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Abstract. 
The “good” Boussinesq equation is transformed into a first order differential system. A fourth order finite difference scheme is derived for this system. The resulting scheme is analyzed for accuracy and stability. Newton’s method and linearization techniques are used to solve the resulting nonlinear system. The exact solution and the conserved quantity are used to assess the accuracy and the efficiency of the derived method. Head-on and overtaking interactions of two solitons are also considered. The numerical results reveal the good performance of the derived method.


1. Introduction
In recent years, remarkable developments have taken place in the study of nonlinear evolutionary partial differential equations. It is realized that many such equations possess special solutions in the form of pulses which retain their shapes and velocities after interacting with each other. Such solutions are called solitons. Many equations admitting soliton solutions are as follows: sine Gordon and double sine Gordon equations, Schrodinger equation, and KdV, MKdV, and complex modified KdV equations; many research works have been done on these equations [1–8]. Most of the current research is directed to solve coupled nonlinear systems analytically and numerically [9–21]. Solitons are of great interest in many physical areas, as, for example, in dislocation theory of crystals, plasma and fluid dynamics, magnetohydrodynamics, laser and fiber optics, and the study of the water waves.
In this work we will study numerically the “good” Boussinesq (GB) nonlinear equation
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					which provides a balance between dispersion and nonlinearity, that leads to the existence of soliton solutions, similar to the Korteweg-de Vries (KdV) and cubic nonlinear Schrödinger equation [1, 8, 22].
The initial displacement associated with the partial differential equation given in (1) is assumed to take the form [23–25]
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					and the boundary conditions
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The solitary wave solution of (1) is given by [3, 14]
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 is amplitude of the pulse and 
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 is an arbitrary parameter. In addition, the double soliton solution [3, 14, 24, 26] can be written as
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 is the initial position. The exact solution (5) represents two solitary waves located initially at the positions 
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 moving to the right or left according to their velocities.
Many research works on Boussinesq equation have been developed. Analytical solution of this equation was studied by many authors, such as the construction of 
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-soliton solutions using the bilinear form [4], multiple soliton solutions for the GB equation using a simplified version of Hirota method [27] and Adomian decomposition method [28]. Construction of soliton solutions and periodic solution of Boussinesq equation by modified decomposition method are given in [29, 30]. A variational iteration method is developed for GB equation [31]. A solitary wave solution of the Boussinesq equation with power law nonlinearity is derived in [32].
Many numerical methods have been developed for solving the Boussinesq equation, such as Petrov-Galerkin method [19]. Bratsos et al. [23, 24, 33] have developed finite difference schemes and have considered the 
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 Bad Boussinesq (BB) and GB equations. El-Zhoheiry has developed an implicit finite difference scheme [34]. Aydin and Karasözen [35] constructed second order symplectic and multisymplectic integrators for the GB equation using the two-stage Lobatto IIIA-IIIB partitioned Runge-Kutta method. Daripa and Hua [36] developed finite difference method for BB equation of second order in time and space, where they have used the filtration and regularization techniques to control the growth of the errors arising from the instabilities and provide better approximate solutions of this equation. Ismail and Bratsos [25] have derived a predictor corrector scheme for the GB and BB equations; the scheme is fourth order in time and second order in space, and it is conditionally stable. Matsuo [37] also has derived conservative finite difference schemes for certain classes of nonlinear wave equations with some applications for the nonlinear Klein-Gordon and GB equations. Mohebbi and Asgari [26] also have solved the GB equation using a fourth order time stepping schemes with combination of discrete Fourier transform. Split step Fourier method is also used to solve Boussinesq-type equations. Dehghan and Salehi [38] have derived a mesh free method for the classical Boussinesq equation.
The paper is laid out as follows. In Section 2, the GB equation is transformed into a first order differential system in time; a finite difference scheme is derived for this system. The method is analyzed for accuracy and stability. In Section 3, a linearization technique is used to convert the nonlinear system obtained into a linear block tridiagonal system. Numerical tests are presented in Section 4. Concluding remarks are given in Section 5.
2. The Numerical Method
In order to derive a highly accurate method, we transform the GB equation (1) into the first order differential system in time as [19]
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By using the boundary conditions (10), the system (7) and (8) has the conserved quantity [24–26, 38]
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In order to derive a numerical method for solving the system (7) and (8), the region 
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					is used to approximate the second order space derivative which appears in our system. By making use of (13) and the implicit midpoint rule, the finite difference nonlinear implicit scheme
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					By imposing the boundary conditions, a coupled nonlinear system is obtained, which can be solved by any iterative scheme. This system can be solved by Newton's method or fixed point method. Linearization method can also be used.
2.1. Accuracy of the Scheme
To study the accuracy of the proposed schemes (19) and (20), the numerical solutions 
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				𝑛
				𝑚
			

		
	
 are replaced by the exact solutions 
	
		
			

				𝑢
			

			
				𝑛
				𝑚
			

		
	
 and 
	
		
			

				𝑤
			

			
				𝑛
				𝑚
			

		
	
, respectively. By making use of the following expansions about the point 
	
		
			
				(
				𝑥
			

			

				𝑚
			

			
				,
				𝑡
			

			

				𝑛
			

			

				)
			

		
	
:
								
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				
				1
				1
				+
			

			
				
			
			
				𝛿
				1
				2
			

			
				2
				𝑥
			

			
				
				
				𝑢
			

			
				𝑚
				𝑛
				+
				1
			

			
				−
				𝑢
			

			
				𝑛
				𝑚
			

			
				
			
			
				𝑘
				
				=
				
				𝜕
				𝑢
			

			
				
			
			
				+
				𝑘
				𝜕
				𝑡
			

			
				
			
			
				2
				𝜕
			

			

				2
			

			

				𝑢
			

			
				
			
			
				𝜕
				𝑡
			

			

