Existence of Solutions of $\alpha \in (2, 3]$ Order Fractional Three-Point Boundary Value Problems with Integral Conditions

N. I. Mahmudov and S. Unul
Eastern Mediterranean University, Gazimagusa, Mersin 10, Turkey

Correspondence should be addressed to N. I. Mahmudov; nazim.mahmudov@emu.edu.tr

Received 16 April 2014; Revised 20 June 2014; Accepted 20 June 2014; Published 6 July 2014

Academic Editor: Juan J. Nieto

Copyright © 2014 N. I. Mahmudov and S. Unul. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Existence and uniqueness of solutions for $\alpha \in (2, 3]$ order fractional differential equations with three-point fractional boundary and integral conditions involving the nonlinearity depending on the fractional derivatives of the unknown function are discussed. The results are obtained by using fixed point theorems. Two examples are given to illustrate the results.

1. Introduction

Recently, the theory on existence and uniqueness of solutions of linear and nonlinear fractional differential equations has attracted the attention of many authors; see, for example, [1–19] and references therein. Many of the physical systems can better be described by integral boundary conditions. Integral boundary conditions are encountered in various applications such as population dynamics, blood flow models, chemical engineering, and cellular systems. Moreover, boundary value problems with integral boundary conditions constitute a very interesting and important class of problems. They include two-point, three-point, multipoint, and nonlocal boundary value problems as special cases. The existing literature mainly deals with first order and second order boundary value problems and there are a few papers on third order problems.

El-Shahed [14] studied existence and nonexistence of positive solution of nonlinear fractional two-point boundary value problem:

$$\begin{align*}
\mathfrak{D}_0^\alpha u(t) + \lambda a(t) f(u(t)) &= 0, \quad 0 < t < 1, \quad 2 < \alpha < 3, \\
u(0) = u'(0) = u''(1) &= 0,
\end{align*}$$

(1)

where \mathfrak{D}_0^α denotes the Caputo derivative of fractional order α, λ is a positive parameter, and $a : (0, 1) \to [0, \infty)$ is continuous function.

In [8], Ahmad and Nieto [7] studied existence and uniqueness results for the following general three-point fractional boundary value problem involving a nonlinear fractional differential equation of order $\alpha \in (m - 1, m]$:

$$\begin{align*}
\mathfrak{D}_0^\alpha u(t) &= f(t, u(t)); \quad 0 < t < T, \quad m \geq 2, \\
u(0) = u'(0) = \cdots = u^{(m-2)}(0) &= 0, \quad u(1) = \lambda u(\eta).
\end{align*}$$

(3)

However, very little work has been done on the case when the nonlinearity f depends on the fractional derivative of the unknown function. Su and Zhang [17] and Rehman et al. [16] studied the existence and uniqueness of solutions for following nonlinear two-point and three-point fractional
boundary value problem when the nonlinearity f depends on the fractional derivative of the unknown function.

In this paper, we investigate the existence (and uniqueness) of solution for nonlinear fractional differential equations of order $\alpha \in (2, 3]$ when the nonlinearity f depends on the fractional derivatives of the unknown function

$$\mathcal{D}_0^\alpha u(t) = f(t, u(t), \mathcal{D}_0^{\beta_1}u(t), \mathcal{D}_0^{\beta_2}u(t));$$

$$0 \leq t \leq T; \quad 2 < \alpha \leq 3$$

with the three-point and integral boundary conditions

$$a_0 u(0) + b_0 u(T) = \lambda_0 \int_0^T g_0(s, u(s)) \, ds,$$

$$0 < \beta_1 \leq 1, \quad 0 < \eta < T,$$

$$a_1 \mathcal{D}_0^{\beta_1} u(\eta) + b_1 \mathcal{D}_0^{\beta_1} u(T) = \lambda_1 \int_0^T g_1(s, u(s)) \, ds,$$

$$1 < \beta_2 \leq 2,$$

where $\mathcal{D}_0^{\beta_i}$. denotes the Caputo fractional derivative of order α, f, g_i are continuous functions, and $a_i, b_i, \lambda_i \in \mathbb{R}$, for $i = 0, 1, 2$.

2. Preliminaries

Let us recall some basic definitions [20–22].

Definition 1. The Riemann Liouville fractional integral of order α for continuous function $f : [0, \infty) \rightarrow \mathbb{R}$ is defined as

$$I_0^\alpha f(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} f(s) \, ds, \quad \alpha > 0,$$

provided the integral exists.

Definition 2. For $(n-1)$-times absolutely continuous function $f : [0, \infty) \rightarrow \mathbb{R}$, the Caputo derivative fractional order α is defined as

$$\mathcal{D}_0^\alpha f(t) = \frac{1}{\Gamma(n-\alpha)} \int_0^t (t-s)^{n-\alpha-1} f^{(n)}(s) \, ds,$$

$$n-1 < \alpha < n, \quad n = [\alpha] + 1,$$

where $[\alpha]$ denotes the integral part of the real number α.

Lemma 3. Let $\alpha > 0$. Then, the differential equation $\mathcal{D}_0^\alpha f(t) = 0$ has solutions

$$f(t) = k_0 + k_1 t + k_2 t^2 + \cdots + k_{n-1} t^{n-1};$$

$$I_0^\alpha \mathcal{D}_0^\alpha f(t) = f(t) = k_0 + k_1 t + k_2 t^2 + \cdots + k_{n-1} t^{n-1},$$

where $k_i \in \mathbb{R}$ and $i = 1, 2, 3, \ldots, n-1, n = [\alpha] + 1$.

