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Abstract. 
A new approach is presented for obtaining the solutions to Yakubovich-
	
		
			

				𝑗
			

		
	
-conjugate quaternion
matrix equation 
	
		
			
				
				𝑋
				−
				𝐴
				𝑋
				𝐵
				=
				𝐶
				𝑌
			

		
	
 based on the real representation of a quaternion matrix. Compared
to the existing results, there are no requirements on the coefficient matrix 
	
		
			

				𝐴
			

		
	
. The closed
form solution is established and the equivalent form of solution is given for this Yakubovich-
	
		
			

				𝑗
			

		
	
-conjugate
quaternion matrix equation. Moreover, the existence of solution to complex conjugate
matrix equation 
	
		
			
				𝑋
				−
				𝐴
			

			
				
			
			
				𝑋
				𝐵
				=
				𝐶
				𝑌
			

		
	
 is also characterized and the solution is derived in an explicit
form by means of real representation of a complex matrix. Actually, Yakubovich-conjugate matrix
equation over complex field is a special case of Yakubovich-
	
		
			

				𝑗
			

		
	
-conjugate quaternion matrix equation

	
		
			
				
				𝑋
				−
				𝐴
				𝑋
				𝐵
				=
				𝐶
				𝑌
			

		
	
. Numerical example shows the effectiveness of the proposed results.


1. Introduction
The linear matrix equation 
	
		
			
				𝑋
				−
				𝐴
				𝑋
				𝐵
				=
				𝐶
			

		
	
, which is called the Kalman-Yakubovich matrix equation in [1], is closely related to many problems in conventional linear control systems theory, such as pole assignment design [2], Luenberger-type observer design [3, 4], and robust fault detection [5, 6]. In recent years, many studies have been reported on the solutions to many algebraic equations including quaternion matrix equations and nonlinear matrix equations. Yuan and Liao [7] investigated the least squares solution of the quaternion 
	
		
			

				𝑗
			

		
	
-conjugate matrix equation 
	
		
			
				
				𝑋
				−
				𝐴
				𝑋
				𝐵
				=
				𝐶
			

		
	
 (where 
	
		
			
				
				𝑋
			

		
	
 denotes the 
	
		
			

				𝑗
			

		
	
-conjugate of quaternion matrix 
	
		
			

				𝑋
			

		
	
) with the least norm using the complex representation of quaternion matrix, the Kronecker product of matrices, and the Moore-Penrose generalized inverse. The authors in [8] considered the matrix nearness problem associated with the quaternion matrix equation 
	
		
			
				𝐴
				𝑋
				𝐴
			

			

				𝐻
			

			
				+
				𝐵
				𝑌
				𝐵
			

			

				𝐻
			

			
				=
				𝐶
			

		
	
 by means of the CCD-Q, GSVD-Q, and the projection theorem in the finite dimensional inner product space. In addition, Song et al. [9, 10] established the explicit solutions to the quaternion 
	
		
			

				𝑗
			

		
	
-conjugate matrix equation 
	
		
			
				
				𝑋
				−
				𝐴
				𝑋
				𝐵
				=
				𝐶
			

		
	
,  
	
		
			
				
				𝑋
				𝐹
				−
				𝐴
				𝑋
				=
				𝐶
				𝑌
			

		
	
, but here the known quaternion matrix 
	
		
			

				𝐴
			

		
	
 is a block diagonal form. Wang et al. in [11, 12] investigated Hermitian tridiagonal solutions and the minimal-norm solution with the least norm of quaternionic least squares problem in quaternionic quantum theory. Besides, in [13, 14], some solutions for the Kalman-Yakubovich equation are presented in terms of the coefficients of characteristic polynomial of matrix 
	
		
			

				𝐴
			

		
	
 or the Leverrier algorithm. The existence of solution to the matrix equation 
	
		
			
				𝑋
				−
				𝐴
			

			
				
			
			
				𝑋
				𝐵
				=
				𝐶
			

		
	
, which, for convenience, is called the Kalman-Yakubovich-conjugate matrix equation, is established, and the explicit solution is derived. Several necessary and sufficient conditions for the existence of a unique solution to the matrix equation 
	
		
			

				∑
			

			
				𝑘
				𝑖
				=
				0
			

			

				𝐴
			

			

				𝑖
			

			
				𝑋
				𝐵
			

			

				𝑖
			

			
				=
				𝐸
			

		
	
 over quaternion field are obtained [15]. The authors in [16–18] have provided the consistence of the matrix equation 
	
		
			
				𝐴
				𝑋
				−
			

			
				
			
			
				𝑋
				𝐵
				=
				𝐶
			

		
	
 via the consimilarity of two matrices. In [19], Wu et al. construct some explicit expressions of the solution of the matrix equation 
	
		
			
				𝐴
				𝑋
				−
			

			
				
			
			
				𝑋
				𝐵
				=
				𝐶
			

		
	
 by means of a real representation of a complex matrix. It is shown that there exists a unique solution if and only if 
	
		
			

				𝐴
			

			
				
			
			

				𝐴
			

		
	
 and 
	
		
			

				𝐵
			

			
				
			
			

				𝐵
			

		
	
 have no common eigenvalues.
In this paper, we study quaternion 
	
		
			

				𝑗
			

		
	
-conjugate matrix equation 
	
		
			
				
				𝑋
				−
				𝐴
				𝑋
				𝐵
				=
				𝐶
				𝑌
			

		
	
 by means of real representation of a quaternion matrix. Compared to the complex representation method [9, 10], the real representation method does not require any special case of the known matrix 
	
		
			

				𝐴
			

		
	
. We propose the explicit solutions to the above Yakubovich-
	
		
			

				𝑗
			

		
	
-conjugate quaternion matrix equation. As the special case of quaternion 
	
		
			

				𝑗
			

		
	
-conjugate matrix equation 
	
		
			
				
				𝑋
				−
				𝐴
				𝑋
				𝐵
				=
				𝐶
				𝑌
			

		
	
, complex conjugate matrix equation 
	
		
			
				𝑋
				−
				𝐴
			

			
				
			
			
				𝑋
				𝐵
				=
				𝐶
			

		
	
 and Kalman-Yakubovich quaternion matrix equation are also investigated. The explicit solutions to the complex conjugate matrix equation have been established.
Throughout this paper, we use the following notations. Let 
	
		
			

				𝑅
			

		
	
 denote the real number field, 
	
		
			

				𝐶
			

		
	
 the complex number field, and 
	
		
			
				𝑄
				=
				𝑅
				⊕
				𝑅
				𝑖
				⊕
				𝑅
				𝑗
				⊕
				𝑅
				𝑘
			

		
	
 the quaternion field, where 
	
		
			

				𝑖
			

			

				2
			

			
				=
				𝑗
			

			

				2
			

			
				=
				𝑘
			

			

				2
			

			
				=
				−
				1
			

		
	
,  
	
		
			
				𝑖
				𝑗
				=
				−
				𝑗
				𝑖
				=
				𝑘
			

		
	
. 
	
		
			

				𝑅
			

			
				𝑚
				×
				𝑛
			

			
				(
				𝐶
			

			
				𝑚
				×
				𝑛
			

		
	
 or 
	
		
			

				𝑄
			

			
				𝑚
				×
				𝑛
			

			

				)
			

		
	
 denotes the set of all 
	
		
			
				𝑚
				×
				𝑛
			

		
	
 matrices on 
	
		
			
				𝑅
				(
				𝐶
			

			
				o
				r
			

			
				𝑄
				)
			

		
	
. For any matrix 
	
		
			
				𝐴
				∈
				𝐶
			

			
				𝑚
				×
				𝑛
			

		
	
, 
	
		
			

				𝐴
			

			

				𝑇
			

		
	
, 
	
		
			
				
			
			

				𝐴
			

		
	
, 
	
		
			

				𝐴
			

			

				𝐻
			

		
	
, 
	
		
			
				d
				e
				t
				𝐴
			

		
	
, and 
	
		
			

				𝐴
			

			

				∗
			

		
	
 represent the transpose, conjugate, conjugate transpose, determinant, and adjoint of 
	
		
			

				𝐴
			

		
	
, respectively. In addition, symbol 
	
		
			

				𝐴
			

			

				𝜎
			

		
	
 is the real representation of quaternion matrix 
	
		
			

				𝐴
			

		
	
. 
	
		
			
				𝐴
				⊗
				𝐵
				=
				(
				𝑎
			

			
				𝑖
				𝑗
			

			
				𝐵
				)
			

		
	
 denotes the Kronecker product of two matrices 
	
		
			

				𝐴
			

		
	
 and 
	
		
			

				𝐵
			

		
	
. If 
	
		
			
				𝐴
				∈
				𝑄
			

			
				𝑚
				×
				𝑛
			

		
	
, let 
	
		
			
				𝐴
				=
				𝐴
			

			

				1
			

			
				+
				𝐴
			

			

				2
			

			
				𝑖
				+
				𝐴
			

			

				3
			

			
				𝑗
				+
				𝐴
			

			

				4
			

			

				𝑘
			

		
	
, where 
	
		
			

				𝐴
			

			

				𝑡
			

			
				∈
				𝑅
			

			
				𝑚
				×
				𝑛
			

		
	
,  
	
		
			
				𝑡
				=
				1
				,
				…
				,
				4
			

		
	
, and define 
	
		
			
				
				𝐴
				=
				𝐴
			

			

				1
			

			
				−
				𝐴
			

			

				2
			

			
				𝑖
				+
				𝐴
			

			

				3
			

			
				𝑗
				−
				𝐴
			

			

				4
			

			

				𝑘
			

		
	
 to be the 
	
		
			

				𝑗
			

		
	
-conjugate of 
	
		
			

				𝐴
			

		
	
. For 
	
		
			
				𝐴
				∈
				𝐶
			

			
				𝑚
				×
				𝑛
			

		
	
, 
	
		
			
				v
				e
				c
				(
				𝐴
				)
			

		
	
 is defined as 
	
		
			
				
				𝑎
				v
				e
				c
				(
				𝐴
				)
				=
			

			
				𝑇
				1
			

			

				𝑎
			

			
				𝑇
				2
			

			
				⋯
				𝑎
			

			
				𝑇
				𝑛
			

			

				
			

			

				𝑇
			

		
	
. Furthermore, letting 
	
		
			
				𝐴
				∈
				𝑄
			

			
				𝑛
				×
				𝑛
			

		
	
, 
	
		
			
				𝐵
				∈
				𝑄
			

			
				𝑛
				×
				𝑟
			

		
	
, and 
	
		
			
				𝐶
				∈
				𝑄
			

			
				𝑚
				×
				𝑛
			

		
	
, we have the following notations associated with these matrices:
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			

				𝑄
			

			

				𝑐
			

			
				
				(
				𝐴
				,
				𝐵
				,
				𝑛
				)
				=
				𝐵
				𝐴
				𝐵
				⋯
				𝐴
			

			
				𝑛
				−
				1
			

			
				𝐵
				
				,
				𝑄
			

			

				𝑜
			

			
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				𝐶
				⋮
				(
				𝐴
				,
				𝐶
				,
				𝑘
				)
				=
				𝐶
				𝐴
				𝐶
				𝐴
			

			
				𝑘
				−
				1
			

			
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
				𝑓
			

			

				𝐴
			

			

				𝜎
			

			
				
				(
				𝑠
				)
				=
				d
				e
				t
				𝑠
				𝐼
				−
				𝐴
			

			

				𝜎
			

			
				
				=
				𝑠
			

			
				2
				𝑛
			

			
				+
				𝛼
			

			
				2
				𝑛
				−
				1
			

			

				𝑠
			

			
				2
				𝑛
				−
				1
			

			
				+
				⋯
				+
				𝛼
			

			

				1
			

			
				𝑠
				+
				𝛼
			

			

				0
			

			
				,
				𝑆
			

			

				𝑟
			

			
				
				𝐼
				,
				𝐴
			

			

				𝜎
			

			
				
				=
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				𝐼
			

			

				𝑟
			

			

				𝛼
			

			

				2
			

			

				𝐼
			

			

				𝑟
			

			

				𝛼
			

			

				4
			

			

				𝐼
			

			

				𝑟
			

			
				⋯
				𝛼
			

			
				2
				(
				𝑛
				−
				1
				)
			

			

				𝐼
			

			

				𝑟
			

			

				𝐼
			

			

				𝑟
			

			

				𝛼
			

			

				2
			

			

				𝐼
			

			

				𝑟
			

			
				⋯
				𝛼
			

			
				2
				(
				𝑛
				−
				2
				)
			

			

				𝐼
			

			

				𝑟
			

			
				𝐼
				⋯
				⋯
			

			

				𝑟
			

			

				𝛼
			

			

				2
			

			

				𝐼
			

			

				𝑟
			

			

				𝐼
			

			

				𝑟
			

			
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				.
			

