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Abstract. 
We introduce two new types of fixed point theorems in the collection of multivalued and single-valued mappings in complete metric spaces.


1. Introduction
Let 
	
		
			

				𝑇
			

		
	
 be a mapping on a complete (or compact) metric space 
	
		
			
				(
				𝑋
				,
				𝑑
				)
			

		
	
. We do not assume richer structure such as convex metric spaces and Banach spaces. There are thousands of theorems which assure the existence of a fixed point of 
	
		
			

				𝑇
			

		
	
. We can categorize these theorems into the following four types.(T1)Leader type [1]: 
	
		
			

				𝑇
			

		
	
 has a unique fixed point and 
	
		
			
				{
				𝑇
			

			

				𝑛
			

			
				𝑥
				}
			

		
	
 converges to the fixed point for all 
	
		
			
				𝑥
				∈
				𝑋
			

		
	
. Such a mapping is called a Picard operator in [2].(T2)Unnamed type: 
	
		
			

				𝑇
			

		
	
 has a unique fixed point and 
	
		
			
				{
				𝑇
			

			

				𝑛
			

			
				𝑥
				}
			

		
	
 does not necessarily converge to the fixed point.(T3)Subrahmanyam type [3]: 
	
		
			

				𝑇
			

		
	
 may have more than one fixed point and 
	
		
			
				{
				𝑇
			

			

				𝑛
			

			
				𝑥
				}
			

		
	
 converges to a fixed point for all 
	
		
			
				𝑥
				∈
				𝑋
			

		
	
. Such a mapping is called a weakly Picard operator in [3, 4].(T4)Caristi type [5, 6]: 
	
		
			

				𝑇
			

		
	
 may have more than one fixed point and 
	
		
			
				{
				𝑇
			

			

				𝑛
			

			
				𝑥
				}
			

		
	
 does not necessarily converge to a fixed point.
We know that most of the theorems such as Banach’s [7], Ćirić’s [8], Kannan’s [9], Kirk’s [10], Matkowski’s [11], Meir and Keeler’s [12], and Suzuki’s [13, 14] belong to 
	
		
			
				(
				𝑇
				1
				)
			

		
	
. Also, very recently, Suzuki [15] characterized 
	
		
			
				(
				𝑇
				1
				)
			

		
	
. Subrahmanyam’s theorem [3] belongs to 
	
		
			
				(
				𝑇
				3
				)
			

		
	
, and Caristi’s theorem [5, 6] and its generalizations [15–17] belong to 
	
		
			
				(
				𝑇
				4
				)
			

		
	
. On the other hand, as far as the authors do know, there are no theorems belonging to 
	
		
			
				(
				𝑇
				2
				)
			

		
	
; see Kirk’s survey [18]. Also, recently many interesting fixed point theorems are proved in the framework of ordered metric spaces; see [18–35] and others.
In this paper, motivated by the above, we introduce two new types of fixed point theorems in the collection of multivalued and single-valued mappings and will prove them, which belong to 
	
		
			
				(
				𝑇
				3
				)
			

		
	
.
Let 
	
		
			
				(
				𝑋
				,
				𝑑
				)
			

		
	
 be a metric space, and let 
	
		
			

				𝑃
			

			
				c
				l
				,
			

			
				b
				d
			

			
				(
				𝑋
				)
			

		
	
 denote the class of all nonempty, closed, and bounded subsets of 
	
		
			

				𝑋
			

		
	
. Let 
	
		
			
				𝑇
				∶
				𝑋
				→
				𝑃
			

			
				c
				l
				,
			

			
				b
				d
			

			
				(
				𝑋
				)
			

		
	
 be a multivalued mapping on 
	
		
			

				𝑋
			

		
	
. A point 
	
		
			
				𝑥
				∈
				𝑋
			

		
	
 is called a fixed point of 
	
		
			

				𝑇
			

		
	
 if 
	
		
			
				𝑥
				∈
				𝑇
				𝑥
			

		
	
. Set 
	
		
			
				F
				i
				x
				(
				𝑇
				)
				=
				{
				𝑥
				∈
				𝑋
				∶
				𝑥
				∈
				𝑇
				𝑥
				}
			

		
	
.
A famous theorem on multivalued mappings is due to Nadler [36], which extended the Banach contraction principle to multivalued mappings. Many authors have studied the existence and uniqueness of strict fixed points for multivalued mappings in metric spaces; see, for example, [37–44] and references therein.
Let 
	
		
			

				𝐻
			

		
	
 be the Hausdorff metric on 
	
		
			

				𝑃
			

			
				c
				l
				,
			

			
				b
				d
			

			
				(
				𝑋
				)
			

		
	
 induced by 
	
		
			

				𝑑
			

		
	
; that is,
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				
				𝐻
				(
				𝐴
				,
				𝐵
				)
				∶
				=
				m
				a
				x
				s
				u
				p
			

			
				𝑥
				∈
				𝐵
			

			
				𝑑
				(
				𝑥
				,
				𝐴
				)
				,
				s
				u
				p
			

			
				𝑥
				∈
				𝐴
			

			
				
				,
				𝑑
				(
				𝑥
				,
				𝐵
				)
				𝐴
				,
				𝐵
				∈
				𝑃
			

			
				c
				l
				,
			

			
				b
				d
			

			
				(
				𝑋
				)
				.
			

