Letter to the Editor

Extension of the GSMW Formula in Weaker Assumptions

Wenfeng Wang¹,² and Xi Chen¹

¹ State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830001, China
² University of Chinese Academy of Sciences, Beijing 100093, China

Correspondence should be addressed to Xi Chen; chenxi@ms.xjb.ac.cn

Received 3 March 2014; Accepted 15 April 2014; Published 30 April 2014

Abstract

In this note, the generalized Sherman-Morrison-Woodbury (for short GSMW) formula has the form (A + YGZ*)⁻¹ = A⁻¹ - A⁻¹ Y(G⁻¹ + Z* A⁻¹ Y)⁻¹ Z* A⁻¹, (1)

where Y, Z ∈ B(H, K).

Let I be the identity in ∈ B(H) and let T ∈ B(H). Recall that the standard inverse T⁻¹ of T must satisfy (I) TT⁻¹ = T⁻¹ T = I, while the generalized inverse S of T need only to satisfy (I) TST = T. Note that S is unique if imposed additional conditions as (II) STS = S, (III) (TS)∗ = TS, (IV) (ST)∗ = ST, (V) TS = ST, and (VI) T^k ST = T^k, where S ∈ B(H) satisfying (II) are called (2)-inverse of T, denoted by S = T²⁻¹. Similarly, (I, II, V)-inverses are called group inverses, denoted by S = Tg. (I, II, III, IV)-inverses are Moore-Penrose inverses, denoted by S = T¹. And (II, V, VI)-inverses are called Drazin inverses, denoted by S = T²⁻¹. (1)

that the SMW formula holds for all the inverses if and only if it holds for the [2]-inverse.

Because of its wide applications in statistics, networks, structural analysis, asymptotic analysis, optimization, and partial differential equations (see [5]), the properties and generalizations of the SMW formula have caught mathematicians attention (see [1–8]). Duan (see [9]) finally generalized the SMW formula to the [2]-inverse (hence, to all the inverses, uniformly denoted by T^²). Under some sufficient conditions (see [9]), the generalized Sherman-Morrison-Woodbury (for short GSMW) formula has the form

(A + YGZ*)⁻¹ = A⁻¹ - A⁻¹ Y(G⁻¹ + Z* A⁻¹ Y)⁻¹ Z* A⁻¹, (1)

where A ∈ B(H), G ∈ B(H), and Y, Z ∈ B(H, K).

Duan questioned whether the GSMW formula can be extended in some weaker assumptions. This problem is worthy of being followed up.

2. Main Result

The following two lemmas are used to prove the main result.

Lemma 1. If A ∈ B(H) and P = P² ∈ B(H), then AP = A if and only if M(P) ⊂ M(A).

Lemma 2. Let A ∈ B(H), G ∈ B(H), and Y, Z ∈ B(H, K). Let also B = A + YGZ*, T = G⁻¹ + Z* A⁻¹ Y, and
\[X = A^0 - A^0 Y (G^0 + Z^* A^0 Y)^0 Z^* A^0. \] Then, the following three statements are equivalent:

(i) the GSMW formula holds;

(ii) \(A^0 (Y G Z^* - Y T^0 Z^*) X = A^0 Y T^0 Z^* A^0 Y G Z^* X \);

(iii) \(X (Y G Z^* - Y T^0 Z^*) A^0 = X Y G Z^* A^0 Y T^0 Z^* A^0. \)

Proof. The GSMW formula holds if and only if \(X B X = X \). But it is easy to see that \(X A A^0 = A^0 A X = X \). Hence, we have

\[X B X = (A^0 - A^0 Y T^0 Z^* A^0) (A + Y G Z^*) X \]
\[= (A^0 A + A^0 Y G Z^* - A^0 Y T^0 Z^* A^0) \]
\[- A^0 Y T^0 Z^* A^0 Y G Z^* X \]
\[= X + A^0 Y G Z^* X - A^0 Y T^0 Z^* X \]
\[- A^0 Y T^0 Z^* A^0 Y G Z^* X \]
and, meanwhile,

\[X B X = X (A + Y G Z^*) (A^0 - A^0 Y T^0 Z^* A^0) \]
\[= X (A A^0 + Y G Z^* A^0 - A^0 Y T^0 Z^* A^0) \]
\[- Y G Z^* A^0 Y T^0 Z^* A^0 \]
\[= X + X Y G Z^* A^0 - X Y T^0 Z^* A^0 \]
\[- X Y G Z^* A^0 Y T^0 Z^* A^0 \]
\[= X + X (Y G Z^* - Y T^0 Z^*) A^0 \]
\[- X Y G Z^* A^0 Y T^0 Z^* A^0. \]

It is immediate that the three statements are equivalent. \(\square \)

Now, the first main result of this paper is given as follows.

Theorem 3. Let \(A \in \mathcal{R}(H), G \in \mathcal{R}(H), \) and \(Y, Z \in \mathcal{R}(H, H). \) Let also \(B = A + Y G Z^* \) and \(T = G^0 + Z^* A^0 Y. \) The GSMW formula holds if one of the following statements holds:

(i) \(\mathcal{R}(Z^*) \subset \mathcal{R}(G^0), \mathcal{R}(T^0) \subset \mathcal{R}(Y); \)

(ii) \(\mathcal{R}(G^0) \subset \mathcal{R}(Y), \mathcal{R}(Z^*) \subset \mathcal{R}(T T^0). \)

Proof. Note that \(Z^* A^0 Y = T - G^0. \)

(i) Assume that \(\mathcal{R}(Z^*) \subset \mathcal{R}(G^0), \mathcal{R}(T^0) \subset \mathcal{R}(Y). \) By Lemma 1, we have \(Y (I - T^0 T) = 0 \) and \(I - G^0 G) Z^* = 0. \) Hence, \((A^0 Y G Z^* - A^0 Y T^0 Z^*) X - A^0 Y T^0 Z^* A^0 Y G Z^* X = A^0 Y (I - T^0 T) G^0 Z^* X - A^0 Y T^0 (I - G^0 G) Z^* X = 0. \)

(ii) Assume that \(\mathcal{R}(G^0) \subset \mathcal{R}(Y), \mathcal{R}(Z^*) \subset \mathcal{R}(T T^0). \) By Lemma 2, the GSMW formula holds if one of (i) and (ii) holds. \(\square \)

3. Concluding Remark

According to Theorem 3 in this paper, Theorem 5 and Corollary 6 in [9] still hold under weaker assumptions. It must be noted that there are no assumptions on \(B \) in Theorem 3; hence, it also present more convenience than Theorem 3 and Corollary 4 in [9] in applications. The results are even robust for the finite dimensional case. Nevertheless, it remains undetermined whether these assumptions are the weakest. We would like to propose this unresolved issue as an open question for international research interest.

Conflict of Interests

The authors declare that there is no conflict of interests.

Acknowledgments

This research is financially supported by the CAS-SAFEA Innovation Team Project “Research on Ecological Transect in Arid Land of Central Asia.”

References