		
	

					Obviously, 
	
		
			

				𝑄
			

			

				𝑐
			

			
				(
				𝐴
				,
				𝐵
				,
				𝑛
				)
			

		
	
 is the controllability matrix of the matrix pair 
	
		
			
				(
				𝐴
				,
				𝐵
				)
			

		
	
, 
	
		
			

				𝑄
			

			

				𝑜
			

			
				(
				𝐴
				,
				𝐶
				,
				𝑘
				)
			

		
	
 is the observability matrix of the matrix pair 
	
		
			
				(
				𝐴
				,
				𝐶
				)
			

		
	
, and 
	
		
			

				𝑆
			

			

				𝑟
			

			
				(
				𝐼
				,
				𝐴
			

			

				𝜎
			

			

				)
			

		
	
 is a symmetric matrix.
2. Quaternion-
	
		
			

				𝑗
			

		
	
-Conjugate Matrix Equation 
	
		
			
				
				𝑋
				−
				𝐴
				𝑋
				𝐵
				=
				𝐶
				𝑌
			

		
	

2.1. Real Matrix Equation 
	
		
			
				𝑋
				−
				𝐴
				𝑋
				𝐵
				=
				𝐶
				𝑌
			

		
	

In this subsection, we investigate the Yakubovich matrix equation over real field
								
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				𝑋
				−
				𝐴
				𝑋
				𝐵
				=
				𝐶
				𝑌
				.
			

		
	

Theorem 1.  Suppose the real matrices 
	
		
			
				𝐴
				∈
				𝑅
			

			
				𝑛
				×
				𝑛
			

		
	
, 
	
		
			
				𝐵
				∈
				𝑅
			

			
				𝑝
				×
				𝑝
			

		
	
, 
	
		
			
				𝐶
				∈
				𝑅
			

			
				𝑛
				×
				𝑟
			

		
	
, 
	
		
			
				{
				𝑠
				∣
				d
				e
				t
				(
				𝐼
				−
				𝑠
				𝐴
				)
				=
				0
				}
				∩
				𝜆
				(
				𝐵
				)
				=
				𝜙
			

		
	
; let
									
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			

				𝑓
			

			
				(
				𝐼
				,
				𝐴
				)
			

			
				(
				𝑠
				)
				=
				d
				e
				t
				(
				𝐼
				−
				𝑠
				𝐴
				)
				=
				𝛼
			

			

				𝑛
			

			

				𝑠
			

			

				𝑛
			

			
				+
				⋯
				+
				𝛼
			

			

				1
			

			
				𝑠
				+
				𝛼
			

			

				0
			

			
				,
				𝛼
			

			

				0
			

			
				=
				1
				,
			

			
				a
				d
				j
			

			
				(
				𝐼
				−
				𝑠
				𝐴
				)
				=
				𝑅
			

			
				𝑛
				−
				1
			

			

				𝑠
			

			
				𝑛
				−
				1
			

			
				+
				⋯
				+
				𝑅
			

			

				1
			

			
				𝑠
				+
				𝑅
			

			

				0
			

			

				.
			

		
	

								Then, all the solutions to the Yakubovich matrix equation (2) can be established as
									
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				𝑋
				=
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑖
				=
				0
			

			

				𝑅
			

			

				𝑖
			

			
				𝐶
				𝑍
				𝐵
			

			

				𝑖
			

			
				,
				𝑌
				=
				𝑍
				𝑓
			

			
				(
				𝐼
				,
				𝐴
				)
			

			
				(
				𝐵
				)
				,
			

		
	

								where the matrix 
	
		
			
				𝑍
				∈
				𝑅
			

			
				𝑟
				×
				𝑝
			

		
	
 is an arbitrary matrix.
Proof. We first show that the matrices 
	
		
			

				𝑋
			

		
	
 and 
	
		
			

				𝑌
			

		
	
 given in (4) are solutions of the matrix equation (2). By the direct calculation we have
									
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			
				𝑋
				−
				𝐴
				𝑋
				𝐵
				=
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑖
				=
				0
			

			

				𝑅
			

			

				𝑖
			

			
				𝐶
				𝑍
				𝐵
			

			

				𝑖
			

			
				−
				𝐴
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑖
				=
				0
			

			

				𝑅
			

			

				𝑖
			

			
				𝐶
				𝑍
				𝐵
			

			

				𝑖
			

			
				𝐵
				=
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑖
				=
				0
			

			

				𝑅
			

			

				𝑖
			

			
				𝐶
				𝑍
				𝐵
			

			

				𝑖
			

			

				−
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑖
				=
				0
			

			
				𝐴
				𝑅
			

			

				𝑖
			

			
				𝐶
				𝑍
				𝐵
			

			
				𝑖
				+
				1
			

			
				=
				𝑅
			

			

				0
			

			
				𝐶
				𝑍
				+
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑖
				=
				1
			

			
				
				𝑅
			

			

				𝑖
			

			
				−
				𝐴
				𝑅
			

			
				𝑖
				−
				1
			

			
				
				𝐶
				𝑍
				𝐵
			

			

				𝑖
			

			
				−
				𝐴
				𝑅
			

			
				𝑛
				−
				1
			

			
				𝐶
				𝑍
				𝐵
			

			

				𝑛
			

			

				.
			

		
	

								Due to the relation 
	
		
			
				(
				𝐼
				−
				𝑠
				𝐴
				)
			

			
				a
				d
				j
			

			
				(
				𝐼
				−
				𝑠
				𝐴
				)
				=
				𝐼
				d
				e
				t
				(
				𝐼
				−
				𝑠
				𝐴
				)
			

		
	
, it is easily derived that
									
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			

				𝑅
			

			

				0
			

			
				=
				𝛼
			

			

				0
			

			
				𝑅
				𝐼
				,
			

			

				𝑖
			

			
				−
				𝐴
				𝑅
			

			
				𝑖
				−
				1
			

			
				=
				𝛼
			

			

				𝑖
			

			
				𝐼
				,
				𝑖
				=
				1
				∶
				𝑛
				−
				1
				,
				−
				𝐴
				𝑅
			

			
				𝑛
				−
				1
			

			
				=
				𝛼
			

			

				𝑛
			

			
				𝐼
				.
			

		
	

								So one has
									
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			

				𝑅
			

			

				0
			

			
				𝐶
				𝑍
				+
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑖
				=
				1
			

			
				
				𝑅
			

			

				𝑖
			

			
				−
				𝐴
				𝑅
			

			
				𝑖
				−
				1
			

			
				
				𝐶
				𝑍
				𝐵
			

			

				𝑖
			

			
				−
				𝐴
				𝑅
			

			
				𝑛
				−
				1
			

			
				𝐶
				𝑍
				𝐵
			

			

				𝑛
			

			
				=
				𝐶
				𝑍
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				0
			

			

				𝛼
			

			

				𝑖
			

			

				𝐵
			

			

				𝑖
			

			
				=
				𝐶
				𝑍
				𝑓
			

			
				(
				𝐼
				,
				𝐴
				)
			

			
				(
				𝐵
				)
				=
				𝐶
				𝑌
				.
			

		
	

								Thus, the matrices 
	
		
			

				𝑋
			

		
	
 and 
	
		
			

				𝑌
			

		
	
 given in (4) satisfy the matrix equation (2).Secondly, we show the completeness of solution (4). It follows from Theorem 6 of [20] that there are 
	
		
			
				𝑟
				𝑝
			

		
	
 degrees of freedom in the solution of matrix equation (2), while solution (4) has exactly 
	
		
			
				𝑟
				𝑝
			

		
	
 parameters represented by the elements of the free matrix 
	
		
			

				𝑍
			

		
	
. Therefore, in the following we only need to show that all the parameters in the matrix 
	
		
			

				𝑍
			

		
	
 contribute to the solution. To do this, it suffices to show that the mapping 
	
		
			
				𝑍
				→
				(
				𝑋
				,
				𝑌
				)
			

		
	
 defined by (5) is injective. This is true since 
	
		
			

				𝑓
			

			
				(
				𝐼
				,
				𝐴
				)
			

			
				(
				𝐵
				)
			

		
	
 is nonsingular under the condition of 
	
		
			
				{
				𝑠
				∣
				d
				e
				t
				(
				𝐼
				−
				𝑠
				𝐴
				)
				=
				0
				}
				∩
				𝜆
				(
				𝐵
				)
				=
				𝜙
			

		
	
. The proof is thus completed.
In [21], we can find the following well-known generalized Faddeev-Leverrier algorithm:
								
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			

				𝑅
			

			

				𝑘
			

			
				=
				𝑅
			

			
				𝑘
				−
				1
			

			
				𝐴
				+
				𝛼
			

			

				𝑘
			

			

				𝐼
			

			

				𝑛
			

			
				,
				𝑅
			

			

				0
			

			
				=
				𝐼
			

			

				𝑛
			

			
				𝛼
				,
				𝑘
				=
				1
				,
				2
				,
				…
				,
				𝑛
				,
			

			

				𝑘
			

			

				=
			

			
				t
				r
				a
				c
				e
			

			
				
				𝑅
			

			
				𝑘
				−
				1
			

			
				𝐴
				
			

			
				
			
			
				𝑘
				,
				𝛼
			

			

				0
			

			
				=
				1
				,
				𝑘
				=
				1
				,
				2
				,
				…
				,
				𝑛
				,
			

		
	

							where 
	
		
			

				𝛼
			

			

				𝑖
			

		
	
, 
	
		
			
				𝑖
				=
				0
				,
				1
				,
				2
				,
				…
				,
				𝑛
				−
				1
			

		
	
, are the coefficients of the characteristic polynomial of the matrix 
	
		
			

				𝐴
			

		
	
, and 
	
		
			

				𝑅
			

			

				𝑖
			

		
	
, 
	
		
			
				𝑖
				=
				0
				,
				1
				,
				…
				,
				𝑛
				−
				1
			

		
	
, are the coefficient matrices of the adjoint matrix 
	
		
			
				a
				d
				j
			

			
				(
				𝑠
				𝐼
			

			

				𝑛
			

			
				−
				𝐴
				)
			

		
	
.
Theorem 2.  Given matrices 
	
		
			
				𝐴
				∈
				𝑅
			

			
				𝑛
				×
				𝑛
			

		
	
, 
	
		
			
				𝐵
				∈
				𝑅
			

			
				𝑝
				×
				𝑝
			

		
	
, 
	
		
			
				𝐶
				∈
				𝑅
			

			
				𝑟
				×
				𝑝
			

		
	
, let
									
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			

				𝑓
			

			
				(
				𝐼
				,
				𝐴
				)
			

			
				(
				𝑠
				)
				=
				d
				e
				t
				(
				𝐼
				−
				𝑠
				𝐴
				)
				=
				𝛼
			

			

				𝑛
			

			

				𝑠
			

			

				𝑛
			

			
				+
				⋯
				+
				𝛼
			

			

				1
			

			
				𝑠
				+
				𝛼
			

			

				0
			

			
				,
				𝛼
			

			

				0
			

			
				=
				1
				.
			

		
	

								Then the matrices 
	
		
			

				𝑋
			

		
	
 and 
	
		
			

				𝑌
			

		
	
 given by (4) have the following equivalent form:
									
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				𝑋
				=
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑗
				𝑗
				=
				0
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝛼
			

			

				𝑘
			

			

				𝐴
			

			
				𝑗
				−
				𝑘
			

			
				𝐶
				𝑍
				𝐵
			

			

				𝑗
			

			
				,
				𝑌
				=
				𝑍
				𝑓
			

			
				(
				𝐼
				,
				𝐴
				)
			

			
				(
				𝐵
				)
				.
			

		
	

Proof. According to (8), the following is easily obtained:
									
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			

				𝑅
			

			

				0
			

			
				𝑅
				=
				𝐼
				,
			

			

				1
			

			
				=
				𝛼
			

			

				1
			

			
				𝑅
				𝐼
				+
				𝐴
				,
			

			

				2
			

			
				=
				𝛼
			

			

				2
			

			
				𝐼
				+
				𝛼
			

			

				1
			

			
				𝐴
				+
				𝐴
			

			

				2
			

			
				,
				⋮
				𝑅
			

			
				𝑛
				−
				1
			

			
				=
				𝛼
			

			
				𝑛
				−
				1
			

			
				𝐼
				+
				𝛼
			

			
				𝑛
				−
				2
			

			
				𝐴
				+
				⋯
				+
				𝐴
			

			
				𝑛
				−
				1
			

			

				.
			

		
	

								This relation can be compactly expressed as
									
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			

				𝑅
			

			

				𝑗
			

			

				=
			

			

				𝑗
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝛼
			

			

				𝑘
			

			

				𝐴
			

			
				𝑗
				−
				𝑘
			

			
				,
				𝛼
			

			

				0
			

			
				=
				1
				,
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑛
				−
				1
				.
			