		
	

					Denote 
	
		
			
				𝛿
				(
				𝑥
				,
				𝐴
				)
				=
				s
				u
				p
				{
				𝑑
				(
				𝑥
				,
				𝑦
				)
				∶
				𝑦
				∈
				𝐴
				}
			

		
	
 and 
	
		
			
				𝐷
				(
				𝑥
				,
				𝐴
				)
				=
				i
				n
				f
				{
				𝑑
				(
				𝑥
				,
				𝑦
				)
				∶
				𝑦
				∈
				𝐴
				}
			

		
	
, where 
	
		
			
				𝐴
				∈
				𝑃
			

			
				c
				l
				,
			

			
				b
				d
			

			
				(
				𝑋
				)
			

		
	
.
2. Main Results
The following is the first our main results.
Theorem 1.  Let 
	
		
			
				(
				𝑋
				,
				𝑑
				)
			

		
	
 be a complete metric space and let 
	
		
			

				𝑇
			

		
	
 be a mapping from 
	
		
			

				𝑋
			

		
	
 into itself. Suppose that 
	
		
			

				𝑇
			

		
	
 satisfies the following condition:
							
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				
				𝑑
				𝑑
				(
				𝑇
				𝑥
				,
				𝑇
				𝑦
				)
				≤
				(
				𝑥
				,
				𝑇
				𝑦
				)
				+
				𝑑
				(
				𝑦
				,
				𝑇
				𝑥
				)
			

			
				
			
			
				
				𝑑
				(
				𝑥
				,
				𝑇
				𝑥
				)
				+
				𝑑
				(
				𝑦
				,
				𝑇
				𝑦
				)
				+
				1
				𝑑
				(
				𝑥
				,
				𝑦
				)
				,
			

		
	

						for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝑋
			

		
	
. Then (a)
	
		
			

				𝑇
			

		
	
 has at least one fixed point 
	
		
			
				̇
				𝑥
				∈
				𝑋
			

		
	
;(b)
	
		
			
				{
				𝑇
			

			

				𝑛
			

			
				𝑥
				}
			

		
	
 converges to a fixed point, for all 
	
		
			
				𝑥
				∈
				𝑋
			

		
	
;(c)if 
	
		
			
				̇
				𝑥
				,
				̇
				𝑦
			

		
	
 are two distinct fixed points of 
	
		
			

				𝑇
			

		
	
, then 
	
		
			
				𝑑
				(
				̇
				𝑥
				,
				̇
				𝑦
				)
				≥
				1
				/
				2
			

		
	
.
Proof. Let 
	
		
			

				𝑥
			

			

				0
			

			
				∈
				𝑋
			

		
	
 be arbitrary and choose a sequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 such that 
	
		
			

				𝑥
			

			
				𝑛
				+
				1
			

			
				=
				𝑇
				𝑥
			

			

				𝑛
			

		
	
. We have
							
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				𝑑
				
				𝑥
			

			
				𝑛
				+
				1
			

			
				,
				𝑥
			

			

				𝑛
			

			
				
				
				=
				𝑑
				𝑇
				𝑥
			

			

				𝑛
			

			
				,
				𝑇
				𝑥
			

			
				𝑛
				−
				1
			

			
				
				≤
				
				𝑑
				
				𝑥
			

			

				𝑛
			

			
				,
				𝑥
			

			

				𝑛
			

			
				
				
				𝑥
				+
				𝑑
			

			
				𝑛
				−
				1
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			

				
			

			
				
			
			
				𝑑
				
				𝑥
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				
				𝑥
				+
				𝑑
			

			
				𝑛
				−
				1
			

			
				,
				𝑥
			

			

				𝑛
			

			
				
				
				𝑑
				
				𝑥
				+
				1
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				−
				1
			

			
				
				=
				
				𝑑
				
				𝑥
			

			
				𝑛
				−
				1
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			

				
			

			
				
			
			
				𝑑
				
				𝑥
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				
				𝑥
				+
				𝑑
			

			
				𝑛
				−
				1
			

			
				,
				𝑥
			

			

				𝑛
			

			
				
				
				𝑑
				
				𝑥
				+
				1
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				−
				1
			

			
				
				≤
				
				𝑑
				
				𝑥
			

			
				𝑛
				−
				1
			

			
				,
				𝑥
			

			

				𝑛
			

			
				
				
				𝑥
				+
				𝑑
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			

				
			

			
				
			
			
				𝑑
				
				𝑥
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				
				𝑥
				+
				𝑑
			

			
				𝑛
				−
				1
			

			
				,
				𝑥
			

			

				𝑛
			

			
				
				
				𝑑
				
				𝑥
				+
				1
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				−
				1
			

			
				
				.
			

