The Existence of Solutions to the Nonhomogeneous A-Harmonic Equations with Variable Exponent

Haiyu Wen

Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China

Correspondence should be addressed to Haiyu Wen; wenhy@hit.edu.cn

Received 24 October 2013; Revised 16 January 2014; Accepted 17 January 2014; Published 24 February 2014

Academic Editor: Shusen Ding

Copyright © 2014 Haiyu Wen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We first discuss the existence and uniqueness of weak solution for the obstacle problem of the nonhomogeneous A-harmonic equation with variable exponent, and then we obtain the existence of the solutions of the equation $d^*A(x,d\omega) = B(x,d\omega)$ in the weighted variable exponent Sobolev space $W_0^{p(x)}(\Omega, \Lambda^I, \mu)$.

1. Introduction

In [1–5], the nonhomogeneous A-harmonic equation $d^*A(x,d\omega) = B(x,d\omega)$ for differential forms has received much investigation. In [6], the obstacle problem of the A-harmonic equation for differential forms has been discussed. However, most of these results are developed in the $L^p(\Omega, \Lambda^I)$ space or $W_1^{1,p}(\Omega, \Lambda^I)$ space. Meanwhile, in the past few years the subject of variable exponent space has undergone a vast development; see [7–11]. For example, [8–10] discuss the weighted $L^{p(x)}$ and $W^{k,p(x)}$ spaces and the weak solution for obstacle problem with variable growth has been studied in [10, 11].

In this paper, we are interested in the following obstacle problem:

$$\int_{\Omega} (A(x,du) \cdot d(v-u) + B(x,du) \cdot (v-u)) \, dx \geq 0$$

for v belonging to

$$\mathcal{K}_{\psi,\theta} = \{ v \in W_0^{p(x)}(\Omega, \Lambda^I, \mu) : v \geq \psi, \text{ a.e. } x \in \Omega, v - \theta \in W_0^{p(x)}(\Omega, \Lambda^I, \mu) \},$$

where $\psi(x) = \sum n_i(x)dx_i \in \Lambda^I(\mathbb{R}^n)$, $\psi(x) = \sum v_i(x)dx_i \in \Lambda^I(\mathbb{R}^n)$, $\psi_i, \Omega_i : \Omega \rightarrow [-\infty, +\infty]$; $v \geq \psi$, a.e. $x \in \Omega$ means that, for any I, we have $v_I \geq \psi_I$, a.e. $x \in \Omega$; $\theta \in W_0^{p(x)}(\Omega, \Lambda^I, \mu), l = 0, 1, \ldots, n - 1$, and the variable exponent $p(x) \in \mathcal{P}(\Omega)$ satisfies

$$1 < p^- \leq p(x) \leq p^+ < \infty \text{ for a.e. } x \in \Omega.$$ (3)

The operators $A(x,\xi) : \Omega \times \Lambda^I(\mathbb{R}^n) \rightarrow \Lambda^I(\mathbb{R})$ and $B(x,\xi) : \Omega \times \Lambda^I(\mathbb{R}^n) \rightarrow \Lambda^{I-1}(\mathbb{R})$ satisfy the following growth conditions on a bounded domain Ω:

(H1) $A(x,\xi)$ and $B(x,\xi)$ are measurable for all ξ with respect to x and continuous for a.e. $x \in \Omega$ with respect to ξ,

(H2) $|A(x,\xi)| \leq C_1 w(x)|\xi|^{p(x)-1}$,

(H3) $A(x,\xi) \cdot \xi \geq C_2 w(x)|\xi|^{p(x)}$,

(H4) $|B(x,\xi)| \leq C_3 w(x)|\xi|^{p(x)-1}$,

(H5) $B(x,d\xi) \cdot \xi \geq C_4 w(x)|\xi|^{p(x)}$,

(H6) $(A(x,d\xi)-A(x,d\eta)) \cdot (d\xi-d\eta) + (B(x,d\xi)-B(x,d\eta)) \cdot (\xi-\eta) \geq 0$ for $\xi \neq \eta$,

where C_1, C_2, C_3, C_4 are nonnegative constants. $w(x) \in L^1(\Omega)$ nonnegative and $w(x)^{1/(p(x)-1)} \in L^1(\Omega)$. We will discuss the existence and uniqueness of the solution $u \in \mathcal{K}_{\psi,\theta}$ for the abovementioned obstacle problem.

