			
				𝑝
				(
				𝑚
				)
			

			

				1
			

			

				𝑝
			

			

				1
			

			
				⊗
				𝐸
			

			
				𝑞
				(
				𝑚
				)
			

			

				1
			

			

				𝑞
			

			

				1
			

			
				
				=
				𝐸
			

			
				(
				𝑚
				)
				𝑚
				𝑚
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				𝑛
				𝑛
			

			
				,
				𝜙
				
				𝐸
			

			
				𝑝
				(
				𝑚
				)
			

			

				𝑚
			

			

				𝑝
			

			

				𝑚
			

			
				⊗
				𝐸
			

			
				𝑞
				(
				𝑛
				)
			

			

				𝑛
			

			

				𝑞
			

			

				𝑛
			

			
				
				=
				𝐸
			

			
				(
				𝑚
				)
				1
				1
			

			
				⊗
				𝐸
			

			
				(
				𝑚
				)
				1
				1
			

			
				,
				𝜙
				
				𝐸
			

			
				𝑝
				(
				𝑚
				)
			

			

				𝑖
			

			

				𝑝
			

			

				𝑖
			

			
				⊗
				𝐸
			

			
				𝑞
				(
				𝑛
				)
			

			

				𝑗
			

			

				𝑞
			

			

				𝑗
			

			
				
				=
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				𝑗
				𝑗
			

			
				,
				∀
				(
				𝑖
				,
				𝑗
				)
				≠
				(
				1
				,
				1
				)
				,
				(
				𝑚
				,
				𝑛
				)
				.
			

		
	

						Using a similar method as the above, we can drive a contradiction. Similarly, we may prove 
	
		
			
				(
				I
				V
				)
			

		
	
 does not hold.If (32) holds, we may assume
							
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			
				𝜙
				
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				⊗
				𝐼
			

			

				𝑛
			

			
				
				=
				𝐸
			

			
				(
				𝑚
				)
				𝑔
				(
				𝑖
				)
				𝑔
				(
				𝑖
				)
			

			
				⊗
				𝐼
			

			

				𝑛
			

			

				,
			

		
	

						where 
	
		
			

				𝑔
			

		
	
 is a permutation on 
	
		
			
				[
				1
				,
				𝑚
				]
			

		
	
. If (33) holds, we may assume
							
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			
				𝜙
				
				𝐼
			

			

				𝑚
			

			
				⊗
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				
				=
				𝐸
			

			
				(
				𝑚
				)
				𝑔
				(
				𝑖
				)
				𝑔
				(
				𝑖
				)
			

			
				⊗
				𝐼
			

			

				𝑚
			

			

				.
			

		
	

						We next assume (42) to prove 
	
		
			
				(
				i
				)
			

		
	
 of theorem holds and one can use similar methods to prove 
	
		
			
				(
				i
				i
				)
			

		
	
 of theorem if (43) holds.Step  3. There exists an invertible matrix 
	
		
			
				𝑃
				∈
				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
 such that
							
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			
				𝜙
				
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				
				
				𝐸
				⊗
				𝑋
				=
				𝑃
			

			
				(
				𝑚
				)
				𝑔
				(
				𝑖
				)
				𝑔
				(
				𝑖
				)
			

			
				⊗
				𝜉
			

			

				𝑖
			

			
				
				𝑃
				(
				𝑋
				)
			

			
				−
				1
			

			
				,
				[
				]
				∀
				𝑖
				∈
				1
				,
				𝑚
				,
				𝑋
				∈
				𝒯
			

			

				𝑛
			

			

				,
			

		
	

						where, for 
	
		
			
				𝑖
				∈
				[
				1
				,
				𝑚
				]
			

		
	
, 
	
		
			

				𝜉
			

			

				𝑖
			

			
				(
				𝑋
				)
				=
				𝑋
			

		
	
 or 
	
		
			

				𝜉
			

			

				𝑖
			

			
				(
				𝑋
				)
				=
				𝐽
				𝑋
			

			

				𝑡
			

			

				𝐽
			

		
	
.Proof of Step  3. For any idempotent matrix 
	
		
			
				𝐴
				∈
				𝒯
			

			

				𝑛
			

		
	
, since 
	
		
			

				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				⊗
				𝐴
			

		
	
 and 
	
		
			

				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				⊗
				(
				𝐼
			

			