		
	

						Given
							
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			

				𝛽
			

			

				𝑛
			

			
				=
				𝑑
				
				𝑥
			

			
				𝑛
				−
				1
			

			
				,
				𝑥
			

			

				𝑛
			

			
				
				
				𝑥
				+
				𝑑
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			

				
			

			
				
			
			
				𝑑
				
				𝑥
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				
				𝑥
				+
				𝑑
			

			
				𝑛
				−
				1
			

			
				,
				𝑥
			

			

				𝑛
			

			
				
				,
				+
				1
			

		
	

						we have
							
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			
				𝑑
				
				𝑥
			

			
				𝑛
				+
				1
			

			
				,
				𝑥
			

			

				𝑛
			

			
				
				≤
				𝛽
			

			

				𝑛
			

			
				𝑑
				
				𝑥
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				−
				1
			

			
				
				≤
				
				𝛽
			

			

				𝑛
			

			

				𝛽
			

			
				𝑛
				−
				1
			

			
				
				𝑑
				
				𝑥
			

			
				𝑛
				−
				1
			

			
				,
				𝑥
			

			
				𝑛
				−
				2
			

			
				
				⋮
				≤
				
				𝛽
			

			

				𝑛
			

			

				𝛽
			

			
				𝑛
				−
				1
			

			
				⋯
				𝛽
			

			

				1
			

			
				
				𝑑
				
				𝑥
			

			

				1
			

			
				,
				𝑥
			

			

				0
			

			
				
				.
			

		
	
Observe that 
	
		
			
				(
				𝛽
			

			

				𝑛
			

			

				)
			

		
	
 is nonincreasing, with positive terms. So 
	
		
			

				𝛽
			

			

				1
			

			
				⋯
				𝛽
			

			

				𝑛
			

			
				≤
				𝛽
			

			
				𝑛
				1
			

		
	
 and 
	
		
			

				𝛽
			

			
				𝑛
				1
			

			
				→
				0
			

		
	
. It follows that
							
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				
				𝛽
			

			

				1
			

			

				𝛽
			

			

				2
			

			
				⋯
				𝛽
			

			

				𝑛
			

			
				
				=
				0
				.
			

		
	

						Thus, it is verified that
							
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝑑
				
				𝑥
			

			
				𝑛
				+
				1
			

			
				,
				𝑥
			

			

				𝑛
			

			
				
				=
				0
				.
			

		
	
Now for all 
	
		
			
				𝑚
				,
				𝑛
				∈
				ℕ
			

		
	
 we have
							
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				𝑑
				
				𝑥
			

			

				𝑚
			

			
				,
				𝑥
			

			

				𝑛
			

			
				
				
				𝑥
				≤
				𝑑
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				
				𝑥
				+
				𝑑
			

			
				𝑛
				+
				1
			

			
				,
				𝑥
			

			
				𝑛
				+
				2
			

			
				
				
				𝑥
				+
				⋯
				+
				𝑑
			

			
				𝑚
				−
				1
			

			
				,
				𝑥
			

			

				𝑚
			

			
				
				≤
				𝛽
				
				
			

			

				𝑛
			

			

				𝛽
			

			
				𝑛
				−
				1
			

			
				⋯
				𝛽
			

			

				1
			

			
				
				+
				
				𝛽
			

			
				𝑛
				+
				1
			

			

				𝛽
			

			

				𝑛
			

			
				⋯
				𝛽
			

			

				1
			

			
				
				
				𝛽
				+
				⋯
				+
			

			
				𝑚
				−
				1
			

			

				𝛽
			

			
				𝑚
				−
				2
			

			
				⋯
				𝛽
			

			

				1
			

			
				𝑑
				
				𝑥
				
				
			

			

				1
			

			
				,
				𝑥
			

			

				0
			

			
				
				=
			

			
				𝑚
				−
				1
			

			

				
			

			
				𝑘
				=
				𝑛
			

			
				
				𝛽
			

			

				𝑘
			

			

				𝛽
			

			
				𝑘
				−
				1
			

			
				⋯
				𝛽
			

			

				1
			

			
				
				𝑑
				
				𝑥
			

			

				1
			

			
				,
				𝑥
			

			

				0
			

			
				
				.
			