				2
			

			
				+
				ℎ
			

			

				2
			

			
				
			
			
				𝜕
				1
				2
			

			

				3
			

			

				𝑢
			

			
				
			
			
				𝜕
				𝑥
			

			

				2
			

			
				+
				𝜕
				𝑡
				𝑘
				ℎ
			

			

				2
			

			
				
			
			
				𝜕
				2
				4
			

			

				4
			

			

				𝑢
			

			
				
			
			
				𝜕
				𝑥
			

			

				2
			

			
				𝜕
				𝑡
			

			

				2
			

			
				+
				𝑘
			

			

				3
			

			
				
			
			
				6
				𝜕
			

			

				3
			

			

				𝑢
			

			
				
			
			
				𝜕
				𝑡
			

			

				3
			

			
				
				+
				⋯
			

			
				𝑛
				𝑚
			

			
				,
				1
			

			
				
			
			
				2
				ℎ
			

			

				2
			

			

				𝛿
			

			
				2
				𝑥
			

			
				
				𝑢
			

			
				𝑚
				𝑛
				+
				1
			

			
				+
				𝑢
			

			
				𝑛
				𝑚
			

			
				
				=
				
				𝜕
			

			

				2
			

			

				𝑢
			

			
				
			
			
				𝜕
				𝑥
			

			

				2
			

			
				+
				𝑘
			

			
				
			
			
				2
				𝜕
			

			

				3
			

			

				𝑢
			

			
				
			
			
				𝜕
				𝑥
			

			

				2
			

			
				+
				ℎ
				𝜕
				𝑡
			

			

				2
			

			
				
			
			
				𝜕
				1
				2
			

			

				4
			

			

				𝑢
			

			
				
			
			
				𝜕
				𝑥
			

			

				4
			

			
				+
				𝑘
				ℎ
			

			

				2
			

			
				
			
			
				𝜕
				2
				4
			

			

				5
			

			

				𝑢
			

			
				
			
			
				𝜕
				𝑥
			

			

				4
			

			
				+
				𝑘
				𝜕
				𝑡
			

			

				2
			

			
				
			
			
				4
				𝜕
			

			

				4
			

			

				𝑢
			

			
				
			
			
				𝜕
				𝑥
			

			

				2
			

			
				𝜕
				𝑡
			

			

				2
			

			
				
				+
				⋯
			

			
				𝑛
				𝑚
			

			
				,
				
				1
				1
				+
			

			
				
			
			
				𝛿
				1
				2
			

			
				2
				𝑥
			

			
				
				𝐺
				
				𝑢
			

			
				𝑚
				𝑛
				+
				1
			

			
				+
				𝑢
			

			
				𝑛
				𝑚
			

			
				
			
			
				2
				
				=
				
				𝑘
				𝐺
				(
				𝑢
				)
				+
			

			
				
			
			
				2
				𝜕
				𝐺
			

			
				
			
			
				+
				ℎ
				𝜕
				𝑡
			

			

				2
			

			
				
			
			
				2
				𝜕
			

			

				2
			

			

				𝐺
			

			
				
			
			
				𝜕
				𝑥
			

			

				2
			

			
				+
				𝑘
				ℎ
			

			

				2
			

			
				
			
			
				𝜕
				2
				4
			

			

				3
			

			

				𝐺
			

			
				
			
			
				𝜕
				𝑥
			

			

				2
			

			
				
				𝜕
				𝑡
				+
				⋯
			

			
				𝑛
				𝑚
			

		
	

							into (19) to obtain
								
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				
				1
				1
				+
			

			
				
			
			
				𝛿
				1
				2
			

			
				2
				𝑥
			

			
				
				
				𝑢
			

			
				𝑚
				𝑛
				+
				1
			

			
				−
				𝑢
			

			
				𝑛
				𝑚
			

			
				
			
			
				𝑘
				
				−
				1
			

			
				
			
			
				2
				ℎ
			

			

				2
			

			

				𝛿
			

			
				2
				𝑥
			

			
				
				𝑤
			

			
				𝑚
				𝑛
				+
				1
			

			
				+
				𝑤
			

			
				𝑛
				𝑚
			

			
				
				=
				
				𝑘
				1
				+
			

			
				
			
			
				2
				𝜕
			

			
				
			
			
				𝜕
				𝑡
				
				
				𝜕
				𝑢
			

			
				
			
			
				−
				𝜕
				𝑡
				𝜕
				𝑤
			

			
				
			
			
				𝜕
				𝑥
			

			

				2
			

			
				
				+
				ℎ
			

			

				2
			

			
				
			
			
				𝜕
				1
				2
			

			

				2
			

			
				
			
			
				𝜕
				𝑥
			

			

				2
			

			
				×
				𝑘
				
				
				1
				+
			

			
				
			
			
				2
				𝜕
			

			
				
			
			
				𝜕
				𝑡
				
				
				𝜕
				𝑢
			

			
				
			
			
				−
				𝜕
				𝑡
				𝜕
				𝑤
			

			
				
			
			
				𝜕
				𝑥
			

			

				2
			

			
				
				𝑘
				
				
				+
				𝒪
			

			

				2
			

			
				+
				ℎ
			

			

				4
			

			
				
				.
			