				𝑛
			

			
				−
				𝐴
				)
			

		
	
 are idempotent matrices in 
	
		
			

				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
, we obtain by (42) that
							
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			
				𝜙
				
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				
				⊗
				𝐴
				,
				𝐸
			

			
				(
				𝑚
				)
				𝑔
				(
				𝑖
				)
				𝑔
				(
				𝑖
				)
			

			
				⊗
				𝐼
			

			

				𝑛
			

			
				
				𝐸
				−
				𝜙
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				
				⊗
				𝐴
			

		
	

						are idempotent matrices in 
	
		
			

				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
. By Lemma 7, we have
							
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			
				𝜙
				
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				
				⊗
				𝐴
				=
				𝐸
			

			
				(
				𝑚
				)
				𝑔
				(
				𝑖
				)
				𝑔
				(
				𝑖
				)
			

			
				⊗
				𝜓
			

			

				𝑖
			

			
				(
				𝐴
				)
				,
			

		
	

						where 
	
		
			

				𝜓
			

			

				𝑖
			

			
				(
				𝐴
				)
				∈
				𝒯
			

			

				𝑛
			

		
	
 is an idempotent matrix. By the arbitrariness of 
	
		
			

				𝐴
			

		
	
, we can expand 
	
		
			

				𝜓
			

			

				𝑖
			

		
	
 to be a linear map on 
	
		
			

				𝒯
			

			

				𝑛
			

		
	
. Hence
							
	
 		
 			
				(
				4
				7
				)
			
 		
	

	
		
			
				𝜙
				
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				
				⊗
				𝑋
				=
				𝐸
			

			
				(
				𝑚
				)
				𝑔
				(
				𝑖
				)
				𝑔
				(
				𝑖
				)
			

			
				⊗
				𝜓
			

			

				𝑖
			

			
				(
				𝑋
				)
				,
				∀
				𝑋
				∈
				𝒯
			

			

				𝑛
			

			

				.
			

		
	

						It is easy to see that 
	
		
			

				𝜓
			

			

				𝑖
			

		
	
 is injective and preserving idempotents. Thus, by Lemma 3, there exists an invertible 
	
		
			

				𝑃
			

			
				𝑔
				(
				𝑖
				)
			

			
				∈
				𝒯
			

			

				𝑛
			

		
	
 such that 
	
		
			

				𝜓
			

			

				𝑖
			

			
				(
				𝑋
				)
				=
				𝑃
			

			
				𝑔
				(
				𝑖
				)
			

			

				𝜉
			

			

				𝑖
			

			
				(
				𝑋
				)
				𝑃
			

			
				−
				1
				𝑔
				(
				𝑖
				)
			

		
	
, where 
	
		
			

				𝜉
			

			

				𝑖
			

			
				(
				𝑋
				)
				=
				𝑋
			

		
	
 or 
	
		
			

				𝜉
			

			

				𝑖
			

			
				(
				𝑋
				)
				=
				𝐽
				𝑋
			

			

				𝑡
			

			

				𝐽
			

		
	
. Let 
	
		
			
				𝑃
				=
				d
				i
				a
				g
				(
				𝑃
			

			

				1
			

			
				,
				…
				,
				𝑃
			

			

				𝑚
			

			
				)
				∈
				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
; we complete the proof of this step.By Step 3, we may assume
							
	
 		
 			
				(
				4
				8
				)
			
 		
	

	
		
			
				𝜙
				
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				
				⊗
				𝑋
				=
				𝐸
			

			
				(
				𝑚
				)
				𝑔
				(
				𝑖
				)
				𝑔
				(
				𝑖
				)
			

			
				⊗
				𝜉
			

			

				𝑖
			

			
				[
				]
				(
				𝑋
				)
				,
				∀
				𝑖
				∈
				1
				,
				𝑚
				,
				𝑋
				∈
				𝒯
			

			

				𝑛
			

			

				.
			

		
	
Step  4. 
	