		
	

						Suppose that 
	
		
			

				𝑎
			

			

				𝑘
			

			
				=
				(
				𝛽
			

			

				𝑘
			

			

				𝛽
			

			
				𝑘
				−
				1
			

			
				⋯
				𝛽
			

			

				1
			

			

				)
			

		
	
. Since
							
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑘
				→
				∞
			

			

				𝑎
			

			
				𝑘
				+
				1
			

			
				
			
			

				𝑎
			

			

				𝑘
			

			
				=
				0
			

		
	

	
		
			

				∑
			

			
				∞
				𝑘
				=
				1
			

			

				𝑎
			

			

				𝑘
			

			
				<
				∞
			

		
	
. It means that
							
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				𝑚
				−
				1
			

			

				
			

			
				𝑘
				=
				𝑛
			

			
				
				𝛽
			

			

				𝑘
			

			

				𝛽
			

			
				𝑘
				−
				1
			

			
				⋯
				𝛽
			

			

				1
			

			
				
				⟶
				0
				,
			

		
	

						as 
	
		
			
				𝑚
				,
				𝑛
				→
				∞
			

		
	
. In other words, 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 is a Cauchy sequence and so converges to 
	
		
			
				̇
				𝑥
				∈
				𝑋
			

		
	
.We claim that 
	
		
			
				̇
				𝑥
			

		
	
 is a fixed point.Note that
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				𝑑
				
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				≤
				
				𝑑
				
				𝑥
				,
				𝑇
				̇
				𝑥
			

			

				𝑛
			

			
				
				
				,
				𝑇
				̇
				𝑥
				+
				𝑑
				̇
				𝑥
				,
				𝑇
				𝑥
			

			

				𝑛
			

			

				
			

			
				
			
			
				
				𝑥
				𝑑
				(
				̇
				𝑥
				,
				𝑇
				̇
				𝑥
				)
				+
				𝑑
			

			

				𝑛
			

			
				,
				𝑇
				𝑥
			

			

				𝑛
			

			
				
				
				𝑑
				
				𝑥
				+
				1
			

			

				𝑛
			

			
				
				.
				,
				̇
				𝑥
			

		
	

						On taking limit on both sides of (11), we have 
	
		
			
				𝑑
				(
				̇
				𝑥
				,
				𝑇
				̇
				𝑥
				)
				=
				0
			

		
	
. Thus, 
	
		
			
				𝑇
				̇
				𝑥
				=
				̇
				𝑥
			

		
	
.If there exist two distinct fixed points 
	
		
			
				̇
				𝑥
				,
				̇
				𝑦
				∈
				𝑋
			

		
	
, then
							
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				𝑑
				≤
				[
				]
				[
				]
				(
				̇
				𝑥
				,
				̇
				𝑦
				)
				=
				𝑑
				(
				𝑇
				̇
				𝑥
				,
				𝑇
				̇
				𝑦
				)
				𝑑
				(
				̇
				𝑥
				,
				𝑇
				̇
				𝑦
				)
				+
				𝑑
				(
				𝑇
				̇
				𝑥
				,
				̇
				𝑦
				)
				𝑑
				(
				̇
				𝑥
				,
				̇
				𝑦
				)
				=
				2
				𝑑
				(
				̇
				𝑥
				,
				̇
				𝑦
				)
			

			

				2
			

			

				.
			

		
	
Therefore, 
	
		
			
				𝑑
				(
				̇
				𝑥
				,
				̇
				𝑦
				)
				≥
				1
				/
				2
			

		
	
 and we find the desired results.
In the following, two examples of such type of mappings, which satisfy (2), are given.
Example 2. Let 
	
		
			
				𝑋
				=
				{
				0
				,
				1
				/
				2
				,
				1
				}
			

		
	
 and let 
	
		
			
				𝑑
				∶
				𝑋
				×
				𝑋
				→
				[
				0
				,
				∞
				)
			

		
	
 be defined by
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				𝑑
				
				1
				0
				,
			

			
				
			
			
				2
				
				
				1
				=
				2
				,
				𝑑
				1
				,
			

			
				
			
			
				2
				
				=
				5
			

			
				
			
			
				2
				
				1
				,
				𝑑
				(
				0
				,
				1
				)
				=
				3
				,
				𝑑
				(
				0
				,
				0
				)
				=
				𝑑
			

			
				
			
			
				2
				,
				1
			

			
				
			
			
				2
				
				=
				𝑑
				(
				1
				,
				1
				)
				=
				0
				,
				𝑑
				(
				𝑎
				,
				𝑏
				)
				=
				𝑑
				(
				𝑏
				,
				𝑎
				)
				,
				∀
				𝑎
				,
				𝑏
				∈
				𝑋
				.
			

