Research Article

A Novel Four-Wing Hyperchaotic Complex System and Its Complex Modified Hybrid Projective Synchronization with Different Dimensions

Jian Liu, Shutang Liu, and Fangfang Zhang

1 School of Control Science and Engineering, Shandong University, Jinan 250061, China
2 School of Mathematical Sciences, University of Jinan, Jinan 250022, China

Correspondence should be addressed to Jian Liu; ss_liu@ujn.edu.cn

Received 4 March 2014; Revised 12 May 2014; Accepted 16 May 2014; Published 5 June 2014

Academic Editor: Shurong Sun

Copyright © 2014 Jian Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We introduce a new Dadras system with complex variables which can exhibit both four-wing hyperchaotic and chaotic attractors. Some dynamic properties of the system have been described including Lyapunov exponents, fractal dimensions, and Poincaré maps. More importantly, we focus on a new type of synchronization method of modified hybrid project synchronization with complex transformation matrix (CMHPS) for different dimensional hyperchaotic and chaotic complex systems with complex parameters, where the drive and response systems can be asymptotically synchronized up to a desired complex transformation matrix, not a diagonal matrix. Furthermore, CMHPS between the novel hyperchaotic Dadras complex system and other two different dimensional complex chaotic systems is provided as an example to discuss increased order synchronization and reduced order synchronization, respectively. Numerical results verify the feasibility and effectiveness of the presented schemes.

1. Introduction

The real Lorenz system is a very simplified model of thermal convection in fluids (the Rayleigh-Benard problem) as

\[
\begin{align*}
\dot{x} &= \sigma (y - x), \\
\dot{y} &= r_1 x - xz - y, \\
\dot{z} &= xy - bz,
\end{align*}
\]

(1)

where \(x, y, z\) are real state variables, \(\sigma > 0, r_1 > 0, b > 0\) are real parameters, and a dot denotes a derivative with respect to time [1, 2]. Later on, problems of laser physics [3] and of so-called baroclinic instability of the geophysical flows (in the atmosphere or in the ocean) unexpectedly resulted in a system of the same structure as (1) but in the complex domain [4, 5]

\[
\begin{align*}
\dot{x} &= \sigma (y - x), \\
\dot{y} &= r_1 x - xz - ay, \\
\dot{z} &= \frac{1}{2} (\overline{x} y + x \overline{y}) - bz,
\end{align*}
\]

(2)

where the Rayleigh number \(r\) and parameter \(a\) are complex numbers defined by \(r = r_1 + j r_2\) and \(j = \sqrt{-1}\) is the imaginary unit, and \(\sigma, b, r_1, r_2, \delta\) are real and positive. The complex variables \(x\) and \(y\) and real variable \(z\) of system (2) are related, respectively, to electric field and the atomic polarization amplitudes and the population inversion in a ring laser system of two-level atoms; an overbar denotes complex conjugate variable, chaotic motion of system (2) in Figure 1. In 2007, Mahmoud et al. [6] studied basic properties and chaotic synchronization of the complex Lorenz model as follows:

\[
\begin{align*}
\dot{x} &= \sigma (y - x), \\
\dot{y} &= r_1 x - xz - y, \\
\dot{z} &= \frac{1}{2} (\overline{x} y + x \overline{y}) - bz,
\end{align*}
\]

(3)

where \(x, y\) are complex state variables, \(z\) is real state variable, and \(\sigma > 0, r_1 > 0, b > 0\) are real parameters. The complex Lorenz model (3) is embedded in system (2) and can be recovered when \(r = r_1\) and \(a = 1\); that is, \(r_2 = \delta = 0\).
In recent years, several other such examples have been proposed, notably the so-called complex Chen–Lü systems [7], and so on. Actually, many systems which involve complex variables have played an important role in many areas, including loading of beams and plates [8], optical systems [9], plasma physics [10], rotor dynamics [11], and high-energy accelerators [12]. Theoretical studies have focused on finding approximate solutions to various classes of complex valued equations [13, 14] and on dynamics and control of chaos [15, 16].

