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Abstract. 
 We investigate the value distribution of difference product 
	
		
			
				𝑓
				(
				𝑧
				)
			

			

				𝑛
			

			

				∑
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				(
				𝑧
				+
				𝑐
			

			

				𝑖
			

			

				)
			

		
	
, for 
	
		
			
				𝑛
				≥
				2
			

		
	
 and 
	
		
			
				𝑛
				=
				1
			

		
	
, respectively, where 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
 is a transcendental entire function of finite order and 
	
		
			

				𝑎
			

			

				𝑖
			

			
				,
				𝑐
			

			

				𝑖
			

		
	
 are constants satisfying 
	
		
			

				∑
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				(
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				)
				≢
				0
			

		
	
.


1. Introduction
In this paper, we assume that the reader is familiar with the basic notions of Nevanlinna’s value distribution theory (see [1–3]). The notation 
	
		
			
				𝑆
				(
				𝑟
				,
				𝑓
				)
			

		
	
 is defined to be any quantity satisfying 
	
		
			
				𝑆
				(
				𝑟
				,
				𝑓
				)
				=
				𝑜
				{
				𝑇
				(
				𝑟
				,
				𝑓
				)
				}
			

		
	
 as 
	
		
			
				𝑟
				→
				∞
			

		
	
, possibly outside a set of finite linear measures. In addition, we use the notation 
	
		
			
				𝜎
				(
				𝑓
				)
			

		
	
 to denote the order of growth of the meromorphic function 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
 and 
	
		
			
				𝜆
				(
				𝑓
				)
			

		
	
 to denote the exponent of convergence of zeros of 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
.
Hayman proved the following theorem in [4].
Theorem 1.  Let 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
 be a transcendental integral function and let 
	
		
			
				𝑛
				≥
				2
			

		
	
 be an integer; then 
	
		
			

				𝑓
			

			

				𝑛
			

			

				𝑓
			

			

				′
			

			
				(
				𝑧
				)
			

		
	
 assumes all values except possibly zero infinitely often.
Clunie proved that if 
	
		
			
				𝑛
				=
				1
			

		
	
, then Theorem 1 remains valid.
Recently, many papers (see [5–17]) focus on complex difference. They obtain many new results on difference using the value distribution theory of meromorphic functions.
In [12], Laine and Yang found a difference analogue of Hayman’s result as follows.
Theorem 2.  Let 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
 be a transcendental entire function of finite order and 
	
		
			

				𝑐
			

		
	
 a nonzero complex constant. Then for 
	
		
			
				𝑛
				≥
				2
			

		
	
, 
	
		
			
				𝑓
				(
				𝑧
				)
			

			

				𝑛
			

			
				𝑓
				(
				𝑧
				+
				𝑐
				)
			

		
	
 assumes every nonzero value 
	
		
			
				𝑎
				∈
				ℂ
			

		
	
 infinitely often.
Liu and Yang [14] proved the following theorem.
Theorem 3.  Let 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
 be a transcendental entire function of finite order and let 
	
		
			

				𝑐
			

		
	
 be a nonzero complex constant, 
	
		
			
				Δ
				𝑓
				(
				𝑧
				)
				=
				𝑓
				(
				𝑧
				+
				𝑐
				)
				−
				𝑓
				(
				𝑧
				)
				≢
				0
			

		
	
. Then for 
	
		
			
				𝑛
				≥
				2
			

		
	
, 
	
		
			
				𝑓
				(
				𝑧
				)
			

			

				𝑛
			

			
				Δ
				𝑓
				(
				𝑧
				)
				−
				𝑝
				(
				𝑧
				)
			

		
	
 has infinitely many zeros, where 
	
		
			
				𝑝
				(
				𝑧
				)
				≢
				0
			

		
	
 is a polynomial in 
	
		
			

				𝑧
			

		
	
.
Chen [6] proved the following theorem.
Theorem 4.  Let 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
 be a transcendental entire function of finite order and let 
	
		
			
				𝑐
				∈
				ℂ
				⧵
				{
				0
				}
			

		
	
 be a constant satisfying 
	
		
			
				𝑓
				(
				𝑧
				+
				𝑐
				)
				≢
				𝑓
				(
				𝑧
				)
			

		
	
. Set 
	
		
			

				𝐻
			

			

				𝑛
			

			
				(
				𝑧
				)
				=
				𝑓
				(
				𝑧
				)
			

			

				𝑛
			

			
				Δ
				𝑓
				(
				𝑧
				)
			

		
	
 where 
	
		
			
				Δ
				𝑓
				(
				𝑧
				)
				=
				𝑓
				(
				𝑧
				+
				𝑐
				)
				−
				𝑓
				(
				𝑧
				)
			

		
	
, and 
	
		
			
				𝑛
				≥
				2
			

		
	
 is an integer. Then the following statements hold. (i)If 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
 satisfies 
	
		
			
				𝜎
				(
				𝑓
				)
				≠
				1
			

		
	
 or has infinitely many zeros, then 
	
		
			

				𝐻
			

			

				𝑛
			

			
				(
				𝑧
				)
			

		
	
 has infinitely many zeros.(ii)If 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
 has only finitely many zeros and 
	
		
			
				𝜎
				(
				𝑓
				)
				=
				1
			

		
	
, then 
	
		
			

				𝐻
			

			

				𝑛
			

			
				(
				𝑧
				)
			

		
	
 has only finitely many zeros.
It is natural to ask what condition will guarantee that
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑧
				)
			

			

				𝑛
			

			
				𝐿
				(
				𝑓
				)
			

		
	

					assumes every nonzero and zero value infinitely often, where 
	
		
			
				𝐿
				(
				𝑓
				)
			

		
	
 is a linear 
	
		
			

				𝑘
			

		
	
th order difference operator with varying shifts, operating on a transcendental entire function of finite order.
In this paper, we consider the above question for 
	
		
			
				𝑛
				≥
				2
			

		
	
 and 
	
		
			
				𝑛
				=
				1
			

		
	
, respectively, and obtain the following results.
Theorem 5.  Let 
	
		
			

				𝑓
			

		
	
 be a transcendental entire function of finite order and let 
	
		
			

				𝑎
			

			

				𝑖
			

		
	
, 
	
		
			

				𝑐
			

			

				𝑖
			

		
	
  
	
		
			
				(
				𝑖
				=
				1
				,
				…
				,
				𝑘
				)
			

		
	
 be constant satisfying 
	
		
			

				∑
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				(
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				)
				≢
				0
			

		
	
 and 
	
		
			

				𝑐
			

			

				𝑖
			

			
				≠
				𝑐
			

			

				𝑗
			

		
	
 when 
	
		
			
				𝑖
				≠
				𝑗
			

		
	
. Set 
	
		
			

				𝐻
			

			

				𝑛
			

			
				(
				𝑧
				)
				=
				𝑓
				(
				𝑧
				)
			

			

				𝑛
			

			

				∑
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				(
				𝑧
				+
				𝑐
			

			

				𝑖
			

			

				)
			

		
	
, where 
	
		
			
				𝑛
				,
				𝑘
				≥
				2
			

		
	
 are integers. Then the following statements hold. (i)If 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
 satisfies 
	
		
			
				𝜎
				(
				𝑓
				)
				≠
				1
			

		
	
 or has infinitely many zeros, then 
	
		
			

				𝐻
			

			

				𝑛
			

			
				(
				𝑧
				)
			

		
	
 has infinitely many zeros.(ii)If 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
 has only finitely many zeros and 
	
		
			
				𝜎
				(
				𝑓
				)
				=
				1
			

		
	
, then 
	
		
			

				𝐻
			

			

				𝑛
			

			
				(
				𝑧
				)
			

		
	
 has only finitely many zeros.(iii)
	
		
			

				𝐻
			

			

				𝑛
			

			
				(
				𝑧
				)
				−
				𝛼
				(
				𝑧
				)
			

		
	
 has infinitely many zeros, and 
	
		
			
				𝜆
				(
				𝐻
			

			

				𝑛
			

			
				(
				𝑧
				)
				−
				𝛼
				(
				𝑧
				)
				)
				=
				𝜎
				(
				𝑓
				)
			

		
	
, where 
	
		
			
				𝛼
				(
				𝑧
				)
				≢
				0
			

		
	
 is a small function of 
	
		
			

				𝑓
			

		
	
.
Remark 6. The result of Theorem 5 may be false if 
	
		
			
				𝑘
				=
				1
			

		
	
. For example, if 
	
		
			
				𝑓
				(
				𝑧
				)
				=
				𝑒
			

			

				𝑧
			

			

				2
			

		
	
, we have that 
	
		
			
				𝑓
				(
				𝑧
				)
			

			