		
	

	
		
			
				(
				𝑋
				,
				𝑑
				)
			

		
	
 is a complete metric space. Let 
	
		
			
				𝑇
				∶
				𝑋
				→
				𝑋
			

		
	
 be defined by
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				
				1
				𝑇
				(
				0
				)
				=
				0
				,
				𝑇
			

			
				
			
			
				2
				
				=
				1
			

			
				
			
			
				2
				𝑑
				
				
				1
				,
				𝑇
				(
				1
				)
				=
				0
				𝑑
				(
				𝑇
				0
				,
				𝑇
				1
				)
				=
				𝑑
				(
				0
				,
				0
				)
				=
				0
				,
				𝑇
				0
				,
				𝑇
			

			
				
			
			
				2
				
				1
				
				
				=
				𝑑
				0
				,
			

			
				
			
			
				2
				
				𝑑
				
				
				1
				=
				2
				,
				𝑇
				1
				,
				𝑇
			

			
				
			
			
				2
				
				1
				
				
				=
				𝑑
				0
				,
			

			
				
			
			
				2
				
				=
				2
				,
			

		
	

						and we have
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				𝑑
				
				
				1
				𝑇
				0
				,
				𝑇
			

			
				
			
			
				2
				
				1
				
				
				=
				𝑑
				0
				,
			

			
				
			
			
				2
				
				≤
				
				=
				2
				𝑑
				(
				0
				,
				𝑇
				(
				1
				/
				2
				)
				)
				+
				𝑑
				(
				1
				/
				2
				,
				𝑇
				(
				0
				)
				)
			

			
				
			
			
				
				
				1
				𝑑
				(
				0
				,
				𝑇
				0
				)
				+
				𝑑
				(
				1
				/
				2
				,
				𝑇
				(
				1
				/
				2
				)
				)
				+
				1
				×
				𝑑
				0
				,
			

			
				
			
			
				2
				
				=
				8
			

		
	

						and also
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				𝑑
				
				
				1
				𝑇
				1
				,
				𝑇
			

			
				
			
			
				2
				
				1
				
				
				=
				𝑑
				0
				,
			

			
				
			
			
				2
				
				≤
				
				=
				2
				𝑑
				(
				1
				,
				𝑇
				(
				1
				/
				2
				)
				)
				+
				𝑑
				(
				1
				/
				2
				,
				𝑇
				(
				1
				)
				)
			

			
				
			
			
				
				
				1
				𝑑
				(
				1
				,
				𝑇
				1
				)
				+
				𝑑
				(
				1
				/
				2
				,
				𝑇
				(
				1
				/
				2
				)
				)
				+
				1
				×
				𝑑
				1
				,
			

			
				
			
			
				2
				
				=
				
				5
				/
				2
				+
				2
			

			
				
			
			
				4
				
				×
				5
			

			
				
			
			
				2
				=
				4
				5
			

			
				
			
			
				.
				1
				6
			

		
	

						Therefore, 
	
		
			

				𝑇
			

		
	
 satisfies all the conditions of Theorem 1. Also, 
	
		
			

				𝑇
			

		
	
 has two distinct fixed points 
	
		
			
				{
				0
				,
				1
				/
				2
				}
			

		
	
 and 
	
		
			
				𝑑
				(
				0
				,
				1
				/
				2
				)
				=
				2
				≥
				1
				/
				2
			

		
	
.
Example 3. Let 
	
		
			
				√
				𝑋
				=
				[
				0
				,
				2
				−
			

			
				
			
			
				3
				]
			

		
	
 be endowed with Euclidean metric and let 
	
		
			
				𝑇
				∶
				𝑋
				→
				𝑋
			

		
	
 be defined by
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				
				√
				𝑇
				𝑥
				=
				0
				0
				≤
				𝑥
				<
				2
				−
			

			
				
			
			
				3
				√
				2
				−
			

			
				
			
			
				√
				3
				𝑥
				=
				2
				−
			

			
				
			
			
				3
				.
			

		
	

						Then we claim that 
	
		
			

				𝑇
			

		
	
 satisfies all the conditions of Theorem 1.If 
	
		
			
				√
				𝑥
				=
				2
				−
			

			
				
			
			

				3
			

		
	
 and 
	
		
			
				√
				0
				≤
				𝑦
				<
				2
				−
			

			
				
			
			

				3
			

		
	
, we have
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
				|
				|
				|
				|
				+
				|
				|
				|
				|
				
				=
				
				√
				𝑇
				𝑥
				−
				𝑇
				𝑦
				𝑥
				−
				𝑇
				𝑥
				𝑦
				−
				𝑇
				𝑦
				+
				1
				2
				−
			

			
				
			
			
				3
				
				
				|
				|
				𝑦
				|
				|
				
				=
				
				√
				+
				1
				2
				−
			

			
				
			
			
				3
				
				≤
				
				√
				(
				𝑦
				+
				1
				)
				2
				−
			

			
				
			
			
				
				3
				−
				𝑦
			

			

				2
			

			
				−
				
				√
				2
				−
			

			
				
			
			
				3
				√
				
				
				2
				−
			

			
				
			
			
				
				=
				
				|
				|
				|
				|
				+
				|
				|
				|
				|
				
				|
				|
				|
				|
				.
				3
				−
				𝑦
				𝑥
				−
				𝑇
				𝑦
				𝑦
				−
				𝑇
				𝑥
				𝑥
				−
				𝑦
			