Due to the above wide scope of applications, many researchers devoted much effort to chaotic (hyperchaotic) synchronization as well. The global synchronization of coupled identical systems is well investigated in [7]. G. M. Mahmoud and E. E. Mahmoud [17] introduced the phenomenon of projective synchronization (PS) and modified projective synchronization (MPS) of hyperchaotic attractors of hyperchaotic complex Lorenz system by active control. PS is a situation in which the state variables of the drive and response systems synchronize up to a real scaling factor α (α is a constant). MPS is defined if the responses of the synchronized dynamical states synchronize up to a real constant scaling matrix. Later on, P. Liu and S. Liu [18] presented full state hybrid projective synchronization (FSHPS) with real scaling factors for two complex chaotic systems according to the definition of FSHPS for real chaotic systems [19, 20]. Zhang and Liu [21] dealt with full state hybrid projective synchronization (FHSHP) with complex scaling factors in 2014. Zhang et al. [22] discussed CMPS with complex scaling factors of uncertain real chaos and complex chaos in 2013 and G. M. Mahmoud and E. E. Mahmoud [23] achieved CMPS which can be synchronized with complex scaling matrix of two chaotic complex systems in 2013.

However, the aforementioned papers only consider chaotic synchronization of the same dimensional chaotic systems with complex variable, and the states of the drive and response systems projective synchronize up to a diagonal matrix, so each state variable of drive system is synchronized with a single state variable in response system up to a special scaling factor. In fact, the synchronization can be carried

![Figure 1: The attractors of complex chaotic Lorenz system (2) with complex parameters $\sigma = 5$, $r = 60 + 0.2j$, $a = 1 - 0.6j$, and $b = 1.8$ and initial values $x(0) = 2 + 0.2j$, $y(0) = 15 + 0.2j$, and $z(0) = -5$.](image-url)
out through the oscillators with different dimensions and
different structure, especially the systems in communication
[24, 25], biological science, and social science [26], where the
drive and response systems could be asymptotically synchro-
nized up to a desired transformation matrix, not a diagonal
matrix. By means of state transformation, multiple state vari-
ables in response system with respective scaling factor will be
involved for a corresponding state variable of drive system.
In applications to secure communication, Mahmoud et al.
had dealt with PS of hyperchaotic complex nonlinear systems
and proposed a corresponding communication scheme [27].
In applications to secure communication, Mahmoud et al.
had dealt with PS of hyperchaotic complex nonlinear systems
and proposed a corresponding communication scheme [27].

2.2. Dynamic Properties of the New System. System (6) has
the following dynamic properties.

et al. constructed a new real 4D smooth autonomous hyper-
chaotic nonlinear system [28], which is briefly referred to as
the Dadrass system as follows:

\begin{align}
\dot{x} &= \alpha x - yz + w, \\
\dot{y} &= xz - \beta y, \\
\dot{z} &= xy + xw - yz, \\
\dot{w} &= -y,
\end{align}

where \((x, y, z, w)^T\) is the real state vector and \(\alpha, \beta,\) and \(\gamma\) are
positive constant parameters. System (4) can generate a four-
wing hyperchaotic attractor when \(\alpha = 8, \beta = 40,\) and \(\gamma = 14.9\)
in Figure 2 and a four-wing chaotic attractor when \(\alpha = 8,\)
\(\beta = 40,\) and \(\gamma = 49.\) In this paper, we discuss the complex
extension of the Dadrass system (4), which is expressed by

\begin{align}
\dot{z}_1 &= az_1 - z_2z_3 + z_4, \\
\dot{z}_2 &= z_1z_3 - bz_2, \\
\dot{z}_3 &= \frac{1}{2} \left[z_1 (z_2 + z_4) + z_1 (\overline{z}_2 + \overline{z}_4) \right] - cz_3, \\
\dot{z}_4 &= \frac{1}{2} \left(z_2 + \overline{z}_2 \right),
\end{align}

where \(a, b,\) and \(c\) are real constant parameters, \(z_1 = u_1 + ju_2\)
and \(z_2 = u_3 + ju_4\) are complex state variables, and \(z_3 = u_5\)
and \(z_4 = u_6\) are real state variables. The complex Dadrass
system (5) can be rewritten as a real first-order ordinary differen-
tial equation (ODE) of the form

\begin{align}
\dot{u}_1 &= au_1 - u_3u_5 + u_6, \\
\dot{u}_2 &= au_2 - u_4u_5, \\
\dot{u}_3 &= u_1u_5 - bu_3, \\
\dot{u}_4 &= u_2u_5 - bu_4, \\
\dot{u}_5 &= u_1 (u_3 + u_6) + u_2u_4 - cu_5, \\
\dot{u}_6 &= -u_3.
\end{align}

2.2. Dynamic Properties of the New System. System (6) has
the following dynamic properties.
2.2.1. Symmetry and Invariance. System (6) is symmetrical about the u_5-axis, due to its invariance under the coordinates transformation $(u_1, u_2, u_3, u_4, u_5, u_6) \to (-u_1, -u_2, -u_3, -u_4, u_5, -u_6)$. In particular, the symmetry about the u_5-axis for any choice of parameters a, b, and c is accurate.