		
	

								Substituting this into the expression of 
	
		
			

				𝑋
			

		
	
 in (10) and recording the sum, we have
									
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				𝑋
				=
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑗
				=
				0
			

			

				𝑅
			

			

				𝑗
			

			
				𝐶
				𝑍
				𝐵
			

			

				𝑗
			

			

				=
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑗
				=
				0
			

			

				
			

			

				𝑗
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝛼
			

			

				𝑘
			

			

				𝐴
			

			
				𝑗
				−
				𝑘
			

			
				
				𝐶
				𝑍
				𝐵
			

			

				𝑗
			

			

				=
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑗
				𝑗
				=
				0
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝛼
			

			

				𝑘
			

			

				𝐴
			

			
				𝑗
				−
				𝑘
			

			
				𝐶
				𝑍
				𝐵
			

			

				𝑗
			

			

				.
			

		
	

								Combining this with Theorem 1 gives the conclusion.
2.2. Real Representation of a Quaternion Matrix
For any quaternion matrix 
	
		
			
				𝐴
				=
				𝐴
			

			

				1
			

			
				+
				𝐴
			

			

				2
			

			
				𝑖
				+
				𝐴
			

			

				3
			

			
				𝑗
				+
				𝐴
			

			

				4
			

			
				𝑘
				∈
				𝑄
			

			
				𝑚
				×
				𝑛
			

		
	
, 
	
		
			

				𝐴
			

			

				𝑙
			

			
				∈
				𝑅
			

			
				𝑚
				×
				𝑛
			

		
	
  
	
		
			
				(
				𝑙
				=
				1
				,
				2
				,
				3
				,
				4
				)
			

		
	
, the real representation matrix of quaternion matrix 
	
		
			

				𝐴
			

		
	
 can be defined as
								
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			

				𝐴
			

			

				𝜎
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				𝐴
			

			

				1
			

			

				𝐴
			

			

				2
			

			
				−
				𝐴
			

			

				3
			

			

				𝐴
			

			

				4
			

			

				𝐴
			

			

				2
			

			
				−
				𝐴
			

			

				1
			

			
				−
				𝐴
			

			

				4
			

			
				−
				𝐴
			

			

				3
			

			

				𝐴
			

			

				3
			

			
				−
				𝐴
			

			

				4
			

			

				𝐴
			

			

				1
			

			

				𝐴
			

			

				2
			

			

				𝐴
			

			

				4
			

			

				𝐴
			

			

				3
			

			

				𝐴
			

			

				2
			

			
				−
				𝐴
			

			

				1
			

			
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				∈
				𝑅
			

			
				4
				𝑚
				×
				4
				𝑛
			

			

				.
			

		
	

For a 
	
		
			
				𝑚
				×
				𝑛
			

		
	
 quaternion matrix 
	
		
			

				𝐴
			

		
	
, we define 
	
		
			

				𝐴
			

			
				𝑡
				𝜎
			

			
				=
				(
				𝐴
			

			

				𝜎
			

			

				)
			

			

				𝑡
			

		
	
. In addition, if we let  
								
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			

				𝑃
			

			

				𝑡
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				𝐼
			

			

				𝑡
			

			
				0
				0
				0
				0
				−
				𝐼
			

			

				𝑡
			

			
				0
				0
				0
				0
				𝐼
			

			

				𝑡
			

			
				0
				0
				0
				0
				−
				𝐼
			

			

				𝑡
			

			
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
				𝑄
			

			

				𝑡
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				0
				−
				𝐼
			

			

				𝑡
			

			
				𝐼
				0
				0
			

			

				𝑡
			

			
				0
				0
				0
				0
				0
				0
				𝐼
			

			

				𝑡
			

			
				0
				0
				−
				𝐼
			

			

				𝑡
			

			
				0
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
				𝑆
			

			

				𝑡
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				0
				0
				0
				−
				𝐼
			

			

				𝑡
			

			
				0
				0
				𝐼
			

			

				𝑡
			

			
				0
				0
				−
				𝐼
			

			

				𝑡
			

			
				𝐼
				0
				0
			

			

				𝑡
			

			
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				0
				0
				0
				,
				𝑅
			

			

				𝑡
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				0
				0
				𝐼
			

			

				𝑡
			

			
				0
				0
				0
				0
				𝐼
			

			

				𝑡
			

			
				−
				𝐼
			

			

				𝑡
			

			
				0
				0
				0
				0
				−
				𝐼
			

			

				𝑡
			

			
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
				0
				0
			

		
	

							in which 
	
		
			

				𝐼
			

			

				𝑡
			

		
	
 is a 
	
		
			
				𝑡
				×
				𝑡
			

		
	
 identity matrix, then 
	
		
			

				𝑃
			

			

				𝑡
			

		
	
, 
	
		
			

				𝑄
			

			

				𝑡
			

		
	
, 
	
		
			

				𝑆
			

			

				𝑡
			

		
	
, 
	
		
			

				𝑅
			

			

				𝑡
			

		
	
 are unitary matrices.
The real representation has the following properties, which are given in [13].
Proposition 3.  Let 
	
		
			
				𝐴
				,
				𝐵
				∈
				𝑄
			

			
				𝑚
				×
				𝑛
			

		
	
, 
	
		
			
				𝐶
				∈
				𝑄
			

			
				𝑛
				×
				𝑠
			

		
	
, 
	
		
			
				𝑎
				∈
				𝑅
			

		
	
. Then (1)
	
		
			
				(
				𝐴
				+
				𝐵
				)
			

			

				𝜎
			

			
				=
				𝐴
			

			

				𝜎
			

			
				+
				𝐵
			

			

				𝜎
			

		
	
, 
	
		
			
				(
				𝑎
				𝐴
				)
			

			

				𝜎
			

			
				=
				𝑎
				𝐴
			

			

				𝜎
			

		
	
, 
	
		
			
				(
				𝐴
				𝐶
				)
			

			

				𝜎
			

			
				=
				𝐴
			

			

				𝜎
			

			

				𝑃
			

			

				𝑛
			

			

				𝐶
			

			

				𝜎
			

			
				=
				𝐴
			

			

				𝜎
			

			
				(
				
				𝐶
				)
			

			

				𝜎
			

			

				𝑃
			

			

				𝑠
			

		
	
;(2)
	
		
			
				𝐴
				=
				𝐵
				⇔
				𝐴
			

			

				𝜎
			

			
				=
				𝐵
			

			

				𝜎
			

		
	
;
										(3)
	
		
			

				𝑄
			

			
				𝑚
				−
				1
			

			

				𝐴
			

			

				𝜎
			

			

				𝑄
			

			

				𝑛
			

			
				=
				−
				𝐴
			

			

				𝜎
			

		
	
, 
	
		
			

				𝑅
			

			
				𝑚
				−
				1
			

			

				𝐴
			

			

				𝜎
			

			

				𝑅
			

			

				𝑛
			

			
				=
				𝐴
			

			

				𝜎
			

		
	
, 
	
		
			

				𝑆
			

			
				𝑚
				−
				1
			

			

				𝐴
			

			

				𝜎
			

			

				𝑆
			

			

				𝑛
			

			
				=
				−
				𝐴
			

			

				𝜎
			

		
	
, 
	
		
			

				𝑃
			

			
				𝑚
				−
				1
			

			

				𝐴
			

			

				𝜎
			

			

				𝑃
			

			

				𝑛
			

			
				
				=
				(
				𝐴
				)
			

			

				𝜎
			

		
	
;(4)the quaternion matrix 
	
		
			

				𝐴
			

		
	
 is nonsingular if and only if 
	
		
			

				𝐴
			

			

				𝜎
			

		
	
 is nonsingular, and the quaternion matrix 
	
		
			

				𝐴
			

		
	
 is an unitary matrix if and only if 
	
		
			

				𝐴
			

			

				𝜎
			

		
	
 is an orthogonal matrix;(5)if  
	
		
			
				𝐴
				∈
				𝑄
			

			
				𝑚
				×
				𝑚
			

		
	
, then  
	
		
			

				𝐴
			

			
				𝜎
				2
				𝑘
			

			
				
				=
				(
				(
				𝐴
				𝐴
				)
			

			

				𝑘
			

			

				)
			

			

				𝜎
			

			

				𝑃
			

			

				𝑚
			

		
	
;(6)
	
		
			
				𝐴
				∈
				𝑄
			

			
				𝑚
				×
				𝑚
			

		
	
, 
	
		
			
				𝐵
				∈
				𝑄
			

			
				𝑛
				×
				𝑛
			

		
	
, 
	
		
			
				𝐶
				∈
				𝑄
			

			
				𝑚
				×
				𝑛
			

		
	
,
											 and 
	
		
			
				𝑘
				+
				𝑙
			

		
	
 is even, then 
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			

				𝐴
			

			
				𝑘
				𝜎
			

			

				𝐶
			

			

				𝜎
			

			

				𝐵
			

			
				𝑙
				𝜎
			

			
				=
				⎧
				⎪
				⎨
				⎪
				⎩
				
				
				𝐴
				
				𝐴
				
			

			

				𝑠
			

			
				
				
				
				
				(
				𝐴
				𝐶
				𝐵
				)
				𝐵
				𝐵
			

			

				𝑡
			

			

				
			

			

				𝜎
			

			
				
				
				𝐴
				
				𝐴
				
				,
				𝑘
				=
				2
				𝑠
				+
				1
				,
				𝑙
				=
				2
				𝑡
				+
				1
				,
			

			

				𝑠
			

			
				𝐶
				
				
				
				𝐵
				𝐵
			

			

				𝑡
			

			

				
			

			

				𝜎
			

			
				,
				𝑘
				=
				2
				𝑠
				,
				𝑙
				=
				2
				𝑡
				.
			

		
	

Proposition 4.  If 
	
		
			

				𝜆
			

		
	
 is a characteristic value of 
	
		
			

				𝐴
			

			

				𝜎
			

		
	
, then so are 
	
		
			
				±
				𝜆
			

		
	
, 
	
		
			

				±
			

			
				
			
			

				𝜆
			

		
	
.
For any 
	
		
			
				𝐴
				∈
				𝑄
			

			
				𝑚
				×
				𝑚
			

		
	
, let the characteristic polynomial of the real representation matrix 
	
		
			

				𝐴
			

			

				𝜎
			

		
	
 be 
	
		
			

				𝑓
			

			
				(
				𝐼
				,
				𝐴
			

			

				𝜎
			

			

				)
			

			
				(
				𝜆
				)
				=
				d
				e
				t
				(
				𝐼
			

			
				4
				𝑚
			

			
				−
				𝜆
				𝐴
			

			

				𝜎
			

			
				∑
				)
				=
			

			
				2
				𝑚
				𝑘
				=
				0
			

			

				𝑎
			

			
				2
				𝑘
			

			

				𝜆
			

			
				2
				𝑘
			

		
	
, and define 
	
		
			

				ℎ
			

			

				𝐴
			

			

				𝜎
			

			
				(
				𝜆
				)
				=
				𝜆
			

			
				4
				𝑚
			

			

				𝑓
			

			
				(
				𝐼
				,
				𝐴
			

			

				𝜎
			

			

				)
			

			
				(
				𝜆
			

			
				−
				1
			

			
				∑
				)
				=
			

			
				2
				𝑚
				𝑘
				=
				0
			

			

				𝑎
			

			
				2
				𝑘
			

			

				𝜆
			

			
				2
				(
				2
				𝑚
				−
				𝑘
				)
			

		
	
. So by Propositions 3 and 4 we have the following proposition.
Proposition 5.  Let 
	
		
			
				𝐴
				∈
				𝑄
			

			
				𝑚
				×
				𝑚
			

		
	
, 
	
		
			
				𝐵
				∈
				𝑄
			

			
				𝑛
				×
				𝑛
			

		
	
. Then (1)
	
		
			

				𝑓
			

			
				(
				𝐼
				,
				𝐴
			

			

				𝜎
			

			

				)
			

			
				(
				𝜆
				)
			

		
	
 is a real polynomial, and 
	
		
			

				𝑓
			

			
				(
				𝐼
				,
				𝐴
			

			

				𝜎
			

			

				)
			

			
				∑
				(
				𝜆
				)
				=
			

			
				2
				𝑚
				𝑘
				=
				0
			

			

				𝑎
			

			
				2
				𝑘
			

			

				𝜆
			

			
				2
				𝑘
			

		
	
;(2)
	
		
			

				ℎ
			

			

				𝐴
			

			

				𝜎
			

			
				(
				𝜆
				)
			

		
	
 is a real polynomial, and 
	
		
			

				ℎ
			

			

				𝐴
			

			

				𝜎
			

			
				∑
				(
				𝜆
				)
				=
			

			
				2
				𝑚
				𝑘
				=
				0
			

			

				𝑎
			

			
				2
				𝑘
			

			

				𝜆
			

			
				2
				(
				2
				𝑚
				−
				𝑘
				)
			

		
	
;(3)
	
		
			

				ℎ
			

			

				𝐴
			

			

				𝜎
			

			
				(
				𝐵
			

			

				𝜎
			

			
				)
				=
				(
				𝑔
			

			

				𝐴
			

			