		
	

By making use of the differential system (7) and (8), all terms inside the brackets in (22) are zero. Similar analysis can be done for (20). This will lead us to the conclusion that the derived scheme is of second order in time and fourth order in space, that is, 
	
		
			
				𝒪
				(
				𝑘
			

			

				2
			

			
				+
				ℎ
			

			

				4
			

			

				)
			

		
	
. The numerical results confirm this.
2.2. Stability of the Scheme
To study the stability of the derived scheme, von Neumann stability analysis will be used. We consider the linear version of the proposed schemes (17) and (18) which can be given as
								
	
 		
 			
				(
				2
				3
				)
			
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				
				1
				1
				+
			

			
				
			
			
				𝛿
				1
				2
			

			
				2
				𝑥
			

			
				
				
				𝑈
			

			
				𝑚
				𝑛
				+
				1
			

			
				−
				𝑈
			

			
				𝑛
				𝑚
			

			
				
				=
				𝑝
			

			

				1
			

			

				𝛿
			

			
				2
				𝑥
			

			
				
				𝑊
			

			
				𝑚
				𝑛
				+
				1
			

			
				+
				𝑊
			

			
				𝑛
				𝑚
			

			
				
			
			
				2
				
				,
				
				1
				1
				+
			

			
				
			
			
				𝛿
				1
				2
			

			
				2
				𝑥
			

			
				
				
				𝑊
			

			
				𝑚
				𝑛
				+
				1
			

			
				−
				𝑊
			

			
				𝑛
				𝑚
			

			
				
				=
				−
				𝑝
			

			

				1
			

			

				𝛿
			

			
				2
				𝑥
			

			
				
				𝑈
			

			
				𝑚
				𝑛
				+
				1
			

			
				+
				𝑈
			

			
				𝑛
				𝑚
			

			
				
			
			
				2
				
				+
				1
			

			
				
			
			
				2
				
				1
				𝛼
				𝑘
				1
				+
			

			
				
			
			
				𝛿
				1
				2
			

			
				2
				𝑥
			

			
				
				
				𝑈
			

			
				𝑚
				𝑛
				+
				1
			

			
				+
				𝑈
			

			
				𝑛
				𝑚
			

			
				
				,
			

		
	

							where 
	
		
			

				𝛼
			

		
	
 is a constant quantity defined by
								
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				𝛼
				=
				m
				a
				x
			

			
				1
				≤
				𝑚
				≤
				𝑁
			

			
				
				1
				+
				𝑈
			

			
				𝑛
				𝑚
			

			
				
				.
			

		
	

To apply von Neumann method, we assume that the solutions of (22) and (23) are
								
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			

				𝑈
			

			
				𝑛
				𝑚
			

			
				=
				𝜆
			

			

				𝑛
			

			
				e
				x
				p
				(
				𝑖
				𝛽
				𝑚
				ℎ
				)
				,
				𝑊
			

			
				𝑛
				𝑚
			

			
				=
				𝛾
			

			

				𝑛
			

			
				e
				x
				p
				(
				𝑖
				𝛽
				𝑚
				ℎ
				)
				,
			

		
	

							where 
	
		
			

				𝜆
			

		
	
, 
	
		
			

				𝛾
			

		
	
, and 
	
		
			

				𝛽
			

		
	
 are constants. By substituting these solutions into (23) and (24), and after some manipulation, we get the system
								
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				
				1
				1
				−
			

			
				
			
			
				3
				𝑠
				
				
				𝑈
			

			
				𝑚
				𝑛
				+
				1
			

			
				−
				𝑈
			

			
				𝑛
				𝑚
			

			
				
				=
				−
				2
				𝑝
			

			

				1
			

			
				𝑠
				
				𝑊
			

			
				𝑚
				𝑛
				+
				1
			

			
				+
				𝑊
			

			
				𝑛
				𝑚
			

			
				
				,
				
				1
				1
				−
			

			
				
			
			
				3
				𝑠
				
				
				𝑊
			

			
				𝑚
				𝑛
				+
				1
			

			
				−
				𝑊
			

			
				𝑛
				𝑚
			

			
				
				=
				2
				𝑝
			

			

				1
			

			
				𝑠
				
				𝑈
			

			
				𝑚
				𝑛
				+
				1
			

			
				+
				𝑈
			

			
				𝑛
				𝑚
			

			
				
				+
				1
			

			
				
			
			
				2
				
				1
				𝛼
				𝑘
				1
				−
			

			
				
			
			
				3
				𝑠
				
				
				𝑈
			

			
				𝑚
				𝑛
				+
				1
			

			
				+
				𝑈
			

			
				𝑛
				𝑚
			

			
				
				,
			

		
	

							where 
	
		
			
				𝑠
				=
				s
				i
				n
			

			

				2
			

			
				(
				𝛽
				ℎ
				/
				2
				)
			

		
	
. Equations (27) can be written in a matrix vector form as
								
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			

				Ψ
			

			
				𝑛
				+
				1
			

			
				=
				𝑀
				Ψ
			

			

				𝑛
			

			

				,
			

		
	

							where
								
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				
				
				Ψ
				=
				𝑈
				𝑊
			

			

				𝑡
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				,
				𝑀
				=
				𝑎
				𝑏
				−
				𝑐
				𝑎
			

			
				−
				1
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				,
				1
				𝑎
				−
				𝑏
				𝑐
				𝑎
				𝑎
				=
				1
				−
			

			
				
			
			
				3
				𝑠
				,
				𝑏
				=
				2
				𝑝
			

			

				1
			

			
				𝑠
				,
				𝑐
				=
				2
				𝑝
			

			

				1
			

			
				1
				𝑠
				+
			

			
				
			
			
				2
				
				1
				𝛼
				𝑘
				1
				−
			

			
				
			
			
				3
				𝑠
				
				.
			