2.2.2. Dissipation and the Existence of Attractor. For system (6), one has

$$\nabla V = \sum_{k=1}^{6} \frac{\partial \dot{u}_k}{\partial u_k} = 2a - 2b - c. \quad (7)$$

Hence, in order to ensure that system (6) is dissipative, it is required that $2a - 2b - c < 0$. Under this condition, system (6) converges exponentially:

$$\frac{dV}{dt} = (2a - 2b - c) V \implies V = V_0 e^{(2a-2b-c)t}, \quad (8)$$

where the initial volume element is V_0. This implies that each volume containing the system trajectory shrinks to zero as $t \to \infty$ at an exponential rate, $2a - 2b - c$. In fact, numerical simulations have shown that system orbits are ultimately confined into a specific limit set of zero volume, and the system asymptotic motion settles onto an attractor.

2.2.3. Equilibria and Stability. The equilibria of system (6) can be found by solving the following algebraic equations simultaneously:

$$a u_1 - u_3 u_5 + u_6 = 0, \quad a u_2 - u_4 u_5 = 0, \quad u_1 u_5 - bu_5 = 0, \quad u_2 u_5 - bu_4 = 0, \quad u_1 (u_3 + u_6) + u_2 u_4 - cu_5 = 0, \quad -u_3 = 0.$$

Hence, one has five isolated fixed equilibria:

$$E_1 = (0,0,0,0,0,0), \quad E_2 = (\pm \sqrt{ac}, \pm \sqrt{ab}, 0,0,0), \quad E_3 = (\pm \sqrt{ab}, 0,0,0), \quad E_4 = (\pm \sqrt{ac}, \pm \sqrt{ab}, 0,0,0).$$

So, the eigenvalues of the Jacobian matrix J_{E_1} are obtained as follows:

$$|\mu I - J_{E_1}| = 0 \implies \mu_1 = \mu_2 = a, \quad \mu_3 = 0, \quad \mu_4 = \mu_5 = -b, \quad \mu_6 = -c. \quad (10)$$

Since a, b, and c are all positive real numbers, one can easily find $\mu_1 = \mu_2 > 0$, $\mu_3 = 0$, $\mu_4 = \mu_5 < 0$, $\mu_6 < 0$, implying that the equilibrium E_1 is unstable.

2.2.4. Lyapunov Exponents and Fractal Dimensions. In this section, the numerical simulations are carried out using
MATLAB program. The fourth order Runge-Kutta integration algorithm is performed to solve the differential equations. The initial condition is \(x_0 = (10 + j, 10 + j, 10, 1) \) and system (6) can display four-wing hyperchaotic attractors.

(i) Four-Wing Hyperchaotic Attractor. Setting the parameters as \(a = 10, b = 40, \) and \(c = 14.9, \) the system (6) is hyperchaotic and can generate a four-wing hyperchaotic attractor. So, complex Dadras system (5) can display four-wing hyperchaotic attractor which is shown in Figure 3. The Lyapunov exponents [29] have been calculated as

\[
LE_1 = 2.80065, \quad LE_2 = 0.703862, \\
LE_3 = 0, \quad LE_4 = -0.184465, \\
LE_5 = -29.7874, \quad LE_6 = -48.4024.
\]

And the fractal dimension is

\[
D_L = j + \frac{1}{|LE_{j+1}|} \sum_{i=1}^{j} LE_i = 4.11146.
\]

Both Lyapunov exponents and fractal dimension indicate that the system (5) is hyperchaotic with the aforementioned set of parameters.