				𝜎
			

			
				(
				𝐵
			

			

				∼
			

			
				𝐵
				)
				)
			

			

				𝜎
			

			

				𝑃
			

			

				𝑛
			

			
				,
				𝑓
			

			
				(
				𝐼
				,
				𝐴
			

			

				𝜎
			

			

				)
			

			
				(
				𝐵
			

			

				𝜎
			

			
				)
				=
				(
				𝑝
			

			

				𝐴
			

			

				𝜎
			

			
				(
				𝐵
			

			

				∼
			

			
				𝐵
				)
				)
			

			

				𝜎
			

			

				𝑃
			

			

				𝑛
			

		
	
, in which 
	
		
			

				𝑔
			

			

				𝐴
			

			

				𝜎
			

			
				∑
				(
				𝜆
				)
				=
			

			
				2
				𝑚
				𝑘
				=
				0
			

			

				𝑎
			

			
				2
				𝑘
			

			

				𝜆
			

			
				𝑚
				−
				𝑘
			

		
	
, 
	
		
			

				𝑝
			

			

				𝐴
			

			

				𝜎
			

			
				∑
				(
				𝜆
				)
				=
			

			
				2
				𝑚
				𝑘
				=
				0
			

			

				𝑎
			

			
				2
				𝑘
			

			

				𝜆
			

			

				𝑘
			

		
	
 are real polynomials.
Proof. By Proposition 4, we easily know that 
	
		
			

				𝑎
			

			

				𝑘
			

		
	
 is a real number, and 
	
		
			

				𝑎
			

			
				2
				𝑘
				+
				1
			

			
				=
				0
			

		
	
. For any 
	
		
			

				𝑘
			

		
	
, by Proposition 3, we have 
	
		
			

				𝐵
			

			
				𝜎
				2
				𝑘
			

			
				=
				(
				(
				𝐵
			

			

				∼
			

			
				𝐵
				)
			

			

				𝑘
			

			

				)
			

			

				𝜎
			

			

				𝑃
			

			

				𝑛
			

		
	
, so we can obtain the result (3).
2.3. On Solutions to the Quaternion 
	
		
			

				𝑗
			

		
	
-Conjugate Matrix Equation 
	
		
			
				
				𝑋
				−
				𝐴
				𝑋
				𝐵
				=
				𝐶
				𝑌
			

		
	

In this subsection, we discuss the solution of the following quaternion matrix equation:
								
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				
				𝑋
				−
				𝐴
				𝑋
				𝐵
				=
				𝐶
				𝑌
				,
			

		
	

							by means of real representation, where 
	
		
			
				𝐴
				∈
				𝑄
			

			
				𝑛
				×
				𝑛
			

		
	
, 
	
		
			
				𝐵
				∈
				𝑄
			

			
				𝑝
				×
				𝑝
			

		
	
, and 
	
		
			
				𝐶
				∈
				𝑄
			

			
				𝑛
				×
				𝑟
			

		
	
 are known matrices, 
	
		
			
				𝑋
				∈
				𝑄
			

			
				𝑛
				×
				𝑝
			

		
	
 and 
	
		
			
				𝑌
				∈
				𝑄
			

			
				𝑟
				×
				𝑝
			

		
	
 are unknown matrices.
We first define the real representation of quaternion matrix equation (17) by
								
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				𝑉
				−
				𝐴
			

			

				𝜎
			

			
				𝑉
				𝐵
			

			

				𝜎
			

			
				=
				𝐶
			

			

				𝜎
			

			

				𝑃
			

			

				𝑟
			

			
				𝑊
				.
			

		
	

According to (1) in Proposition 3, the quaternion matrix equation (17) is equivalent to the following equation:
								
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				
				
				
				𝑋
				−
				𝐴
				𝑋
				𝐵
			

			

				𝜎
			

			
				=
				𝑋
			

			

				𝜎
			

			
				−
				𝐴
			

			

				𝜎
			

			

				𝑋
			

			

				𝜎
			

			

				𝐵
			

			

				𝜎
			

			

				.
			

		
	

							Therefore, the matrix equation (17) can be converted into
								
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			

				𝑋
			

			

				𝜎
			

			
				−
				𝐴
			

			

				𝜎
			

			

				𝑋
			

			

				𝜎
			

			

				𝐵
			

			

				𝜎
			

			
				=
				𝐶
			

			

				𝜎
			

			

				𝑃
			

			

				𝑟
			

			

				𝑌
			

			

				𝜎
			

			

				.
			

		
	

							Thus, we have the following conclusion.
Proposition 6.  Given the quaternion matrices 
	
		
			
				𝐴
				∈
				𝑄
			

			
				𝑛
				×
				𝑛
			

		
	
, 
	
		
			
				𝐵
				∈
				𝑄
			

			
				𝑝
				×
				𝑝
			

		
	
 and 
	
		
			
				𝐶
				∈
				𝑄
			

			
				𝑛
				×
				𝑟
			

		
	
, then the quaternion matrix equation (17) has a solution 
	
		
			
				(
				𝑋
				,
				𝑌
				)
			

		
	
 if and only if the real representation matrix equation (18) has a solution 
	
		
			
				(
				𝑉
				,
				𝑊
				)
				=
				(
				𝑋
			

			

				𝜎
			

			
				,
				𝑌
			

			

				𝜎
			

			

				)
			

		
	
.
Theorem 7.  Let 
	
		
			
				𝐴
				∈
				𝑄
			

			
				𝑛
				×
				𝑛
			

		
	
, 
	
		
			
				𝐵
				∈
				𝑄
			

			
				𝑝
				×
				𝑝
			

		
	
, and 
	
		
			
				𝐶
				∈
				𝑄
			

			
				𝑛
				×
				𝑟
			

		
	
. Then quaternion matrix equation (17) has a solution 
	
		
			
				(
				𝑋
				,
				𝑌
				)
			

		
	
 if and only if real representation matrix equation (18) has a solution 
	
		
			
				(
				𝑉
				,
				𝑊
				)
			

		
	
. Furthermore, if 
	
		
			
				(
				𝑉
				,
				𝑊
				)
			

		
	
 is a solution to (18), then the following quaternion matrices are solutions to quaternion matrix equation (17):
									
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				1
				𝑋
				=
			

			
				
			
			
				
				𝐼
				1
				6
			

			

				𝑛
			

			
				𝑖
				𝐼
			

			

				𝑛
			

			
				𝑗
				𝐼
			

			

				𝑛
			

			
				𝑘
				𝐼
			

			

				𝑛
			

			
				
				×
				
				𝑉
				−
				𝑄
			

			
				𝑛
				−
				1
			

			
				𝑉
				𝑄
			

			

				𝑝
			

			
				+
				𝑅
			

			
				𝑛
				−
				1
			

			
				𝑉
				𝑅
			

			

				𝑝
			

			
				−
				𝑆
			

			
				𝑛
				−
				1
			

			
				𝑉
				𝑆
			

			

				𝑝
			

			
				
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				𝐼
			

			

				𝑝
			

			
				−
				𝑖
				𝐼
			

			

				𝑝
			

			
				−
				𝑗
				𝐼
			

			

				𝑝
			

			
				−
				𝑘
				𝐼
			

			

				𝑝
			

			
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
				1
				𝑌
				=
			

			
				
			
			
				
				𝐼
				1
				6
			

			

				𝑟
			

			
				𝑖
				𝐼
			

			

				𝑟
			

			
				𝑗
				𝐼
			

			

				𝑟
			

			
				𝑘
				𝐼
			

			

				𝑟
			

			
				
				×
				
				𝑊
				−
				𝑄
			

			
				𝑛
				−
				1
			

			
				𝑊
				𝑄
			

			

				𝑝
			

			
				+
				𝑅
			

			
				𝑛
				−
				1
			

			
				𝑊
				𝑅
			

			

				𝑝
			

			
				−
				𝑆
			

			
				𝑛
				−
				1
			

			
				𝑊
				𝑆
			

			

				𝑝
			

			
				
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				𝐼
			

			

				𝑝
			

			
				−
				𝑖
				𝐼
			

			

				𝑝
			

			
				−
				𝑗
				𝐼
			

			

				𝑝
			

			
				−
				𝑘
				𝐼
			

			

				𝑝
			

			
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				.
			

		
	

Proof. By (3) of Proposition 3, the quaternion matrix equation (18) is equivalent to
									
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				𝑉
				−
				𝑅
			

			
				𝑛
				−
				1
			

			

				𝐴
			

			

				𝜎
			

			

				𝑅
			

			

				𝑛
			

			
				𝑉
				𝑅
			

			
				𝑝
				−
				1
			

			

				𝐵
			

			

				𝜎
			

			

				𝑅
			

			

				𝑝
			

			
				=
				𝑅
			

			
				𝑛
				−
				1
			

			

				𝐶
			

			

				𝜎
			

			

				𝑅
			

			

				𝑟
			

			

				𝑃
			

			

				𝑟
			

			
				𝑊
				.
			

		
	

								After multiplying the two sides of quaternion matrix equation (22) by 
	
		
			

				𝑅
			

			
				𝑝
				−
				1
			

		
	
, we can obtain
									
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				𝑉
				𝑅
			

			
				𝑝
				−
				1
			

			
				−
				𝑅
			

			
				𝑛
				−
				1
			

			

				𝐴
			

			

				𝜎
			

			

				𝑅
			

			

				𝑛
			

			
				𝑉
				𝑅
			

			
				𝑝
				−
				1
			

			

				𝐵
			

			

				𝜎
			

			
				=
				𝑅
			

			
				𝑛
				−
				1
			

			

				𝐶
			

			

				𝜎
			

			

				𝑅
			

			

				𝑟
			

			

				𝑃
			

			

				𝑟
			

			
				𝑊
				𝑅
			

			
				𝑝
				−
				1
			

			

				.
			

		
	

								Before multiplying the two sides of quaternion matrix equation (23) by 
	
		
			

				𝑅
			

			

				𝑛
			

		
	
, we have
									
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			

				𝑅
			

			

				𝑛
			

			
				𝑉
				𝑅
			

			
				𝑝
				−
				1
			

			
				−
				𝐴
			

			

				𝜎
			

			

				𝑅
			

			

				𝑛
			

			
				𝑉
				𝑅
			

			
				𝑝
				−
				1
			

			

				𝐵
			

			

				𝜎
			

			
				=
				𝐶
			

			

				𝜎
			

			

				𝑅
			

			

				𝑟
			

			

				𝑃
			

			

				𝑟
			

			
				𝑊
				𝑅
			

			
				𝑝
				−
				1
			

			

				.
			

		
	

								Noting that  
	
		
			

				𝑅
			

			
				𝑝
				−
				1
			

			
				=
				−
				𝑅
			

			

				𝑝
			

		
	
, 
	
		
			

				𝑅
			

			

				𝑟
			

			

				𝑃
			

			

				𝑟
			

			
				=
				𝑃
			

			

				𝑟
			

			

				𝑅
			

			

				𝑟
			

		
	
, we give
									
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			

				𝑅
			

			
				𝑛
				−
				1
			

			
				𝑉
				𝑅
			

			

				𝑝
			

			
				−
				𝐴
			

			

				𝜎
			

			

				𝑅
			

			
				𝑛
				−
				1
			

			
				𝑉
				𝑅
			

			

				𝑝
			

			

				𝐵
			

			

				𝜎
			

			
				=
				𝐶
			

			

				𝜎
			

			

				𝑃
			

			

				𝑟
			

			

				𝑅
			

			
				𝑟
				−
				1
			

			
				𝑊
				𝑅
			

			

				𝑝
			

			

				.
			

		
	

								This shows that if 
	
		
			
				(
				𝑉
				,
				𝑊
				)
			

		
	
 is a real solution of matrix equation (18), then 
	
		
			
				(
				𝑅
			

			
				𝑛
				−
				1
			

			
				𝑉
				𝑅
			

			

				𝑝
			

			
				,
				𝑅
			

			
				𝑟
				−
				1
			

			
				𝑊
				𝑅
			

			

				𝑝
			

			

				)
			

		
	
 is also a real solution of quaternion matrix equation (18). In addition, according to (3) of Proposition 3, the quaternion matrix equation (18) is also equivalent to
									
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				𝑉
				−
				𝑄
			

			

				𝑛
			

			

				𝐴
			

			

				𝜎
			

			

				𝑄
			

			

				𝑛
			

			
				𝑉
				𝑄
			

			

				𝑝
			

			

				𝐵
			

			

				𝜎
			

			

				𝑄
			

			

				𝑝
			

			
				=
				𝑄
			

			

				𝑛
			

			

				𝐶
			

			

				𝜎
			

			

				𝑄
			

			

				𝑟
			

			

				𝑃
			

			

				𝑟
			

			
				𝑊
				.
			

