Research Article
On a New Criterion for Meromorphic Starlike Functions

Lei Shi and Zhi-Gang Wang
School of Mathematics and Statistics, Anyang Normal University, Anyang Henan 455000, China
Correspondence should be addressed to Zhi-Gang Wang; zhigangwang@foxmail.com
Received 14 December 2013; Accepted 17 February 2014; Published 19 March 2014
Academic Editor: Mohamed K. Aouf
Copyright © 2014 L. Shi and Z.-G. Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The main purpose of this paper is to derive a new criterion for meromorphic starlike functions of order \(\alpha \).

1. Introduction and Preliminaries
Let \(\Sigma_n \) denote the class of functions of the form
\[
f(z) = \frac{1}{z} + \sum_{k=n}^{\infty} a_{k-1} z^{k-1} \quad (n \in \mathbb{N} := \{1, 2, \ldots \}),
\]
which are analytic in the punctured open unit disk
\[
U^* := \{ z : z \in \mathbb{C} \text{ and } 0 < |z| < 1 \} =: \mathbb{U} \setminus \{0\}.
\]
A function \(f \in \Sigma_n \) is said to be in the class \(\mathcal{M} \mathcal{S}_n^*(\alpha) \) of meromorphic starlike functions of order \(\alpha \) if it satisfies the condition
\[
\Re \left(\frac{z f'(z)}{f(z)} \right) < -\alpha \quad (z \in \mathbb{U}; 0 \leq \alpha < 1).
\]

For simplicity, we write \(\mathcal{M} \mathcal{S}_n^*(0) =: \mathcal{M} \mathcal{S}_n^* \).

For two functions \(f \) and \(g \), analytic in \(\mathbb{U} \), we say that the function \(f \) is subordinate to \(g \) in \(\mathbb{U} \) and write
\[
f(z) < g(z) \quad (z \in \mathbb{U}),
\]
if there exists a Schwarz function \(\omega \), which is analytic in \(\mathbb{U} \) with
\[
\omega(0) = 0, \quad |\omega(z)| < 1 \quad (z \in \mathbb{U}),
\]
such that
\[
f(z) = g(\omega(z)) \quad (z \in \mathbb{U}).
\]
Indeed, it is known that
\[
f(z) < g(z) \quad (z \in \mathbb{U})
\]
\[
\Rightarrow f(0) = g(0), \quad f(\mathbb{U}) \subset g(\mathbb{U}).
\]

Furthermore, if the function \(g \) is univalent in \(\mathbb{U} \), then we have the following equivalence:
\[
f(z) < g(z) \quad (z \in \mathbb{U})
\]
\[
\iff f(0) = g(0), \quad f(\mathbb{U}) \subset g(\mathbb{U}).
\]

In a recent paper, Miller et al. [1] proved the following result.

Theorem A. Let \(n \in \mathbb{N}, 0 \leq \lambda \leq 1 \), and
\[
M_0(\lambda, n) = \frac{n + 1 - \lambda}{\sqrt{(n + 1 - \lambda)^2 + \lambda^2 + 1 - \lambda}}.
\]

If \(f \in \Sigma_n \) satisfies the condition
\[
|z^2 f'(z) + (1 - \lambda) z f(z) + \lambda| < M_0(\lambda, n) \quad (z \in \mathbb{U}),
\]
then \(f \in \mathcal{M} \mathcal{S}_n^* \).

More recently, Catas [2] improved Theorem A as follows.

Theorem B. Let \(n \in \mathbb{N}, 0 \leq \lambda < 1 \), and
\[
M(\lambda, n) = \max \{ M_0(\lambda, n), M_1(\lambda, n) \},
\]
where \(M_0(\lambda, n) \) is given by (9) and
\[
M_1(\lambda, n) = \frac{n + 1 - \lambda}{\sqrt{(n + 1 - \lambda)^2 + \lambda^2 + 1 - \lambda}}.
\]
If \(f \in \Sigma_n \) satisfies the condition

\[
|z^2 f'(z) + (1 - \lambda)zf(z) + \lambda| < M(\lambda, n) \quad (z \in U),
\]
then \(f \in \mathcal{M}^\star_n \).

In this paper, we aim at finding the conditions for starlikeness of the expression \(|z^2 f'(z) + \lambda zf(z) + 1 - \lambda| \) for \(\lambda > 1 \).

For some recent investigations of meromorphic functions, see, for example, the works of [3–12] and the references cited therein.

In order to prove our main results, we require the following subordination result due to Hallenbeck and Ruscheweyh [13].

Lemma 1. Let \(\phi \) be a convex function with \(\phi(0) = 1 \), and let \(\gamma \neq 0 \) be a complex number with \(R(\gamma) \geq 0 \). If a function

\[
p(z) = 1 + p_n z^n + p_{n+1} z^{n+1} + \ldots
\]

satisfies the condition

\[
p(z) + \frac{1}{\gamma} z p'(z) < \phi(z),
\]
then

\[
p(z) < \chi(z) := \frac{\nu}{nz^{\nu/n}} \int_0^z \phi(t) t^{(\nu/n)-1} dt < \phi(z).
\]

2. Main Results

We begin by stating the following result.