		
			
				𝑔
				(
				𝑖
				)
				=
				𝑖
			

		
	
 or 
	
		
			
				𝑔
				(
				𝑖
				)
				=
				𝑚
				−
				𝑖
				+
				1
			

		
	
.Proof of Step  4. If 
	
		
			
				𝑚
				=
				2
			

		
	
, then this claim is clear. For 
	
		
			
				𝑚
				≥
				3
			

		
	
, we prove that if 
	
		
			
				𝑖
				<
				𝑗
				<
				𝑘
			

		
	
, then 
	
		
			
				𝑔
				(
				𝑖
				)
				<
				𝑔
				(
				𝑗
				)
				<
				𝑔
				(
				𝑘
				)
			

		
	
 or 
	
		
			
				𝑔
				(
				𝑖
				)
				>
				𝑔
				(
				𝑗
				)
				>
				𝑔
				(
				𝑘
				)
			

		
	
. Otherwise, we assume 
	
		
			
				𝑔
				(
				𝑖
				)
				<
				𝑔
				(
				𝑘
				)
				<
				𝑔
				(
				𝑗
				)
			

		
	
 (other cases can be proven by using similar methods). Since for any 
	
		
			
				𝑥
				∈
				𝐂
			

		
	
, 
	
		
			
				(
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				+
				𝑥
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑗
			

			
				)
				⊗
				𝐼
			

			

				𝑛
			

		
	
 and 
	
		
			
				(
				𝐸
			

			
				(
				𝑚
				)
				𝑗
				𝑗
			

			
				+
				𝑥
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑗
			

			
				)
				⊗
				𝐼
			

			

				𝑛
			

		
	
 are idempotent matrices in 
	
		
			

				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
, we have by using (48) that 
	
		
			

				𝐸
			

			
				(
				𝑚
				)
				𝑔
				(
				𝑖
				)
				𝑔
				(
				𝑖
				)
			

			
				⊗
				𝐼
			

			

				𝑛
			

			
				+
				𝑥
				𝜙
				(
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑗
			

			
				⊗
				𝐼
			

			

				𝑛
			

			

				)
			

		
	
 and 
	
		
			

				𝐸
			

			
				(
				𝑚
				)
				𝑔
				(
				𝑗
				)
				𝑔
				(
				𝑗
				)
			

			
				⊗
				𝐼
			

			

				𝑛
			

			
				+
				𝑥
				𝜙
				(
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑗
			

			
				⊗
				𝐼
			

			

				𝑛
			

			

				)
			

		
	
 are idempotent matrices in 
	
		
			

				𝑇
			

			

				𝑚
			

			
				⊗
				𝑇
			

			

				𝑛
			

		
	
. This, together with Lemma 8, implies
							
	
 		
 			
				(
				4
				9
				)
			
 		
	

	
		
			
				𝜙
				
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑗
			

			
				⊗
				𝐼
			

			

				𝑛
			

			
				
				=
				𝐸
			

			
				(
				𝑚
				)
				𝑔
				(
				𝑖
				)
				𝑔
				(
				𝑗
				)
			

			
				⊗
				𝐴
				f
				o
				r
				s
				o
				m
				e
				𝐴
				≠
				0
				∈
				𝒯
			

			

				𝑛
			

			

				.
			

		
	

						Similarly,
							
	
 		
 			
				(
				5
				0
				)
			
 		
	

	
		
			
				𝜙
				
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑘
			

			
				⊗
				𝐼
			

			

				𝑛
			

			
				
				=
				𝐸
			

			
				(
				𝑚
				)
				𝑔
				(
				𝑖
				)
				𝑔
				(
				𝑘
				)
			

			
				⊗
				𝐵
				f
				o
				r
				s
				o
				m
				e
				𝐵
				≠
				0
				∈
				𝒯
			

			

				𝑛
			

			
				,
				𝜙
				
				𝐸
			

			
				(
				𝑚
				)
				𝑗
				𝑘
			

			
				⊗
				𝐼
			

			

				𝑛
			

			
				
				=
				𝐸
			

			
				(
				𝑚
				)
				𝑔
				(
				𝑘
				)
				𝑔
				(
				𝑗
				)
			

			
				⊗
				𝐶
				f
				o
				r
				s
				o
				m
				e
				𝐶
				≠
				0
				∈
				𝒯
			

			

				𝑛
			

			

				.
			