Now, we introduce the existing results and related definitions.

Throughout this paper, we assume that Ω is a bounded domain in \mathbb{R}^n. Let $\Lambda^I = \Lambda^I(\mathbb{R}^n)$ be the set of all I-forms in
A differential 1-form $u(x)$ is generated by $\{dx_1 \wedge dx_2 \wedge \cdots \wedge dx_l\}$, $l = 1, 2, \ldots, n$; that is, $u(x) = \sum_{i=1}^n u_i(x)dx_i = \sum u_{ij}dx_j \wedge dx_k$, where u_{ij} is differential function, $I = (i_1, i_2, \ldots, i_l)$, and $1 \leq i_1 < i_2 < \cdots < i_l \leq n$. Let $D'(\Omega, \Lambda^l)$ be the space of all differential 1-forms on Ω. For $\alpha(x)$, $\Sigma x_i dx_i = \Lambda$ and $\beta(x) = \Sigma \beta_i dx_i = \Lambda'$, then the inner product is obtained by $\alpha \cdot \beta = + (\alpha \wedge \beta) = \sum \alpha_i(x) \beta_i(x)$. We write $|u| = (u \cdot u)^{1/2} = (\sum |u_i(x)|^2)^{1/2}$. We denote the exterior derivative by $du = \sum_{i=1}^n (\partial u_i(x)/\partial x_i)dx_j \wedge dx_i : D'(\Omega, \Lambda^l) \rightarrow D'(\Omega, \Lambda^{l+1})$ for $l = 0, 1, \ldots, n$ - 1. Its formal adjoint operator $d^* : D'(\Omega, \Lambda^{l+1}) \rightarrow D'(\Omega, \Lambda^l)$ is given by $d^* = -(1)^{l+1}d*$. Next, we will introduce some basic properties of the weighted variable exponent Lebesgue spaces $L^{p(x)}(\Omega, \mu)$ and weighted variable exponent Sobolev spaces $W^{1,p(x)}(\Omega, \mu)$, and define $\mathcal{P}(\Omega)$ to be the set of all n-dimensional Lebesgue measurable functions $\rho : \Omega \rightarrow [1, \infty)$. Functions $\rho \in \mathcal{P}(\Omega)$ are called variable exponents on Ω. We define $\rho^{-} := \inf_{x \in \Omega} \rho(x)$, $\rho^{+} := \sup_{x \in \Omega} \rho(x)$. If $\rho^{-} < \infty$, then we call ρ a bounded variable exponent. If $\rho \in \mathcal{P}(\Omega)$, then we define $\rho := (1/\rho^{-}(x)) + (1/\rho^{+}(x)) = 1$, where $1/\infty := 0$. The property ρ^{-} is called the dual variable exponent of ρ. We denote ω as a weight by $w \in L^1_{\text{loc}}(\mathbb{R}^n)$ and $w > 0$ a.e.; also in general $du = wdx$. From [7, 10], we know that if $\rho \in \mathcal{P}(\Omega)$ satisfies (3), the weighted variable exponent Lebesgue spaces $L^{p(x)}(\Omega, \mu) = \{f : \int_{\Omega} |f(x)|^{p(x)}d\mu < \infty, \lambda > 0\}$ with the norm $\|f\|_{L^{p(x)}(\Omega, \mu)} = \inf\{\lambda > 0 : \int_{\Omega} |f(x)/\lambda|^{p(x)}d\mu < 1\}$ and the weighted variable exponent Sobolev spaces $W^{1,p(x)}(\Omega, \mu) = \{f \in L^{p(x)}(\Omega, \mu) : \forall \varphi \in L^{p(x)}(\Omega, \mu) \text{ with the norm } \|f\|_{W^{1,p(x)}(\Omega, \mu)} = \|f\|_{L^{p(x)}(\Omega, \mu)} + \|\nabla f\|_{L^{p(x)}(\Omega, \mu)}\}$ are Banach spaces and reflexive and uniformly convex. On the set of all differential forms on Ω, we define the weighted variable exponent Lebesgue spaces of differential 1-forms $L^{p(x)}(\Omega, \Lambda^1, \mu)$ and the weighted variable exponent Sobolev spaces of differential 1-forms $W^{1,p(x)}(\Omega, \Lambda^1, \mu)$.