				2
			

			
				𝑓
				(
				𝑧
				+
				𝑐
				)
				=
				𝑒
			

			
				3
				𝑧
			

			

				2
			

			
				+
				2
				𝑐
				𝑧
				+
				𝑐
			

			

				2
			

		
	
 (where 
	
		
			
				𝑐
				∈
				𝐂
				⧵
				{
				0
				}
			

		
	
 is a constant satisfying 
	
		
			
				𝑓
				(
				𝑧
				+
				𝑐
				)
				≢
				𝑓
				(
				𝑧
				)
			

		
	
) has no zero, but 
	
		
			
				𝑓
				(
				𝑧
				)
			

			

				2
			

			
				(
				𝑓
				(
				𝑧
				+
				𝑐
				)
				−
				𝑓
				(
				𝑧
				)
				)
				=
				𝑒
			

			
				3
				𝑧
			

			

				2
			

			
				(
				𝑒
			

			
				2
				𝑐
				𝑧
				+
				𝑐
			

			

				2
			

			
				−
				1
				)
			

		
	
 has infinitely many zeros. This also shows that the restriction 
	
		
			
				𝜎
				(
				𝑓
				)
				=
				1
			

		
	
 in Theorem 5(ii) is sharp. The following example shows that the assumption 
	
		
			
				𝜎
				(
				𝑓
				)
				≠
				1
			

		
	
 in Theorem 5(i) cannot be deleted. In fact, let 
	
		
			
				𝑓
				(
				𝑧
				)
				=
				𝑒
			

			

				𝑧
			

		
	
; we have 
	
		
			

				𝐻
			

			

				2
			

			
				=
				𝑓
			

			

				2
			

			
				(
				𝑓
				(
				𝑧
				+
				𝑐
				)
				−
				𝑓
				(
				𝑧
				)
				)
				=
				𝑒
			

			
				2
				𝑧
			

			
				(
				𝑒
			

			
				𝑧
				+
				1
			

			
				−
				𝑒
			

			

				𝑧
			

			
				)
				=
				𝑒
			

			
				3
				𝑧
			

			
				(
				𝑒
				−
				1
				)
				≠
				0
			

		
	
.
By (i) and (iii) of Theorem 5, we can easily obtain the following corollary.
Corollary 7.  Let 
	
		
			

				𝑓
			

		
	
 be a transcendental entire function of finite order and let 
	
		
			

				𝑎
			

			

				𝑖
			

		
	
, 
	
		
			

				𝑐
			

			

				𝑖
			

		
	
  
	
		
			
				(
				𝑖
				=
				1
				,
				…
				,
				𝑘
				)
			

		
	
 be constants satisfying 
	
		
			

				∑
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				(
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				)
				≢
				0
			

		
	
 and 
	
		
			

				𝑐
			

			

				𝑖
			

			
				≠
				𝑐
			

			

				𝑗
			

		
	
 when 
	
		
			
				𝑖
				≠
				𝑗
			

		
	
. Set 
	
		
			

				𝐻
			

			

				𝑛
			

			
				(
				𝑧
				)
				=
				𝑓
				(
				𝑧
				)
			

			

				𝑛
			

			

				∑
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				(
				𝑧
				+
				𝑐
			

			

				𝑖
			

			

				)
			

		
	
, where 
	
		
			
				𝑛
				,
				𝑘
				≥
				2
			

		
	
 are integers. If 
	
		
			
				𝜎
				(
				𝑓
				)
				≠
				1
			

		
	
 or has infinitely many zeros, then 
	
		
			

				𝐻
			

			

				𝑛
			

			
				(
				𝑧
				)
			

		
	
 takes every value 
	
		
			
				𝑎
				∈
				𝐂
			

		
	
 infinitely often.
Theorem 8.  Let 
	
		
			

				𝑓
			

		
	
 be a finite-order transcendental entire function with a finite Borel exceptional value 
	
		
			

				𝑑
			

		
	
, and let 
	
		
			

				𝑎
			

			

				𝑖
			

			
				,
				𝑐
			

			

				𝑖
			

		
	
 be constants satisfying 
	
		
			

				∑
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				(
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				)
				≢
				0
			

		
	
 where 
	
		
			

				∑
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				=
				0
			

		
	
. Set 
	
		
			
				∑
				𝐻
				(
				𝑧
				)
				=
				𝑓
				(
				𝑧
				)
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				(
				𝑧
				+
				𝑐
			

			

				𝑖
			

			

				)
			

		
	
. Then the following statements hold. (i)
	
		
			
				𝐻
				(
				𝑧
				)
			

		
	
 takes every nonzero value 
	
		
			
				𝑎
				∈
				ℂ
			

		
	
 infinitely often and satisfies 
	
		
			
				𝜆
				(
				𝐻
				−
				𝑎
				)
				=
				𝜎
				(
				𝑓
				)
			

		
	
.(ii)If 
	
		
			
				𝑑
				≠
				0
			

		
	
, then 
	
		
			
				𝐻
				(
				𝑧
				)
			

		
	
 has no finite Borel exceptional value.(iii)If 
	
		
			
				𝑑
				=
				0
			

		
	
, then 
	
		
			

				0
			

		
	
 is also the Borel exceptional value of 
	
		
			
				𝐻
				(
				𝑧
				)
			

		
	
. So that 
	
		
			
				𝐻
				(
				𝑧
				)
			

		
	
 has no nonzero finite Borel exceptional value.
Theorem 9.  Let 
	
		
			

				𝑓
			

		
	
 be a transcendental entire function of finite order and let 
	
		
			

				𝑎
			

			

				𝑖
			

			
				,
				𝑐
			

			

				𝑖
			

		
	
 be constants satisfying 
	
		
			

				∑
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				(
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				)
				≢
				0
			

		
	
. Set 
	
		
			
				∑
				𝐻
				(
				𝑧
				)
				=
				𝑓
				(
				𝑧
				)
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				(
				𝑧
				+
				𝑐
			

			

				𝑖
			

			

				)
			

		
	
. If there exists an infinite sequence 
	
		
			
				{
				𝑧
			

			

				𝑛
			

			

				}
			

		
	
 satisfying 
	
		
			
				𝑓
				(
				𝑧
			

			

				𝑛
			

			
				∑
				)
				=
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				(
				𝑧
			

			

				𝑛
			

			
				+
				𝑐
			

			

				𝑖
			

			
				)
				=
				0
			

		
	
, then 
	
		
			
				𝐻
				(
				𝑧
				)
			

		
	
 takes every value 
	
		
			
				𝑎
				∈
				ℂ
			

		
	
 (including 
	
		
			
				𝑎
				=
				0
			

		
	
) infinitely often.
Theorem 10.  Let 
	
		
			

				𝑓
			

		
	
 be a transcendental entire function of  finite order and let 
	
		
			

				𝑐
			

			

				𝑖
			

		
	
 be distinct constants satisfying 
	
		
			

				∑
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				(
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				)
				≢
				0
			

		
	
. Set 
	
		
			
				∑
				𝐻
				(
				𝑧
				)
				=
				𝑓
				(
				𝑧
				)
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				(
				z
				+
				𝑐
			

			

				𝑖
			

			

				)
			

		
	
, where 
	
		
			
				𝑘
				≥
				2
			

		
	
 is an integer. (i)If 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
 has only finitely many zeros and 
	
		
			
				𝜎
				(
				𝑓
				)
				≠
				1
			

		
	
 or has infinitely many zeros, then 
	
		
			
				𝐻
				(
				𝑧
				)
			

		
	
 has infinitely many zeros.(ii)If 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
 has only finitely many zeros and 
	
		
			
				𝜎
				(
				𝑓
				)
				=
				1
			

		
	
, then 
	
		
			
				𝐻
				(
				𝑧
				)
			

		
	
 has only finitely many zeros.
Example 11. An entire function 
	
		
			
				𝑓
				(
				𝑧
				)
				=
				𝑒
			

			

				𝑧
			

			

				2
			

		
	
 satisfies Theorem 8 (iii), it has Borel exceptional value 
	
		
			

				0
			

		
	
, and let 
	
		
			

				𝑎
			

			

				1
			

			
				=
				𝑎
			

			

				2
			

			
				=
				1
			

		
	
, 
	
		
			

				𝑎
			

			

				3
			

			
				=
				−
				2
			

		
	
, 
	
		
			

				𝑎
			

			

				4
			

			
				=
				⋯
				=
				𝑎
			

			

				𝑘
			

			
				=
				0
			

		
	
, 
	
		
			

				𝑐
			

			

				1
			

			
				=
				1
			

		
	
, 
	
		
			

				𝑐
			

			

				2
			

			
				=
				−
				1
			

		
	