		
	

						By 
	
		
			
				(
				𝐸
			

			
				(
				𝑚
				)
				𝑗
				𝑗
			

			
				+
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑗
			

			
				+
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑘
			

			
				+
				𝐸
			

			
				(
				𝑚
				)
				𝑗
				𝑘
			

			
				)
				⊗
				𝐼
			

			

				𝑛
			

		
	
 being an idempotent matrix in 
	
		
			

				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
, we obtain by using (48), (49), and (50) that
							
	
 		
 			
				(
				5
				1
				)
			
 		
	

	
		
			

				𝐸
			

			
				(
				𝑚
				)
				𝑔
				(
				𝑗
				)
				𝑔
				(
				𝑗
				)
			

			
				⊗
				𝐼
			

			

				𝑛
			

			
				+
				𝐸
			

			
				(
				𝑚
				)
				𝑔
				(
				𝑖
				)
				𝑔
				(
				𝑗
				)
			

			
				⊗
				𝐴
				+
				𝐸
			

			
				(
				𝑚
				)
				𝑔
				(
				𝑖
				)
				𝑔
				(
				𝑘
				)
			

			
				⊗
				𝐵
				+
				𝐸
			

			
				(
				𝑚
				)
				𝑔
				(
				𝑘
				)
				𝑔
				(
				𝑗
				)
			

			
				⊗
				𝐶
			

		
	

						is an idempotent matrix in 
	
		
			

				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
; that is,
							
	
 		
 			
				(
				5
				2
				)
			
 		
	

	
		
			
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				0
				𝐴
				𝐵
				0
				0
				𝐶
				0
				0
				𝐼
			

			

				𝑛
			

			
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
			

			

				2
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				0
				𝐴
				𝐵
				0
				0
				𝐶
				0
				0
				𝐼
			

			

				𝑛
			

			
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				.
			

		
	

						This implies 
	
		
			
				𝐴
				=
				0
			

		
	
, which is a contradiction. Hence, we complete the proof of Step  4.Step  5.   For any 
	
		
			
				𝑖
				<
				𝑗
			

		
	
, 
	
		
			

				𝜉
			

			

				𝑖
			

			
				=
				𝜉
			

			

				𝑗
			

		
	
,
	
		
	
and there exists 
	
		
			

				𝜆
			

			
				𝑖
				𝑗
			

			
				≠
				0
			

		
	
 such that 
							
	
 		
 			
				(
				5
				3
				)
			
 		
	

	
		
			
				𝜙
				
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑗
			

			
				
				⊗
				𝑋
				=
				𝜆
			

			
				𝑖
				𝑗
			

			

				𝐸
			

			
				(
				𝑚
				)
				𝑔
				(
				𝑖
				)
				𝑔
				(
				𝑗
				)
			

			
				⊗
				𝜉
			

			

				𝑖
			

			
				(
				𝑋
				)
				,
				∀
				𝑖
				≠
				𝑗
				,
				𝑋
				∈
				𝒯
			

			

				𝑛
			

			

				.
			

		
	
Proof of Step  5. We prove the case of 
	
		
			
				𝑔
				(
				𝑖
				)
				=
				𝑖
			

		
	
 (one can use a similar method to prove the case of 
	
		
			
				𝑔
				(
				𝑖
				)
				=
				𝑚
				−
				𝑖
				+
				1
			

		
	
). Hence,
							
	
 		
 			
				(
				5
				4
				)
			
 		
	

	
		
			
				𝜙
				
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				𝑘
				𝑘
			

			
				
				=
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				𝑘
				𝑘
			

			
				[
				]
				[
				]
				.
				,
				∀
				𝑖
				∈
				1
				,
				𝑚
				,
				𝑘
				∈
				1
				,
				𝑛
			

		
	

						Without loss of generality, we may assume 
	
		
			
				𝑖
				=
				1
			

		
	
, 
	
		
			
				𝑗
				=
				2
			

		
	
. Since for any 
	
		
			
				𝑥
				∈
				𝐂
			

		
	
, 
	
		
			
				(
				𝐸
			

			
				(
				𝑚
				)
				1
				1
			

			
				+
				𝑥
				𝐸
			

			
				(
				𝑚
				)
				1
				2
			

			
				)
				⊗
				𝐸
			

			
				(
				𝑛
				)
				𝑘
				𝑘
			

		
	
 and 
	
		
			
				(
				𝐸
			

			
				(
				𝑚
				)
				2
				2
			

			
				+
				𝑥
				𝐸
			

			
				(
				𝑚
				)
				1
				2
			

			
				)
				⊗
				𝐸
			

			
				(
				𝑛
				)
				𝑘
				𝑘
			

		
	
 are idempotent matrices in 
	
		
			

				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
, we obtain by (54) that 
	
		
			