		
	

								After multiplying the two sides of quaternion matrix equation (26) by 
	
		
			

				𝑄
			

			
				𝑝
				−
				1
			

		
	
, we have
									
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				𝑉
				𝑄
			

			
				𝑝
				−
				1
			

			
				−
				𝑄
			

			

				𝑛
			

			

				𝐴
			

			

				𝜎
			

			

				𝑄
			

			

				𝑛
			

			
				𝑉
				𝑄
			

			

				𝑝
			

			

				𝐵
			

			

				𝜎
			

			
				=
				𝑄
			

			

				𝑛
			

			

				𝐶
			

			

				𝜎
			

			

				𝑄
			

			

				𝑟
			

			

				𝑃
			

			

				𝑟
			

			
				𝑊
				𝑄
			

			
				𝑝
				−
				1
			

			

				.
			

		
	

								Noting that  
	
		
			

				𝑄
			

			
				𝑝
				−
				1
			

			
				=
				−
				𝑄
			

			

				𝑝
			

		
	
, 
	
		
			

				𝑄
			

			

				𝑟
			

			

				𝑃
			

			

				𝑟
			

			
				=
				−
				𝑃
			

			

				𝑟
			

			

				𝑄
			

			

				𝑟
			

		
	
, before multiplying the two sides of the quaternion matrix equation (27) by 
	
		
			

				𝑄
			

			
				𝑛
				−
				1
			

		
	
, gives
									
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			
				
				−
				𝑄
			

			
				𝑛
				−
				1
			

			
				𝑉
				𝑄
			

			

				𝑝
			

			
				
				−
				𝐴
			

			

				𝜎
			

			
				
				−
				𝑄
			

			
				𝑛
				−
				1
			

			
				𝑉
				𝑄
			

			

				𝑝
			

			
				
				𝐵
			

			

				𝜎
			

			
				=
				𝐶
			

			

				𝜎
			

			

				𝑃
			

			

				𝑝
			

			
				
				−
				𝑄
			

			
				𝑟
				−
				1
			

			
				𝑊
				𝑄
			

			

				𝑝
			

			
				
				.
			

		
	

								This is to say that if 
	
		
			
				(
				𝑉
				,
				𝑊
				)
			

		
	
 is a real solution of matrix equation (18), then 
	
		
			
				(
				−
				𝑄
			

			
				𝑛
				−
				1
			

			
				𝑉
				𝑄
			

			

				𝑝
			

			
				,
				−
				𝑄
			

			
				𝑟
				−
				1
			

			
				𝑊
				𝑄
			

			

				𝑝
			

			

				)
			

		
	
 is also a real solution of matrix equation (18). Similarly, we can prove that 
	
		
			
				(
				−
				𝑆
			

			
				𝑛
				−
				1
			

			
				𝑉
				𝑆
			

			

				𝑝
			

			
				,
				−
				𝑆
			

			
				𝑟
				−
				1
			

			
				𝑊
				𝑆
			

			

				𝑝
			

			

				)
			

		
	
 is also a real solution of quaternion matrix equation (18). In this case, the conclusion can be obtained along the line of the proof of Theorem  4.2 in [13].
Theorem 8.  Given the quaternion matrices 
	
		
			
				𝐴
				∈
				𝑄
			

			
				𝑛
				×
				𝑛
			

		
	
, 
	
		
			
				𝐵
				∈
				𝑄
			

			
				𝑝
				×
				𝑝
			

		
	
, and 
	
		
			
				𝐶
				∈
				𝑄
			

			
				𝑛
				×
				𝑟
			

		
	
, let
									
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			

				𝑓
			

			
				(
				𝐼
				,
				𝐴
			

			

				𝜎
			

			

				)
			

			
				
				𝐼
				(
				𝑠
				)
				=
				d
				e
				t
			

			
				4
				𝑛
			

			
				−
				𝑠
				𝐴
			

			

				𝜎
			

			
				
				=
			

			
				2
				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝑎
			

			
				2
				𝑘
			

			

				𝑠
			

			
				2
				𝑘
			

			
				,
				𝑝
			

			

				𝐴
			

			

				𝜎
			

			
				(
				𝑠
				)
				=
			

			
				2
				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝑎
			

			
				2
				𝑘
			

			

				𝑠
			

			

				𝑘
			

			

				.
			

		
	

								Then the matrices 
	
		
			
				𝑋
				∈
				𝑄
			

			
				𝑛
				×
				𝑝
			

		
	
, 
	
		
			
				𝑌
				∈
				𝑄
			

			
				𝑟
				×
				𝑝
			

		
	
 are given by
									
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				𝑋
				=
			

			
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑘
				=
				0
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑠
				=
				𝑘
			

			

				𝛼
			

			
				2
				𝑘
			

			
				
				𝐴
				
				𝐴
				
			

			
				𝑠
				−
				𝑘
			

			
				
				
				
				𝐶
				𝑍
				𝐵
				𝐵
			

			

				𝑠
			

			

				+
			

			
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑘
				=
				0
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑠
				=
				𝑘
			

			

				𝛼
			

			
				2
				𝑘
			

			
				
				𝐴
				
				𝐴
				
			

			
				𝑠
				−
				𝑘
			

			
				𝐴
				
				𝐶
				
				
				
				
				𝑍
				𝐵
				𝐵
				𝐵
			

			

				𝑠
			

			
				,
				𝑌
				=
				𝑍
				𝑝
			

			

				𝐴
			

			

				𝜎
			

			
				
				
				
				,
				𝐵
				𝐵
			

		
	

								in which 
	
		
			

				𝑍
			

		
	
 is an arbitrary quaternion matrix.
Proof. If Yakubovich quaternion 
	
		
			

				𝑗
			

		
	
-conjugate matrix equation (17) has solution 
	
		
			
				(
				𝑋
				,
				𝑌
				)
			

		
	
, then real representation matrix equation (18) has solution 
	
		
			
				(
				𝑉
				,
				𝑊
				)
				=
				(
				𝑋
			

			

				𝜎
			

			
				,
				𝑌
			

			

				𝜎
			

			

				)
			

		
	
 with the free parameter 
	
		
			

				𝑍
			

			

				𝜎
			

		
	
. By Theorems 2 and 7, we have
									
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			

				𝑋
			

			

				𝜎
			

			

				=
			

			
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑘
				𝑘
				=
				0
			

			

				
			

			
				𝑗
				=
				0
			

			

				𝛼
			

			

				𝑗
			

			

				𝐴
			

			
				𝜎
				𝑗
				−
				𝑘
			

			

				𝐶
			

			

				𝜎
			

			

				𝑃
			

			

				𝑟
			

			

				𝑍
			

			

				𝜎
			

			

				𝐵
			

			
				𝑗
				𝜎
			

			

				=
			

			
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑘
				=
				0
				4
				𝑛
				−
				1
			

			

				
			

			
				𝑗
				=
				2
				𝑘
			

			

				𝛼
			

			
				2
				𝑘
			

			

				𝐴
			

			
				𝜎
				𝑗
				−
				2
				𝑘
			

			

				𝐶
			

			

				𝜎
			

			

				𝑃
			

			

				𝑟
			

			

				𝑍
			

			

				𝜎
			

			

				𝐵
			

			
				𝑗
				𝜎
			

			

				=
			

			
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝛼
			

			
				2
				𝑘
			

			

				
			

			
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑠
				=
				𝑘
			

			

				𝐴
			

			
				𝜎
				2
				𝑠
				−
				2
				𝑘
			

			

				𝐶
			

			

				𝜎
			

			

				𝑃
			

			

				𝑟
			

			

				𝑍
			

			

				𝜎
			

			

				𝐵
			

			
				𝜎
				2
				𝑠
			

			

				+
			

			
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑠
				=
				𝑘
			

			

				𝐴
			

			
				𝜎
				2
				𝑠
				−
				2
				𝑘
				+
				1
			

			

				𝐶
			

			

				𝜎
			

			

				𝑃
			

			

				𝑟
			

			

				𝑍
			

			

				𝜎
			

			

				𝐵
			

			
				𝜎
				2
				𝑠
				+
				1
			

			
				
				=
			

			
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝛼
			

			
				2
				𝑘
			

			
				×
				
			

			
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑠
				=
				𝑘
			

			
				
				
				𝐴
				
				𝐴
				
			

			
				𝑠
				−
				𝑘
			

			

				
			

			

				𝜎
			

			

				𝑃
			

			

				𝑛
			

			

				𝐶
			

			

				𝜎
			

			

				𝑃
			

			

				𝑟
			

			

				𝑍
			

			

				𝜎
			

			
				
				
				
				
				𝐵
				𝐵
			

			

				𝑠
			

			

				
			

			

				𝜎
			

			

				𝑃
			

			

				𝑝
			

			

				+
			

			
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑠
				=
				𝑘
			

			
				
				
				𝐴
				
				𝐴
				
			

			
				𝑠
				−
				𝑘
			

			

				
			

			

				𝜎
			

			

				𝑃
			

			

				𝑛
			

			

				𝐴
			

			

				𝜎
			

			

				𝐶
			

			

				𝜎
			

			

				𝑃
			

			

				𝑟
			

			

				𝑍
			

			

				𝜎
			

			

				𝐵
			

			

				𝜎
			

			
				
				
				
				
				𝐵
				𝐵
			

			

				𝑠
			

			

				
			

			

				𝜎
			

			

				𝑃
			

			

				𝑝
			

			
				
				=
			

			
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝛼
			

			
				2
				𝑘
			

			

				
			

			
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑠
				=
				𝑘
			

			
				
				
				𝐴
				
				𝐴
				
			

			
				𝑠
				−
				𝑘
			

			
				
				
				
				𝐶
				𝑍
				𝐵
				𝐵
			

			

				𝑠
			

			

				
			

			

				𝜎
			

			

				+
			

			
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑠
				=
				𝑘
			

			
				
				
				𝐴
				
				𝐴
				
			

			
				𝑠
				−
				𝑘
			

			
				𝐴
				
				𝐶
				
				
				
				
				𝑍
				𝐵
				𝐵
				𝐵
			

			

				𝑠
			

			

				
			

			

				𝜎
			

			
				
				.
			

		
	

								In addition, by Proposition 5, 
	
		
			

				𝑓
			

			
				(
				𝐼
				,
				𝐴
			

			

				𝜎
			

			

				)
			

			
				(
				𝑠
				)
			

		
	
 is a real polynomial and 
	
		
			

				𝑓
			

			
				(
				𝐼
				,
				𝐴
			

			

				𝜎
			

			

				)
			

			
				(
				𝐵
			

			

				𝜎
			

			
				)
				=
				(
				𝑝
			

			

				𝐴
			

			

				𝜎
			

			
				
				(
				𝐵
				𝐵
				)
				)
			

			

				𝜎
			

			

				𝑃
			

			

				𝑝
			

		
	
. So according to Proposition 3, we obtain
									
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			

				𝑌
			

			

				𝜎
			

			
				=
				𝑍
			

			

				𝜎
			

			

				𝑓
			

			
				(
				𝐼
				,
				𝐴
			

			

				𝜎
			

			

				)
			

			
				
				𝐵
			

			

				𝜎
			

			
				
				=
				𝑍
			

			

				𝜎
			

			
				
				𝑝
			

			

				𝐴
			

			

				𝜎
			

			
				
				𝐵
				
				𝐵
				
				
			

			

				𝜎
			

			

				𝑃
			

			

				𝑝
			

			
				=
				
				𝑍
				𝑝
			

			

				𝐴
			

			

				𝜎
			

			
				
				
				𝐵
				𝐵
				
				
			

			

				𝜎
			

			

				.
			

		
	

								Thus, the conclusion above has been proved.
In the following, we provide an equivalent statement of Theorem 8.
Theorem 9.  Given quaternion matrices 
	
		
			
				𝐴
				∈
				𝑄
			

			
				𝑛
				×
				𝑛
			

		
	
, 
	
		
			
				𝐵
				∈
				𝑄
			

			
				𝑝
				×
				𝑝
			

		
	
, and 
	
		
			
				𝐶
				∈
				𝑄
			

			
				𝑛
				×
				𝑟
			

		
	
, let
									
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			

				𝑓
			

			
				(
				𝐼
				,
				𝐴
			

			

				𝜎
			

			

				)
			

			
				
				𝐼
				(
				𝑠
				)
				=
				d
				e
				t
			

			
				4
				𝑛
			

			
				−
				𝑠
				𝐴
			

			

				𝜎
			

			
				
				=
			

			
				2
				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝑎
			

			
				2
				𝑘
			

			

				𝑠
			

			
				2
				𝑘
			

			
				,
				𝑝
			

			

				𝐴
			

			

				𝜎
			

			
				(
				𝑠
				)
				=
			

			
				2
				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝑎
			

			
				2
				𝑘
			

			

				𝑠
			

			

				𝑘
			

			

				.
			