Caputo fractional derivative of order $n - 1 < \alpha < n$ for t^y is given as

$$\mathcal{D}_0^\alpha t^y = \begin{cases}
\Gamma(y + 1) \int_0^t s^{\alpha-1} (t-s)^{-\alpha} \, ds, \\
\Gamma(y - \alpha + 1) t^{y-\alpha}, \\
0, & \gamma \in \mathbb{N}, \gamma \geq n \text{ or } \gamma \notin \mathbb{N}, \gamma > n - 1 \\
0, & \gamma \in \{0, 1, \ldots, n-1\}.
\end{cases}$$

Assume that $\beta_0 = 0$ and

$$a_0 + b_0 \neq 0, \quad a_1 \eta^{1-\beta_1} + b_1 T^{1-\beta_2} \neq 0,$$

$$a_2 \eta^{2-\beta_2} + b_1 T^{2-\beta_2} \neq 0.$$

For convenience, we set

$$\mu^{\beta_1} := \frac{\Gamma(3 - \beta_1)}{2(a_1 \eta^{1-\beta_1} + b_1 T^{1-\beta_2})},$$

$$\mu^{\beta_2} := \frac{\Gamma(3 - \beta_2)}{2(a_2 \eta^{2-\beta_2} + b_1 T^{2-\beta_2})},$$

$$\omega_0 := -\frac{1}{a_0 + b_0},$$

$$\omega_1(t) := \eta^{-\beta_1} \left(\frac{b_0}{a_0 + b_0} T + b_0 - t \right),$$

$$\omega_2(t) := \frac{b_1 T^{2-\beta_2}}{a_0 + b_0} \mu^{\beta_1} - \frac{b_1 T^{2-\beta_2}}{a_0 + b_0} \mu^{\beta_2} + \frac{b_1 T^{2-\beta_2}}{a_0 + b_0} \mu^{\beta_2} t - \mu^{\beta_2} t^2.$$
is given by

\[
\begin{align*}
\mathbf{D}^\beta_{0^+} u(t) &= I^{\alpha-\beta} f(t) - k_1 t^{1-\beta_1} \Gamma(2-\beta_1) - 2k_2 t^{2-\beta_1} \Gamma(3-\beta_1), \\
\mathbf{D}^\beta_{0^+} u(t) &= I^{\alpha-\beta} f(t) - 2k_2 t^{2-\beta_1} \Gamma(3-\beta_1).
\end{align*}
\]

Using boundary conditions (13), we get the following algebraic system of equations, for \(k_0, k_1, k_2\),

\[
\begin{align*}
-(a_0 + b_0) k_0 - b_0 T k_1 - b_1 T^2 k_2 &= \lambda_0 \int_0^T g_0(s) \, ds - b_0 I_0^\alpha f(T), \\
-(a_1 + b_1) \eta^{1-\beta_1} + b_1 T^{1-\beta_1} - \frac{a_2 \eta^{2-\beta_1} + b_1 T^{2-\beta_1}}{\Gamma(2-\beta_1)} k_1 - 2 \frac{a_2 \eta^{2-\beta_1} + b_1 T^{2-\beta_1}}{\Gamma(3-\beta_1)} k_2 &= \lambda_1 \int_0^T g_1(s) \, ds - a_1 I_0^{\alpha-\beta_1} f(\eta) - b_1 I_0^{\alpha-\beta_1} f(T), \\
-2 \frac{a_2 \eta^{2-\beta_1} + b_1 T^{2-\beta_1}}{\Gamma(3-\beta_2)} k_2 &= \lambda_2 \int_0^T g_2(s) \, ds - a_2 I_0^{\alpha-\beta_2} f(\eta) - b_2 I_0^{\alpha-\beta_2} f(T).
\end{align*}
\]

Solving the above system of equations for \(k_0, k_1, k_2\), we get the following:

\[
\begin{align*}
k_2 &= b_2 \mu^{\beta_2} I_0^{\alpha-\beta_2} f(T) + a_2 \mu^{\beta_2} I_0^{\alpha-\beta_2} f(\eta) - \lambda_2 \mu^{\beta_2} \int_0^T g_2(s) \, ds, \\
k_1 &= b_1 \mu^{\beta_1} I_0^{\alpha-\beta_1} f(T) + a_1 \mu^{\beta_1} I_0^{\alpha-\beta_1} f(\eta) - \lambda_1 \mu^{\beta_1} \int_0^T g_1(s) \, ds, \\
k_0 &= b_0 I_0^\alpha f(T) - \frac{\lambda_0}{a_0 + b_0} \int_0^T g_0(s) \, ds - \frac{b_0 \mu^{\beta_1} I_0^{\alpha-\beta_1} f(T)}{a_0 + b_0} + \lambda_1 \mu^{\beta_1} \int_0^T g_1(s) \, ds, \\
&\quad + \frac{b_0 b_1 \mu^{\beta_1} I_0^{\alpha-\beta_1} f(\eta)}{a_0 + b_0} - \frac{b_0 \mu^{\beta_1} I_0^{\alpha-\beta_1} f(T)}{a_0 + b_0} \int_0^T g_2(s) \, ds. \\
\end{align*}
\]

Inserting \(k_0, k_1, k_2\) into (15), we get the desired representation for the solution of (12)-(13).