, and 
	
		
			

				𝑐
			

			

				3
			

			
				=
				0
			

		
	
. Then
							
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				𝐻
				(
				𝑧
				)
				=
				𝑓
				(
				𝑧
				)
				(
				𝑓
				(
				𝑧
				+
				1
				)
				+
				𝑓
				(
				𝑧
				−
				1
				)
				−
				2
				𝑓
				(
				𝑧
				)
				)
				=
				𝑒
			

			
				2
				𝑧
			

			

				2
			

			
				1
				
				
				𝑒
				+
			

			
				
			
			
				𝑒
				
				𝑒
			

			
				2
				𝑧
			

			
				
				−
				2
			

		
	

						has also the Borel exceptional value 
	
		
			

				0
			

		
	
 since 
	
		
			
				𝜆
				(
				𝐻
				)
				=
				1
				<
				𝜎
				(
				𝐻
				)
				=
				2
			

		
	
.Simultaneously, 
	
		
			
				𝑓
				(
				𝑧
				)
				=
				𝑒
			

			

				𝑧
			

			

				2
			

		
	
 also satisfies Theorem 10(i), although 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
 has no zero, we can also get 
	
		
			
				𝐻
				(
				𝑧
				)
			

		
	
 has infinitely many zeros since 
	
		
			
				𝜎
				(
				𝑓
				)
				≠
				1
			

		
	
.
Example 12. An entire function 
	
		
			
				𝑓
				(
				𝑧
				)
				=
				𝑒
			

			

				𝑧
			

			
				+
				1
			

		
	
 satisfies Theorem 8(ii), it has Borel exceptional value 
	
		
			

				1
			

		
	
, and let 
	
		
			

				𝑎
			

			

				1
			

			
				=
				𝑎
			

			

				2
			

			
				=
				1
			

		
	
, 
	
		
			

				𝑎
			

			

				3
			

			
				=
				−
				2
			

		
	
, 
	
		
			

				𝑎
			

			

				4
			

			
				=
				⋯
				=
				𝑎
			

			

				𝑘
			

			
				=
				0
			

		
	
, 
	
		
			

				𝑐
			

			

				1
			

			
				=
				1
			

		
	
, 
	
		
			

				𝑐
			

			

				2
			

			
				=
				−
				1
			

		
	
, and 
	
		
			

				𝑐
			

			

				3
			

			
				=
				0
			

		
	
. Then
							
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				𝐻
				(
				𝑧
				)
				=
				𝑓
				(
				𝑧
				)
				(
				𝑓
				(
				𝑧
				+
				1
				)
				+
				𝑓
				(
				𝑧
				−
				1
				)
				−
				2
				𝑓
				(
				𝑧
				)
				)
				=
				𝑒
			

			

				𝑧
			

			
				(
				𝑒
			

			

				𝑧
			

			
				
				1
				+
				1
				)
				𝑒
				+
			

			
				
			
			
				𝑒
				
				−
				2
			

		
	

						has no finite Borel exceptional value.
2. Some Lemmas
Lemma 13 (see [9]).  Let 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
 be a meromorphic function of finite order, 
	
		
			
				𝑐
				∈
				ℂ
				⧵
				{
				0
				}
			

		
	
, 
	
		
			
				𝛿
				<
				1
			

		
	
. Then 
							
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				𝑚
				
				𝑟
				,
				𝑓
				(
				𝑧
				+
				𝑐
				)
			

			
				
			
			
				
				
				𝑓
				(
				𝑧
				)
				=
				𝑜
				𝑇
				(
				𝑟
				+
				|
				𝑐
				|
				,
				𝑓
				)
			

			
				
			
			

				𝑟
			

			

				𝛿
			

			
				
				=
				𝑆
				(
				𝑟
				,
				𝑓
				)
				,
			

		
	

						for all 
	
		
			

				𝑟
			

		
	
 outside an exceptional set of  finite logarithmic measures.
Lemma 14 (see [7]).  Let 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
 be a nonconstant, finite-order meromorphic solution of 
							
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			

				𝑓
			

			

				𝑛
			

			

				𝑃
			

			

				1
			

			
				(
				𝑧
				,
				𝑓
				)
				=
				𝑄
			

			

				1
			

			
				(
				𝑧
				,
				𝑓
				)
				,
			

		
	

						where 
	
		
			

				𝑃
			

			

				1
			

			
				(
				𝑧
				,
				𝑓
				)
			

		
	
, 
	
		
			

				𝑄
			

			

				1
			

			
				(
				𝑧
				,
				𝑓
				)
			

		
	
 are difference polynomials in 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
 with meromorphic coefficients 
	
		
			

				𝑎
			

			

				𝑗
			

			
				(
				𝑧
				)
				(
				𝑗
				=
				1
				,
				…
				,
				𝑠
				)
			

		
	
, and let 
	
		
			
				𝛿
				<
				1
			

		
	
. If the degree of 
	
		
			

				𝑄
			

			

				1
			

			
				(
				𝑟
				,
				𝑓
				)
			

		
	
 as a polynomial in 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
 and its shifts is at most 
	
		
			

				𝑛
			

		
	
, then
							
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			
				𝑚
				
				𝑟
				,
				𝑃
			

			

				1
			

			
				
				
				(
				𝑧
				,
				𝑓
				)
				=
				𝑜
				𝑇
				(
				𝑟
				+
				|
				𝑐
				|
				,
				𝑓
				)
			

			
				
			
			

				𝑟
			

			

				𝛿
			

			
				
				
				+
				𝑜
				(
				𝑇
				(
				𝑟
				,
				𝑓
				)
				)
				+
				𝑂
			

			

				𝑠
			

			

				
			

			
				𝑗
				=
				1
			

			
				𝑚
				
				𝑟
				,
				𝑎
			

			

				𝑗
			

			
				
				
				
				=
				𝑆
				(
				𝑟
				,
				𝑓
				)
				+
				𝑂
			

			

				𝑠
			

			

				
			

			
				𝑗
				=
				1
			

			
				𝑚
				
				𝑟
				,
				𝑎
			

			

				𝑗
			

			
				
				
				,
			

		
	

						for all 
	
		
			

				𝑟
			

		
	
 outside an exceptional set of finite logarithmic measures.
Lemma 15 (see [3]).  Let 
	
		
			

				𝑓
			

			

				𝑗
			

			
				(
				𝑧
				)
				(
				𝑗
				=
				1
				,
				…
				,
				𝑛
				)
				(
				𝑛
				≥
				2
				)
			

		
	
 be meromorphic functions, and let 
	
		
			

				𝑔
			

			

				𝑗
			

			
				(
				𝑧
				)
				(
				𝑗
				=
				1
				,
				…
				,
				𝑛
				)
			

		
	
 be entire functions that satisfy the following: (i)
	
		
			

				∑
			

			
				𝑛
				𝑗
				=
				1
			

			

				𝑓
			

			

				𝑗
			

			
				(
				𝑧
				)
				𝑒
			

			

				𝑔
			

			

				𝑗
			

			
				(
				𝑧
				)
			

			
				≡
				0
			

		
	
;
								(ii)when 
	
		
			
				1
				≤
				𝑗
				<
				𝑘
				≤
				𝑛
			

		
	
, 
	
		
			

				𝑔
			

			

				𝑗
			

			
				(
				𝑧
				)
				−
				𝑔
			

			

				𝑘
			

			
				(
				𝑧
				)
			

		
	
 is not a constant;(iii)when 
	
		
			
				1
				≤
				𝑗
				≤
				𝑛
			

		
	
, 
	
		
			
				1
				≤
				ℎ
				<
				𝑘
				≤
				𝑛
			

		
	
,
										
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				𝑇
				
				𝑟
				,
				𝑓
			

			

				𝑗
			

			
				
				=
				𝑜
				{
				𝑇
				(
				𝑟
				,
				𝑒
			

			

				𝑔
			

			

				ℎ
			

			
				−
				𝑔
			

			

				𝑘
			

			
				)
				}
				(
				𝑟
				⟶
				∞
				,
				𝑟
				∉
				𝐸
				)
				,
			

		
	
where 
	
		
			
				𝐸
				⊂
				(
				1
				,
				∞
				)
			

		
	
 is of finite linear measure or finite logarithmic measure. Then 
	
		
			

				𝑓
			

			

				𝑗
			

			
				(
				𝑧
				)
				≡
				0
				(
				𝑗
				=
				1
				,
				…
				,
				𝑛
				)
			

		
	
.
Lemma 16.  Let 
	
		
			

				𝑓
			

		
	
 be a transcendental entire function of finite order and let 
	
		
			

				𝑎
			

			

				𝑖
			

			
				,
				𝑐
			

			