		
	

								Then the matrices 
	
		
			
				𝑋
				∈
				𝑄
			

			
				𝑛
				×
				𝑝
			

		
	
, 
	
		
			
				𝑌
				∈
				𝑄
			

			
				𝑟
				×
				𝑝
			

		
	
 given by (30) have the following equivalent form:
									
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				𝑋
				=
				𝑄
			

			

				𝑐
			

			
				
				𝐴
				
				
				𝑆
				𝐴
				,
				𝐶
				,
				2
				𝑛
			

			

				𝑟
			

			
				
				𝐼
				,
				𝐴
			

			

				𝜎
			

			
				
				𝑄
			

			

				𝑜
			

			
				
				𝐵
				
				
				𝐵
				,
				𝑍
				,
				2
				𝑛
				+
				𝑄
			

			

				𝑐
			

			
				
				𝐴
				
				
				
				𝑆
				𝐴
				,
				𝐴
				𝐶
				,
				2
				𝑛
			

			

				𝑟
			

			
				
				𝐼
				,
				𝐴
			

			

				𝜎
			

			
				
				𝑄
			

			

				𝑜
			

			
				
				
				
				
				,
				𝐵
				𝐵
				,
				𝑍
				𝐵
				,
				2
				𝑛
				𝑌
				=
				𝑍
				𝑝
			

			

				𝐴
			

			

				𝜎
			

			
				
				
				
				,
				𝐵
				𝐵
			

		
	

								in which 
	
		
			

				𝑍
			

		
	
 is an arbitrary quaternion matrix.
Proof. By the direct computation, we have
									
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑘
				=
				0
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑠
				=
				𝑘
			

			

				𝛼
			

			
				2
				𝑘
			

			
				
				𝐴
				
				𝐴
				
			

			
				𝑠
				−
				𝑘
			

			
				
				
				
				𝐶
				𝑍
				𝐵
				𝐵
			

			

				𝑠
			

			
				=
				𝑄
			

			

				𝑐
			

			
				
				𝐴
				
				
				𝑆
				𝐴
				,
				𝐶
				,
				𝑛
			

			

				𝑟
			

			
				
				𝐼
				,
				𝐴
			

			

				𝜎
			

			
				
				𝑄
			

			

				𝑜
			

			
				
				𝐵
				
				
				,
				𝐵
				,
				𝑍
				,
				2
				𝑛
			

			
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑘
				=
				0
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑠
				=
				𝑘
			

			

				𝛼
			

			
				2
				𝑘
			

			
				
				𝐴
				
				𝐴
				
			

			
				𝑠
				−
				𝑘
			

			
				𝐴
				
				𝐶
				
				
				
				
				𝑍
				𝐵
				𝐵
				𝐵
			

			

				𝑠
			

			
				=
				𝑄
			

			

				𝑐
			

			
				
				𝐴
				
				
				
				𝑆
				𝐴
				,
				𝐴
				𝐶
				,
				2
				𝑛
			

			

				𝑟
			

			
				
				𝐼
				,
				𝐴
			

			

				𝜎
			

			
				
				𝑄
			

			

				𝑜
			

			
				
				
				
				
				.
				𝐵
				𝐵
				,
				𝑍
				𝐵
				,
				2
				𝑛
			

		
	

								Thus, the first conclusion has been proved. With this the second conclusion is obviously true.
Finally, we consider the solution to the so-called Kalman-Yakubovich 
	
		
			

				𝑗
			

		
	
-conjugate quaternion matrix equation
								
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			
				
				𝑋
				−
				𝐴
				𝑋
				𝐵
				=
				𝐶
				.
			

		
	

							Based on the main result proposed above, we have the following conclusions regarding the matrix equation (36).
Corollary 10.  Given quaternion matrices 
	
		
			
				𝐴
				∈
				𝑄
			

			
				𝑛
				×
				𝑛
			

		
	
, 
	
		
			
				𝐵
				∈
				𝑄
			

			
				𝑝
				×
				𝑝
			

		
	
, and 
	
		
			
				𝐶
				∈
				𝑄
			

			
				𝑛
				×
				𝑝
			

		
	
, let
									
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			

				𝑓
			

			
				(
				𝐼
				,
				𝐴
			

			

				𝜎
			

			

				)
			

			
				
				𝐼
				(
				𝑠
				)
				=
				d
				e
				t
			

			
				4
				𝑛
			

			
				−
				𝑠
				𝐴
			

			

				𝜎
			

			
				
				=
			

			
				2
				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝑎
			

			
				2
				𝑘
			

			

				𝑠
			

			
				2
				𝑘
			

			
				,
				𝑝
			

			

				𝐴
			

			

				𝜎
			

			
				(
				𝑠
				)
				=
			

			
				2
				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝑎
			

			
				2
				𝑘
			

			

				𝑠
			

			

				𝑘
			

			

				.
			

		
	

								If 
	
		
			

				𝑋
			

		
	
 is a solution of equation (36), then
									
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			
				𝑋
				𝑝
			

			

				𝐴
			

			

				𝜎
			

			
				
				
				
				=
				𝐵
				𝐵
			

			
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑘
				=
				0
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑗
				=
				𝑘
			

			

				𝛼
			

			
				2
				𝑘
			

			
				
				𝐴
				
				𝐴
				
			

			
				𝑗
				−
				𝑘
			

			
				𝐶
				
				
				
				𝐵
				𝐵
			

			

				𝑗
			

			

				+
			

			
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑘
				=
				0
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑗
				=
				𝑘
			

			
				
				𝐴
				
				𝐴
				
			

			
				𝑗
				−
				𝑘
			

			
				𝐴
				
				
				
				
				𝐶
				𝐵
				𝐵
				𝐵
			

			

				𝑗
			

			

				.
			

		
	

Proof. If 
	
		
			

				𝑋
			

		
	
 is a solution of equation (36), then 
	
		
			
				𝑌
				=
				𝑋
			

			

				𝜎
			

		
	
 is a solution of the equation 
	
		
			

				𝑋
			

			

				𝜎
			

			
				−
				𝐴
			

			

				𝜎
			

			

				𝑋
			

			

				𝜎
			

			

				𝐵
			

			

				𝜎
			

			
				=
				𝐶
			

			

				𝜎
			

		
	
. By Theorem  3 in [22] and Proposition 3, we have
									
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			

				𝑋
			

			

				𝜎
			

			

				𝑓
			

			
				(
				𝐼
				,
				𝐴
			

			

				𝜎
			

			

				)
			

			
				
				𝐵
			

			

				𝜎
			

			
				
				=
			

			
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑘
				=
				0
				4
				𝑛
				−
				1
			

			

				
			

			
				𝑗
				=
				2
				𝑘
			

			

				𝛼
			

			
				2
				𝑘
			

			

				𝐴
			

			
				𝜎
				𝑗
				−
				2
				𝑘
			

			

				𝐶
			

			

				𝜎
			

			

				𝐵
			

			
				𝑗
				𝜎
			

			

				.
			

		
	

								By Proposition 5, 
	
		
			

				𝑓
			

			
				(
				𝐼
				,
				𝐴
			

			

				𝜎
			

			

				)
			

			
				(
				𝑠
				)
			

		
	
 is a real polynomial and 
	
		
			

				𝑓
			

			
				(
				𝐼
				,
				𝐴
			

			

				𝜎
			

			

				)
			

			
				(
				𝐵
			

			

				𝜎
			

			
				)
				=
				(
				𝑝
			

			

				𝐴
			

			

				𝜎
			

			
				
				(
				𝐵
				𝐵
				)
				)
			

			

				𝜎
			

			

				𝑃
			

			

				𝑝
			

		
	
. So from Proposition 3 and (39), we have
									
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			
				
				𝑋
				𝑝
			

			

				𝐴
			

			

				𝜎
			

			
				
				𝐵
				
				𝐵
				
				
			

			

				𝜎
			

			
				=
				𝑋
			

			

				𝜎
			

			
				
				𝑝
			

			

				𝐴
			

			

				𝜎
			

			
				(
				
				
				𝐵
				𝐵
				)
			

			

				𝜎
			

			

				𝑃
			

			

				𝑝
			

			
				=
				𝑋
			

			

				𝜎
			

			

				𝑓
			

			
				(
				𝐼
				,
				𝐴
			

			

				𝜎
			

			

				)
			

			
				
				𝐵
			

			

				𝜎
			

			
				
				=
			

			
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑘
				=
				0
				4
				𝑛
				−
				1
			

			

				
			

			
				𝑗
				=
				2
				𝑘
			

			

				𝛼
			

			
				2
				𝑘
			

			

				𝐴
			

			
				𝜎
				𝑗
				−
				2
				𝑘
			

			

				𝐶
			

			

				𝜎
			

			

				𝐵
			

			
				𝑗
				𝜎
			

			

				=
			

			
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝛼
			

			
				2
				𝑘
			

			

				
			

			
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑗
				=
				𝑘
			

			

				𝐴
			

			
				𝜎
				2
				𝑗
				−
				2
				𝑘
			

			

				𝐶
			

			

				𝜎
			

			

				𝐵
			

			
				𝜎
				2
				𝑗
			

			

				+
			

			
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑗
				=
				𝑘
			

			

				𝐴
			

			
				𝜎
				2
				𝑗
				+
				1
				−
				2
				𝑘
			

			

				𝐶
			

			

				𝜎
			

			

				𝐵
			

			
				𝜎
				2
				𝑗
				+
				1
			

			
				
				=
			

			
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝛼
			

			
				2
				𝑘
			

			

				
			

			
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑗
				=
				𝑘
			

			
				
				
				𝐴
				
				𝐴
				
			

			
				𝑗
				−
				𝑘
			

			

				
			

			

				𝜎
			

			

				𝑃
			

			

				𝑛
			

			

				𝐶
			

			

				𝜎
			

			
				
				
				
				
				𝐵
				𝐵
			

			

				𝑗
			

			

				
			

			

				𝜎
			

			

				𝑃
			

			

				𝑝
			

			

				+
			

			
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑗
				=
				𝑘
			

			
				
				
				𝐴
				
				𝐴
				
			

			
				𝑗
				−
				𝑘
			

			

				
			

			

				𝜎
			

			

				𝑃
			

			

				𝑛
			

			

				𝐴
			

			

				𝜎
			

			

				𝐶
			

			

				𝜎
			

			

				𝐵
			

			

				𝜎
			

			
				
				
				
				
				𝐵
				𝐵
			

			

				𝑗
			

			

				
			

			

				𝜎
			

			

				𝑃
			

			

				𝑝
			

			
				
				=
			

			
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝛼
			

			
				2
				𝑘
			

			
				×
				
			

			
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑗
				=
				𝑘
			

			
				
				
				𝐴
				
				𝐴
				
			

			
				𝑗
				−
				𝑘
			

			
				𝐶
				
				
				
				𝐵
				𝐵
			

			

				𝑗
			

			

				
			

			

				𝜎
			

			

				+
			

			
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑗
				=
				𝑘
			

			
				
				
				𝐴
				
				𝐴
				
			

			
				𝑗
				−
				𝑘
			

			
				𝐴
				
				
				
				
				𝐶
				𝐵
				𝐵
				𝐵
			

			

				𝑗
			

			

				
			

			

				𝜎
			

			
				
				=
			

			
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑘
				=
				0
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑗
				=
				𝑘
			

			

				𝛼
			

			
				2
				𝑘
			

			
				
				
				𝐴
				
				𝐴
				
			

			
				𝑗
				−
				𝑘
			

			
				𝐶
				
				
				
				𝐵
				𝐵
			

			

				𝑗
			

			

				
			

			

				𝜎
			

			

				+
			

			
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑘
				=
				0
				2
				𝑛
				−
				1
			

			

				
			

			
				𝑗
				=
				𝑘
			

			
				
				
				𝐴
				
				𝐴
				
			

			
				𝑗
				−
				𝑘
			

			
				𝐴
				
				
				
				
				𝐶
				𝐵
				𝐵
				𝐵
			

			

				𝑗
			

			

				
			

			

				𝜎
			

			

				.
			

		
	

								Thus, the first conclusion has been proved. With this the second conclusion is obviously true.
In the following, we provide an equivalent statement of Theorem 7.
Corollary 11.  Given quaternion matrices 
	
		
			
				𝐴
				∈
				𝑄
			

			
				𝑛
				×
				𝑛
			

		
	
, 
	
		
			
				𝐵
				∈
				𝑄
			

			
				𝑝
				×
				𝑝
			

		
	
, and 
	
		
			
				𝐶
				∈
				𝑄
			

			
				𝑛
				×
				𝑝
			

		
	
, let
									
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			

				𝑓
			

			
				(
				𝐼
				,
				𝐴
			

			

				𝜎
			

			

				)
			

			
				
				𝐼
				(
				𝑠
				)
				=
				d
				e
				t
			

			
				4
				𝑛
			

			
				−
				𝑠
				𝐴
			

			

				𝜎
			

			
				
				=
			

			
				2
				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝑎
			

			
				2
				𝑘
			

			

				𝑠
			

			
				2
				𝑘
			

			
				,
				𝑝
			

			

				𝐴
			

			

				𝜎
			

			
				(
				𝑠
				)
				=
			

			
				2
				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝑎
			

			
				2
				𝑘
			

			

				𝑠
			

			

				𝑘
			

			

				.
			