Remark 5. The Green function of the BVP (4)-(5) is defined by

\[
G(t; s) = \begin{cases}
\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} + G_0(t; s), & 0 \leq s \leq t \leq T, \\
G_0(t; s), & 0 \leq t \leq s \leq T,
\end{cases}
\]

where

\[
G_0(t; s) = \sum_{i=0}^{2} \omega_i(t) \frac{1}{\Gamma(\alpha-\beta_i)} \int_0^T \frac{d^{\alpha-\beta_i}}{\Gamma(\alpha-\beta_i)} \chi_{(0, a)}(s), \\
\chi_{(a,b)}(s) := \begin{cases}
1, & s \in (a, b), \\
0, & s \notin (a, b).
\end{cases}
\]
Remark 6. For $\alpha = 3$, $\beta_1 = 1$, $\beta_2 = 2$, and $\eta = 0$, the BVP (4)-(5) can be written as follows:

\[
\begin{align*}
u'''(t) &= f(t, u(t), u', u'')(t), \quad 0 \leq t \leq T, \\
a_0 u(0) + b_0 u(T) &= \lambda_0 \int_0^T g_0(s, u(s)) \, ds, \\
a_1 u'(0) + b_1 u'(T) &= \lambda_1 \int_0^T g_1(s, u(s)) \, ds, \\
a_2 u''(0) + b_2 u''(T) &= \lambda_2 \int_0^T g_2(s, u(s)) \, ds.
\end{align*}
\]

(21)

In this case, the Green function can be written as follows:

\[
G(t; s) = \begin{cases}
\frac{(t-s)^2}{\Gamma(\alpha)} + G_0(t; s), & 0 \leq s \leq t \leq T, \\
G_0(t; s), & 0 \leq t \leq s \leq T,
\end{cases}
\]

where

\[
G_0(t; s) = \frac{b_0}{a_0 + b_0} \frac{(T-s)^2}{\Gamma(\alpha)} + \left(-\frac{b_0}{a_0 + b_0} \frac{b_1}{a_1 + b_1} T + \frac{b_0}{a_0 + b_0} \right) \frac{t}{\Gamma(\alpha-1)} \\
+ \left(-\frac{b_0}{a_0 + b_0} \frac{b_1}{a_1 + b_1} \frac{T-2}{a_2 + b_2} T^2 \right) + \frac{b_2}{a_2 + b_2} \frac{T-2}{\Gamma(\alpha-2)}.
\]

(23)

Moreover, the case

\[
\begin{align*}
a_0 &= 1, & b_0 &= 0, & a_1 &= 0, \\
b_1 &= 1, & a_2 &= 1, & b_2 &= 0
\end{align*}
\]

is investigated in [10]. In this case,

\[
G(t; s) = \begin{cases}
\frac{(t-s)^2}{\Gamma(\alpha)} + \frac{T(t-s)}{\Gamma(\alpha-1)}, & 0 \leq s \leq t \leq T, \\
\frac{T(t-s)}{\Gamma(\alpha-1)}, & 0 \leq t \leq s \leq T,
\end{cases}
\]

(25)

3. Existence and Uniqueness Results

In this section we state and prove an existence and uniqueness result for the fractional BVP (4)-(5) by using the Banach fixed-point theorem. We study our problem in the space

\[
C_\beta([0, T]; \mathbb{R}) := \{ v \in C([0, T]; \mathbb{R}) : \partial_{0+}^{\beta_1} v, \partial_{0+}^{\beta_2} v \in C([0, T]; \mathbb{R}) \}
\]

(26)

equipped with the norm

\[
\| v \|_\beta := \| v \|_C + \| \partial_{0+}^{\beta_1} v \|_C + \| \partial_{0+}^{\beta_2} v \|_C,
\]

(27)

where $\| \cdot \|_C$ is the sup norm in $C([0, T]; \mathbb{R})$.

The following notations, formulae, and estimations will be used throughout the paper:

\[
\begin{align*}
\partial_{0+}^{\beta_1} \omega_1(t) &= -\frac{\mu^{\beta_1} t^{1-\beta_1}}{\Gamma(2-\beta_1)}, \\
\partial_{0+}^{\beta_2} \omega_1(t) &= 0, \\
\partial_{0+}^{\beta_1} \omega_2(t) &= \frac{\mu^{\beta_1} \beta^{1-\beta_1}}{\Gamma(2-\beta_1)} - \frac{2 \mu^{\beta_1} t^{2-\beta_1}}{\Gamma(3-\beta_1)}, \\
\partial_{0+}^{\beta_2} \omega_2(t) &= -\frac{2 \mu^{\beta_1} t^{2-\beta_1}}{\Gamma(3-\beta_2)}, \\
|\omega_0| &= \frac{1}{|a_0 + b_0|}, \\
|\omega_1| &\leq \frac{1}{|a_0 + b_0|} (|\omega_0| + 1) T =: \rho_0, \\
|\omega_2| &\leq \frac{|b_0|}{|a_0 + b_0|} \frac{1}{T} + \frac{|b_1|}{|a_0 + b_0|} \frac{1}{T} + \frac{|b_2|}{|a_0 + b_0|} \frac{1}{T} + \frac{|b_3|}{|a_0 + b_0|} \frac{1}{T}, \\
|\omega_2| &\leq \frac{|\omega_0|}{|a_0 + b_0|} T^2 + \frac{|b_1|}{|a_0 + b_0|} T^2 + \frac{|b_2|}{|a_0 + b_0|} T^2 =: \rho_2, \\
\bar{\rho}_0 &= 0, \\
\bar{\rho}_1 &= \frac{|b_0|}{|a_0 + b_0|} \frac{1}{T} + \frac{|b_1|}{|a_0 + b_0|} T + \frac{|b_2|}{|a_0 + b_0|} T^2 =: \bar{\rho}_1, \\
\bar{\rho}_2 &= \bar{\rho}_1, \\
\Delta_0 &= \frac{\mu^{\beta_1} t^{1-\beta_1}}{\Gamma(2-\beta_1)} + \frac{|b_0|}{|a_0 + b_0|} T^2 + \frac{|b_1|}{|a_0 + b_0|} \frac{1}{T} + \frac{|b_2|}{|a_0 + b_0|} \frac{1}{T} + \frac{|b_3|}{|a_0 + b_0|} \frac{1}{T}, \\
&\times \left(\frac{1}{|a_0 + b_0|} T^2 + \frac{|b_1|}{|a_0 + b_0|} \frac{1}{T} + \frac{|b_2|}{|a_0 + b_0|} \frac{1}{T} \right), \\
&\times \left(\frac{1}{|a_0 + b_0|} T^2 + \frac{|b_1|}{|a_0 + b_0|} \frac{1}{T} + \frac{|b_2|}{|a_0 + b_0|} \frac{1}{T} \right),
\end{align*}
\]