				𝑖
			

		
	
 be constants satisfying 
	
		
			

				∑
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				(
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				)
				≢
				0
			

		
	
. Then 
	
		
			

				𝐻
			

			

				𝑛
			

			
				(
				𝑧
				)
				=
				𝑓
				(
				𝑧
				)
			

			

				𝑛
			

			

				∑
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				(
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				)
				(
				𝑛
				≥
				1
				)
			

		
	
 is transcendental.
Proof. If 
	
		
			

				𝐻
			

			

				𝑛
			

			
				(
				𝑧
				)
				≡
				0
			

		
	
, then 
	
		
			

				∑
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				(
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				)
				≡
				0
			

		
	
 which contradicts our condition 
	
		
			

				∑
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				(
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				)
				≢
				0
			

		
	
. Now we suppose that
							
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			

				𝐻
			

			

				𝑛
			

			
				(
				𝑧
				)
				=
				𝑓
				(
				𝑧
				)
			

			
				𝑛
				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				=
				𝑃
				(
				𝑧
				)
				,
			

		
	

						where 
	
		
			
				𝑃
				(
				𝑧
				)
				≢
				0
			

		
	
 is a polynomial. Applying Lemma 14 to (8), we obtain that
							
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				𝑇
				
				𝑟
				,
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				
				
				=
				𝑚
				𝑟
				,
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				
				=
				𝑆
				(
				𝑟
				,
				𝑓
				)
				.
			

		
	

						Thus by (8), (9), and the first fundamental theorem of Nevanlinna theory, we obtain that
							
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				𝑇
				(
				𝑟
				,
				𝑓
				(
				𝑧
				)
			

			

				𝑛
			

			
				
				)
				=
				𝑇
				𝑟
				,
				𝑃
				(
				𝑧
				)
			

			
				
			
			

				∑
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				
				=
				𝑆
				(
				𝑟
				,
				𝑓
				)
				.
			

		
	

						Since 
	
		
			
				𝑛
				≥
				1
			

		
	
, this is a contradiction. Hence 
	
		
			

				𝐻
			

			

				𝑛
			

			
				(
				𝑧
				)
			

		
	
 is a transcendental entire function.
Lemma 17 (see [17]).  Let 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
 be a nonconstant finite-order meromorphic function and let 
	
		
			
				𝑐
				≠
				0
			

		
	
 be an arbitrary complex number. Then
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				𝑇
				(
				𝑟
				,
				𝑓
				(
				𝑧
				+
				𝑐
				)
				)
				=
				𝑇
				(
				𝑟
				,
				𝑓
				(
				𝑧
				)
				)
				+
				𝑆
				(
				𝑟
				,
				𝑓
				)
				.
			

		
	

3. Proof of Theorems 5 and 10
Proof of Theorem 5. (i) If 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
 has infinitely many zeros, then 
	
		
			

				𝐻
			

			

				𝑛
			

			
				(
				𝑧
				)
			

		
	
 has infinitely many zeros since 
	
		
			

				∑
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				(
				𝑧
				+
				𝑐
			

			

				𝑖
			

			

				)
			

		
	
 is an entire function and 
	
		
			

				∑
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				(
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				)
				≢
				0
			

		
	
.Now we suppose that 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
 has only finitely many zeros and 
	
		
			
				𝜎
				(
				𝑓
				)
				≠
				1
			

		
	
. Thus since 
	
		
			

				𝑓
			

		
	
 is transcendental, 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
 can be written as follows: 
							
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑧
				)
				=
				𝑔
				(
				𝑧
				)
				𝑒
			

			
				ℎ
				(
				𝑧
				)
			

			

				,
			

		
	

						where 
	
		
			
				𝑔
				(
				𝑧
				)
				(
				≢
				0
				)
			

		
	
, 
	
		
			
				ℎ
				(
				𝑧
				)
			

		
	
 are polynomials, 
	
		
			
				d
				e
				g
				ℎ
				(
				𝑧
				)
				≥
				2
			

		
	
. Thus 
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				𝑓
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				
				=
				𝑔
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				𝑒
			

			
				ℎ
				(
				𝑧
				+
				𝑐
			

			

				𝑖
			

			

				)
			

			

				.
			

		
	

						Now we suppose that 
	
		
			

				𝐻
			

			

				𝑛
			

			
				(
				𝑧
				)
			

		
	
 has only finitely many zeros. By Lemma 16, we see that 
	
		
			

				𝐻
			

			

				𝑛
			

			
				(
				𝑧
				)
			

		
	
 is transcendental. So 
	
		
			

				𝐻
			

			

				𝑛
			

			
				(
				𝑧
				)
			

		
	
 can be written as
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			

				𝐻
			

			

				𝑛
			

			
				(
				𝑧
				)
				=
				𝑔
				(
				𝑧
				)
			

			
				𝑛
				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑔
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				𝑒
			

			
				𝑛
				ℎ
				(
				𝑧
				)
				+
				ℎ
				(
				𝑧
				+
				𝑐
			

			

				𝑖
			

			

				)
			

			
				=
				𝑔
			

			

				1
			

			
				(
				𝑧
				)
				𝑒
			

			

				ℎ
			

			

				1
			

			
				(
				𝑧
				)
			

			

				,
			

		
	

						where 
	
		
			

				𝑔
			

			

				1
			

			
				(
				𝑧
				)
				(
				≢
				0
				)
			

		
	
, 
	
		
			

				ℎ
			

			

				1
			

			
				(
				𝑧
				)
			

		
	
 are polynomials, 
	
		
			
				d
				e
				g
				ℎ
			

			

				1
			

			
				(
				𝑧
				)
				≥
				1
			

		
	
. Set 
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				ℎ
				(
				𝑧
				)
				=
				𝑏
			

			

				𝑚
			

			

				𝑧
			

			

				𝑚
			

			
				+
				𝑏
			

			
				𝑚
				−
				1
			

			

				𝑧
			

			
				𝑚
				−
				1
			

			
				+
				⋯
				+
				𝑏
			

			

				0
			

			
				,
				𝑏
			

			

				𝑚
			

			
				≠
				0
				,
			

		
	

						where 
	
		
			

				𝑏
			

			

				𝑚
			

			
				,
				…
				,
				𝑏
			

			

				0
			

		
	
 are constants and 
	
		
			
				𝑚
				≥
				2
			

		
	
. Thus
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				ℎ
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				=
				𝑏
			

			

				𝑚
			

			

				𝑧
			

			

				𝑚
			

			
				+
				
				𝑏
			

			

				𝑚
			

			
				𝑚
				𝑐
			

			

				𝑖
			

			
				+
				𝑏
			

			
				𝑚
				−
				1
			

			
				
				𝑧
			

			
				𝑚
				−
				1
			

			
				+
				𝑏
			

			

				′
			

			
				𝑚
				−
				2
			

			

				𝑧
			

			
				𝑚
				−
				2
			

			
				+
				⋯
				+
				𝑏
			

			

				′
			

			

				0
			

			

				,
			

		
	

						where 
	
		
			

				𝑏
			

			

				′
			

			
				𝑚
				−
				2
			

			
				,
				…
				,
				𝑏
			

			

				′
			

			

				0
			

		
	
 are constants. Since 
	
		
			
				𝑚
				≥
				2
			

		
	
 and
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				ℎ
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				
				−
				ℎ
				𝑧
				+
				𝑐
			

			

				𝑗
			

			
				
				=
				𝑏
			

			

				𝑚
			

			
				𝑚
				
				𝑐
			

			

				𝑖
			

			
				−
				𝑐
			

			

				𝑗
			

			
				
				𝑧
			

			
				𝑚
				−
				1
			

			
				+
				⋯
				(
				𝑖
				≠
				𝑗
				)
				,
			

		
	

						we see that 
	
		
			
				𝑛
				ℎ
				(
				𝑧
				)
				+
				ℎ
				(
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				)
				−
				(
				𝑛
				ℎ
				(
				𝑧
				)
				+
				ℎ
				(
				𝑧
				+
				𝑐
			

			

				𝑗
			

			
				)
				)
				(
				𝑖
				≠
				𝑗
				)
			

		
	
 are not constants.Case 1. If for any 
	
		
			

				𝑖
			

		
	
, 
	
		
			
				𝑛
				ℎ
				(
				𝑧
				)
				+
				ℎ
				(
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				)
				−
				ℎ
			

			

				1
			

			
				(
				𝑧
				)
			

		
	
 are not constants, then by Lemma 15 and (14), we see that
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			

				𝑎
			

			

				𝑖
			

			
				𝑔
				(
				𝑧
				)
			

			

				𝑛
			

			
				𝑔
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				≡
				0
				,
				𝑔
			

			