		
	

								If 
	
		
			

				𝑋
			

		
	
 is a solution of (36), then 
									
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			
				𝑋
				𝑝
			

			

				𝐴
			

			

				𝜎
			

			
				
				
				
				𝐵
				𝐵
				=
				𝑄
			

			

				𝑐
			

			
				
				𝐴
				
				
				𝑆
				𝐴
				,
				𝐶
				,
				2
				𝑛
			

			

				𝑝
			

			
				
				𝐼
				,
				𝐴
			

			

				𝜎
			

			
				
				𝑄
			

			

				𝑜
			

			
				
				
				𝐵
				𝐵
				,
				𝐼
			

			

				𝑝
			

			
				
				,
				2
				𝑛
				+
				𝑄
			

			

				𝑐
			

			
				
				𝐴
				
				
				𝑆
				𝐴
				,
				𝐴
				,
				2
				𝑛
			

			

				𝑛
			

			
				
				𝐼
				,
				𝐴
			

			

				𝜎
			

			
				
				𝑄
			

			

				𝑜
			

			
				
				
				
				
				.
				𝐵
				𝐵
				,
				𝐶
				𝐵
				,
				2
				𝑛
			

		
	

3. Complex Conjugate Matrix Equation 
	
		
			
				𝑋
				−
				𝐴
			

			
				
			
			
				𝑋
				𝐵
				=
				𝐶
				𝑌
			

		
	

In this section, we study the solution to the complex matrix equation
						
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			
				𝑋
				−
				𝐴
			

			
				
			
			
				𝑋
				𝐵
				=
				𝐶
				𝑌
				,
			

		
	

					where 
	
		
			
				𝐴
				∈
				𝐶
			

			
				𝑛
				×
				𝑛
			

		
	
, 
	
		
			
				𝐵
				∈
				𝐶
			

			
				𝑝
				×
				𝑝
			

		
	
, and 
	
		
			
				𝐶
				∈
				𝐶
			

			
				𝑛
				×
				𝑟
			

		
	
. Next, we define real representation of complex matrix as follows.
For any complex matrix 
	
		
			
				𝐴
				=
				𝐴
			

			

				1
			

			
				+
				𝐴
			

			

				2
			

			
				𝑖
				∈
				𝐶
			

			
				𝑚
				×
				𝑛
			

		
	
, 
	
		
			

				𝐴
			

			

				𝑙
			

			
				∈
				𝑅
			

			
				𝑚
				×
				𝑛
			

			
				(
				𝑙
				=
				1
				,
				2
				.
				)
			

		
	
, we define a real representation of a complex matrix as
						
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			

				𝐴
			

			

				𝜎
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				𝐴
			

			

				1
			

			

				𝐴
			

			

				2
			

			

				𝐴
			

			

				2
			

			
				−
				𝐴
			

			

				1
			

			
				⎤
				⎥
				⎥
				⎥
				⎦
				∈
				𝑅
			

			
				2
				𝑚
				×
				2
				𝑛
			

			

				.
			

		
	

					Then the real matrix 
	
		
			

				𝐴
			

			

				𝜎
			

		
	
 is called real representation of complex matrix 
	
		
			

				𝐴
			

		
	
.
Let
						
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			

				𝑃
			

			

				𝑡
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				𝐼
			

			

				𝑡
			

			
				0
				0
				−
				𝐼
			

			

				𝑡
			

			
				⎤
				⎥
				⎥
				⎥
				⎦
				,
				𝑄
			

			

				𝑡
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				0
				𝐼
			

			

				𝑡
			

			
				−
				𝐼
			

			

				𝑡
			

			
				0
				⎤
				⎥
				⎥
				⎥
				⎦
				,
			

		
	

					in which 
	
		
			

				𝐼
			

			

				𝑡
			

		
	
 is 
	
		
			
				𝑡
				×
				𝑡
			

		
	
 identity matrix. Then 
	
		
			

				𝑃
			

			

				𝑡
			

		
	
, 
	
		
			

				𝑄
			

			

				𝑡
			

		
	
 are unitary matrices. The real presentation has the following properties, which are given by Jiang and Wei [14].
Proposition 12.  Consider the following. (1)If 
	
		
			
				𝐴
				,
				𝐵
				∈
				𝐶
			

			
				𝑚
				×
				𝑛
			

		
	
, 
	
		
			
				𝑎
				∈
				𝑅
			

		
	
, then 
	
		
			
				(
				𝐴
				+
				𝐵
				)
			

			

				𝜎
			

			
				=
				𝐴
			

			

				𝜎
			

			
				+
				𝐵
			

			

				𝜎
			

		
	
, 
	
		
			
				(
				𝑎
				𝐴
				)
			

			

				𝜎
			

			
				=
				𝑎
				𝐴
			

			

				𝜎
			

		
	
, 
	
		
			

				𝑃
			

			

				𝑚
			

			

				𝐴
			

			

				𝜎
			

			

				𝑃
			

			

				𝑛
			

			
				=
				(
			

			
				
			
			
				𝐴
				)
			

			

				𝜎
			

		
	
;
								(2)let 
	
		
			
				𝐴
				∈
				𝐶
			

			
				𝑚
				×
				𝑛
			

		
	
, 
	
		
			
				𝐶
				∈
				𝐶
			

			
				𝑛
				×
				𝑠
			

		
	
, 
	
		
			
				𝑎
				∈
				𝑅
			

		
	
, then 
	
		
			
				(
				𝐴
				𝐶
				)
			

			

				𝜎
			

			
				=
				𝐴
			

			

				𝜎
			

			

				𝑃
			

			

				𝑛
			

			

				𝐶
			

			

				𝜎
			

		
	
;(3)if 
	
		
			
				𝐴
				∈
				𝐶
			

			
				𝑚
				×
				𝑚
			

		
	
, then complex matrix 
	
		
			

				𝐴
			

		
	
 is nonsingular if and only if 
	
		
			

				𝐴
			

			

				𝜎
			

		
	
 is nonsingular;(4)if 
	
		
			
				𝐴
				∈
				𝐶
			

			
				𝑚
				×
				𝑚
			

		
	
, then 
	
		
			

				𝐴
			

			
				𝜎
				2
				𝑘
			

			
				=
				(
				(
				𝐴
			

			
				
			
			
				𝐴
				)
			

			

				𝑘
			

			

				)
			

			

				𝜎
			

			

				𝑃
			

			

				𝑚
			

		
	
;(5)if 
	
		
			
				𝐴
				∈
				𝐶
			

			
				𝑚
				×
				𝑛
			

		
	
, then 
	
		
			

				𝑄
			

			

				𝑚
			

			

				𝐴
			

			

				𝜎
			

			

				𝑄
			

			

				𝑛
			

			
				=
				𝐴
			

			

				𝜎
			

		
	
.
Actually, since complex matrix is a special case of quaternion matrix, in this case, we also have the following similar results. Because the proofs are similar to Section 2 and are omitted.
Theorem 13.  Given complex matrices 
	
		
			
				𝐴
				∈
				𝐶
			

			
				𝑛
				×
				𝑛
			

		
	
, 
	
		
			
				𝐵
				∈
				𝐶
			

			
				𝑝
				×
				𝑝
			

		
	
, and 
	
		
			
				𝐶
				∈
				𝐶
			

			
				𝑛
				×
				𝑟
			

		
	
. Let
							
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			

				𝑓
			

			
				(
				𝐼
				,
				𝐴
			

			

				𝜎
			

			

				)
			

			
				
				𝐼
				(
				𝑠
				)
				=
				d
				e
				t
			

			
				2
				𝑛
			

			
				−
				𝑠
				𝐴
			

			

				𝜎
			

			
				
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝑎
			

			
				2
				𝑘
			

			

				𝑠
			

			
				2
				𝑘
			

			
				,
				𝑝
			

			

				𝐴
			

			

				𝜎
			

			
				(
				𝑠
				)
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝑎
			

			
				2
				𝑘
			

			

				𝑠
			

			

				𝑘
			

			

				.
			

		
	

						Then the solution to the matrix equation (43) is given by
							
	
 		
 			
				(
				4
				7
				)
			
 		
	

	
		
			
				𝑋
				=
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑘
				=
				0
				𝑛
				−
				1
			

			

				
			

			
				𝑠
				=
				𝑘
			

			

				𝛼
			

			
				2
				𝑘
			

			
				
				𝐴
			

			
				
			
			
				𝐴
				
			

			
				𝑠
				−
				𝑘
			

			
				
				𝐶
				𝑍
			

			
				
			
			
				
				𝐵
				𝐵
			

			

				𝑠
			

			

				+
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑘
				=
				0
				𝑛
				−
				1
			

			

				
			

			
				𝑠
				=
				𝑘
			

			

				𝛼
			

			
				2
				𝑘
			

			
				
				𝐴
			

			
				
			
			
				𝐴
				
			

			
				𝑠
				−
				𝑘
			

			

				𝐴
			

			
				
			
			

				𝐶
			

			
				
			
			
				
				𝑍
				𝐵
			

			
				
			
			
				
				𝐵
				𝐵
			

			

				𝑠
			

			
				,
				𝑌
				=
				𝑍
				𝑝
			

			

				𝐴
			

			

				𝜎
			

			

				
			

			
				
			
			
				
				.
				𝐵
				𝐵
			

		
	

In the following, we provide an equivalent statement of Theorem 13.
Theorem 14.  Given complex matrices 
	
		
			
				𝐴
				∈
				𝐶
			

			
				𝑛
				×
				𝑛
			

		
	
, 
	
		
			
				𝐵
				∈
				𝐶
			

			
				𝑝
				×
				𝑝
			

		
	
, and 
	
		
			
				𝐶
				∈
				𝐶
			

			
				𝑛
				×
				𝑝
			

		
	
, let
							
	
 		
 			
				(
				4
				8
				)
			
 		
	

	
		
			

				𝑓
			

			
				(
				𝐼
				,
				𝐴
			

			

				𝜎
			

			

				)
			

			
				
				(
				𝑠
				)
				=
				d
				e
				t
				𝑠
				𝐼
			

			
				2
				𝑛
			

			
				−
				𝐴
			

			

				𝜎
			

			
				
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝑎
			

			
				2
				𝑘
			

			

				𝑠
			

			
				2
				𝑘
			

			
				,
				𝑝
			

			

				𝐴
			

			

				𝜎
			

			
				(
				𝑠
				)
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝑎
			

			
				2
				𝑘
			

			

				𝑠
			

			

				𝑘
			

			

				.
			

		
	

						Then the matrices 
	
		
			

				𝑋
			

		
	
 and 
	
		
			

				𝑌
			

		
	
 given by (47) have the following equivalent form:
							
	
 		
 			
				(
				4
				9
				)
			
 		
	

	
		
			
				𝑋
				=
				𝑄
			

			

				𝑐
			

			
				
				𝐴
			

			
				
			
			
				
				𝑆
				𝐴
				,
				𝐶
				,
				𝑛
			

			

				𝑟
			

			
				
				𝐼
				,
				𝐴
			

			

				𝜎
			

			
				
				𝑄
			

			

				𝑜
			

			

				
			

			
				
			
			
				
				𝐵
				𝐵
				,
				𝑍
				,
				𝑛
				+
				𝑄
			

			

				𝑐
			

			
				
				𝐴
			

			
				
			
			
				𝐴
				,
				𝐴
			

			
				
			
			
				
				𝑆
				𝐶
				,
				𝑛
			

			

				𝑟
			

			
				
				𝐼
				,
				𝐴
			

			

				𝜎
			

			
				
				𝑄
			

			

				𝑜
			

			

				
			

			
				
			
			
				𝐵
				𝐵
				,
			

			
				
			
			
				
				,
				𝑍
				𝐵
				,
				𝑛
				𝑌
				=
				𝑍
				𝑝
			

			

				𝐴
			

			

				𝜎
			

			

				
			

			
				
			
			
				
				.
				𝐵
				𝐵
			

		
	

Finally, we consider the solution to the so-called Kalman-Yakubovich-conjugate matrix
						
	
 		
 			
				(
				5
				0
				)
			
 		
	

	
		
			
				𝑋
				−
				𝐴
			

			
				
			
			
				𝑋
				𝐵
				=
				𝐶
				.
			

		
	

Based on the main result proposed above, we have the following conclusions regarding matrix equation (50).
Theorem 15.  Given the complex matrices 
	
		
			
				𝐴
				∈
				𝐶
			

			
				𝑛
				×
				𝑛
			

		
	
, 
	
		
			
				𝐵
				∈
				𝐶
			

			
				𝑝
				×
				𝑝
			

		
	
, and 
	
		
			
				𝐶
				∈
				𝐶
			

			
				𝑛
				×
				𝑝
			

		
	
, let
							
	
 		
 			
				(
				5
				1
				)
			
 		
	

	
		
			

				𝑓
			

			
				(
				𝐼
				,
				𝐴
			

			

				𝜎
			

			

				)
			

			
				
				(
				𝑠
				)
				=
				d
				e
				t
				𝑠
				𝐼
			

			
				2
				𝑛
			

			
				−
				𝐴
			

			

				𝜎
			

			
				
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝑎
			

			
				2
				𝑘
			

			

				𝑠
			

			
				2
				𝑘
			

			
				,
				𝑝
			

			

				𝐴
			

			

				𝜎
			

			
				(
				𝑠
				)
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝑎
			

			
				2
				𝑘
			

			

				𝑠
			

			

				𝑘
			

			

				.
			