		
	

						Thus,
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				≤
				
				|
				|
				|
				|
				+
				|
				|
				|
				|
				𝑇
				𝑥
				−
				𝑇
				𝑦
				𝑥
				−
				𝑇
				𝑦
				𝑦
				−
				𝑇
				𝑥
			

			
				
			
			
				|
				|
				|
				|
				+
				|
				|
				|
				|
				
				|
				|
				|
				|
				.
				𝑥
				−
				𝑇
				𝑥
				𝑦
				−
				𝑇
				𝑦
				+
				1
				𝑥
				−
				𝑦
			

		
	

						Similar argument holds for the other conditions.
Remark 4. Note that in (2) the ratio
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				𝑑
				(
				𝑥
				,
				𝑇
				𝑦
				)
				+
				𝑑
				(
				𝑦
				,
				𝑇
				𝑥
				)
			

			
				
			
			
				𝑑
				(
				𝑥
				,
				𝑇
				𝑥
				)
				+
				𝑑
				(
				𝑦
				,
				𝑇
				𝑦
				)
				+
				1
			

		
	

						might be greater or less than 1 and has not introduced an upper bound. Note that if, for every 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝑋
			

		
	
, 
	
		
			
				𝑑
				(
				𝑥
				,
				𝑦
				)
				<
				1
				/
				2
			

		
	
, then we have
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				𝑑
				(
				𝑥
				,
				𝑇
				𝑦
				)
				+
				𝑑
				(
				𝑦
				,
				𝑇
				𝑥
				)
				≤
				2
				𝑑
				(
				𝑥
				,
				𝑦
				)
				+
				𝑑
				(
				𝑥
				,
				𝑇
				𝑥
				)
				+
				𝑑
				(
				𝑦
				,
				𝑇
				𝑦
				)
				<
				𝑑
				(
				𝑥
				,
				𝑇
				𝑥
				)
				+
				𝑑
				(
				𝑦
				,
				𝑇
				𝑦
				)
				+
				1
				.
			

		
	

						It means that
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				𝑑
				(
				𝑥
				,
				𝑇
				𝑦
				)
				+
				𝑑
				(
				𝑦
				,
				𝑇
				𝑥
				)
			

			
				
			
			
				𝑑
				(
				𝑥
				,
				𝑇
				𝑥
				)
				+
				𝑑
				(
				𝑦
				,
				𝑇
				𝑦
				)
				+
				1
				<
				1
				,
			

		
	

						and thus Theorem 1 is a special case of Banach contraction principle. Therefore, when 
	
		
			
				(
				𝑋
				,
				𝑑
				)
			

		
	
 is a complete metric space such that, for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝑋
			

		
	
, 
	
		
			
				𝑑
				(
				𝑥
				,
				𝑦
				)
				≥
				1
				/
				2
			

		
	
, Theorem 1 is valuable because (20) might be greater than 1. Example 2 shows this note precisely.
The following is the second in our main results.
Theorem 5.  Let 
	
		
			
				(
				𝑋
				,
				𝑑
				)
			

		
	
 be a complete metric space and let 
	
		
			

				𝑇
			

		
	
 be a multivalued mapping from 
	
		
			

				𝑋
			

		
	
 into 
	
		
			

				𝑃
			

			
				𝑐
				𝑙
				,
				𝑏
				𝑑
			

			
				(
				𝑋
				)
			

		
	
. Let 
	
		
			

				𝑇
			

		
	
 satisfy the following:
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				
				𝐷
				𝐻
				(
				𝑇
				𝑥
				,
				𝑇
				𝑦
				)
				≤
				(
				𝑥
				,
				𝑇
				𝑦
				)
				+
				𝐷
				(
				𝑦
				,
				𝑇
				𝑥
				)
			

			
				
			
			
				
				𝛿
				(
				𝑥
				,
				𝑇
				𝑥
				)
				+
				𝛿
				(
				𝑦
				,
				𝑇
				𝑦
				)
				+
				1
				𝑑
				(
				𝑥
				,
				𝑦
				)
				,
			

		
	

						for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝑋
			

		
	
. Then 
	
		
			

				𝑇
			

		
	
 has a fixed point 
	
		
			
				̇
				𝑥
				∈
				𝑋
			

		
	
.
Proof. Let 
	
		
			

				𝑥
			

			

				0
			

			
				∈
				𝑋
			

		
	
 and 
	
		
			

				𝑥
			

			

				1
			

			
				∈
				𝑇
				𝑥
			

			

				0
			

		
	
. For each 
	
		
			
				0
				<
				ℎ
			

			

				1
			

			
				<
				1
			

		
	
 one can choose 
	
		
			

				𝑥
			

			

				2
			

			
				∈
				𝑇
				𝑥
			

			

				1
			

		
	
 such that
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				𝑑
				
				𝑥
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				
				
				<
				𝐻
				𝑇
				𝑥
			

			

				0
			

			
				,
				𝑇
				𝑥
			

			

				1
			

			
				
				+
				
				1
				1
				−
			

			
				
			
			

				ℎ
			

			

				1
			

			
				
				𝐻
				
				𝑇
				𝑥
			

			

				0
			

			
				,
				𝑇
				𝑥
			

			

				1
			

			
				
				=
				1
			

			
				
			
			

				ℎ
			

			

				1
			

			
				𝐻
				
				𝑇
				𝑥
			

			

				0
			

			
				,
				𝑇
				𝑥
			

			

				1
			

			
				
				.
			