Definition 1. We denote the weighted variable exponent Lebesgue spaces of differential 1-forms by $L^{p(x)}(\Omega, \Lambda^1, \mu) = \{\varphi = \sum_{i=1}^n \varphi_i(x)dx_i \in \Lambda^1 : \varphi_i(x) \in L^{p(x)}(\Omega, \mu)\}$, $l = 0, 1, 2 \ldots, n$ and we endow $L^{p(x)}(\Omega, \Lambda^1, \mu)$ with the following norm:
\[
\|\varphi\|_{L^{p(x)}(\Omega, \Lambda^1, \mu)} = \inf\{\lambda > 0 : \int_{\Omega} \left| \frac{\varphi(x)}{\lambda} \right|^{p(x)}d\mu \leq 1\}.
\]

And the spaces $W^{1,p(x)}(\Omega, \Lambda^1, \mu) = \{\varphi \in L^{p(x)}(\Omega, \Lambda^1, \mu) : du \in L^{p(x)}(\Omega, \Lambda^{1+1}, \mu)\}$ with the norm
\[
\|\varphi\|_{W^{1,p(x)}(\Omega, \Lambda^1, \mu)} = \|\varphi\|_{L^{p(x)}(\Omega, \Lambda^1, \mu)} + \|du\|_{L^{p(x)}(\Omega, \Lambda^{1+1}, \mu)}.
\]

are the weighted variable exponent Sobolev spaces of differential 1-forms; $l = 0, 1, 2, \ldots, n - 1$. $W^{1,p(x)}(\Omega, \Lambda^1, \mu)$ is the completion of $C_0^\infty(\Omega, \Lambda^1, \mu)$ in $W^{1,p(x)}(\Omega, \Lambda^1, \mu)$. We need the following Hölder inequalities; see [7, 10].

Proposition 2. Let $p, q \in \mathcal{P}(\Omega)$ be such that $1 = (1/p(x)) + (1/q(x))$ for μ-almost every $x \in \Omega$. Then
\[
\int_\Omega |fg| d\mu \leq \left(\frac{1}{p(x)} \right)^{1/2} \|f\|_{L^{p(x)}(\Omega, \mu)} + \left(\frac{1}{q(x)} \right)^{1/2} \|g\|_{L^{q(x)}(\Omega, \mu)},
\]

for all $f \in L^{p(x)}(\Omega, \mu)$ and $g \in L^{q(x)}(\Omega, \mu)$.

Lemma 3 (see [7]). Let (D, Σ, μ) be a σ-finite, complete measure space; if $f \in L^p(D, \mu)$, $g \in L^q(D, \mu)$, and $0 \leq |g| \leq |f|$ μ-almost everywhere, then $g \in L^t(D, \mu)$ and $\|g\|_{L^{t}(D, \mu)} \leq \|f\|_{L^{t}(D, \mu)}$.

By the inequality \((\sum_{i=1}^n a_i^q)^{1/q} \leq \sum_{i=1}^n a_i^{q_i} \leq n^{1/2} \sum_{i=1}^n (a_i^{q_i})^{1/2}\) for any $a_i \geq 0$, using Lemma 3, we can easily have the following lemma.

Lemma 4. If $u = \sum_{i=1}^n u_i(x)dx_i \in D'(\Omega, \Lambda^1)$ and $|u| = (\sum_{i=1}^n |u_i|^q)^{1/q}$, then $u \in L^{p(x)}(\Omega, \Lambda^1, \mu)$, and $\|u\|_{L^{p(x)}(\Omega, \Lambda^1, \mu)}$ are equivalent, and $\|u\|_{L^{p(x)}(\Omega, \Lambda^1, \mu)} = \|u\|_{L^{p(x)}(\Omega, \Lambda^1, \mu)}$.