		
	

The von Neumann necessary condition for the stability of this system is the maximum eigenvalue of value of the amplification matrix 
	
		
			

				𝑀
			

		
	
 in (28) is to be less than or equal to one. By direct calculation, the eigenvalues of the matrix 
	
		
			

				𝑀
			

		
	
 are
								
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			

				𝜆
			

			
				1
				,
				2
			

			
				=
				√
				𝑎
				±
				𝑖
			

			
				
			
			
				𝑏
				𝑐
			

			
				
			
			
				√
				𝑎
				±
				𝑖
			

			
				
			
			
				,
				𝑏
				𝑐
			

		
	

							with modulus equal to one, and hence the proposed scheme is unconditionally stable.
3. Linearization Technique
In order to avoid the solution of the nonlinear systems (19) and (20), a linearization technique will be developed to overcome this difficulty. Using Taylor's series expansion of the nonlinear term about 
	
		
			

				𝑢
			

			
				𝑛
				𝑚
			

		
	
, we obtain
						
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			
				
				𝑢
			

			
				𝑚
				𝑛
				+
				1
			

			
				+
				𝑢
			

			
				𝑛
				𝑚
			

			
				
			
			
				2
				
			

			

				2
			

			
				=
				
				𝑢
			

			
				𝑛
				𝑚
			

			

				
			

			

				2
			

			
				+
				2
				𝑢
			

			
				𝑛
				𝑚
			

			
				
				𝑢
			

			
				𝑚
				𝑛
				+
				1
			

			
				+
				𝑢
			

			
				𝑛
				𝑚
			

			
				
			
			
				2
				−
				𝑢
			

			
				𝑛
				𝑚
			

			
				
				
				𝑘
				+
				𝒪
			

			

				2
			

			
				
				,
			

		
	

					and this will lead us to the following approximation:
						
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			
				
				𝑢
			

			
				𝑚
				𝑛
				+
				1
			

			
				+
				𝑢
			

			
				𝑛
				𝑚
			

			
				
			
			
				2
				
			

			

				2
			

			
				=
				𝑢
			

			
				𝑚
				𝑛
				+
				1
			

			

				𝑢
			

			
				𝑛
				𝑚
			

			
				
				𝑘
				+
				𝒪
			

			

				2
			

			
				
				,
			

		
	

					which preserves second order temporal accuracy. By replacing the exact solution by the approximating one, we get
						
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			
				
				𝑈
			

			
				𝑚
				𝑛
				+
				1
			

			
				+
				𝑈
			

			
				𝑛
				𝑚
			

			
				
			
			
				2
				
			

			

				2
			

			
				=
				𝑈
			

			
				𝑚
				𝑛
				+
				1
			

			

				𝑈
			

			
				𝑛
				𝑚
			

			

				.
			

		
	

By substituting (33) into (18), we obtain the linearly implicit finite difference scheme
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				
				1
				1
				+
			

			
				
			
			
				𝛿
				1
				2
			

			
				2
				𝑥
			

			
				
				
				𝑈
			

			
				𝑚
				𝑛
				+
				1
			

			
				−
				𝑈
			

			
				𝑛
				𝑚
			

			
				
				=
				𝑝
				𝛿
			

			
				2
				𝑥
			

			
				
				𝑊
			

			
				𝑚
				𝑛
				+
				1
			

			
				+
				𝑊
			

			
				𝑛
				𝑚
			

			
				
			
			
				2
				
				,
				
				1
				1
				+
			

			
				
			
			
				𝛿
				1
				2
			

			
				2
				𝑥
			

			
				
				
				𝑊
			

			
				𝑚
				𝑛
				+
				1
			

			
				−
				𝑊
			

			
				𝑛
				𝑚
			

			
				
				=
				−
				𝑝
				𝛿
			

			
				2
				𝑥
			

			
				
				𝑈
			

			
				𝑚
				𝑛
				+
				1
			

			
				+
				𝑈
			

			
				𝑛
				𝑚
			

			
				
			
			
				2
				
				
				1
				+
				𝑘
				1
				+
			

			
				
			
			
				𝛿
				1
				2
			

			
				2
				𝑥
			

			
				
				𝑈
			

			
				𝑚
				𝑛
				+
				1
			

			

				𝑈
			

			
				𝑛
				𝑚
			

			
				
				1
				+
				𝑘
				1
				+
			

			
				
			
			
				𝛿
				1
				2
			

			
				2
				𝑥
			

			
				
				
				𝑈
			

			
				𝑚
				𝑛
				+
				1
			

			
				+
				𝑈
			

			
				𝑛
				𝑚
			

			
				
			
			
				2
				
				,
				𝑚
				=
				1
				,
				2
				,
				…
				,
				𝑁
				.
			

		
	

By expanding the central difference operator in (34), we obtain the linearized scheme
						
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				
				𝑈
				1
				2
			

			
				𝑛
				+
				1
				𝑚
				−
				1
			

			
				+
				1
				0
				𝑈
			

			
				𝑚
				𝑛
				+
				1
			

			
				+
				𝑈
			

			
				𝑛
				+
				1
				𝑚
				+
				1
			

			
				
				−
				1
			

			
				
			
			
				2
				𝑝
				
				𝑊
			

			
				𝑛
				+
				1
				𝑚
				−
				1
			

			
				−
				2
				𝑊
			

			
				𝑚
				𝑛
				+
				1
			

			
				+
				𝑊
			

			
				𝑛
				+
				1
				𝑚
				+
				1
			

			
				
				=
				1
			

			
				
			
			
				
				𝑈
				1
				2
			

			
				𝑛
				𝑚
				−
				1
			

			
				+
				1
				0
				𝑈
			

			
				𝑛
				𝑚
			

			
				+
				𝑈
			

			
				𝑛
				𝑚
				+
				1
			

			
				
				+
				1
			

			
				
			
			
				2
				𝑝
				
				𝑊
			

			
				𝑛
				𝑚
				−
				1
			

			
				−
				2
				𝑊
			

			
				𝑛
				𝑚
			

			
				+
				𝑊
			

			
				𝑛
				𝑚
				+
				1
			

			
				
				,
				1
			

			
				
			
			
				
				𝑊
				1
				2
			

			
				𝑛
				+
				1
				𝑚
				−
				1
			

			
				+
				1
				0
				𝑊
			

			
				𝑚
				𝑛
				+
				1
			

			
				+
				𝑊
			

			
				𝑛
				+
				1
				𝑚
				+
				1
			

			
				