(28)
\(\Delta_1 := \frac{T^{\alpha-\beta - \tau}}{\Gamma(\alpha - \beta)} \left(1 - \frac{\tau}{\alpha - \beta} \right)^{1-\tau} \| f \|_{1/\tau} + \sum_{i=1}^{2} \beta_i \left[b_i \left(1 - \frac{\tau}{\alpha - \beta} \right)^{1-\tau} \right] \)

\(\Delta_2 := \frac{T^{\alpha-\beta - \tau}}{\Gamma(\alpha - \beta)} \left(1 - \frac{\tau}{\alpha - \beta} \right)^{1-\tau} \| f \|_{1/\tau} + \sum_{i=1}^{2} \eta_i \left[\eta^{\alpha-\beta - \tau} \right] \)

\(\times \left(1 - \frac{\tau}{\alpha - \beta} \right)^{1-\tau} \) .

(28)

\textbf{Theorem 7.} Assume the following.

(H.1) The function \(f : [0, T] \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \) is jointly continuous.

(H.2) There exists a function \(l_f \in L^{1/\tau}([0, T]; \mathbb{R}^+) \) with \(\tau \in (0, \min(1, \alpha - \beta_2)) \) such that

\[
| f(t, u_1, u_2, u_3) - f(t, v_1, v_2, v_3) | \leq l_f(t) (| u_1 - v_1 | + | u_2 - v_2 | + | u_3 - v_3 |),
\]

for each \((t, u_1, u_2, u_3), (t, v_1, v_2, v_3) \in [0, T] \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \).

(H.3) The function \(g_i : [0, T] \times \mathbb{R} \rightarrow \mathbb{R} \) is jointly continuous and there exists \(l_{g_i} \in L^{1}([0, T]; \mathbb{R}^+) \) such that

\[
| g_i(t, u) - g_i(t, v) | \leq l_{g_i}(t) | u - v |, \quad i = 0, 1, 2
\]

for each \((t, u), (t, v) \in [0, T] \times \mathbb{R} \).

If

\[
(\Delta_0 + \Delta_1 + \Delta_2) \| f \|_{1/\tau} + \sum_{i=1}^{2} \rho_i | \lambda_i | \| g_i \|_{1/\tau}
\]

\[
+ \sum_{i=1}^{2} \tilde{\beta}_i | \lambda_1 | \| g_1 \|_{1/\tau} + \tilde{\beta}_2 | \lambda_2 | \| g_2 \|_{1/\tau} < 1,
\]

then the problem (4)-(5) has a unique solution on \([0, T]\).
\[\mathbf{D}_0^\beta \mathbf{f}(\mathbf{u})(t) = \int_0^t (t-s)^{\alpha-\beta-1} \frac{1}{\Gamma(\alpha-\beta)} f(s, u(s), \mathbf{D}_0^\beta u(s), \mathbf{D}_0^\beta u(s)) ds + \mathbf{D}_0^\beta \omega_2(t) b_2 + \int_0^T (T-s)^{\alpha-\beta-1} \frac{1}{\Gamma(\alpha-\beta)} f(s, u(s), \mathbf{D}_0^\beta u(s), \mathbf{D}_0^\beta u(s)) ds + \mathbf{D}_0^\beta \omega_2(t) a_2 \times \int_0^T (T-s)^{\alpha-\beta-1} \frac{1}{\Gamma(\alpha-\beta)} f(s, u(s), \mathbf{D}_0^\beta u(s), \mathbf{D}_0^\beta u(s)) ds - \mathbf{D}_0^\beta \omega_2(t) \lambda_2 \int_0^T g_2(s, u(s)) ds. \] (33)