2. **Main Results**

In this section, we will obtain the existence and uniqueness of weak solution for obstacle problem of the nonhomogeneous A-harmonic equation in space $W^{1,p(x)}(\Omega, \Lambda^1, \mu)$.

Theorem 5. Suppose $\mathfrak{R}_{\rho, \beta}$ is not empty, under conditions (H1)–(H6), and there exists a unique solution u to the obstacle problem (1)-(2). That is, there is a differential form u in $\mathfrak{R}_{\rho, \beta}$ such that
\[
\int_{\Omega} \left(A(x, du) \cdot d(v - u) + B(x, du) \cdot (v - u) \right) dx \geq 0,
\]

whenever $v \in \mathfrak{R}_{\rho, \beta}$.

We deduce Theorem 5 from a proposition of Kinderlehrer and Stampacchia.

Proposition 6 (see [12]). Let K be a nonempty closed convex subset of X and let $\mathfrak{M} : K \rightarrow X'$ be monotone, coercive, and weakly continuous on K. Then there exists an element u in K such that $\langle \mathfrak{M}u, v - u \rangle \geq 0$ whenever $v \in K$.

Now let $X = W^{1,p(x)}(\Omega, \Lambda^1, \mu)$ and (\cdot, \cdot) be the usual pairing between X and X', $(f, g) = \int_{\Omega} f \cdot g d\mu$, where g is in X and f in $X' = W^{1,p(x)}(\Omega, \Lambda^1, \mu)$. We will take $\mathfrak{R}_{\rho, \beta}$ as K. We define a mapping $\mathfrak{M} : \mathfrak{R}_{\rho, \beta} \rightarrow X'$ by
\[
\langle \mathfrak{M}u, v \rangle = \int_{\Omega} (A(x, dv) \cdot du + B(x, dv) \cdot u) dx
\]

for $u \in W^{1,p(x)}(\Omega, \Lambda^1, \mu)$.

Abstract and Applied Analysis
Lemma 7. If $p(x)$ satisfies (3), then spaces $L^p(x)(\Omega, \Lambda', \mu)$ and $W^p_d(x)(\Omega, \Lambda', \mu)$ are complete and convex.

Proof. From [7], we know that if p satisfies (3) and $w(x)^{1/(p(x)-1)} \in L^1(\Omega)$, then let $L^p(x)(\Omega, \mu)$ be Banach space and uniformly convex. If ω_1 and ω_2 are two l-forms: $\omega_1 = \sum_i a_i dx_i$ and $\omega_2 = \sum_i b_i dx_i$, we can easily have $\omega_1 + \omega_2 = \sum_i (a_i + b_i) dx_i$ and $d(\omega_1 + \omega_2) = d\omega_1 + d\omega_2$, so we can immediately obtain the convexity of spaces $L^p(x)(\Omega, \Lambda', \mu)$ and $W^p_d(x)(\Omega, \Lambda', \mu)$.

Let $u_j = \sum_i u_{ij} dx_i \in L^p(x)(\Omega, \Lambda', \mu)$ be a Cauchy sequence in $W^p_d(x)(\Omega, \Lambda', \mu)$. Then for any I, $u_j(x)$ converges in $L^p(x)(\Omega, \mu)$. Suppose that $u_j(x) \to u(x)$ in $L^p(x)(\Omega, \mu)$. Now let $u = \sum_i u_i dx_i \in L^p(x)(\Omega, \Lambda', \mu)$, we have

$$|u_j - u| = \left(\sum_i |u_{ij} - u_i|^2 \right)^{1/2} \leq \sum_i |u_{ij} - u_i|,$$

using Lemmas 3 and 4, and we know the sequence u_j converges to u in $L^p(x)(\Omega, \Lambda', \mu)$.