				1
			

			
				(
				𝑧
				)
				≡
				0
				,
			

		
	

						which is a contradiction.Case 2. If there exists a 
	
		
			

				𝑗
			

		
	
 satisfying 
	
		
			
				𝑛
				ℎ
				(
				𝑧
				)
				+
				ℎ
				(
				𝑧
				+
				𝑐
			

			

				𝑗
			

			
				)
				−
				ℎ
			

			

				1
			

			
				(
				𝑧
				)
				=
				𝛿
			

		
	
 where 
	
		
			

				𝛿
			

		
	
 is a constant, then by (14), we have
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				
				𝑔
				(
				𝑧
				)
			

			

				𝑛
			

			

				𝑎
			

			

				𝑗
			

			
				𝑔
				
				𝑧
				+
				𝑐
			

			

				𝑗
			

			
				
				−
				𝑒
			

			
				−
				𝛿
			

			

				𝑔
			

			

				1
			

			
				
				𝑒
				(
				𝑧
				)
			

			
				𝑛
				ℎ
				(
				𝑧
				)
				+
				ℎ
				(
				𝑧
				+
				𝑐
			

			

				𝑗
			

			

				)
			

			
				+
				𝑔
				(
				𝑧
				)
			

			

				𝑛
			

			

				
			

			
				𝑖
				≠
				𝑗
			

			

				𝑎
			

			

				𝑖
			

			
				𝑔
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				𝑒
			

			
				𝑛
				ℎ
				(
				𝑧
				)
				+
				ℎ
				(
				𝑧
				+
				𝑐
			

			

				𝑖
			

			

				)
			

			
				=
				0
				.
			

		
	

						By (19), Lemma 15, and 
	
		
			
				𝑘
				≥
				2
			

		
	
, we obtain that 
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			

				𝑎
			

			

				𝑖
			

			
				𝑔
				(
				𝑧
				)
			

			

				𝑛
			

			
				𝑔
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				≡
				0
				(
				𝑖
				≠
				𝑗
				)
				,
				𝑔
				(
				𝑧
				)
			

			

				𝑛
			

			

				𝑎
			

			

				𝑗
			

			
				𝑔
				
				𝑧
				+
				𝑐
			

			

				𝑗
			

			
				
				−
				𝑒
			

			
				−
				𝛿
			

			

				𝑔
			

			

				1
			

			
				(
				𝑧
				)
				≡
				0
				,
			

		
	

						which is also a contradiction. Hence, 
	
		
			

				𝐻
			

			

				𝑛
			

			
				(
				𝑧
				)
			

		
	
 has infinitely many zeros.(ii) Suppose that 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
 has only finitely many zeros and 
	
		
			
				𝜎
				(
				𝑓
				)
				=
				1
			

		
	
. Then 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
 can be written as
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑧
				)
				=
				𝑔
			

			

				2
			

			
				(
				𝑧
				)
				𝑒
			

			
				𝑏
				𝑧
				+
				𝑑
			

			

				,
			

		
	

						where 
	
		
			

				𝑔
			

			

				2
			

			
				(
				𝑧
				)
				(
				≢
				0
				)
			

		
	
 is a polynomial and 
	
		
			
				𝑏
				(
				≠
				0
				)
			

		
	
, 
	
		
			

				𝑑
			

		
	
 are constants. Thus 
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				𝑓
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				=
				𝑔
			

			

				2
			

			
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				𝑒
			

			
				𝑏
				𝑐
			

			

				𝑖
			

			

				𝑒
			

			
				𝑏
				𝑧
				+
				𝑑
			

			
				,
				𝐻
			

			

				𝑛
			

			
				(
				𝑧
				)
				=
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			

				𝑔
			

			

				2
			

			
				(
				𝑧
				)
			

			

				𝑛
			

			

				𝑔
			

			

				2
			

			
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				𝑒
			

			
				𝑏
				𝑐
			

			

				𝑖
			

			

				𝑒
			

			
				(
				𝑛
				+
				1
				)
				(
				𝑏
				𝑧
				+
				𝑑
				)
			

			

				.
			

		
	

						By the condition 
	
		
			

				∑
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				(
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				)
				≢
				0
			

		
	
, we see that 
	
		
			

				∑
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			

				𝑔
			

			

				2
			

			
				(
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				)
				𝑒
			

			
				𝑏
				𝑐
			

			

				𝑖
			

			
				≢
				0
			

		
	
.Hence 
	
		
			

				𝐻
			

			

				𝑛
			

			
				(
				𝑧
				)
			

		
	
 has only finitely many zeros.(iii) Case 1. 
	
		
			
				𝜎
				(
				𝑓
				)
				=
				0
			

		
	
. From 
	
		
			
				0
				≤
				𝜆
				(
				𝐻
			

			

				𝑛
			

			
				(
				𝑧
				)
				−
				𝛼
				(
				𝑧
				)
				)
				≤
				𝜎
				(
				𝐻
			

			

				𝑛
			

			
				(
				𝑧
				)
				−
				𝛼
				(
				𝑧
				)
				)
				≤
				𝜎
				(
				𝑓
				)
				=
				0
			

		
	
, we get 
	
		
			
				𝜆
				(
				𝐻
			

			

				𝑛
			

			
				(
				𝑧
				)
				−
				𝛼
				(
				𝑧
				)
				)
				=
				𝜎
				(
				𝐻
			

			

				𝑛
			

			
				(
				𝑧
				)
				−
				𝛼
				(
				𝑧
				)
				)
				=
				𝜎
				(
				𝑓
				)
				=
				0
			

		
	
. If 
	
		
			

				𝐻
			

			

				𝑛
			

			
				(
				𝑧
				)
				−
				𝛼
				(
				𝑧
				)
			

		
	
 has only finitely zeros, then 
	
		
			

				𝐻
			

			

				𝑛
			

			
				(
				𝑧
				)
				−
				𝛼
				(
				𝑧
				)
			

		
	
 can be written as
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			

				𝐻
			

			

				𝑛
			

			
				(
				𝑧
				)
				−
				𝛼
				(
				𝑧
				)
				=
				𝑝
				(
				𝑧
				)
				,
				i
				.
				e
				.
				,
				𝐻
			

			

				𝑛
			

			
				(
				𝑧
				)
				=
				𝑝
				(
				𝑧
				)
				+
				𝛼
				(
				𝑧
				)
				,
			

		
	

						where 
	
		
			
				𝑝
				(
				𝑧
				)
			

		
	
 is a polynomial. By using a similar method as in the proof of Lemma 16, we get a contradiction. Thus 
	
		
			

				𝐻
			

			

				𝑛
			

			
				(
				𝑧
				)
				−
				𝛼
				(
				𝑧
				)
			

		
	
 has infinitely many zeros.Case 2. 
	
		
			
				𝜎
				(
				𝑓
				)
				>
				0
			

		
	
. Suppose on contrary to the assertion that 
	
		
			
				𝜆
				(
				𝐻
			

			

				𝑛
			

			
				(
				𝑧
				)
				−
				𝛼
				(
				𝑧
				)
				)
				<
				𝜎
				(
				𝑓
				)
			

		
	
. If 
	
		
			
				𝑓
				(
				𝑧
				)
			

			

				𝑛
			

			

				∑
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				(
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				)
				−
				𝛼
				(
				𝑧
				)
				≡
				0
			

		
	
, that is, 
	
		
			
				𝑓
				(
				𝑧
				)
			

			

				𝑛
			

			

				∑
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				(
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				)
				≡
				𝛼
				(
				𝑧
				)
			

		
	
. By using a similar method as in the proof of Lemma 16, we get a contradiction. So we have 
	
		
			
				𝑓
				(
				𝑧
				)
			

			

				𝑛
			

			

				∑
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				(
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				)
				−
				𝛼
				(
				𝑧
				)
				≢
				0
			

		
	
. Thus, by Hadamard's theorem, 
	
		
			

				𝐻
			

			

				𝑛
			

			
				(
				𝑧
				)
				−
				𝛼
				(
				𝑧
				)
			

		
	
 can be written as
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			

				𝐻
			

			

				𝑛
			

			
				(
				𝑧
				)
				−
				𝛼
				(
				𝑧
				)
				=
				𝑓
				(
				𝑧
				)
			

			
				𝑛
				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				=
				−
				𝛼
				(
				𝑧
				)
				𝑃
				(
				𝑧
				)
			

			
				
			
			
				𝑒
				𝑄
				(
				𝑧
				)
			

			
				ℎ
				(
				𝑧
				)
			

			

				,
			

		
	

						where 
	
		
			
				ℎ
				(
				𝑧
				)
			

		
	
 is a polynomial and 
	
		
			
				𝑃
				(
				𝑧
				)
				(
				≢
				0
				)
			

		
	
, 
	
		
			
				𝑄
				(
				𝑧
				)
				(
				≢
				0
				)
			

		
	
 are the canonical products formed by zeros and poles of 
	
		
			

				𝐻
			

			

				𝑛
			

			
				(
				𝑧
				)
				−
				𝛼
				(
				𝑧
				)
			

		
	
, respectively, such that
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				
				𝐻
				𝜆
				(
				𝑃
				(
				𝑧
				)
				)
				=
				𝜎
				(
				𝑃
				(
				𝑧
				)
				)
				=
				𝜆
			

			

				𝑛
			

			
				
				(
				𝑧
				)
				−
				𝛼
				(
				𝑧
				)
				<
				𝜎
				(
				𝑓
				)
				=
				𝜎
				.
			