(ii) Four-Wing Chaotic Attractor. Setting the parameters as \(a = 10, b = 40, \) and \(c = 49, \) the system (6) has generated a four-wing chaotic attractor. So, complex Dadras system (5) can display four-wing chaotic attractor in Figure 4. The Lyapunov exponents of the system in this case are

\[
LE_1 = 0.915193, \quad LE_2 = 0, \\
LE_3 = -0.0910834, \quad LE_4 = -2.8148, \\
LE_5 = -30.0099, \quad LE_6 = -77.0274.
\]

And the fractal dimension is

\[
D_L = j + \frac{1}{|LE_{j+1}|} \sum_{i=1}^{j} LE_i = 3 + \frac{LE_1 + LE_2 + LE_3}{|LE_4|} = 3.292777.
\]

Both Lyapunov exponents and fractal dimension indicate that the system (5) is chaotic with the aforementioned set of parameters.

2.2.5. Poincaré Map. As an important analysis technique, the Poincaré map can reflect bifurcation and folding properties of hyperchaos. We have taken

\[
\begin{align*}
Ξ_1 &= \{(u_1, u_2, u_3, u_4, u_5, u_6) \in \mathbb{R}^6 : u_1 = 0\}, \\
Ξ_2 &= \{(u_1, u_2, u_3, u_4, u_5, u_6) \in \mathbb{R}^6 : u_2 = 0\}, \\
Ξ_3 &= \{(u_1, u_2, u_3, u_4, u_5, u_6) \in \mathbb{R}^6 : u_3 = 0\}, \\
Ξ_4 &= \{(u_1, u_2, u_3, u_4, u_5, u_6) \in \mathbb{R}^6 : u_4 + u_5 + u_6 = 0\}
\end{align*}
\]

as cross sections and the system parameters are set as \(a = 10, \) \(b = 40, \) and \(c = 14.9. \) Figure 5 shows projections of the Poincaré map on \((u_1, u_2, u_3)\) space and \((u_1, u_2), (u_1, u_3), \) and \((u_2, u_3)\) planes. From Figure 5, one can see that the Poincaré map here consists of several limbs with various bifurcations in different directions, which indicates that the system has extremely rich dynamics. Also, the Poincaré maps show that the branches are jointed and united as a single attractor. This proves the existence of the four-wing hyperchaotic attractor of complex Dadras system (5) in Figure 3.

3. CMHPS between Hyperchaotic and Chaotic Complex Systems with Complex Parameters and with Different Dimensions

3.1. Scheme of CMHPS. First, we consider a class of \(m \)-dimensional complex chaotic (hyperchaotic) drive system as

\[
\dot{x}(t) = Ax + F(x)
\]

and \(n \)-dimensional response system with the controller as

\[
\dot{y}(t) = By + G(y) + P(x, y),
\]

where \(x = x' + jx' \in \mathbb{C}^m \) and \(y = y' + jy' \in \mathbb{C}^n \) are complex states vectors, \(A \in \mathbb{C}^{m \times m} \) and \(B \in \mathbb{C}^{n \times n} \) are the coefficient matrices of \(x \) and \(y, \) while \(F \) and \(G \) are the nonlinear parts, respectively; \(P = (p_1, p_2, \ldots, p_n)^T \) is the controller to be designed.

Next, we consider the definition of CMHPS with a complex transformation matrix of complex systems with complex parameters based on that of CMPS of complex systems with real parameters [22, 23].

Definition 1. For the drive system (16) and response system (17), it is said to be CMHPS with \(\Lambda \) between \(x(t) \) and \(y(t) \) if there exists a norm bounded matrix \(\Lambda \in \mathbb{C}^{m \times n}, \) such that

\[
\lim_{t \to +\infty} \|y(t) - \Lambda x(t)\| = 0,
\]

while the matrix \(\Lambda \) is defined as complex transformation matrix of the drive system (16).

If the error of CMHPS is defined as

\[
e(t) = y(t) - \Lambda x(t),
\]

the objective of this section is to design a controller \(P \) to ensure that synchronization error tends to zero; that is,

\[
\lim_{t \to +\infty} \|e(t)\| = \lim_{t \to +\infty} \|y(t) - \Lambda x(t)\| = 0.
\]
Figure 3: The hyperchaotic attractors of complex Dadras system (5) with $a = 10$, $b = 40$, and $c = 14.9$.

(a) on (u_1, u_3) and (u_3, u_5) plane

(b) on (u_2, u_6) plane and (u_1, u_3, u_5) space

(c) on (u_3, u_4, u_5) and (u_2, u_3, u_5) space
Figure 4: The chaotic attractors of complex Dadras system (5) with \(a = 10 \), \(b = 40 \), and \(c = 49 \).
Remark 2. Most of the classical chaotic (hyperchaotic) complex system can be formed as system (16), such as complex Lorenz system, complex Chen system, complex Lü system, complex hyperchaotic Lorenz system, and complex Duffing system.