For the sequence $\{du_j\}$, we suppose $du_j \to v$ in $L^p(x)(\Omega, \Lambda'^{i+1}, \mu)$, and then $v \in L^p(x)(\Omega, \Lambda'^{i+1}, \mu)$. So (u_j, du_j) converges to (u, v) in the normed space $L^p(x)(\Omega, \Lambda', \mu) \times L^p(x)(\Omega, \Lambda'^{i+1}, \mu)$. From $du_j - du = \sum_i (du_{ij} - du_i) \wedge dx_i$, we have

$$|du_j - du| = \left|\sum_i \frac{\partial u_{ij}}{\partial x_i} - \frac{\partial u_i}{\partial x_i} \wedge dx_i \right| \leq \left(\sum_i \left|\sum_{j=1}^n \frac{\partial u_{ij}}{\partial x_i} - \frac{\partial u_i}{\partial x_i}\right|^2 \right)^{1/2} \leq \sum_i \frac{\partial u_{ij}}{\partial x_i} - \frac{\partial u_i}{\partial x_i} \leq n^{1/2} \left(\sum_i \left|\sum_{j=1}^n \frac{\partial u_{ij}}{\partial x_i} - \frac{\partial u_i}{\partial x_i}\right|^2 \right)^{1/2} = n \left|\nabla u_{ij} - \nabla u_i\right|.$$
Proof. It follows from (H6) that \(\mathcal{A} \) is monotone. To show that \(\mathcal{A} \) is coercive on \(K_{\phi, \theta} \), fix \(\phi \in K_{\phi, \theta} \) and using the conditions (H2)–(H5), (12), (13), and (6), then

\[
\langle \mathcal{A}u - \mathcal{A}\phi, u - \phi \rangle \geq C_2 \int_{\Omega} |du|^p(x) \, d\mu - C_3 \int_{\Omega} |\phi|^p(x) \, d\mu

\]

where \(\| \cdot \| \) is the \(L^p(x)(\Omega, \lambda', \mu) \) norm; taking \(\epsilon = C_2(p') / 2(C_1 + C_3) \), we have

\[
\langle \mathcal{A}u - \mathcal{A}\phi, u - \phi \rangle \geq \frac{C_2}{2} \int_{\Omega} |du|^p(x) \, d\mu + C_4 \int_{\Omega} |u|^p(x) \, d\mu

\]

as \(\| u - \phi \|_W^{p(x)}(\Omega, \lambda', \mu) \to \infty \). If follow that \(\mathcal{A} \) is coercive on \(K_{\phi, \theta} \). This completes the proof of Lemma 10.
Lemma 11. \(\mathcal{A} \) is weakly continuous on \(\mathcal{R}_{\psi, \beta} \).

Proof. Let \(u_i \in \mathcal{R}_{\psi, \beta} \) be a sequence that converges to an element \(u \in \mathcal{R}_{\psi, \beta} \) in \(W^{p(x)}_d(\Omega, \Lambda^{l-1}, \mu) \). Pick a subsequence \(u_{ij} \) such that \(u_{ij} \to u \) a.e. in \(\Omega \). Since the mapping \(\xi \to A(x, \xi) \) and \(\xi \to B(x, \xi) \) are continuous for a.e. \(x \) in \(\Omega \), we have \(A(x, u_{ij}(x))w^{-1/p(x)} \to A(x, u(x))w^{-1/p(x)} \) a.e. in \(\Omega \). Under the conditions (H2) and (H4), we know that \(A(x, u_{ij})w^{-1/p(x)} \) and \(B(x, u_{ij})w^{-1/p(x)} \) are uniformly bounded in \(L^{p(x)}(\Omega, \Lambda^{l-1}) \), and we have \(A(x, du_{ij})w^{-1/p(x)} \to A(x, du)w^{-1/p(x)} \) weakly in \(L^{p(x)}(\Omega, \Lambda^{l-1}, \mu) \) and \(B(x, du_{ij})w^{-1/p(x)} \to B(x, du)w^{-1/p(x)} \) weakly in \(L^{p(x)}(\Omega, \Lambda^{l-1}, \mu) \).