		
	

						Since 
	
		
			
				𝑇
				(
				𝑟
				,
				𝛼
				(
				𝑧
				)
				)
				=
				𝑆
				(
				𝑟
				,
				𝑓
				)
			

		
	
, we get that
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				
				1
				𝜆
				(
				𝑄
				(
				𝑧
				)
				)
				=
				𝜎
				(
				𝑄
				(
				𝑧
				)
				)
				=
				𝜆
			

			
				
			
			
				
				𝛼
				(
				𝑧
				)
				<
				𝜎
				(
				𝑓
				)
				=
				𝜎
				.
			

		
	

						We set 
	
		
			
				𝑔
				(
				𝑧
				)
				=
				𝑃
				(
				𝑧
				)
				/
				𝑄
				(
				𝑧
				)
			

		
	
; then from (25) and (26), we get
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				𝜎
				(
				𝑔
				)
				=
				m
				a
				x
				{
				𝜎
				(
				𝑃
				(
				𝑧
				)
				)
				,
				𝜎
				(
				𝑄
				(
				𝑧
				)
				)
				}
				<
				𝜎
				(
				𝑓
				)
				=
				𝜎
				.
			

		
	
Differentiating (24) and eliminating 
	
		
			

				𝑒
			

			
				ℎ
				(
				𝑧
				)
			

		
	
, we get
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑧
				)
			

			
				𝑛
				−
				1
			

			
				𝐹
				(
				𝑧
				,
				𝑓
				)
				=
				𝛼
			

			

				′
			

			
				
				(
				𝑧
				)
				𝑔
				(
				𝑧
				)
				−
				𝛼
				(
				𝑧
				)
				𝑔
				(
				𝑧
				)
				ℎ
			

			

				′
			

			
				(
				𝑧
				)
				+
				𝑔
			

			

				′
			

			
				
				,
				(
				𝑧
				)
			

		
	

						where
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				𝐹
				(
				𝑧
				,
				𝑓
				)
				=
				𝑛
				𝑓
			

			

				′
			

			
				(
				𝑧
				)
				𝑔
				(
				𝑧
				)
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				+
				𝑓
				(
				𝑧
				)
				𝑔
				(
				𝑧
				)
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			

				𝑓
			

			

				′
			

			
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				−
				
				𝑔
				(
				𝑧
				)
				ℎ
			

			

				′
			

			
				(
				𝑧
				)
				+
				𝑔
			

			

				′
			

			
				
				(
				𝑧
				)
				𝑓
				(
				𝑧
				)
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				.
			

		
	
Case 2.1. 
	
		
			
				𝐹
				(
				𝑧
				,
				𝑓
				)
				≡
				0
			

		
	
. Then from (28), we have 
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			

				𝛼
			

			

				′
			

			
				
				(
				𝑧
				)
				𝑔
				(
				𝑧
				)
				−
				𝛼
				(
				𝑧
				)
				𝑔
				(
				𝑧
				)
				ℎ
			

			

				′
			

			
				(
				𝑧
				)
				+
				𝑔
			

			

				′
			

			
				
				(
				𝑧
				)
				≡
				0
				.
			

		
	

						By integrating, we have
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			
				𝛼
				(
				𝑧
				)
				=
				𝑐
				𝑔
				(
				𝑧
				)
				𝑒
			

			
				ℎ
				(
				𝑧
				)
			

			

				,
			

		
	

						where 
	
		
			

				𝑐
			

		
	
 is a nonzero constant. From (24) and (31), we have
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑧
				)
			

			
				𝑛
				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				=
				
				1
				1
				+
			

			
				
			
			
				𝑐
				
				𝛼
				(
				𝑧
				)
				.
			

		
	

						By using a similar method as in the proof of Lemma 16, we get a contradiction.Case 2.2. 
	
		
			
				𝐹
				(
				𝑧
				,
				𝑓
				)
				≢
				0
			

		
	
. Let
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			

				𝐹
			

			

				∗
			

			
				(
				𝑧
				,
				𝑓
				)
				=
				𝐹
				(
				𝑧
				)
			

			
				
			
			
				𝑓
				(
				𝑧
				)
			

			

				2
			

			
				𝑓
				=
				𝑛
			

			

				′
			

			
				(
				𝑧
				)
			

			
				
			
			
				𝑓
				(
				𝑧
				)
				𝑔
				(
				𝑧
				)
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			

				
			

			
				
			
			
				𝑓
				(
				𝑧
				)
				+
				𝑔
				(
				𝑧
				)
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			

				𝑓
			

			

				′
			

			
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			

				
			

			
				
			
			
				𝑓
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				⋅
				𝑓
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			

				
			

			
				
			
			
				−
				
				𝑓
				(
				𝑧
				)
				𝑔
				(
				𝑧
				)
				ℎ
			

			

				′
			

			
				(
				𝑧
				)
				+
				𝑔
			

			

				′
			

			
				
				(
				𝑧
				)
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			

				
			

			
				
			
			
				.
				𝑓
				(
				𝑧
				)
			

		
	

						Then from (28), we have
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑧
				)
			

			
				𝑛
				+
				1
			

			

				𝐹
			

			

				∗
			

			
				(
				𝑧
				,
				𝑓
				)
				=
				𝛼
			

			

				′
			

			
				
				(
				𝑧
				)
				𝑔
				(
				𝑧
				)
				−
				𝛼
				(
				𝑧
				)
				𝑔
				(
				𝑧
				)
				ℎ
			

			

				′
			

			
				(
				𝑧
				)
				+
				𝑔
			

			

				′
			

			
				
				.
				(
				𝑧
				)
			

		
	

						From Lemma 13 and Lemma 14, we have
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				𝑚
				
				𝑟
				,
				𝑓
				(
				𝑧
				)
			

			

				𝑘
			

			

				𝐹
			

			

				∗
			

			
				
				
				(
				𝑧
				,
				𝑓
				)
				≤
				𝑆
				(
				𝑟
				,
				𝑓
				)
				+
				𝑂
				(
				𝑚
				(
				𝑟
				,
				𝑔
				)
				)
				+
				𝑂
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			
				𝑚
				
				𝑓
				𝑟
				,
			

			

				′
			

			
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			

				
			

			
				
			
			
				𝑓
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				
				
				,
				𝑘
				=
				1
				,
				2
				.
			

		
	

						Now for any given 
	
		
			
				𝜀
				(
				0
				<
				𝜀
				<
				1
				)
			

		
	
, we obtain from Lemma 17 and (27) that
							
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			
				𝑚
				
				𝑓
				𝑟
				,
			

			

				′
			

			
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			

				
			

			
				
			
			
				𝑓
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				
				
				
				=
				𝑆
				𝑟
				,
				𝑓
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				
				=
				𝑆
				(
				𝑟
				,
				𝑓
				(
				𝑧
				)
				)
				,
				𝑇
				(
				𝑟
				,
				𝑔
				)
				=
				𝑂
				(
				𝑟
			

			
				𝜎
				−
				𝜀
			

			
				)
				.
			

		
	

						It follows from (35) and (36) that
							
	
 		
 			
				(
				3
				7
				)
			
 			
				(
				3
				8
				)
			
 		
	

	
		
			
				𝑚
				
				𝑟
				,
				𝑓
				(
				𝑧
				)
				𝐹
			

			

				∗
			

			
				
				(
				𝑧
				,
				𝑓
				)
				=
				𝑂
				(
				𝑟
			

			
				𝜎
				−
				𝜀
			

			
				𝑚
				
				)
				+
				𝑆
				(
				𝑟
				,
				𝑓
				)
				,
				𝑟
				,
				𝑓
				(
				𝑧
				)
			

			

				2
			

			

				𝐹
			

			

				∗
			

			
				
				(
				𝑧
				,
				𝑓
				)
				=
				𝑂
				(
				𝑟
			

			
				𝜎
				−
				𝜀
			

			
				)
				+
				𝑆
				(
				𝑟
				,
				𝑓
				)
				.
			