				+
				1
			

			
				
			
			
				2
				𝑝
				
				𝑈
			

			
				𝑛
				+
				1
				𝑚
				−
				1
			

			
				−
				2
				𝑈
			

			
				𝑚
				𝑛
				+
				1
			

			
				+
				𝑈
			

			
				𝑛
				+
				1
				𝑚
				+
				1
			

			
				
				−
				1
			

			
				
			
			
				𝑘
				
				𝑈
				1
				2
			

			
				𝑛
				𝑚
				−
				1
			

			

				𝑈
			

			
				𝑛
				+
				1
				𝑚
				−
				1
			

			
				+
				1
				0
				𝑈
			

			
				𝑛
				𝑚
			

			

				𝑈
			

			
				𝑚
				𝑛
				+
				1
			

			
				+
				𝑈
			

			
				𝑛
				𝑚
				+
				1
			

			

				𝑈
			

			
				𝑛
				+
				1
				𝑚
				+
				1
			

			
				
				−
				1
			

			
				
			
			
				𝑘
				
				𝑈
				2
				4
			

			
				𝑛
				+
				1
				𝑚
				−
				1
			

			
				+
				1
				0
				𝑈
			

			
				𝑚
				𝑛
				+
				1
			

			
				+
				𝑈
			

			
				𝑛
				+
				1
				𝑚
				+
				1
			

			
				
				=
				1
			

			
				
			
			
				
				𝑊
				1
				2
			

			
				𝑛
				𝑚
				−
				1
			

			
				+
				1
				0
				𝑊
			

			
				𝑛
				𝑚
			

			
				+
				𝑊
			

			
				𝑛
				𝑚
				+
				1
			

			
				
				−
				1
			

			
				
			
			
				2
				𝑝
				
				𝑈
			

			
				𝑛
				𝑚
				−
				1
			

			
				−
				2
				𝑈
			

			
				𝑛
				𝑚
			

			
				+
				𝑈
			

			
				𝑛
				𝑚
				+
				1
			

			
				
				+
				1
			

			
				
			
			
				𝑘
				
				𝑈
				2
				4
			

			
				𝑛
				𝑚
				−
				1
			

			
				+
				1
				0
				𝑈
			

			
				𝑛
				𝑚
			

			
				+
				𝑈
			

			
				𝑛
				𝑚
				+
				1
			

			
				
				,
				𝑚
				=
				1
				,
				2
				,
				…
				,
				𝑁
				.
			

		
	

By utilizing the boundary conditions, the finite difference scheme (35) produces a linear block tridiagonal system in the unknowns 
	
		
			
				{
				𝑈
			

			
				𝑚
				𝑛
				+
				1
			

			
				,
				𝑊
			

			
				𝑚
				𝑛
				+
				1
			

			

				}
			

		
	
, which can be solved directly by Crout's method. The obtained difference scheme is still of second order in time and fourth order method in space, and it is unconditionally stable.
4. Numerical Results
In all experiments we use the following values: 
	
		
			

				𝐿
			

			

				0
			

			
				=
				−
				1
				0
				0
			

		
	
, 
	
		
			

				𝐿
			

			

				1
			

			
				=
				1
				0
				0
			

		
	
, 
	
		
			
				ℎ
				=
				0
				.
				1
			

		
	
, 
	
		
			
				𝑘
				=
				0
				.
				0
				1
			

		
	
, and 
	
		
			
				𝑏
				=
				−
				1
				/
				2
			

		
	
. We study the accuracy of the proposed method by calculating the infinity error norm
						
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			

				𝐿
			

			

				∞
			

			
				=
				m
				a
				x
			

			
				1
				≤
				𝑚
				≤
				𝑁
			

			
				|
				|
				𝑈
			

			
				𝑛
				𝑚
			

			
				−
				𝑢
			

			
				𝑛
				𝑚
			

			
				|
				|
				.
			

		
	

					The numerical solution and trapezoidal rule are used to calculate the error and the conserved quantity [19, 25, 26, 37]. All numerical results in this section are obtained from the solution of the nonlinear schemes (19) and (20) using Newton's method. Linearization method is used for comparison purpose only.
4.1. Single Soliton
To test the derived method, we consider the initial condition
								
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			
				𝑢
				(
				𝑥
				,
				0
				)
				=
				−
				𝐴
				s
				e
				c
				h
			

			

				2
			

			
				
				
			

			
				
			
			

				𝐴
			

			
				
			
			
				6
				
				𝑥
				+
				𝑥
			

			

				0
			

			
				
				
				,
				
				𝑐
				=
				±
				1
				−
				2
				𝐴
			

			
				
			
			
				3
				
			

			
				1
				/
				2
			

			
				,
				√
				𝑤
				(
				𝑥
				,
				0
				)
				=
			

			
				
			
			
				
				
				6
				𝐴
				𝑐
				t
				a
				n
				h
			

			
				
			
			

				𝐴
			

			
				
			
			
				6
				
				𝑥
				+
				𝑥
			

			

				0
			

			
				
				
				,
			

		
	

							where (37) represent soliton and kink solution, respectively. The parameters 
	
		
			
				𝐴
				=
				0
				.
				3
				6
				9
			

		
	
, 
	
		
			

				𝑥
			

			

				0
			

			
				=
				0
				.
				0
			

		
	
, and 
	
		
			
				𝑐
				=
				0
				.
				8
				6
				8
				3
				3
			

		
	
 are used in this test. The numerical results for the nonlinear and linearized schemes are given in Tables 1 and 2, respectively. The numerical results (amplitude and the conserved quantity) obtained display the high accuracy of the proposed method. The execution time required for the nonlinear scheme is 
	
		
			