Lemma 3. For a matrix \(\mathbf{Q} \in \mathbb{C}^{n \times n} \), all of the real parts of its eigenvalues are negative; denoted \(\text{Re}(\lambda_i(\mathbf{Q})) < 0 \), \(i = 1, 2, \ldots, n \), then [30]

\[
\lim_{t \to +\infty} \exp(\mathbf{Q}t) = 0.
\]

Theorem 4. For given complex transformation matrix \(\Lambda \) and initial conditions \(x(0), y(0) \), the complex nonlinear controller is designed as

\[
P = -G(y) + \Lambda(F(x) + Ax) - B\Lambda x - K e;
\]

then, CMHPS between the response system (17) and drive system (16) will occur with desired complex transformation matrix \(\Lambda \) asymptotically if \(\text{Re}(\lambda_i(B - K)) < 0 \), \(i = 1, 2, \ldots, n \), where \(K \in \mathbb{C}^{n \times n} \) is the complex control gain matrix.

Proof. Insertion of (16) and (17) into (19) gives

\[
\dot{e}(t) = Be + B\Lambda x + G(y) - \Lambda Ax - \Lambda F(x) + P.
\]

Substituting controller (22) into system (23), we can obtain

\[
\dot{e}(t) = (B - K)e(t)
\]

or

\[
\dot{e}(t) - (B - K)e(t) = 0.
\]

By multiplying \(\exp(-(B - K)t) \) on both sides of (25), one has that the left-hand side and the right-hand side of (25) take the form, respectively,

\[
\frac{d}{dt} \left(\exp(-(B - K)t)e(t) \right) = 0.
\]

Integrating two sides of (26) on time interval \([0, t]\) and with the initial condition \(e(0) = \xi \), we can get

\[
e(t) = \exp((B - K)t)\xi.
\]

Then, there exists a suitable \(K \in \mathbb{C}^{n \times n} \) such that \(\text{Re}(\lambda_i(B - K)) < 0 \), \(i = 1, 2, \ldots, n \), to each \(B \), and we get the following by Lemma 3:

\[
\lim_{t \to +\infty} e(t) = \lim_{t \to +\infty} \exp((B - K)t)\xi = 0.
\]
Thus, we arrive at CMHPS with desired complex transformation matrix Λ between the complex systems (17) and (16) by using the controller (22) asymptotically. The proof is completed.

Remark 5. Note that one can adjust complex transformation matrix Λ arbitrarily without worrying about the control robustness, and $K \in \mathbb{C}^{n \times n}$ is the complex control gain matrix. In particular, if A and B are real, Theorem 4 is also applied to achieve CMHPS of complex chaotic systems with real parameters.

Remark 6. In particular, if the dimension of the drive system equals that of the response system, that is, $m = n$, and the transformation matrix Λ is diagonal, the CMHPS can be simplified to CFSHPS [21], CMPS [22, 23] CPS, FSHPS [18], MPS, and PS [17] with same dimension.

Remark 7. If the scale matrix $\Lambda = 0$, the synchronization problem degenerates to the control of complex chaotic (hyperchaotic) system.

3.2. Realization of Synchronization. Throughout this section, we will verify the effectiveness of the proposed method. Two examples are respectively used to discuss two kinds of cases: increased order synchronization ($m < n$) and reduced order synchronization ($m > n$).

3.2.1. CMHPS of Complex Hyperchaotic Dadras Drive System and Complex Chaotic Lorenz Response System with Complex Parameters. In order to observe reduced order CMHPS behaviors, it is assumed that new 4-dimensional hyperchaotic complex Dadras system (5) drives 3-dimensional chaotic complex Lorenz system (2) with complex parameters [4]. Therefore, the drive system reads in the form

$$
\begin{align*}
\dot{x}_1 &= a_1 x_1 - x_2 x_3 + x_4, \\
\dot{x}_2 &= -a_2 x_2 + x_1 x_3, \\
\dot{x}_3 &= \frac{1}{2} \left[x_1 (x_2 + x_4) + x_1 (\bar{x}_2 + \bar{x}_4) \right] - a_3 x_3, \\
\dot{x}_4 &= -\frac{1}{2} (x_2 + \bar{x}_2),
\end{align*}
$$

where

$$
A = \begin{bmatrix}
a_1 & 0 & 0 & 1 \\
0 & -a_2 & 0 & 0 \\
0 & 0 & -a_3 & 0 \\
0 & -\frac{1}{2} & 0 & 0
\end{bmatrix},
$$

and $x_1 = x_1^* + jx_1^{'}, x_2 = x_2^* + jx_2^{'}, x_3 = x_3^* + jx_3^{'}, x_4 = x_4^* + jx_4^{'}$. are complex state variables.