		
	

						For each 
	
		
			
				0
				<
				ℎ
			

			

				𝑛
			

			
				<
				1
			

		
	
 we can choose 
	
		
			

				𝑥
			

			
				𝑛
				+
				1
			

			
				∈
				𝑇
				𝑥
			

			

				𝑛
			

		
	
 such that
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				𝑑
				
				𝑥
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				
				<
				𝐻
				𝑇
				𝑥
			

			
				𝑛
				−
				1
			

			
				,
				𝑇
				𝑥
			

			

				𝑛
			

			
				
				+
				
				1
				1
				−
			

			
				
			
			

				ℎ
			

			

				𝑛
			

			
				
				𝐻
				
				𝑇
				𝑥
			

			

				0
			

			
				,
				𝑇
				𝑥
			

			

				1
			

			
				
				=
				1
			

			
				
			
			

				ℎ
			

			

				𝑛
			

			
				𝐻
				
				𝑇
				𝑥
			

			

				0
			

			
				,
				𝑇
				𝑥
			

			

				1
			

			
				
				.
			

		
	

						Specifically if
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			

				ℎ
			

			

				𝑛
			

			
				=
				
				
				
				⎷
			

			
				
			
			
				𝑑
				
				𝑥
			

			
				𝑛
				−
				1
			

			
				+
				𝑥
			

			
				𝑛
				+
				1
			

			

				
			

			
				
			
			
				𝑑
				
				𝑥
			

			
				𝑛
				−
				1
			

			
				+
				𝑥
			

			

				𝑛
			

			
				
				
				𝑥
				+
				𝑑
			

			

				𝑛
			

			
				+
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				=
				√
				+
				1
			

			
				
			
			

				𝛽
			

			

				𝑛
			

			

				,
			

		
	

						then
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				𝑑
				
				𝑥
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				≤
				√
			

			
				
			
			

				𝛽
			

			

				𝑛
			

			
				𝑑
				
				𝑥
			

			
				𝑛
				−
				1
			

			
				,
				𝑥
			

			

				𝑛
			

			
				
				≤
				𝛽
			

			

				𝑛
			

			
				𝑑
				
				𝑥
			

			
				𝑛
				−
				1
			

			
				,
				𝑥
			

			

				𝑛
			

			
				
				.
			

		
	

						Therefore,
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			
				𝑑
				
				𝑥
			

			
				𝑛
				+
				1
			

			
				,
				𝑥
			

			

				𝑛
			

			
				
				≤
				𝛽
			

			

				𝑛
			

			
				𝑑
				
				𝑥
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				−
				1
			

			
				
				≤
				
				𝛽
			

			

				𝑛
			

			

				𝛽
			

			
				𝑛
				−
				1
			

			
				
				𝑑
				
				𝑥
			

			
				𝑛
				−
				1
			

			
				,
				𝑥
			

			
				𝑛
				−
				2
			

			
				
				⋮
				≤
				
				𝛽
			

			

				𝑛
			

			

				𝛽
			

			
				𝑛
				−
				1
			

			
				⋯
				𝛽
			

			

				1
			

			
				
				𝑑
				
				𝑥
			

			

				1
			

			
				,
				𝑥
			

			

				0
			

			
				
				.
			

		
	

						It can easily be seen that
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				
				𝛽
			

			

				1
			

			

				𝛽
			

			

				2
			

			
				⋯
				𝛽
			

			

				𝑛
			

			
				
				=
				0
				.
			

		
	

						Thus, it is easily verified that
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝑑
				
				𝑥
			

			
				𝑛
				+
				1
			

			
				,
				𝑥
			

			

				𝑛
			

			
				
				=
				0
				.
			