				𝐸
			

			
				(
				𝑚
				)
				1
				1
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				𝑘
				𝑘
			

			
				+
				𝑥
				𝜙
				(
				𝐸
			

			
				(
				𝑚
				)
				1
				2
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				𝑘
				𝑘
			

			

				)
			

		
	
 and 
	
		
			

				𝐸
			

			
				(
				𝑚
				)
				2
				2
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				𝑘
				𝑘
			

			
				+
				𝑥
				𝜙
				(
				𝐸
			

			
				(
				𝑚
				)
				1
				2
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				𝑘
				𝑘
			

			

				)
			

		
	
 are idempotent matrices in 
	
		
			

				𝑇
			

			

				𝑚
			

			
				⊗
				𝑇
			

			

				𝑛
			

		
	
. This, together with Lemma 8, implies 
	
		
			
				𝜙
				(
				𝐸
			

			
				(
				𝑚
				)
				1
				2
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				𝑘
				𝑘
			

			
				)
				=
				𝜆
			

			

				𝑘
			

			

				𝐸
			

			
				(
				𝑚
				)
				1
				2
			

			
				⊗
				𝐸
			

			
				(
				𝑛
				)
				𝑘
				𝑘
			

		
	
, where 
	
		
			

				𝜆
			

			

				𝑘
			

			
				≠
				0
			

		
	
. Let 
	
		
			
				Λ
				=
				d
				i
				a
				g
				(
				𝜆
			

			

				1
			

			
				,
				…
				,
				𝜆
			

			

				𝑚
			

			

				)
			

		
	
; then
							
	
 		
 			
				(
				5
				5
				)
			
 		
	

	
		
			
				𝜙
				
				𝐸
			

			
				(
				𝑚
				)
				1
				2
			

			
				⊗
				𝐼
			

			

				𝑛
			

			
				
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				0
				Λ
				0
				0
				⊕
				0
				.
			

		
	

						Let 
	
		
			
				
				𝑄
				=
			

			

				𝐼
			

			

				𝑚
			

			
				−
				Λ
				0
				𝐼
			

			

				𝑚
			

			
				
				⊕
				𝐼
			

			
				(
				𝑚
				−
				2
				)
				𝑛
			

			
				∈
				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
; by (55), one can obtain
							
	
 		
 			
				(
				5
				6
				)
			
 		
	

	
		
			
				𝜙
				𝐸
				
				
			

			
				(
				𝑚
				)
				1
				1
			

			
				+
				𝐸
			

			
				(
				𝑚
				)
				1
				2
			

			
				
				⊗
				𝐼
			

			

				𝑛
			

			
				
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				𝐼
			

			

				𝑛
			

			
				Λ
				⎤
				⎥
				⎥
				⎥
				⎦
				
				𝐸
				0
				0
				⊕
				0
				=
				𝑄
			

			
				(
				𝑚
				)
				1
				1
			

			
				⊗
				𝐼
			

			

				𝑛
			

			
				
				𝑄
			

			
				−
				1
			

			
				,
				𝜙
				𝐸
				
				
			

			
				(
				𝑚
				)
				2
				2
			

			
				−
				𝐸
			

			
				(
				𝑚
				)
				1
				2
			

			
				
				⊗
				𝐼
			

			

				𝑛
			

			
				
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				0
				−
				Λ
				0
				𝐼
			

			

				𝑛
			

			
				⎤
				⎥
				⎥
				⎥
				⎦
				
				𝐸
				⊕
				0
				=
				𝑄
			

			
				(
				𝑚
				)
				2
				2
			

			
				⊗
				𝐼
			

			

				𝑛
			

			
				
				𝑄
			

			
				−
				1
			

			

				.
			

		
	

						Let 
	
		
			

				𝐹
			

			

				1
			

			
				=
				𝐸
			

			
				(
				𝑚
				)
				1
				1
			

			
				+
				𝐸
			

			
				(
				𝑚
				)
				1
				2
			

		
	
, 
	
		
			

				𝐹
			

			

				2
			

			
				=
				𝐸
			

			
				(
				𝑚
				)
				2
				2
			

			
				−
				𝐸
			

			
				(
				𝑚
				)
				1
				2
			

		
	
. Then, (56) turn into
							
	
 		
 			
				(
				5
				7
				)
			
 		
	

	
		
			
				𝜙
				
				𝐹
			

			

				𝑖
			

			
				⊗
				𝐼
			

			

				𝑛
			

			
				
				
				𝐸
				=
				𝑄
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				⊗
				𝐼
			

			

				𝑛
			

			
				
				𝑄
			

			
				−
				1
			

			
				,
				𝑖
				=
				1
				,
				2
				.
			