The complex response with the controller writes in the form as

$$
\begin{align*}
y_1 &= b_1 (y_2 - y_1) + p_1, \\
y_2 &= b_2 y_1 - b_3 y_2 - y_1 y_3 + p_2, \\
y_3 &= \frac{1}{2} (\bar{y}_1 y_2 + y_1 \bar{y}_2) - b_4 y_3 + p_3,
\end{align*}
$$

where

$$
\begin{align*}
B &= \begin{bmatrix}
-b_1 & b_1 & 0 \\
b_2 & -b_3 & 0 \\
0 & 0 & -b_4
\end{bmatrix},
\end{align*}
$$

$$
G(y) = \begin{bmatrix}
0 \\
-\bar{y}_1 y_3 \\
\frac{1}{2} (\bar{y}_1 y_2 + y_1 \bar{y}_2)
\end{bmatrix},
$$

and $y_1 = y_1^* + jy_1^{'}, y_2 = y_2^* + jy_2^{'}, y_3 = y_3^* + jy_3^{'}$ are complex state variables and y_3 is a real state variable; $P = (p_1, p_2, p_3)^T$ is the complex controller to be decided.

Complex transformation matrix Λ can be chosen as

$$
\Lambda = \begin{bmatrix}
-j & 0 & 0 & 0 \\
0 & j & 0 & 0 \\
0 & 0 & 0 & -1
\end{bmatrix};
$$

the error system $e(t) = y(t) - \Lambda x(t)$ is obtained as

$$
\begin{align*}
e_1 &= y_1 + jx_1, \\
e_2 &= y_2 - jx_2, \\
e_3 &= y_3 + x_4.
\end{align*}
$$

In order to satisfy $\text{Re}(\lambda_i (B - K)) < 0, i = 1, 2, 3$, we can chose the complex control gain matrix as

$$
K = \begin{bmatrix}
-b_1 - \lambda_1 & b_1 & 0 \\
b_2 & -b_3 - \lambda_2 & 0 \\
0 & 0 & -b_4 - \lambda_3
\end{bmatrix},
$$

where all of the real parts of $\lambda_1, \lambda_2, \lambda_3$ are negative.

Design the complex state feedback controller according to (22) in Theorem 4 as follows:
\[P = -G(y) + \Lambda (F(x) + Ax) - B\Lambda x - Ke \]

\[
= \begin{pmatrix}
- j((a_1 + b_1) x_1 + b_1 x_2 - x_2 x_3 + x_4) + (b_1 + \lambda_1) e_1 - b_1 e_2 \\
(\lambda_1 (b_2 x_1 + (b_1 - a_2) x_2 + x_1 x_3) + y_1 y_3 - b_2 e_1 + (b_1 + \lambda_2) e_2 \\
\frac{1}{2} (x_2 + \bar{x}_2) - b_3 x_4 - \frac{1}{2} (\bar{y}_1 y_2 + y_1 \bar{y}_2) + (b_4 + \lambda_3) e_3
\end{pmatrix}.
\]

(36)

The parameters of drive system (29) and response system (31) are \(a_1 = 10, a_2 = 40, a_3 = 14.9 \), and \(b_1 = 5, b_2 = 60 + 0.2j, b_3 = 1 - 0.6j, b_4 = 1.8 \), respectively. The initial values are randomly chosen as \(x_0 = (10 + j, 10 + j, 10, 1)^T \) and \(y_0 = (2 + 0.2j, 15 + 0.2j, -5)^T \), respectively. All of the eigenvalues of \(B-K \) are taken as \(\lambda_1 = -6-5j, \lambda_2 = -1-j, \) and \(\lambda_3 = -10 \). The simulation results are demonstrated in Figure 6, where the blue line presents the states of drive system (29) and the red line presents the states of response system (31). The results of CMHPS converge asymptotically to zero as in Figure 7, where the red line presents the real parts of the errors and the blue line presents the imaginary parts of the errors.