				2
				4
				.
				8
				9
			

		
	
 sec. compared to 
	
		
			
				1
				1
				.
				3
				4
			

		
	
 sec. for the linearized scheme. The numerical results produced in Table 1 are more accurate than the one in Table 2, and this is due to the approximation of the nonlinear term in the linearization process. A comparison of some existing methods is given in Table 3, which indicates that our method is the most accurate one. In Figures 1 and 2, we display the numerical solutions 
	
		
			

				𝑈
			

			
				𝑛
				𝑚
			

		
	
 and 
	
		
			

				𝑊
			

			
				𝑛
				𝑚
			

		
	
 moving to the right for 
	
		
			
				𝑡
				=
				0
				,
				1
				,
				…
				,
				5
				0
			

		
	
.
Table 1: Nonlinear scheme of single soliton 
	
		
			
				𝐴
				=
				0
				.
				3
				6
				9
				,
				ℎ
				=
				0
				.
				1
				,
				𝑘
				=
				0
				.
				0
				1
			

		
	
. 
	

	Time 	
	
		
			

				𝐴
			

		
	
	
	
		
			

				𝐼
			

		
	
	
	
		
			

				𝐿
			

			

				∞
			

		
	
	
	
		
			

				𝐿
			

			

				2
			

		
	

	

	0.0	0.369000	−2.975902	0.0	0.0
	10.0	0.368994	−2.975901	
	
		
			
				1
				𝐸
				−
				0
				6
			

		
	
	
	
		
			
				8
				𝐸
				−
				0
				6
			

		
	

	20.0	0.368975	−2.975901	
	
		
			
				2
				𝐸
				−
				0
				6
			

		
	
	
	
		
			
				1
				.
				3
				𝐸
				−
				0
				5
			

		
	

	30.0	0.368944	−2.975901	
	
		
			
				2
				𝐸
				−
				0
				6
			

		
	
	
	
		
			
				1
				.
				7
				𝐸
				−
				0
				5
			

		
	

	40.0	0.368976	−2.975903	
	
		
			
				3
				𝐸
				−
				0
				6
			

		
	
	
	
		
			
				2
				.
				0
				𝐸
				−
				0
				5
			

		
	

	50.0	0.368995	−2.975902	
	
		
			
				3
				𝐸
				−
				0
				6
			

		
	
	
	
		
			
				2
				.
				3
				𝐸
				−
				0
				5
			

		
	

	



Table 2: Linearization method of single soliton with 
	
		
			
				𝐴
				=
				0
				.
				3
				6
				9
				,
				ℎ
				=
				0
				.
				1
				,
				𝑘
				=
				0
				.
				0
				1
			

		
	
.
	

	Time 	
	
		
			

				𝐴
			

		
	
	
	
		
			

				𝐼
			

		
	
	
	
		
			

				𝐿
			

			

				∞
			

		
	
	
	
		
			

				𝐿
			

			

				2
			

		
	

	

	0.0	0.369000	−2.975902	0.0	0.0
	10.0	0.369000	−2.975902	
	
		
			
				8
				.
				0
				𝐸
				−
				0
				6
			

		
	
	
	
		
			
				5
				.
				2
				𝐸
				−
				0
				5
			

		
	

	20.0	0.368987	−2.975989	
	
		
			
				1
				.
				9
				𝐸
				−
				0
				5
			

		
	
	
	
		
			
				1
				.
				1
				1
				𝐸
				−
				0
				4
			

		
	

	30.0	0.368967	−2.976034	
	
		
			
				2
				.
				9
				𝐸
				−
				0
				5
			

		
	
	
	
		
			
				1
				.
				8
				3
				𝐸
				−
				0
				4
			

		
	

	40.0	0.369008	−2.976080	
	
		
			
				4
				.
				4
				𝐸
				−
				0
				5
			

		
	
	
	
		
			
				2
				.
				7
				1
				𝐸
				−
				0
				4
			

		
	

	50.0	0.369034	−2.976125	
	
		
			
				6
				.
				0
				𝐸
				−
				0
				5
			

		
	
	
	
		
			
				3
				.
				7
				6
				𝐸
				−
				0
				4
			

		
	

	



Table 3: Comparison of numerical solutions with 
	
		
			
				ℎ
				=
				0
				.
				1
				,
				𝑘
				=
				0
				.
				0
				0
				1
			

		
	
 at 
	
		
			
				𝑇
				=
				7
				2
			

		
	
.
	

	Method 	
	
		
			

				𝐿
			

			

				∞
			

		
	

	

	Present method (nonlinear)	
	
		
			
				0
				.
				9
				7
				0
				𝐸
				−
				0
				7
			

		
	

	Present method (linearization)	
	
		
			
				0
				.
				9
				7
				5
				𝐸
				−
				0
				3
			

		
	

	Bratsos [23]	
	
		
			
				0
				.
				3
				7
				8
				𝐸
				−
				0
				3
			

		
	

	Dehghan and Salehi [38]	
	
		
			
				0
				.
				4
				8
				8
				𝐸
				−
				0
				3
			

		
	

	































	
		
	
	
		
		
		
	


	
		
	
	
		
	
	
		
	


	
		
	


	
		
	
	
		
	


	
		
		
		
	


	
		
	


	
		
		
	


	
		
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	
	
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
		
	


	
		
	


	
		
		
		
		
	


	
		
	


	
		
	


	
		
	













Figure 1: Single soliton: numerical solution of 
	
		
			

				𝑈
			

			
				𝑛
				𝑚
			

		
	
.



























	
		
	
	
		
		
		
	


	
		
	
	
		
	
	
		
	


	
		
	


	
		
	
	
		
	


	
		
		
		
	


	
		
	


	
		
		
	


	
		
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
	


	
		
	
	
		
		
		
	


	
		
	


	
		
		
		
	


	
		
	


	
		
		
		
	


	
		
	


	
		
	


	
		
	













Figure 2: Single kink: numerical solution of 
	
		
			

				𝑊
			

			
				𝑛
				𝑚
			

		
	
.