		
	

						By (57), using a similar method to Step 3, one can obtain
							
	
 		
 			
				(
				5
				8
				)
			
 		
	

	
		
			
				𝜙
				
				𝐹
			

			

				𝑖
			

			
				
				
				𝐸
				⊗
				𝑋
				=
				𝑄
			

			
				(
				𝑚
				)
				𝑖
				𝑖
			

			
				⊗
				𝜁
			

			

				𝑖
			

			
				
				𝑄
				(
				𝑋
				)
			

			
				−
				1
			

			
				,
				∀
				𝑋
				∈
				𝒯
			

			

				𝑛
			

			
				,
				𝑖
				=
				1
				,
				2
				,
			

		
	

						where 
	
		
			

				𝜁
			

			

				𝑖
			

			
				(
				𝑋
				)
				=
				𝑋
			

		
	
 or 
	
		
			

				𝜁
			

			

				𝑖
			

			
				(
				𝑋
				)
				=
				𝐽
				𝑋
			

			

				𝑡
			

			

				𝐽
			

		
	
. Hence
							
	
 		
 			
				(
				5
				9
				)
			
 		
	

	
		
			
				𝜙
				
				𝐹
			

			

				1
			

			
				
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				𝐼
				⊗
				𝑋
			

			

				𝑚
			

			
				−
				Λ
				0
				𝐼
			

			

				𝑚
			

			
				⎤
				⎥
				⎥
				⎥
				⎦
				⎡
				⎢
				⎢
				⎢
				⎣
				𝜁
			

			

				1
			

			
				⎤
				⎥
				⎥
				⎥
				⎦
				⎡
				⎢
				⎢
				⎢
				⎣
				𝐼
				(
				𝑋
				)
				0
				0
				0
			

			

				𝑚
			

			
				Λ
				0
				𝐼
			

			

				𝑚
			

			
				⎤
				⎥
				⎥
				⎥
				⎦
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				𝜁
			

			

				1
			

			
				(
				𝑋
				)
				𝜁
			

			

				1
			

			
				(
				⎤
				⎥
				⎥
				⎥
				⎦
				𝑋
				)
				Λ
				0
				0
				,
				∀
				𝑋
				∈
				𝒯
			

			

				𝑛
			

			
				,
				𝜙
				
				𝐹
			

			

				2
			

			
				
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				𝐼
				⊗
				𝑋
			

			

				𝑚
			

			
				−
				Λ
				0
				𝐼
			

			

				𝑚
			

			
				⎤
				⎥
				⎥
				⎥
				⎦
				⎡
				⎢
				⎢
				⎢
				⎣
				0
				0
				0
				𝜁
			

			

				2
			

			
				⎤
				⎥
				⎥
				⎥
				⎦
				⎡
				⎢
				⎢
				⎢
				⎣
				𝐼
				(
				𝑋
				)
			

			

				𝑚
			

			
				Λ
				0
				𝐼
			

			

				𝑚
			

			
				⎤
				⎥
				⎥
				⎥
				⎦
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				0
				−
				Λ
				𝜁
			

			

				2
			

			
				(
				𝑋
				)
				0
				𝜁
			

			

				2
			

			
				⎤
				⎥
				⎥
				⎥
				⎦
				(
				𝑋
				)
				,
				∀
				𝑋
				∈
				𝒯
			

			

				𝑛
			

			

				.
			