		
	
(1) If 
	
		
			

				𝑋
			

		
	
 is a solution of (50), then
							
	
 		
 			
				(
				5
				2
				)
			
 		
	

	
		
			
				𝑋
				𝑝
			

			

				𝐴
			

			

				𝜎
			

			

				
			

			
				
			
			
				
				=
				𝐵
				𝐵
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑘
				=
				0
				𝑛
				−
				1
			

			

				
			

			
				𝑗
				=
				𝑘
			

			

				𝛼
			

			
				2
				𝑘
			

			
				
				𝐴
			

			
				
			
			
				𝐴
				
			

			
				𝑗
				−
				𝑘
			

			
				𝐶
				
			

			
				
			
			
				
				𝐵
				𝐵
			

			

				𝑗
			

			

				+
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑘
				=
				0
				𝑛
				−
				1
			

			

				
			

			
				𝑗
				=
				𝑘
			

			

				𝛼
			

			
				2
				𝑘
			

			
				
				𝐴
			

			
				
			
			
				𝐴
				
			

			
				𝑗
				−
				𝑘
			

			

				𝐴
			

			
				
			
			
				
				𝐶
				𝐵
			

			
				
			
			
				
				𝐵
				𝐵
			

			

				𝑗
			

			

				.
			

		
	
(2) If 
	
		
			

				𝑋
			

		
	
 is the unique solution of (50), then
							
	
 		
 			
				(
				5
				3
				)
			
 		
	

	
		
			
				
				𝑋
				=
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑘
				=
				0
				𝑛
				−
				1
			

			

				
			

			
				𝑗
				=
				𝑘
			

			

				𝛼
			

			
				2
				𝑘
			

			
				
				𝐴
			

			
				
			
			
				𝐴
				
			

			
				𝑗
				−
				𝑘
			

			
				𝐶
				
			

			
				
			
			
				
				𝐵
				𝐵
			

			

				𝑗
			

			

				+
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑘
				=
				0
				𝑛
				−
				1
			

			

				
			

			
				𝑗
				=
				𝑘
			

			

				𝛼
			

			
				2
				𝑘
			

			
				
				𝐴
			

			
				
			
			
				𝐴
				
			

			
				𝑗
				−
				𝑘
			

			

				𝐴
			

			
				
			
			
				
				𝐶
				𝐵
			

			
				
			
			
				
				𝐵
				𝐵
			

			

				𝑗
			

			
				
				×
				
				𝑝
			

			

				𝐴
			

			

				𝜎
			

			

				(
			

			
				
			
			
				
				𝐵
				𝐵
				)
			

			
				−
				1
			

			

				.
			

		
	

Theorem 16.  Given the complex matrices 
	
		
			
				𝐴
				∈
				𝐶
			

			
				𝑛
				×
				𝑛
			

		
	
, 
	
		
			
				𝐵
				∈
				𝐶
			

			
				𝑝
				×
				𝑝
			

		
	
, and 
	
		
			
				𝐶
				∈
				𝐶
			

			
				𝑛
				×
				𝑝
			

		
	
, let
							
	
 		
 			
				(
				5
				4
				)
			
 		
	

	
		
			

				𝑓
			

			
				(
				𝐼
				,
				𝐴
			

			

				𝜎
			

			

				)
			

			
				
				(
				𝑠
				)
				=
				d
				e
				t
				𝑠
				𝐼
			

			
				2
				𝑛
			

			
				−
				𝐴
			

			

				𝜎
			

			
				
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝑎
			

			
				2
				𝑘
			

			

				𝑠
			

			
				2
				𝑘
			

			
				,
				𝑝
			

			

				𝐴
			

			

				𝜎
			

			
				(
				𝑠
				)
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝑎
			

			
				2
				𝑘
			

			

				𝑠
			

			

				𝑘
			

			

				.
			

		
	
(1) If 
	
		
			

				𝑋
			

		
	
 is a solution of (50), then
							
	
 		
 			
				(
				5
				5
				)
			
 		
	

	
		
			
				𝑋
				𝑝
			

			

				𝐴
			

			

				𝜎
			

			

				
			

			
				
			
			
				
				𝐵
				𝐵
				=
				𝑄
			

			

				𝑐
			

			
				
				𝐴
			

			
				
			
			
				
				𝑆
				𝐴
				,
				𝐶
				,
				𝑛
			

			

				𝑝
			

			
				
				𝐼
				,
				𝐴
			

			

				𝜎
			

			
				
				𝑄
			

			

				𝑜
			

			

				
			

			
				
			
			
				𝐵
				𝐵
				,
				𝐼
			

			

				𝑝
			

			
				
				,
				𝑛
				+
				𝑄
			

			

				𝑐
			

			
				
				𝐴
			

			
				
			
			
				
				𝑆
				𝐴
				,
				𝐴
				,
				𝑛
			

			

				𝑛
			

			
				
				𝐼
				,
				𝐴
			

			

				𝜎
			

			
				
				𝑄
			

			

				𝑜
			

			

				
			

			
				
			
			
				𝐵
				𝐵
				,
			

			
				
			
			
				
				.
				𝐶
				𝐵
				,
				𝑛
			

		
	
(2) If 
	
		
			

				𝑋
			

		
	
 is the unique solution of (50), then
							
	
 		
 			
				(
				5
				6
				)
			
 		
	

	
		
			
				
				𝑄
				𝑋
				=
			

			

				𝑐
			

			
				
				𝐴
			

			
				
			
			
				
				𝑆
				𝐴
				,
				𝐶
				,
				𝑛
			

			

				𝑝
			

			
				
				𝐼
				,
				𝐴
			

			

				𝜎
			

			
				
				𝑄
			

			

				𝑜
			

			

				
			

			
				
			
			
				𝐵
				𝐵
				,
				𝐼
			

			

				𝑝
			

			
				
				,
				𝑛
				+
				𝑄
			

			

				𝑐
			

			
				
				𝐴
			

			
				
			
			
				
				𝑆
				𝐴
				,
				𝐴
				,
				𝑛
			

			

				𝑛
			

			
				
				𝐼
				,
				𝐴
			

			

				𝜎
			

			
				
				𝑄
			

			

				𝑜
			

			

				
			

			
				
			
			
				𝐵
				𝐵
				,
			

			
				
			
			
				×
				
				𝑝
				𝐶
				𝐵
				,
				𝑛
				
				
			

			

				𝐴
			

			

				𝜎
			

			

				(
			

			
				
			
			
				
				𝐵
				𝐵
				)
			

			
				−
				1
			

			

				.
			

		
	

4. Illustrative Example
In this section, we give an example to obtain the solution of complex conjugate matrix equation 
	
		
			
				𝑋
				−
				𝐴
			

			
				
			
			
				𝑋
				𝐵
				=
				𝐶
				𝑌
			

		
	
.
Example 1. Consider Yakubovich-conjugate matrix equation in the form of (43) with the following parameters:
							
	
 		
 			
				(
				5
				7
				)
			
 		
	

	
		
			
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				,
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				.
				𝐴
				=
				1
				+
				𝑖
				2
				𝑖
				4
				0
				,
				𝐵
				=
				3
				4
				+
				𝑖
				1
				−
				2
				𝑖
				𝐶
				=
				3
				2
				𝑖
				2
				−
				𝑖
				4
			

		
	
According to the definition of real representation of a complex matrix, we have
							
	
 		
 			
				(
				5
				8
				)
			
 		
	

	
		
			

				𝐴
			

			

				𝜎
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				.
				1
				0
				1
				2
				4
				0
				0
				0
				1
				2
				−
				1
				0
				0
				0
				−
				4
				0
			

		
	

						By some simple computations, we have
							
	
 		
 			
				(
				5
				9
				)
			
 		
	

	
		
			

				𝑓
			

			
				(
				𝐼
				,
				𝐴
			

			

				𝜎
			

			

				)
			

			
				(
				𝜆
				)
				=
				6
				4
				𝜆
			

			

				4
			

			
				−
				2
				𝜆
			

			

				2
			

			
				𝑝
				+
				1
				,
			

			

				𝐴
			

			

				𝜎
			

			
				(
				𝜆
				)
				=
				6
				4
				𝜆
			

			

				2
			

			
				𝑆
				−
				2
				𝜆
				+
				1
				,
			

			

				2
			

			
				
				𝐴
			

			

				𝜎
			

			
				
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				𝐼
			

			

				2
			

			
				2
				𝐼
			

			

				2
			

			
				0
				𝐼
			

			

				2
			

			
				⎤
				⎥
				⎥
				⎥
				⎦
				,
				𝐼
			

			

				2
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				,
				𝑄
				1
				0
				0
				1
			

			

				𝑐
			

			
				
				𝐴
			

			
				
			
			
				
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				,
				𝑄
				𝐴
				,
				𝐶
				,
				2
				3
				2
				𝑖
				8
				+
				1
				8
				𝑖
				−
				8
				−
				4
				𝑖
				2
				−
				𝑖
				4
				4
				−
				2
				8
				𝑖
				8
				−
				2
				4
				𝑖
			

			

				𝑜
			

			

				
			

			
				
			
			
				
				=
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
				𝑄
				𝐵
				𝐵
				,
				𝑍
				,
				2
				1
				𝑖
				−
				1
				1
				1
				1
				+
				2
				𝑖
				9
				+
				3
				𝑖
				−
				1
				0
				+
				3
				𝑖
				−
				2
				+
				6
				𝑖
			

			

				𝑐
			

			
				
				𝐴
			

			
				
			
			
				𝐴
				,
				𝐴
			

			
				
			
			
				
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				,
				𝑄
				𝐶
				,
				2
				1
				+
				7
				𝑖
				2
				+
				6
				𝑖
				−
				3
				0
				−
				2
				𝑖
				−
				6
				0
				+
				1
				2
				𝑖
				1
				2
				−
				8
				𝑖
				3
				2
				−
				7
				2
				𝑖
				−
				3
				2
				+
				1
				6
				𝑖
			

			

				𝑜
			

			

				
			

			
				
			
			
				𝐵
				𝐵
				,
			

			
				
			
			
				
				=
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				.
				𝑍
				𝐵
				,
				2
				3
				−
				𝑖
				2
				+
				𝑖
				−
				2
				−
				4
				−
				3
				𝑖
				4
				2
				−
				9
				𝑖
				4
				0
				−
				1
				5
				𝑖
				−
				3
				2
				−
				1
				5
				𝑖
				−
				4
				9
				−
				1
				8
				𝑖
			

		
	

						Choose
							
	
 		
 			
				(
				6
				0
				)
			
 		
	

	
		
			
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				,
				𝑍
				=
				1
				𝑖
				−
				1
				1
			

		
	

						then it follows from Theorem 14 that the solution of (43) is
							
	
 		
 			
				(
				6
				1
				)
			
 		
	

	
		
			
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				,
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				.
				𝑋
				=
				6
				5
				9
				+
				8
				4
				0
				𝑖
				1
				6
				4
				9
				+
				1
				1
				1
				8
				𝑖
				1
				3
				5
				0
				−
				3
				6
				8
				3
				𝑖
				1
				6
				1
				1
				−
				4
				1
				3
				2
				𝑖
				𝑌
				=
				1
				0
				6
				0
				3
				+
				2
				6
				8
				4
				𝑖
				1
				2
				0
				7
				8
				−
				1
				3
				3
				𝑖
				−
				9
				2
				6
				1
				+
				4
				0
				2
				6
				𝑖
				−
				6
				8
				4
				3
				+
				8
				0
				5
				2
				𝑖
			

		
	

5. Conclusions
In the present paper, by means of the real representation of a quaternion matrix, we study the quaternion matrix equation 
	
		
			
				𝑋
				−
				𝐴
			

			

				∼
			

			
				𝑋
				𝐵
				=
				𝐶
				𝑌
			

		
	
. Compared to our previous results [10], there are no requirements on the coefficient matrix 
	
		
			

				𝐴
			

		
	
. Explicit solutions to this quaternion matrix equation are established by application of the real representation of a quaternion matrix. As a special case of quaternion 
	
		
			

				𝑗
			

		
	
-conjugate matrix equation, complex conjugate matrix equation 
	
		
			
				𝑋
				−
				𝐴
			

			
				
			
			
				𝑋
				𝐵
				=
				𝐶
				𝑌
			

		
	
 is also considered and the explicit solutions to complex conjugate are proposed. In addition, the equivalent forms of the explicit solutions are given.
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