Clearly, due to \(f, g_0, g_1, \) and \(g_2 \) being jointly continuous, the expressions (32)-(33) are well defined. It is obvious that the fixed point of the operator \(\mathbf{F} \) is a solution of the problem (4)-(5). To show existence and uniqueness of the solution (12)-(13), we use the Banach fixed point theorem. To this end, we show that \(\mathbf{F} \) is contraction:

\[\| \mathbf{F} u(t) - \mathbf{F} v(t) \| \leq \int_0^t (t-s)^{\alpha-\beta-1} \frac{1}{\Gamma(\alpha)} \left| f(s, u(s), \mathbf{D}_0^\beta u(s), \mathbf{D}_0^\beta u(s)) - f(s, v(s), \mathbf{D}_0^\beta v(s), \mathbf{D}_0^\beta v(s)) \right| ds \]

\[+ \sum_{i=0}^2 | \omega_i(t) | | b_i | \int_0^T (T-s)^{\alpha-\beta-1} \frac{1}{\Gamma(\alpha-\beta)} \left| f(s, u(s), \mathbf{D}_0^\beta u(s), \mathbf{D}_0^\beta u(s)) - f(s, v(s), \mathbf{D}_0^\beta v(s), \mathbf{D}_0^\beta v(s)) \right| ds \]

\[+ \sum_{i=1}^2 | \omega_i(t) | | a_i | \int_0^T (T-s)^{\alpha-\beta-1} \frac{1}{\Gamma(\alpha-\beta)} \left| f(s, u(s), \mathbf{D}_0^\beta u(s), \mathbf{D}_0^\beta u(s)) - f(s, v(s), \mathbf{D}_0^\beta v(s), \mathbf{D}_0^\beta v(s)) \right| ds \]

\[+ \sum_{i=0}^2 | \omega_i(t) | | \lambda_i | \int_0^T | g_i(s, u(s)) - g_i(s, v(s)) | ds \]

\[\leq \| f \| \| T^{\alpha-\beta-1} \frac{1}{\Gamma(\alpha)} \left(1 - \frac{1}{\alpha} \right) \| u - v \| \beta \]

\[+ \left(\| f \| \| T^{\alpha-\beta-1} \frac{1}{\Gamma(\alpha-\beta)} \| a_i | \frac{1}{\Gamma(\alpha-\beta)} \right) \times \left(1 - \frac{1}{\alpha-\beta-1} \right) \sum_{i=1}^2 | \omega_i(t) | \| g_i \| \| u - v \| \beta \]

\[= \Delta_1 \| f \| \| T^{\alpha-\beta-1} \frac{1}{\Gamma(\alpha)} \left(\frac{1}{\alpha} \right) \| u - v \| \beta \]

(35) On the other hand,
Abstract and Applied Analysis

Similarly,

\[
\left| D^\beta_0 (\mathfrak{F} u) (t) - D^\beta_0 (\mathfrak{F} v) (t) \right|
\leq \int_0^t (t - s)^{\alpha - \beta - 1} \frac{1}{\Gamma (\alpha - \beta_2)} \left[f (s, u (s), D^\beta_0 v (s), D^\beta_0 u (s)) + f (s, v (s), D^\beta_0 v (s), D^\beta_0 u (s)) \right] ds
\]

\[
+ \left| D^\beta_0 (\mathfrak{F} u) (t) \right| |b_2| + \left| D^\beta_0 (\mathfrak{F} v) (t) \right| |b_2| \int_0^T \left[(T - s)^{\alpha - \beta - 1} \frac{1}{\Gamma (\alpha - \beta_2)} \left[f (s, u (s), D^\beta_0 v (s), D^\beta_0 u (s)) + f (s, v (s), D^\beta_0 v (s), D^\beta_0 u (s)) \right] ds \right.
\]

\[
\left. + \left| D^\beta_0 (\mathfrak{F} u) (t) \right| |a_2| \int_0^T |\mathcal{g}_2 (s, u (s)) - \mathcal{g}_2 (s, v (s))| ds \right]
\]

\[
\leq \frac{T^{\alpha - \beta - \tau}}{\Gamma (\alpha - \beta_2)} \left(\frac{1 - \tau}{\alpha - \beta_2 - \tau} \right)^{1 - \tau} \left\| f \right\|_{L^1} \|u - v\|_\beta + \left(\frac{T^{\alpha - \beta_2}}{\Gamma (\alpha - \beta_2)} + \left| a_2 \right| \right) \left(\frac{1 - \tau}{\alpha - \beta_2 - \tau} \right)^{1 - \tau} \left\| f \right\|_{L^1} \|u - v\|_\beta
\]

\[
= \left(\Delta_2 \left\| f \right\|_{L^1} + \tilde{\beta}_2 |a_2| \right) \left\| f \right\|_{L^1} \|u - v\|_\beta.
\]

Here, in estimations (34)–(36), we used the Hölder inequality:

\[
\int_0^t \left(\int_0^s (t - s)^{\alpha - m - 1} ds \right) \tau^{\alpha - m - 1} \left(\int_0^s \left((t - s)^{\alpha - m - 1} \right)^{1/(1 - \tau)} ds \right)^{1 - \tau} ds
\]

\[
= \|f\|_{L^{1/\tau}} \left(\frac{1 - \tau}{\alpha - m - \tau} \right)^{1 - \tau} \tau^{\alpha - m - \tau}, \quad \text{if } 0 < \tau < \min (1, \alpha - m).
\]

From (34)–(36), it follows that

\[
\| (\mathfrak{F} u) - (\mathfrak{F} v) \|_\beta
\]

\[
\leq \left[(\Delta_0 + \Delta_1 + \Delta_2) \left\| f \right\|_{L^1} + \sum_{i=0}^{\tilde{\beta}_2} |\lambda_i| \left\| f \right\|_{L^1} \right]
\]

\[
+ \sum_{i=1}^{\tilde{\beta}_2} |\lambda_i| \left\| f \right\|_{L^1} + \tilde{\beta}_2 |a_2| \left\| f \right\|_{L^1} \left\| f \right\|_{L^1} \|u - v\|_\beta.
\]

Consequently, by (31), \(\mathfrak{F} \) is a contraction mapping. As a consequence of the Banach fixed point theorem, we deduce that \(\mathfrak{F} \) has a fixed point which is a solution of the problem (4)–(5).