		
	

						We obtain from the definition of 
	
		
			
				𝐹
				(
				𝑧
				,
				𝑓
				)
			

		
	
 that
							
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			
				𝑁
				(
				𝑟
				,
				𝐹
				(
				𝑧
				,
				𝑓
				)
				)
				=
				𝑂
				(
				𝑁
				(
				𝑟
				,
				𝑔
				(
				𝑧
				)
				)
				)
				=
				𝑂
				(
				𝑟
			

			
				𝜎
				−
				𝜀
			

			
				)
				.
			

		
	

						Thus from (38) and (39), we have
							
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			
				𝑇
				
				𝑟
				,
				𝑓
				(
				𝑧
				)
			

			

				2
			

			

				𝐹
			

			

				∗
			

			
				
				(
				𝑧
				,
				𝑓
				)
				=
				𝑇
				(
				𝑟
				,
				𝐹
				(
				𝑧
				,
				𝑓
				)
				)
				=
				𝑂
				(
				𝑟
			

			
				𝜎
				−
				𝜀
			

			
				)
				+
				𝑆
				(
				𝑟
				,
				𝑓
				)
				.
			

		
	

						Note that a zero of 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
 which is not a pole of 
	
		
			
				𝑔
				(
				𝑧
				)
			

		
	
 is a pole of 
	
		
			
				𝑓
				(
				𝑧
				)
				𝐹
			

			

				∗
			

			
				(
				𝑧
				,
				𝑓
				)
			

		
	
 with the multiplicity at most 1, so from (34) and (27) we get that, for 
	
		
			
				𝜀
				(
				>
				0
				)
			

		
	
 sufficiently small,
							
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			
				
				1
				(
				𝑛
				−
				1
				)
				𝑁
				𝑟
				,
			

			
				
			
			
				
				⎛
				⎜
				⎜
				⎝
				1
				𝑓
				(
				𝑧
				)
				≤
				𝑁
				𝑟
				,
			

			
				
			
			

				𝛼
			

			

				′
			

			
				
				(
				𝑧
				)
				𝑔
				(
				𝑧
				)
				−
				𝛼
				(
				𝑧
				)
				𝑔
				(
				𝑧
				)
				ℎ
			

			

				′
			

			
				(
				𝑧
				)
				+
				𝑔
			

			

				′
			

			
				
				⎞
				⎟
				⎟
				⎠
				(
				𝑧
				)
				+
				𝑂
				(
				𝑁
				(
				𝑟
				,
				𝑔
				(
				𝑧
				)
				)
				)
				=
				𝑂
				(
				𝑟
			

			
				𝜎
				−
				𝜀
			

			
				)
				+
				𝑆
				(
				𝑟
				,
				𝑓
				)
				.
			

		
	

						Hence from (33) and the above formula, we have
							
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			
				𝑁
				
				𝑟
				,
				𝑓
				(
				𝑧
				)
				𝐹
			

			

				∗
			

			
				
				
				𝑁
				
				1
				(
				𝑧
				,
				𝑓
				)
				=
				𝑂
				𝑟
				,
			

			
				
			
			
				
				
				𝑓
				(
				𝑧
				)
				+
				𝑁
				(
				𝑟
				,
				𝑔
				(
				𝑧
				)
				)
				=
				𝑂
				(
				𝑟
			

			
				𝜎
				−
				𝜀
			

			
				)
				+
				𝑆
				(
				𝑟
				,
				𝑓
				)
				.
			

		
	

						It follows from (37) and (42) that
							
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			
				𝑇
				
				𝑟
				,
				𝑓
				(
				𝑧
				)
				𝐹
			

			

				∗
			

			
				
				(
				𝑧
				,
				𝑓
				)
				=
				𝑂
				(
				𝑟
			

			
				𝜎
				−
				𝜀
			

			
				)
				+
				𝑆
				(
				𝑟
				,
				𝑓
				)
				.
			

		
	

						Therefore, from (40) and (43), we have
							
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			
				𝑇
				(
				𝑟
				,
				𝑓
				(
				𝑧
				)
				)
				=
				𝑂
				(
				𝑟
			

			
				𝜎
				−
				𝜀
			

			
				)
				+
				𝑆
				(
				𝑟
				,
				𝑓
				)
				,
			

		
	

						which contradicts the assumption that 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
 is a transcendental entire function of finite order 
	
		
			

				𝜎
			

		
	
. This completes the proof of Theorem 5.By using the same methods as in the proof of Theorem 5 (i) and (ii),  we complete the proof of Theorem 10.
4. Proof of Theorem 8
Proof. Firstly, we prove (ii) and (iii). (ii) Suppose that 
	
		
			
				𝑑
				(
				≠
				0
				)
			

		
	
 is the Borel exceptional value of 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
. Then 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
 can be written as follows:
							
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑧
				)
				=
				𝑑
				+
				𝑝
				(
				𝑧
				)
				𝑒
			

			
				𝛼
				𝑧
			

			

				𝑘
			

			

				,
			

		
	

						where 
	
		
			

				𝑘
			

		
	
 is a positive integer, 
	
		
			
				𝛼
				(
				≠
				0
				)
			

		
	
 is a constant, and 
	
		
			
				𝑝
				(
				𝑧
				)
				(
				≢
				0
				)
			

		
	
 is an entire function satisfying
							
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			
				𝜎
				(
				𝑝
				)
				<
				𝜎
				(
				𝑓
				)
				=
				𝑘
				.
			

		
	

						Thus
							
	
 		
 			
				(
				4
				7
				)
			
 		
	

	
		
			
				𝑓
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				
				=
				𝑑
				+
				𝑝
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				𝑝
			

			

				𝑖
			

			
				(
				𝑧
				)
				𝑒
			

			
				𝛼
				𝑧
			

			

				𝑘
			

			

				,
			

		
	

						where 
	
		
			

				𝑝
			

			

				𝑖
			

			
				(
				≢
				0
				)
			

		
	
 is an entire function satisfying 
	
		
			
				𝜎
				(
				𝑝
			

			

				𝑖
			

			
				)
				=
				𝑘
				−
				1
			

		
	
. So by using 
	
		
			

				∑
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				=
				0
			

		
	
, we have
							
	
 		
 			
				(
				4
				8
				)
			
 		
	

	
		
			
				𝐻
				(
				𝑧
				)
				=
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				
				𝑑
				+
				𝑝
				(
				𝑧
				)
				𝑒
			

			
				𝛼
				𝑧
			

			

				𝑘
			

			
				
				
				
				𝑑
				+
				𝑝
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				𝑝
			

			

				𝑖
			

			
				(
				𝑧
				)
				𝑒
			

			
				𝛼
				𝑧
			

			

				𝑘
			

			
				
				=
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			
				𝑑
				𝑎
			

			

				𝑖
			

			
				𝑝
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				𝑝
			

			

				𝑖
			

			
				(
				𝑧
				)
				𝑒
			

			
				𝛼
				𝑧
			

			

				𝑘
			

			

				+
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				
				𝑝
				(
				𝑧
				)
				𝑝
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				𝑝
			

			

				𝑖
			

			
				(
				𝑧
				)
				𝑒
			

			
				2
				𝛼
				𝑧
			

			

				𝑘
			

			

				.
			

		
	

						Since 
	
		
			

				∑
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				(
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				)
				≢
				0
			

		
	
, we see that
							
	
 		
 			
				(
				4
				9
				)
			
 		
	

	
		
			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑝
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				𝑝
			

			

				𝑖
			

			
				(
				𝑧
				)
				≢
				0
				.
			

		
	

						By (48) and (49), we see that
							
	
 		
 			
				(
				5
				0
				)
			
 		
	

	
		
			
				𝜎
				(
				𝐻
				)
				=
				𝜎
				(
				𝑓
				)
				=
				𝑘
				.
			

		
	

						If 
	
		
			
				𝐻
				(
				𝑧
				)
			

		
	
 has the Borel exceptional value 
	
		
			

				𝑑
			

			

				∗
			

		
	
, then
							
	
 		
 			
				(
				5
				1
				)
			
 		
	

	
		
			
				𝐻
				(
				𝑧
				)
				=
				𝑑
			

			

				∗
			

			
				+
				𝑝
			

			

				∗
			

			
				(
				𝑧
				)
				𝑒
			

			
				𝛽
				𝑧
			

			

				𝑘
			

			

				,
			

		
	

						where 
	
		
			
				𝛽
				(
				≠
				0
				)
			

		
	
 is a constant and 
	
		
			

				𝑝
			

			

				∗
			

			
				(
				𝑧
				)
				(
				≢
				0
				)
			

		
	
 is an entire function satisfying 
							
	
 		
 			
				(
				5
				2
				)
			
 		
	

	
		
			
				𝜎
				
				𝑝
			

			

				∗
			

			
				
				(
				𝑧
				)
				<
				𝜎
				(
				𝐻
				)
				=
				𝑘
				.
			