		
	

						Now for all 
	
		
			
				𝑚
				,
				𝑛
				∈
				ℕ
			

		
	
 we have
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			
				𝑑
				
				𝑥
			

			

				𝑚
			

			
				,
				𝑥
			

			

				𝑛
			

			
				
				
				𝑥
				≤
				𝑑
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				
				𝑥
				+
				𝑑
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				
				𝑥
				+
				⋯
				+
				𝑑
			

			
				𝑚
				−
				1
			

			
				,
				𝑥
			

			

				𝑚
			

			
				
				≤
				𝛽
				
				
			

			

				𝑛
			

			

				𝛽
			

			
				𝑛
				−
				1
			

			
				⋯
				𝛽
			

			

				1
			

			
				
				+
				
				𝛽
			

			
				𝑛
				+
				1
			

			

				𝛽
			

			

				𝑛
			

			
				⋯
				𝛽
			

			

				1
			

			
				
				
				𝛽
				+
				⋯
				+
			

			
				𝑚
				−
				1
			

			

				𝛽
			

			
				𝑚
				−
				2
			

			
				⋯
				𝛽
			

			

				1
			

			
				𝑑
				
				𝑥
				
				
			

			

				1
			

			
				,
				𝑥
			

			

				0
			

			
				
				=
			

			
				𝑚
				−
				1
			

			

				
			

			
				𝑘
				=
				𝑛
			

			
				
				𝛽
			

			

				𝑘
			

			

				𝛽
			

			
				𝑘
				−
				1
			

			
				⋯
				𝛽
			

			

				1
			

			
				
				𝑑
				
				𝑥
			

			

				1
			

			
				,
				𝑥
			

			

				0
			

			
				
				.
			

		
	

						Suppose that 
	
		
			

				𝑎
			

			

				𝑘
			

			
				=
				(
				𝛽
			

			

				𝑘
			

			

				𝛽
			

			
				𝑘
				−
				1
			

			
				⋯
				𝛽
			

			

				1
			

			

				)
			

		
	
. Since
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑘
				→
				∞
			

			

				𝑎
			

			
				𝑘
				+
				1
			

			
				
			
			

				𝑎
			

			

				𝑘
			

			
				=
				0
				,
			

		
	

	
		
			

				∑
			

			
				∞
				𝑘
				=
				1
			

			

				𝑎
			

			

				𝑘
			

			
				<
				∞
			

		
	
. It means that
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			
				𝑚
				−
				1
			

			

				
			

			
				𝑘
				=
				𝑛
			

			
				
				𝛽
			

			

				𝑘
			

			

				𝛽
			

			
				𝑘
				−
				1
			

			
				⋯
				𝛽
			

			

				1
			

			
				
				⟶
				0
				,
			

		
	

						as 
	
		
			
				𝑚
				,
				𝑛
				→
				∞
			

		
	
. In other words, 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 is a Cauchy sequence and so converges to 
	
		
			
				̇
				𝑥
				∈
				𝑋
			

		
	
. We claim that 
	
		
			
				̇
				𝑥
			

		
	
 is a fixed point. Consider
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				
				𝐷
				(
				̇
				𝑥
				,
				𝑇
				̇
				𝑥
				)
				≤
				𝑑
				̇
				𝑥
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				
				𝑥
				+
				𝐷
			

			
				𝑛
				+
				1
			

			
				
				
				,
				𝑇
				̇
				𝑥
				≤
				𝐻
				𝑇
				𝑥
			

			

				𝑛
			

			
				
				
				,
				𝑇
				̇
				𝑥
				+
				𝑑
				̇
				𝑥
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				≤
				
				𝐷
				
				̇
				𝑥
				,
				𝑇
				𝑥
			

			

				𝑛
			

			
				
				
				𝑥
				+
				𝐷
			

			

				𝑛
			

			
				
				,
				𝑇
				̇
				𝑥
			

			
				
			
			
				
				𝑥
				𝛿
				(
				̇
				𝑥
				,
				𝑇
				̇
				𝑥
				)
				+
				𝛿
			

			

				𝑛
			

			
				,
				𝑇
				𝑥
			

			

				𝑛
			

			
				
				
				
				𝑥
				+
				1
				×
				𝑑
			

			

				𝑛
			

			
				
				
				,
				̇
				𝑥
				+
				𝑑
				̇
				𝑥
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				≤
				
				𝐷
				
				̇
				𝑥
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				
				𝑥
				+
				𝐷
			

			

				𝑛
			

			
				
				𝑥
				,
				𝑇
				̇
				𝑥
				
				
				×
				𝑑
			

			

				𝑛
			

			
				
				
				,
				̇
				𝑥
				+
				𝑑
				̇
				𝑥
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				.
			

		
	

						On taking limit on both sides of (31) we have 
	
		
			
				𝐷
				(
				̇
				𝑥
				,
				𝑇
				̇
				𝑥
				)
				=
				0
			

		
	
. It means that 
	
		
			
				̇
				𝑥
				∈
				𝑇
				̇
				𝑥
			

		
	
.
Remark 6. Note that Theorem 5 is a generalization of Theorem 1 because by taking 
	
		
			
				𝐹
				𝑥
				=
				{
				𝑇
				𝑥
				}
			

		
	
 and applying Theorem 5 for 
	
		
			

				𝐹
			

		
	
 we obtain Theorem 1.
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