Remark 8. In the assumptions (H) if \(l_f \) is a positive constant, then the condition (31) can be replaced by

\[
l_f T^{\alpha - \beta_2} \left(\frac{T^{\alpha - \beta_1}}{\Gamma (\alpha - \beta_1 + 1)} + \left| a_2 \right| \right)
\]

\[
+ l_f \sum_{i=1}^{\tilde{\beta}_2} \left(\frac{T^{\alpha - \beta_2}}{\Gamma (\alpha - \beta_2 + 1)} + \left| a_2 \right| \right)
\]

\[
+ l_f \sum_{i=1}^{\tilde{\beta}_2} \left(\frac{T^{\alpha - \beta_2}}{\Gamma (\alpha - \beta_2 + 1)} + \left| a_2 \right| \right)
\]

\[
+ l_f \tilde{\beta}_2 \left(\frac{T^{\alpha - \beta_2}}{\Gamma (\alpha - \beta_2 + 1)} + \left| a_2 \right| \right)
\]

\[
+ \sum_{i=1}^{\tilde{\beta}_2} |\lambda_i| \left\| f \right\|_{L^1} + \frac{2}{\tilde{\beta}_2} |\lambda_i| \left\| f \right\|_{L^1} < 1.
\]

4. Existence Results

To prove the existence of solutions for BVP (4)–(5), we recall the following known nonlinear alternative.

Theorem 9 (nonlinear alternative). Let \(X \) be a Banach space; let \(B \) be a closed, convex subset of \(X \); let \(W \) be an open subset of \(B \) and \(0 \in W \). Suppose that \(F : W \rightarrow B \) is a continuous and compact map. Then, either (a) \(F \) has a fixed point in \(W \) or (b) there exist an \(x \in \partial W \) (the boundary of \(W \)) and \(\lambda \in (0, 1) \) with \(x = \lambda F(x) \).
Theorem 10. Assume that

\begin{align*}
(H_4) \text{ functions } & f : [0, T] \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}, g_i : [0, T] \times \mathbb{R} \to \mathbb{R} \ (i = 0, 1, 2) \text{ are jointly continuous; } \\
(H_5) \text{ there exist nondecreasing functions } & \varphi : [0, \infty) \to \mathbb{R}, \psi : [0, \infty) \to \mathbb{R} \text{ and functions } \\
I_f & \in L^{1/\tau}(0, T, \mathbb{R}^2), I_{g_i} \in L^1([0, T], \mathbb{R}^2) \text{ with } \tau \in (0, \min(1, \alpha - \beta_2)) \text{ such that } \\
|f(t, u, v, w)| & \leq I_f(t) \varphi(|u| + |v| + |w|), \\
|g_i(t, u)| & \leq I_{g_i}(t) \psi_i(|u|), \quad i = 0, 1, 2, \text{ for all } t \in [0, T] \text{ and } u, v, w \in \mathbb{R}; \\
(H_6) \text{ there exists a constant } & K > 0 \text{ such that } \\
K\left(\varphi(K) \|f\|_{1/\tau} (\Delta_0 + \Delta_1 + \Delta_2) \right) & + 2 \sum_{i=0}^2 (\rho_i + \tilde{\rho}_i) |\lambda_i| \psi_i(K) \|g_i\|_1 \right)^{-1} > 1. \tag{41}
\end{align*}

Then the problem (4)-(5) has at least one solution on \([0, T]\).

Proof. Let \(B_r := \{u \in C([0, T]; \mathbb{R}) : \|u\|_p \leq r\}\).

Step 1. We show that the operator \(\hat{F} : C_0([0, T]; \mathbb{R}) \to C_0([0, T]; \mathbb{R})\) defined by (32) maps \(B_r\) into bounded set.

For each \(u \in B_r\), we have

\begin{align*}
|\hat{F}(u)(t)| & \leq \varphi(r) \|f\|_{1/\tau} \left(\frac{T^{\alpha - \beta_1 - \tau}}{\Gamma(\alpha - \beta_1 - \tau)} \right)^{1-\tau} \\
& \quad + 2 \sum_{i=0}^2 (\rho_i + \tilde{\rho}_i) |\lambda_i| \psi_i(r) \|g_i\|_1, \quad t \in [0, T]. \tag{42}
\end{align*}

By the Hölder inequality, we have

\begin{align*}
|\hat{F}(u)(t)| & \leq \varphi(r) \|f\|_{1/\tau} \left(\frac{T^{\alpha - \beta_1 - \tau}}{\Gamma(\alpha - \beta_1 - \tau)} \right)^{1-\tau} \\
& \quad + 2 \sum_{i=0}^2 (\rho_i + \tilde{\rho}_i) |\lambda_i| \psi_i(r) \|g_i\|_1, \quad t \in [0, T]. \tag{43}
\end{align*}