		
	

						By (48) and (51), we have
							
	
 		
 			
				(
				5
				3
				)
			
 		
	

	
		
			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			
				𝑑
				𝑎
			

			

				𝑖
			

			
				𝑝
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				𝑝
			

			

				𝑖
			

			
				(
				𝑧
				)
				𝑒
			

			
				𝛼
				𝑧
			

			

				𝑘
			

			

				+
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				
				𝑝
				(
				𝑧
				)
				𝑝
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				𝑝
			

			

				𝑖
			

			
				(
				𝑧
				)
				𝑒
			

			
				2
				𝛼
				𝑧
			

			

				𝑘
			

			
				−
				𝑝
			

			

				∗
			

			
				(
				𝑧
				)
				𝑒
			

			
				𝛽
				𝑧
			

			

				𝑘
			

			
				−
				𝑑
			

			

				∗
			

			
				=
				0
				.
			

		
	
Case 1. If 
	
		
			
				𝛽
				≠
				2
				𝛼
			

		
	
 and 
	
		
			
				𝛽
				≠
				𝛼
			

		
	
, then by Lemma 15 and (53), we can obtain that
							
	
 		
 			
				(
				5
				4
				)
			
 		
	

	
		
			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			
				𝑑
				𝑎
			

			

				𝑖
			

			
				𝑝
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				𝑝
			

			

				𝑖
			

			
				(
				𝑧
				)
				≡
				0
				.
			

		
	

						This contradicts with (49).Case 2. If 
	
		
			
				𝛽
				=
				2
				𝛼
			

		
	
 or 
	
		
			
				𝛽
				=
				𝛼
			

		
	
, then using the same method as above, we can also obtain a contradiction. Hence 
	
		
			
				𝐻
				(
				𝑧
				)
			

		
	
 has no Borel exceptional value.(iii) Suppose that 
	
		
			
				𝑑
				=
				0
			

		
	
 is the Borel exceptional value of 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
. Using the same method as above, we obtain
							
	
 		
 			
				(
				5
				5
				)
			
 		
	

	
		
			
				𝐻
				(
				𝑧
				)
				=
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				
				𝑝
				(
				𝑧
				)
				𝑝
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				𝑝
			

			

				𝑖
			

			
				(
				𝑧
				)
				𝑒
			

			
				2
				𝛼
				𝑧
			

			

				𝑘
			

			

				.
			

		
	

						From (49) and
							
	
 		
 			
				(
				5
				6
				)
			
 		
	

	
		
			
				𝜎
				
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				
				𝑝
				(
				𝑧
				)
				𝑝
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				𝑝
			

			

				𝑖
			

			
				
				(
				𝑧
				)
				<
				𝑘
				,
			

		
	

						we see that 
	
		
			

				0
			

		
	
 is the finite Borel exceptional value of 
	
		
			
				𝐻
				(
				𝑧
				)
			

		
	
. Thus, 
	
		
			
				𝐻
				(
				𝑧
				)
			

		
	
 has no nonzero finite Borel exceptional value.Finally, we prove (i). By the assertion of (ii) and (iii), we see that if 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
 has the finite Borel exceptional value, then any nonzero finite value 
	
		
			

				𝑎
			

		
	
 must not be the Borel exceptional value of 
	
		
			
				𝐻
				(
				𝑧
				)
			

		
	
. Hence 
	
		
			
				𝐻
				(
				𝑧
				)
			

		
	
 takes the value 
	
		
			

				𝑎
			

		
	
 infinitely often. By (50), we obtain 
	
		
			
				𝜆
				(
				𝐻
				−
				𝑎
				)
				=
				𝜎
				(
				𝐻
				)
				=
				𝜎
				(
				𝑓
				)
			

		
	
.
5. Proof of Theorem 9
Proof. Clearly, if 
	
		
			
				𝑎
				=
				0
			

		
	
, then 
	
		
			
				𝐻
				(
				𝑧
				)
			

		
	
 has infinitely many zeros since 
	
		
			

				∑
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				(
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				)
				(
				≢
				0
				)
			

		
	
 is an entire function and 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
 has infinitely many zeros.Now we suppose that 
	
		
			
				𝑎
				≠
				0
			

		
	
. Suppose that 
	
		
			
				𝐻
				(
				𝑧
				)
				−
				𝑎
			

		
	
 has only finitely many zeros. Then 
	
		
			
				𝐻
				(
				𝑧
				)
				−
				𝑎
			

		
	
 can be written as follows:
							
	
 		
 			
				(
				5
				7
				)
			
 		
	

	
		
			
				𝐻
				(
				𝑧
				)
				−
				𝑎
				=
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				
				𝑓
				(
				𝑧
				)
				𝑓
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				−
				𝑎
				=
				𝑝
				(
				𝑧
				)
				𝑒
			

			
				𝑞
				(
				𝑧
				)
			

			

				,
			

		
	

						where 
	
		
			
				𝑝
				(
				𝑧
				)
			

		
	
, 
	
		
			
				𝑞
				(
				𝑧
				)
			

		
	
 are polynomials. By Lemma 16, we see that 
	
		
			
				𝑝
				(
				𝑧
				)
				≢
				0
			

		
	
, 
	
		
			
				d
				e
				g
				𝑞
				(
				𝑧
				)
				≥
				1
			

		
	
. Differentiating (57) and eliminating 
	
		
			

				𝑒
			

			
				𝑞
				(
				𝑧
				)
			

		
	
, we obtain
							
	
 		
 			
				(
				5
				8
				)
			
 		
	

	
		
			
				
				∑
				𝑓
				(
				𝑧
				)
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				
			

			

				′
			

			
				
			
			
				∑
				𝑓
				(
				𝑧
				)
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				=
				𝑝
			

			

				′
			

			
				(
				𝑧
				)
				+
				𝑝
				(
				𝑧
				)
				𝑞
			

			

				′
			

			
				(
				𝑧
				)
			

			
				
			
			
				×
				
				𝑎
				𝑝
				(
				𝑧
				)
				1
				−
			

			
				
			
			
				∑
				𝑓
				(
				𝑧
				)
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				
				
				.
			

		
	

						Since there exists an infinite sequence 
	
		
			
				{
				𝑧
			

			

				𝑛
			

			

				}
			

		
	
 satisfying 
	
		
			
				𝑓
				(
				𝑧
			

			

				𝑛
			

			
				∑
				)
				=
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				(
				𝑧
			

			

				𝑛
			

			
				+
				𝑐
			

			

				𝑖
			

			
				)
				=
				0
			

		
	
, we see that there is a sufficiently large point 
	
		
			

				𝑧
			

			

				0
			

		
	
 such that 
	
		
			
				𝑓
				(
				𝑧
			

			

				0
			

			
				∑
				)
				=
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				(
				𝑧
			

			

				0
			

			
				+
				𝑐
			

			

				𝑖
			

			
				)
				=
				0
			

		
	
 and 
	
		
			

				𝑝
			

			

				′
			

			
				(
				𝑧
			

			

				0
			

			
				)
				+
				𝑝
				(
				𝑧
			

			

				0
			

			
				)
				𝑞
			

			

				′
			

			
				(
				𝑧
			

			

				0
			

			
				)
				≠
				0
			

		
	
, 
	
		
			
				𝑝
				(
				𝑧
			

			

				0
			

			
				)
				≠
				0
			

		
	
 at the same time.From observation, we have the following: 
	
		
			
				∑
				(
				𝑓
				(
				𝑧
				)
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				(
				𝑧
				+
				𝑐
			

			

				𝑖
			

			
				)
				)
			

			

				′
			

			
				∑
				/
				𝑓
				(
				𝑧
				)
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				(
				𝑧
				+
				𝑐
			

			

				𝑖
			

			

				)
			

		
	
 has a simple pole at 
	
		
			

				𝑧
			

			

				0
			

		
	
 and 
	
		
			
				∑
				𝑎
				/
				𝑓
				(
				𝑧
				)
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				𝑓
				(
				𝑧
				+
				𝑐
			

			

				𝑖
			

			

				)
			

		
	
 has pole at 
	
		
			

				𝑧
			

			

				0
			

		
	
 of multiplicity at least 2. This shows that (58) is a contradiction. Hence 
	
		
			
				𝐻
				(
				𝑧
				)
			

		
	
 takes every value 
	
		
			

				𝑎
			

		
	
 infinitely often.
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