		
	

						Thus,
							
	
 		
 			
				(
				6
				0
				)
			
 		
	

	
		
			
				𝜙
				
				𝐸
			

			
				(
				𝑚
				)
				1
				2
			

			
				
				
				𝐹
				⊗
				𝑋
				=
				𝜙
			

			

				1
			

			
				
				
				𝐸
				⊗
				𝑋
				−
				𝜙
			

			
				(
				𝑚
				)
				1
				1
			

			
				
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				𝜁
				⊗
				𝑋
			

			

				1
			

			
				(
				𝑋
				)
				−
				𝜉
			

			

				1
			

			
				(
				𝑋
				)
				𝜁
			

			

				1
			

			
				⎤
				⎥
				⎥
				⎥
				⎦
				,
				𝜙
				
				𝐸
				(
				𝑋
				)
				Λ
				0
				0
			

			
				(
				𝑚
				)
				1
				2
			

			
				
				
				𝐸
				⊗
				𝑋
				=
				𝜙
			

			
				(
				𝑚
				)
				2
				2
			

			
				
				
				𝐹
				⊗
				𝑋
				−
				𝜙
			

			

				2
			

			
				
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				⊗
				𝑋
				0
				Λ
				𝜁
			

			

				2
			

			
				(
				𝑋
				)
				0
				𝜉
			

			

				2
			

			
				(
				𝑋
				)
				−
				𝜁
			

			

				2
			

			
				⎤
				⎥
				⎥
				⎥
				⎦
				.
				(
				𝑋
				)
			

		
	

						This implies
							
	
 		
 			
				(
				6
				1
				)
			
 		
	

	
		
			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝜁
			

			

				1
			

			
				(
				𝑋
				)
				−
				𝜉
			

			

				1
			

			
				(
				𝑋
				)
				𝜁
			

			

				1
			

			
				⎤
				⎥
				⎥
				⎥
				⎦
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				(
				𝑋
				)
				Λ
				0
				0
				0
				Λ
				𝜁
			

			

				2
			

			
				(
				𝑋
				)
				0
				𝜉
			

			

				2
			

			
				(
				𝑋
				)
				−
				𝜁
			

			

				2
			

			
				⎤
				⎥
				⎥
				⎥
				⎦
				.
				(
				𝑋
				)
			

		
	
From 
	
		
			

				𝜁
			

			

				1
			

			
				(
				𝑋
				)
				Λ
				=
				Λ
				𝜁
			

			

				2
			

			
				(
				𝑋
				)
			

		
	
, 
	
		
			
				∀
				𝑋
				∈
				𝒯
			

			

				𝑛
			

		
	
, one can easily see that 
	
		
			
				Λ
				=
				𝜆
			

			
				1
				2
			

			

				𝐼
			

			

				𝑛
			

			
				≠
				0
			

		
	
 and 
	
		
			

				𝜁
			

			

				1
			

			
				(
				𝑋
				)
				=
				𝜁
			

			

				2
			

			
				(
				𝑋
				)
			

		
	
; thus 
	
		
			

				𝜉
			

			

				1
			

			
				(
				𝑋
				)
				=
				𝜉
			

			

				2
			

			
				(
				𝑋
				)
			

		
	
. This completes the proof of Step  5.By Step 5, we may assume 
	
		
			
				𝜉
				=
				𝜉
			

			

				𝑖
			

		
	
.Step  6. For 
	
		
			
				𝑚
				≥
				3
			

		
	
 and 
	
		
			
				𝑖
				<
				𝑗
				<
				𝑘
			

		
	
, we have 
	
		
			

				𝜆
			

			
				𝑖
				𝑗
			

			

				𝜆
			

			
				𝑗
				𝑘
			

			
				=
				𝜆
			

			
				𝑖
				𝑘
			

		
	
. Proof of Step  6. From 
	
		
			
				(
				𝐸
			

			
				(
				𝑚
				)
				𝑗
				𝑗
			

			
				+
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑗
			

			
				+
				𝐸
			

			
				(
				𝑚
				)
				𝑗
				𝑘
			

			
				+
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑘
			

			
				)
				⊗
				𝐼
			

			

				𝑛
			

		
	
 is an idempotent matrix in 
	
		
			

				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
, we have
							
	
 		
 			
				(
				6
				2
				)
			
 		
	

	
		
			
				
				𝐸
			

			
				(
				𝑚
				)
				𝑔
				(
				𝑗
				)
				𝑔
				(
				𝑗
				)
			

			
				+
				𝜆
			

			
				𝑖
				𝑗
			

			

				𝐸
			

			
				(
				𝑚
				)
				𝑔
				(
				𝑖
				)
				𝑔
				(
				𝑗
				)
			

			
				+
				𝜆
			

			
				𝑗
				𝑘
			

			

				𝐸
			

			
				(
				𝑚
				)
				𝑔
				(
				𝑗
				)
				𝑔
				(
				𝑘
				)
			