In a similar manner,

\begin{align*}
|\hat{D}_0^{\beta_1} \hat{F}(u)(t)| & \leq \varphi(r) \|f\|_{1/\tau} \left(\frac{T^{\alpha - \beta_1 - \tau}}{\Gamma(\alpha - \beta_1 - \tau)} \right)^{1-\tau} \\
& \quad + 2 \sum_{i=0}^2 (\rho_i + \tilde{\rho}_i) |\lambda_i| \psi_i(r) \|g_i\|_1, \quad t \in [0, T]. \tag{44}
\end{align*}
Thus,
\[
\| (F𝑢) \|_β \leq \varphi (r) \left\| f \right\|_{L^r} (Δ₀ + Δ₁ + Δ₂) + 2 \sum_{i=0}^2 (ρ₁ + ̂ρ₁ + ̂ρ₁) |λ₁| ψ₁ (r) \left\| g₁ \right\|_1.
\]

Step 2. The families \{\(f_{u} : u \in B_r\), \{\(f_{0} : u \in B_r\), and \{\(f_{0} : u \in B_r\) are equicontinuous. Because of the continuity of \(ω₁(t)\) and assumption (H₃), we have

\[
| (F𝑢) (t₂) – (F𝑢) (t₁) | ≤ 1 \frac{\varphi (r)}{Γ(α)} \int_{t₁}^{t₂} (t₂ – s)^{α-1} l_f (s) \, ds
\]

\[
+ \frac{1}{Γ(α)} \varphi (r) \int_{0}^{t₁} \left((t₂ – s)^{α-1} – (t₁ – s)^{α-1} \right) l_f (s) \, ds
\]

\[
+ \varphi (r) \sum_{i=0}^2 |ω₁ (t₂) – ω₁ (t₁) | |k_i|
\]

\[
× \int_{0}^{T} \frac{(T – s)^{α-β−1} – (T – s)^{α-β−1}}{Γ(α - β)} l_f (s) \, ds
\]

\[
+ \varphi (r) \sum_{i=0}^2 |ω₁ (t₂) – ω₁ (t₁) | |a_i|
\]

\[
× \int_{0}^{η} \frac{(η – s)^{α-β−1} – (η – s)^{α-β−1}}{Γ(α - β)} l_f (s) \, ds
\]

\[
+ 2 \sum_{i=0}^2 |ω₁ (t₂) – ω₁ (t₁) | |λ₁| ψ₁ (r) \left\| g₁ \right\|_1 \rightarrow 0
\]

as \(t₂ \rightarrow t₁\).

Therefore, \{\(f_{u} : u \in B_r\) is equicontinuous. Similarly, we may prove that \{\(f_{0} : u \in B_r\) and \{\(f_{0} : u \in B_r\) are equicontinuous.

Hence, by the Arzela-Ascoli theorem, the sets \{\(f_{u} : u \in B_r\), \{\(f_{0} : u \in B_r\), and \{\(f_{0} : u \in B_r\) are relatively compact in \(C([0, T]; R)\). Therefore, \(f(B_r)\) is a relatively compact subset of \(C_{beta}(0, T); R\). Consequently, the operator \(F\) is compact.

Step 3. \(F\) has a fixed point in \(W = \{u \in C_{beta}([0, T]; R) : \| u \|_{beta} < K\} \).

We let \(u = λ (f_{u})\) for \(0 < λ < 1\). Then, for each \(t \in [0, T]\),

\[
\| u \|_{beta} = \| λ (f_{u}) \|_{beta} ≤ \varphi (\| u \|_{beta}) \left\| f \right\|_{L^r} (Δ₀ + Δ₁ + Δ₂)
\]

\[
+ 2 \sum_{i=0}^2 (ρ₁ + ̂ρ₁ + ̂ρ₁) |λ₁| ψ₁ (\| u \|_{beta}) \left\| g₁ \right\|_1.
\]

In other words,

\[
\| u \|_{beta} \left[\varphi (\| u \|_{beta}) \left\| f \right\|_{L^r} (Δ₀ + Δ₁ + Δ₂)
\]

\[
+ 2 \sum_{i=0}^2 (ρ₁ + ̂ρ₁ + ̂ρ₁) |λ₁| ψ₁ (\| u \|_{beta}) \right\| g₁ \right\|_1 \right)^{-1} ≤ 1.
\]

According to the assumption (H₆), we know that there exists \(K > 0\) such that \(K > Φ\) and

\[
K \left[\varphi (K) \left\| f \right\|_{L^r} (Δ₀ + Δ₁ + Δ₂)
\]

\[
+ 2 \sum_{i=0}^2 (ρ₁ + ̂ρ₁ + ̂ρ₁) |λ₁| ψ₁ (K) \right\| g₁ \right\|_1 \right)^{-1} > 1.
\]

In other words, for all \(u \in \partial W\), we have \(u ≠ λ (f_{u})\). Since the operator \(F : W → C_{beta}([0, T]; R)\) is continuous and compact, from Theorem 9(a), we can deduce that \(F\) has a fixed point in \(W\).

Remark 11. Notice that analogues of Theorems 7 and 10 for the case \(f(t, u, ν, w) = f(t, u)\) were considered in [9]. Thus, our results are a generalization of [9] in the special case when (fractional) differential inclusion is replaced by (fractional) differential equation.

Remark 12. Since the number \((α − β₂ − 1)\) can be negative, the function \((T − s)^{α-β−1} \notin L^∞([0, T]; R)\). That is why in Theorems 7 and 10 it is assumed that \(l_f ∈ L^{1/τ}, \tau ∈ (0, min(1, α − β₂))\).