Hence, the above results show that CMHPS has been achieved between 4-dimensional hyperchaotic complex Dadras system (29) and 3-dimensional complex Lorenz system (31) with complex parameters.

3.2.2. CMHPS of Complex Chaotic Lü Drive System and Complex Hyperchaotic Dadras Response System. In order to observe increased order CMHPS behaviors, it is assumed that the 3-dimensional complex chaotic Lü system [7] drives the new 4-dimensional hyperchaotic complex Dadras system.

The drive system for complex Lü system can be described as

\[
\begin{align*}
\dot{x}_1 &= a_1 (x_2 - x_1) \\
\dot{x}_2 &= a_2 x_2 - x_1 x_3 \\
\dot{x}_3 &= \frac{1}{2} (x_1 x_2 + x_1 x_2) - a_3 x_3,
\end{align*}
\]

(37)

where

\[
A = \begin{bmatrix}
a_1 & a_2 & 0 \\
0 & a_2 & 0 \\
0 & 0 & -a_3
\end{bmatrix},
\]

(38)

\[
F(x) = \begin{bmatrix}
0 \\
-x_1 x_3 \\
\frac{1}{2} (x_1 x_2 + x_1 x_2)
\end{bmatrix},
\]

and \(x_1 = x_1^i + jx_1^j, x_2 = x_2^i + jx_2^j \), are complex state variables and \(x_3 \) is a real state variable. When \(a_1 = 29, a_2 = 21, \) and \(a_3 = 2 \), complex Lü system (37) is chaotic.

The complex response system with the controller writes in the form as

\[
\begin{align*}
\dot{y}_1 &= b_1 y_1 - y_2 y_3 + y_4 + p_1, \\
\dot{y}_2 &= y_1 y_3 - b_2 y_2 + p_2, \\
\dot{y}_3 &= \frac{1}{2} (\bar{y}_1 y_2 + y_1 (\bar{y}_2 + \bar{y}_3)) - b_3 y_3 + p_3, \\
\dot{y}_4 &= -\frac{1}{2} (\bar{y}_2 + \bar{y}_3) + p_4,
\end{align*}
\]

where

\[
B = \begin{bmatrix}
b_1 & 0 & 0 & 1 \\
0 & -b_2 & 0 & 0 \\
0 & 0 & -b_3 & 0 \\
0 & -\frac{1}{2} & 0 & 0
\end{bmatrix},
\]

(40)

\[
G(y) = \begin{bmatrix}
-y_2 y_3 \\
y_1 y_3 \\
\frac{1}{2} (\bar{y}_1 y_2 + y_1 (\bar{y}_2 + \bar{y}_3)) \\
\frac{-1}{2} \bar{y}_2
\end{bmatrix},
\]

and \(y_1 = y_1^i + jy_1^j, y_2 = y_2^i + jy_2^j \) are complex state variables and \(y_3, y_4 \) are real state variables; \(P = (p_1, p_2, p_3, p_4)^T \) is the complex controller to be decided.

Complex transformation matrix can be taken as

\[
\Lambda = \begin{bmatrix}
j & 0 & 0 & 0 \\
0 & -j & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{bmatrix},
\]

(41)

the error system \(e(t) = y(t) - \Lambda x(t) \) is obtained as

\[
\begin{align*}
e_1 &= y_1 - jx_1, \\
e_2 &= y_2 + jx_2, \\
e_3 &= y_3 - x_3, \\
e_4 &= y_4 + x_3.
\end{align*}
\]

(42)

In order to satisfy \(\text{Re}(\lambda_i (B - K)) < 0, i = 1, 2, 3, 4 \), we can choose the complex control gain matrix as

\[
K = \begin{bmatrix}
b_1 - \lambda_1 & 0 & 0 & 1 \\
0 & -b_2 - \lambda_2 & 0 & 0 \\
0 & 0 & -b_3 - \lambda_3 & 0 \\
0 & -\frac{1}{2} & 0 & -\lambda_4
\end{bmatrix},
\]