			
				+
				𝜆
			

			
				𝑖
				𝑘
			

			

				𝐸
			

			
				(
				𝑚
				)
				𝑔
				(
				𝑖
				)
				𝑔
				(
				𝑘
				)
			

			
				
				⊗
				𝐼
			

			

				𝑛
			

		
	

						is an idempotent matrix in 
	
		
			

				𝒯
			

			

				𝑚
			

			
				⊗
				𝒯
			

			

				𝑛
			

		
	
. It follows from 
	
		
			
				𝑔
				(
				𝑖
				)
				=
				𝑖
			

		
	
 or 
	
		
			
				𝑔
				(
				𝑖
				)
				=
				𝑚
				−
				𝑖
				+
				1
			

		
	
 that 
	
		
			

				𝜆
			

			
				𝑖
				𝑗
			

			

				𝜆
			

			
				𝑗
				𝑘
			

			
				=
				𝜆
			

			
				𝑖
				𝑘
			

		
	
.When 
	
		
			
				𝑔
				(
				𝑖
				)
				=
				𝑖
			

		
	
, let 
	
		
			
				𝑃
				=
				d
				i
				a
				g
				(
				𝜆
			

			
				1
				2
			

			
				,
				…
				,
				𝜆
			

			
				1
				𝑚
			

			

				)
			

		
	
; then
							
	
 		
 			
				(
				6
				3
				)
			
 		
	

	
		
			
				𝜙
				
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑗
			

			
				
				⊗
				𝑋
				=
				𝑃
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑗
			

			

				𝑃
			

			
				−
				1
			

			
				⊗
				𝜉
				(
				𝑋
				)
				,
				∀
				𝑖
				≤
				𝑗
				,
				𝑋
				∈
				𝒯
			

			

				𝑛
			

			

				.
			

		
	

						Hence,
							
	
 		
 			
				(
				6
				4
				)
			
 		
	

	
		
			
				
				𝜙
				(
				𝐴
				⊗
				𝑋
				)
				=
				𝑃
				⊗
				𝐼
			

			

				𝑛
			

			
				
				
				(
				𝐴
				⊗
				𝜉
				(
				𝑋
				)
				)
				𝑃
				⊗
				𝐼
			

			

				𝑛
			

			

				
			

			
				−
				1
			

			
				,
				∀
				𝐴
				∈
				𝒯
			

			

				𝑚
			

			
				,
				𝑋
				∈
				𝒯
			

			

				𝑛
			

			

				.
			

		
	
When 
	
		
			
				𝑔
				(
				𝑖
				)
				=
				𝑚
				−
				𝑖
				+
				1
			

		
	
, let 
	
		
			
				𝑃
				=
				d
				i
				a
				g
				(
				𝜆
			

			
				1
				𝑚
			

			
				,
				…
				,
				𝜆
			

			
				1
				2
			

			

				)
			

		
	
; then
							
	
 		
 			
				(
				6
				5
				)
			
 		
	

	
		
			
				𝜙
				
				𝐸
			

			
				(
				𝑚
				)
				𝑖
				𝑗
			

			
				
				⊗
				𝑋
				=
				𝑃
				𝐸
			

			
				(
				𝑚
				)
				𝑛
				−
				𝑖
				+
				1
				,
				𝑛
				−
				𝑗
				+
				1
			

			

				𝑃
			

			
				−
				1
			

			
				⊗
				𝜉
				(
				𝑋
				)
				,
				∀
				𝑖
				≤
				𝑗
				,
				𝑋
				∈
				𝒯
			

			

				𝑛
			

			

				.
			

		
	

						Thus
							
	
 		
 			
				(
				6
				6
				)
			
 		
	

	
		
			
				
				𝜙
				(
				𝐴
				⊗
				𝑋
				)
				=
				𝑃
				⊗
				𝐼
			

			

				𝑛
			

			
				
				
				
				𝐽
				𝐴
			

			

				𝑇
			

			
				𝐽
				
				⊗
				𝜉
				(
				𝑋
				)
				
				
				𝑃
				⊗
				𝐼
			

			

				𝑛
			

			

				
			

			
				−
				1
			

			
				,
				∀
				𝐴
				∈
				𝒯
			

			

				𝑚
			

			
				,
				𝑋
				∈
				𝒯
			

			

				𝑛
			

			

				.
			

		
	
This completes the proof of the theorem.
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