5. Examples

Example 1. Consider the following boundary value problem of fractional differential equation:

\[
D_{0}^{5/2} u(t) = \frac{1}{11} \left(\frac{|u(t)|}{1 + |u(t)|} + \frac{|D_{0}^{1/2} u(t)|}{1 + |D_{0}^{1/2} u(t)|} + \tan^{-1} \left(D_{0}^{3/2} u(t) \right) \right)
\]

\[
0 ≤ t ≤ 1,
\]

\[
u(0) + u(1) = \int_{0}^{1} \frac{u(s)}{(1 + s)^2} \, ds,
\]

\[
D_{0}^{1/2} u \left(\frac{1}{10} \right) + D_{0}^{1/2} u \left(\frac{1}{10} \right) = \frac{1}{2} \int_{0}^{1} \left(e^s u(s) + \frac{1}{2} \right) \, ds,
\]

\[
D_{0}^{3/2} u \left(\frac{1}{10} \right) + D_{0}^{3/2} u \left(\frac{1}{10} \right) = \frac{1}{3} \int_{0}^{1} \left(u(s) + \frac{3}{4} \right) \, ds.
\]

(50)
Here, \(\alpha = 5/2, \beta_1 = 1/2, \beta_2 = 3/2, \)

\[
T = 1, \quad \tau = 1/10, \quad a_0 = b_0 = a_1 = b_1 = a_2 = b_2 = 1, \\
\eta = 1/10, \quad \lambda_0 = 1, \quad \lambda_1 = \frac{1}{2}, \\
\lambda_2 = \frac{1}{3}, \quad l_{g_0} = l_{g_1} = l_{g_2} = 1, \\
f(t, u, v, w) := \frac{1}{11} \left(\frac{u}{1 + u} + \frac{v}{1 + v} + \tan^{-1}(w) \right), \\
l_f(t) = \frac{1}{11}, \\
g_0(t, u) := \frac{u}{(1 + t)^2}, \quad g_1(t, u) := \frac{e^u}{1 + 2e^u} + \frac{1}{2}, \\
g_2(t, u) := \frac{u}{1 + e^u} + \frac{3}{4}.
\]

(51)

Example 2. Consider the following boundary value problem of fractional differential equation:

\[
\mathcal{D}^{3/2}_{0^+} u(t) = \frac{|u(t)|^3}{9(|u(t)|^3 + 3)} + \frac{\left| \sin \mathcal{D}^{1/2}_{0^+} u(t) \right|}{9(|\sin \mathcal{D}^{1/2}_{0^+} u(t)| + 1)} + \frac{1}{12}, \\
t \in [0, 1],
\]

\[
u(0) + u(1) = \frac{\int_0^1 \frac{u(s)}{3(1 + s)^2} ds}{10(|u| + |v| + |w|)},
\]

where \(f \) is given by

\[
f(t, u, v, w) = \frac{|u|^3}{10(|u|^3 + 3)} + \frac{|\sin v|}{9(|\sin v| + 1)} + \frac{1}{12}.
\]

(55)

We have

\[
|f(t, u, v, w)| \leq \frac{|u|^3}{9(|u|^3 + 3)} + \frac{|\sin v|}{9(|\sin v| + 1)} + \frac{1}{12} \leq \frac{11}{36},
\]

\(u, v, w \in \mathbb{R} \).

(56)

Thus,

\[
|f(t, u, v, w)| \leq \frac{11}{36} = I_f(t) \varphi(|u| + |v| + |w|),
\]

with \(I_f(t) = \frac{1}{3}, \quad \varphi(t) = \frac{11}{12} \).

(57)

Moreover,

\[
\alpha = \frac{5}{2}, \quad \beta_1 = \frac{1}{2}, \quad \beta_2 = \frac{3}{2},
\]

\[
T = 1, \quad \tau = \frac{1}{10}, \quad a_0 = b_0 = a_1 = b_1 = a_2 = b_2 = 1, \\
\eta = \frac{1}{10}, \quad \lambda_0 = 1, \quad \lambda_1 = \frac{1}{2}.
\]

(53)
\[\lambda_2 = \frac{1}{3}, \quad l_{g_0} = l_{g_1} = l_{g_2} = \frac{1}{3}, \]
\[\Delta_0 = 2.34, \quad \Delta_1 = 0.19, \quad \Delta_2 = 0.15, \]
\[\rho_0 = 0.5, \quad \rho_1 = 1.01, \quad \rho_2 = 1.2, \]
\[\tilde{\rho}_0 = 0, \quad \tilde{\rho}_1 = 0.76, \quad \tilde{\rho}_2 = 0.9, \]
\[g_0 (t, u) := \frac{u}{3(1 + t)^2}, \]
\[g_1 (t, u) := \frac{\varepsilon u}{3(1 + \varepsilon t)^2}, \]
\[g_2 (t, u) := \frac{u}{3(1 + \varepsilon t)^2}, \]
\[\psi_i (u) = u, \quad i = 0, 1, 2. \] \((58) \)

From the condition
\[K \left(\varphi (K) \left\| l_{g_i} \right\|_1 \Delta_0 + \Delta_1 + \Delta_2 \right) \]
\[+ \sum_{i=0}^{2} \left(\rho_i + \tilde{\rho}_i + \hat{\rho}_i \right) \left\| \lambda_i \right\|_1 \left(\varphi (K) \left\| l_{g_i} \right\|_1 \right) ^{-1} > 1, \] \((59) \)

we find that
\[K > 9.8. \] \((60) \)

Thus, all the conditions of Theorem 10 are satisfied. So, there exists at least one solution of problem (54) on \([0, 1]\).

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

The authors would like to thank the reviewers for their constructive suggestions and helpful comments.

References