To test whether the proposed numerical scheme exhibits the expected convergence rate in space, we perform some numerical experiments for various values of 
	
		
			

				ℎ
			

		
	
 and fixed value of 
	
		
			

				𝑘
			

		
	
. In these experiments we choose 
	
		
			
				𝑘
				=
				0
				.
				0
				0
				0
				1
			

		
	
 to ensure that the temporal error is negligible. The rate of convergence for the scheme is calculated using the formula
								
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			
				
				𝐿
				R
				a
				t
				e
				o
				f
				c
				o
				n
				v
				e
				r
				g
				e
				n
				c
				e
				=
				l
				n
			

			

				∞
			

			
				(
				ℎ
				)
				/
				𝐿
			

			

				∞
			

			
				
				(
				ℎ
				/
				2
				)
			

			
				
			
			
				,
				l
				n
				2
			

		
	

							where 
	
		
			

				𝐿
			

			

				∞
			

			
				(
				ℎ
				)
			

		
	
 is the infinity error norm. The errors and the rate of convergence for 
	
		
			
				𝑇
				=
				5
			

		
	
 are given in Table 4.
Table 4: Rate of convergence with 
	
		
			
				𝑘
				=
				0
				.
				0
				0
				0
				1
				,
				𝑇
				=
				5
			

		
	
.
	

	
	
		
			

				ℎ
			

		
	
	
	
		
			

				𝐿
			

			

				∞
			

		
	
	Order
	

	0.8	0.000051587	—
	0.4	0.000003161	4.03
	0.2	0.000000197	4.00
	0.1	0.000000013	3.92
	



4.2. Head-On Soliton Interaction
To study the head-on collision of two solitons, we choose the initial conditions
								
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			
				𝑢
				(
				𝑥
				,
				0
				)
				=
				𝑢
			

			

				1
			

			
				(
				𝑥
				,
				0
				)
				+
				𝑢
			

			

				2
			

			
				(
				𝑥
				,
				0
				)
				,
				𝑤
				(
				𝑥
				,
				0
				)
				=
				𝑤
			

			

				1
			

			
				(
				𝑥
				,
				0
				)
				+
				𝑤
			

			

				2
			

			
				(
				𝑥
				,
				0
				)
				,
			

		
	

							where
								
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			

				𝑢
			

			

				𝑖
			

			
				(
				𝑥
				,
				0
				)
				=
				−
				𝐴
			

			

				𝑖
			

			
				s
				e
				c
				h
			

			

				2
			

			
				
				
			

			
				
			
			

				𝐴
			

			

				𝑖
			

			
				
			
			
				6
				
				𝑥
				+
				𝑥
			

			
				0
				𝑖
			

			
				
				
				,
				𝑐
			

			

				𝑖
			

			
				
				=
				±
				1
				−
				2
				𝐴
			

			

				𝑖
			

			
				
			
			
				3
				
			

			
				1
				/
				2
			

			
				,
				𝑤
			

			

				𝑖
			

			
				√
				(
				𝑥
				,
				0
				)
				=
			

			
				
			
			
				6
				𝐴
			

			

				𝑖
			

			

				𝑐
			

			

				𝑖
			

			
				
				
				t
				a
				n
				h
			

			
				
			
			

				𝐴
			

			

				𝑖
			

			
				
			
			
				6
				
				𝑥
				+
				𝑥
			

			
				0
				𝑖
			

			
				
				
				,
				𝑖
				=
				1
				,
				2
				.
			

		
	

In [19] it was reported that solution blew up numerically when 
	
		
			
				𝐴
				>
				0
				.
				3
				6
				9
				1
			

		
	
. By choosing the parameters 
	
		
			

				𝑥
			

			
				0
				1
			

			
				=
				−
				𝑥
			

			
				0
				2
			

			
				=
				5
				0
				.
				0
			

		
	
, 
	
		
			

				𝐴
			

			

				1
			

			
				=
				𝐴
			

			

				2
			

			
				=
				0
				.
				3
				6
				9
			

		
	
, and 
	
		
			

				𝑐
			

			

				1
			

			
				=
				−
				𝑐
			

			

				2
			

			
				=
				0
				.
				8
				6
				8
				3
				3
			

		
	
. The initial conditions represent two solitons and two kinks located at 
	
		
			

				𝑥
			

			
				0
				1
			

			
				=
				−
				5
				0
			

		
	
 and 
	
		
			

				𝑥
			

			
				0
				2
			

			
				=
				5
				0
			

		
	
. In Figures 3 and 4, we display the interaction scenario for 
	
		
			
				𝑡
				=
				0
			

		
	
 to 
	
		
			
				𝑡
				=
				1
				2
				0
			

		
	
; we can easily observe that the two solitons and the two kinks have been separated completely after the interaction and restored their original shapes and velocities. The velocity and the conserved quantity are given in Table 5. It is noted that when the two waves overlap (Figures 3 and 4), the joint amplitude is greater than the sum of individual amplitudes; this is in full agreement with [37]. By choosing 
	
		
			

				𝐴
			

			

				1
			

			
				=
				𝐴
			

			

				2
			

			
				=
				0
				.
				4
			

		
	
, the situation dramatically changes; both Figures 5 and 6 end around 
	
		
			

				𝑡
			

		
	
~
	
		
			
				6
				0
			

		
	
. Newton's method fails to find the solution there. This agrees with the blowup results in [19, 37].
Table 5: Interaction of two solitons 
	
		
			

				𝐴
			

			

				1
			

			
				=
				𝐴
			

			

				2
			

			
				=
				0
				.
				3
				6
				9
				,
				𝑐
			

			

				1
			

			
				=
				−
				𝑐
			

			

				2
			

			
				=
				0
				.
				8
				6
				8
				3
				3
			

		
	
.
	