Since the weak limit is independent of the choice of the subsequence, it follows that

\[
\begin{align*}
A(x, du)w^{-1/p(x)} & \to A(x, du)w^{-1/p(x)}, \\
B(x, du)w^{-1/p(x)} & \to B(x, du)w^{-1/p(x)}
\end{align*}
\]

for all \(u \in L^{p(x)}(\Omega, \Lambda^l, \mu) \), \(du^{1/p(x)} \in L^{p(x)}(\Omega, \Lambda^{l-1}) \). Then we have

\[
\langle \mathcal{A}u_i, v \rangle = \int_{\Omega} \left(A(x, du_i)w^{-1/p(x)} \cdot dvu^{1/p(x)} \right) dx + \int_{\Omega} \left(B(x, du_i)w^{-1/p(x)} \cdot vwu^{1/p(x)} \right) dx
\]

\[
- \int_{\Omega} \left(A(x, du)w^{-1/p(x)} \cdot dvu^{1/p(x)} \right) dx + \int_{\Omega} \left(B(x, du)w^{-1/p(x)} \cdot vwu^{1/p(x)} \right) dx = \langle \mathcal{A}u, v \rangle.
\]

Hence \(\mathcal{A} \) is weakly continuous on \(\mathcal{R}_{\psi, \beta} \). This ends the proof of Lemma 11.

Proof of Theorem 5. We can apply Proposition 6 and the above lemmas to obtain the existence. If there are two weak solutions \(u_1, u_2 \in \mathcal{R}_{\psi, \beta} \) to obstacle problem (1)-(2), then we have

\[
\int_{\Omega} (A(x, du_1) \cdot du_1 - A(x, du_2) \cdot du_2) dx \geq 0,
\]

so

\[
\int_{\Omega} ((A(x, du_2) - A(x, du_1)) \cdot du_2 - A(x, du_1) \cdot du_1) dx \leq 0.
\]

In view of (H6), we can further infer that

\[
\int_{\Omega} ((A(x, du_2) - A(x, du_1)) \cdot du_2 - A(x, du_1) \cdot du_1) dx = 0.
\]

Thus

\[
\int_{\Omega} (A(x, du_2) \cdot du_2 - A(x, du_1) \cdot du_1) dx = 0.
\]

Corollary 12. Let \(\Omega \) be a bounded domain and \(\theta \in W^{p(x)}_d(\Omega, \Lambda^{l-1}, \mu) \). Under the conditions (H1)-(H6), there is a differential form \(u \in W^{p(x)}(\Omega, \Lambda^{l-1}, \mu) \) with \(u - \theta \in W^{p(x)}_d(\Omega, \Lambda^{l-1}, \mu) \) such that

\[
d^* A(x, du) = B(x, du), \quad \text{weakly in } \Omega;
\]

that is, \(\int_{\Omega} (A(x, du) \cdot dp + B(x, du) \cdot \varphi) dx = 0 \), whenever \(\varphi \in W^{p(x)}_d(\Omega, \Lambda^{l-1}, \mu), l = 1, 2, \ldots, n \).

Proof. Choose \(\psi \equiv \infty \) and let \(u \) be the solution to the obstacle problem (1)-(2) in \(\mathcal{R}_{\psi, \beta} \). For any \(\varphi \in W^{p(x)}_d(\Omega, \Lambda^{l-1}, \mu) \), since \(u + \varphi \) and \(u - \varphi \) both belong to \(\mathcal{R}_{\psi, \beta} \), we have

\[
\int_{\Omega} (A(x, du) \cdot dp + B(x, du) \cdot \varphi) dx \geq 0.
\]

Thus

\[
\int_{\Omega} (A(x, du) \cdot dp + B(x, du) \cdot \varphi) dx = 0.
\]

as desired.

Remark 13. If \(p(x) = p \), then \(\| u \|_{L^p(\Omega, \Lambda^l, \mu)} = \| u \|_{L^p(\Omega, \Lambda^l, \mu)} = \| u \|_{L^p(\Omega, \Lambda^l, \mu)} \).

Conflict of Interests

The author declares that there is no conflict of interests regarding the publication of this paper.

References