(43)

where all of the real parts of \(\lambda_1, \lambda_2, \lambda_3, \lambda_4 \) are negative.
Figure 6: Reduced order synchronization—CMHPS between 4-dimensional complex hyperchaotic Dadras drive system (29) (blue line) and 3-dimensional complex chaotic Lorenz response system (31) (red line) with the controller (36).
Design the controller according to (22) in Theorem 4 as follows:

\[
P = -G(y) + \Lambda(F(x) + Ax) - BAx - Ke
\]

\[
= \begin{pmatrix}
 j \left(- (a_1 + b_1)x_1 + a_1x_2 + x_3 + y_2y_3 - (b_1 - \lambda_1)e_1 - e_4 \right) \\
 -j \left((a_2 + b_2)x_2 - x_1x_3 - y_1y_3 + (b_2 + \lambda_2)e_2 \right) \\
 \frac{1}{2} \left(\bar{x}_1x_2 + x_1\bar{x}_2 - \bar{y}_2(y_2 + y_4) - y_1(\bar{y}_2 + \bar{y}_4) \right) + (b_3 - a_3)x_3 + (b_3 + \lambda_3)e_3 \\
 \frac{1}{2} \left(\bar{y}_2 - jx_2 - x_1x_2 - x_1\bar{x}_2 \right) + a_3x_3 + \frac{1}{2}e_2 + \lambda_4e_4
\end{pmatrix}.
\]

(44)

The parameters of drivesystem (37) and response system (39) are \(a_1 = 29, a_2 = 21, a_3 = 2, \) and \(b_1 = 10, b_2 = 40, \) \(b_3 = 14.9, \) respectively. The initial values are randomly chosen as \(x_0 = (4 - 2j, 3 + j, -10)^T \) and \(y_0 = (10 + j, 10 + j, 10, 1)^T, \)
Figure 8: Increased order synchronization—CMHPS between 3-dimensional complex chaotic Lü drive system (37) (blue line) and 4-dimensional complex hyperchaotic Dadras response system (39) (red line) with the controller (44).
respectively. All of the eigenvalues of $B - K$ are taken as $\lambda_1 = -1 - j$, $\lambda_2 = -3 - j$, $\lambda_3 = -500$, and $\lambda_4 = -2$. The simulation results are demonstrated in Figure 8, where the blue line presents the states of drive system (37) and the red line presents the states of response system (39). The errors of CMHPS converge asymptotically to zero as in Figure 9, where the red line shows the real parts of the errors and the blue line presents the imaginary parts of the errors.

Hence, the above results show that CMHPS has been achieved between complex chaotic Lü drive system (37) and complex hyperchaotic Dadras response system (39).

4. Conclusion

In this work, a new Dadras system with complex variables is introduced. Some dynamic properties of the new system are described including Lyapunov exponents, fractal dimensions, and Poincaré maps, and both four-wing hyperchaotic and chaotic attractors are shown.

More importantly, a general scheme of CMHPS is addressed for different dimensional hyperchaotic and chaotic complex systems with complex parameters, where the drive and response systems could be asymptotically synchronized up to a desired complex transformation matrix, not a diagonal matrix. Complex nonlinear controller and complex gain matrix are introduced to control the response system to become a projection of the drive system.

Furthermore, CMHPS between 4-dimensional complex hyperchaotic Dadras drive system and 3-dimensional complex chaotic Lorenz response system with complex parameters is implemented as an example to discuss reduced order synchronization, and CMHPS between 3-dimensional

Figure 9: CMHPS error dynamics between 3-dimensional complex chaotic Lü drive system (37) and 4-dimensional complex hyperchaotic Dadras response system (39).
complex chaotic drive Lü system and 4-dimensional complex hyperchaotic Dadras response system is implemented as an example to discuss increased order synchronization as well. Numerical results illustrated the effectiveness of the proposed scheme. These theoretical and numerical results provide a bridge between hyperchaotic and chaotic complex systems with complex parameters and with different dimensions.

Finally, it is hoped that the results reported here will be applied in engineering fields such as communication, biology, and medical fields.

Conflict of Interests
The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments
This research was partially supported by the National Nature Science Foundation of China (Grant nos. 61273088, 10971120, and 61001099), the Nature Science Foundation of Shandong Province, China (Grant nos. ZR2010FM010 and ZR2011AL007), and the Shandong Overseas Research and Training Program for University Prominent Young and Middle-Aged Teachers. The authors would like to thank the editors and the reviewers for their constructive comments and suggestions which improved the quality of the paper.

References