	
	
		
			

				𝑇
			

		
	
	
	
		
			

				𝐴
			

		
	
	
	
		
			

				𝐼
			

		
	

	

	0.0	0.36900	−5.951801
	20	0.368975	−5.951801
	40	
									0.368976	−5.951802
	60	1.223350	−5.591803
	80	0.369014	−5.951803
	100	0.368973	−5.951809
	120	0.368978	−5.951802
	































	
		
	
	
		
		
		
	


	
		
	
	
		
	
	
		
	


	
		
	


	
		
	
	
		
	


	
		
		
		
	


	
		
	


	
		
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	


	
		
		
		
	


	
		
	


	
		
	


	
		
	













Figure 3: Head-on interaction: numerical solution of  
	
		
			

				𝑈
			

			
				𝑛
				𝑚
			

		
	
 with 
	
		
			

				𝐴
			

			

				1
			

			
				=
				𝐴
			

			

				2
			

			
				=
				0
				.
				3
				6
				9
			

		
	
.
































	
		
	
	
		
		
		
	


	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
	


	
		
	
	
		
	
	
		
	


	
		
	
	
		
		
	


	
		
	


	
		
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
		
	


	
		
		
		
	


	
		
	


	
		
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	


	
		
	


	
		
	


	
		
	


	
		
	


	
		
	













Figure 4: Head-on interaction: numerical solution of  
	
		
			

				𝑊
			

			
				𝑛
				𝑚
			

		
	
 with 
	
		
			

				𝐴
			

			

				1
			

			
				=
				𝐴
			

			

				2
			

			
				=
				0
				.
				3
				6
				9
			

		
	
.



























	
		
	
	
		
		
		
	


	
		
	
	
		
	
	
		
	


	
		
	


	
		
	
	
		
	


	
		
		
		
	


	
		
	


	
		
		
	


	
		
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
		
		
	


	
		
	


	
		
		
		
	


	
		
	


	
		
		
		
	


	
		
	


	
		
	


	
		
	
	
		
	













Figure 5: Blowup: numerical solution of 
	
		
			

				𝑈
			

			
				𝑛
				𝑚
			

		
	
 with 
	
		
			

				𝐴
			

			

				1
			

			
				=
				𝐴
			

			

				2
			

			
				=
				0
				.
				4
			

		
	
.































	
		
	
	
		
		
		
	


	
		
	
	
		
	
	
		
	


	
		
	


	
		
	
	
		
	


	
		
		
		
	


	
		
	


	
		
		
	


	
		
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	


	
		
	


	
		
	


	
		
	


	
		
	


	
		
	


	
		
	













Figure 6: Blowup: numerical solution of 
	
		
			

				𝑊
			

			
				𝑛
				𝑚
			

		
	
 with 
	
		
			

				𝐴
			

			

				1
			

			
				=
				𝐴
			

			

				2
			

			
				=
				0
				.
				4
			

		
	
.


4.3. Overtaking Soliton Interaction
In this test we will study the interaction of two solitons moving in the same direction. In this case we choose the initial conditions
								
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			
				𝑢
				(
				𝑥
				,
				0
				)
				=
				𝑢
			

			

				1
			

			
				(
				𝑥
				,
				0
				)
				+
				𝑢
			

			

				2
			

			
				(
				𝑥
				,
				0
				)
				,
				𝑤
				(
				𝑥
				,
				0
				)
				=
				𝑤
			

			

				1
			

			
				(
				𝑥
				,
				0
				)
				+
				𝑤
			

			

				2
			

			
				(
				𝑥
				,
				0
				)
				,
			

		
	

							where
								
	
 		
 			
				(
				4
				2
				)
			
 			
				(
				4
				3
				)
			
 		
	

	
		
			

				𝑢
			

			

				𝑖
			

			
				(
				𝑥
				,
				0
				)
				=
				−
				𝐴
			

			

				𝑖
			

			
				s
				e
				c
				h
			

			

				2
			

			
				
				
			

			
				
			
			

				𝐴
			

			
				
			
			
				6
				
				𝑥
				−
				𝑥
			

			
				0
				𝑖
			

			
				
				
				,
				𝑐
			

			

				𝑖
			

			
				
				=
				±
				1
				−
				2
				𝑏
				𝐴
			

			
				
			
			
				3
				
			

			
				1
				/
				2
			

			
				,
				𝑤
			

			

				𝑖
			

			
				√
				(
				𝑥
				,
				0
				)
				=
			

			
				
			
			
				6
				𝐴
			

			

				𝑖
			

			

				𝑐
			

			

				𝑖
			

			
				
				
				t
				a
				n
				h
			

			
				
			
			

				𝐴
			

			
				
			
			
				6
				
				𝑥
				−
				𝑥
			

			
				0
				𝑖
			

			
				
				
				,
				𝑖
				=
				1
				,
				2
				.
			

		
	

The following parameters are selected:
								
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			

				𝐿
			

			

				0
			

			
				=
				−
				𝐿
			

			

				1
			

			
				𝐴
				=
				−
				1
				0
				0
				,
				ℎ
				=
				0
				.
				1
				,
				𝑘
				=
				0
				.
				0
				1
				,
			

			

				1
			

			
				=
				0
				.
				3
				,
				𝐴
			

			

				2
			

			
				=
				1
				.
				0
				,
				𝑥
			

			
				0
				1
			

			
				=
				−
				8
				0
				,
				𝑥
			

			
				0
				2
			

			
				=
				−
				5
				0
				.
			

		
	

The initial conditions represent two solitons and two kinks are initially located at 
	
		
			

				𝑥
			

			
				