Theorem 2. Let \(n \in \mathbb{N}, \lambda > 1, \) and \(0 \leq \alpha < 1 \). If \(f \in \Sigma_n \) satisfies the inequality

\[
|z^2 f'(z) + \lambda zf(z) + 1 - \lambda| < M,
\]
where

\[
M := M(\lambda, \alpha, n) = \frac{(1 - \alpha)(\lambda + n - 1)}{\lambda - \alpha + \sqrt{(1 - \lambda)^2 + (\lambda + n - 1)^2}}.
\]

then \(f \in \mathcal{M}^\star_n (\alpha) \).

Proof. Suppose that

\[
q(z) := zf(z) \quad (z \in U).
\]

It follows from (19) that

\[
zq'(z) = zf(z) + z^2 f'(z).
\]

By combining (17), (19), and (20), we easily get

\[
|q(z) + \frac{1}{\lambda - 1} z q'(z) - 1| < \frac{M}{\lambda - 1},
\]
or equivalently

\[
q(z) + \frac{1}{\lambda - 1} z q'(z) < 1 + \frac{M}{\lambda - 1} z.
\]

An application of Lemma 1 yields

\[
q(z) < \frac{\lambda - 1}{nz^{(\lambda-1)/n}} \int_0^z \left(1 + \frac{M}{\lambda - 1} t\right)^{(\lambda-1)/n} dt
\]

\[
= 1 + \frac{M}{\lambda + n - 1} z.
\]

The subordination (23) is equivalent to

\[
|q(z) - 1| < \frac{M}{\lambda + n - 1} := N.
\]

From (18) and (24), we know that

\[
N < \frac{1 - \alpha}{\lambda - \alpha} < 1.
\]

We suppose that

\[
\frac{z f'(z)}{f(z)} := (1 - \alpha) p(z) + \alpha.
\]

By virtue of (19) and (26), we get

\[
z^2 f'(z) = -q(z) \left[(1 - \alpha) p(z) + \alpha\right],
\]
which implies that (17) can be written as

\[
|q(z) \left[(1 - \alpha) p(z) + \alpha - \lambda\right] + \lambda - 1| < M = (\lambda + n - 1) N.
\]

We now only need to show that (28) implies \(\Re(p(z)) > 0 \) in \(U \). Indeed, if this is false, since \(p(0) = 1 \), then there exists a point \(z_0 \in U \) such that \(p(z_0) = \beta i \), where \(\beta \) is a real number. Thus, in order to show that (28) implies \(\Re(p(z)) > 0 \) in \(U \), it suffices to obtain the contradiction from the inequality

\[
|q(z_0) \left[(1 - \alpha) \beta + \alpha - \lambda\right] + \lambda - 1| \geq (\lambda + n - 1) N \quad (\beta \in \mathbb{R}).
\]

By setting

\[
q(z_0) = u + iv \quad (u, v \in \mathbb{R}),
\]
we have
\[
E = |q(z_0) [(1 - \alpha) \beta i + \alpha - \lambda] + \lambda - 1|^2
\]
\[
= (u^2 + v^2) [(1 - \alpha)^2 \beta^2 + (\alpha - \lambda)^2]
\]
\[
- 2(1 - \lambda) \Re [(u + iv) [(1 - \alpha) \beta i + \alpha - \lambda]] + (1 - \lambda)^2
\]
\[
= (u^2 + v^2) (1 - \alpha)^2 \beta^2 + 2(1 - \lambda) (1 - \alpha) \beta v
\]
\[
+ [(u + iv) (\alpha - \lambda) - (1 - \lambda)|^2.
\]
(31)

By means of (24), we obtain
\[
\begin{align*}
|u + iv| (\alpha - \lambda) - (1 - \lambda)|
\end{align*}
\]
\[
= |[(u + iv) (\alpha - \lambda) + \alpha - \lambda - 1 + \lambda|
\]
\[
= |(\alpha - \lambda) (u + iv - 1) - (1 - \alpha)|
\]
\[
\geq 1 - \alpha - (\lambda - \alpha)|u + iv - 1|
\]
\[
\geq 1 - \alpha - (\lambda - \alpha) N
\]

It follows from (31) and (32) that
\[
E \geq (u^2 + v^2) (1 - \alpha)^2 \beta^2 + 2(1 - \lambda) (1 - \alpha) \beta v
\]
\[
+ [1 - \alpha - (\lambda - \alpha) N|^2
\]
\[
\tag{33}
\]

We now set
\[
F(\beta) = E - M^2
\]
\[
\geq (u^2 + v^2) (1 - \alpha)^2 \beta^2 + 2(1 - \lambda) (1 - \alpha) \beta v
\]
\[
+ [1 - \alpha - (\lambda - \alpha) N|^2 - (\lambda + n - 1)^2 N^2.
\]
(34)

If \(F(\beta) \geq 0\), then (29) holds true. Since \((u^2 + v^2)(1 - \alpha)^2 > 0\), the inequality \(F(\beta) \geq 0\) holds if the discriminant \(\Delta \leq 0\); that is,
\[
\Delta = (1 - \alpha)^2
\]
\[
\times \{(1 - \lambda)^2 v^2 - (u^2 + v^2)
\]
\[
\times \{(1 - \alpha - (\lambda - \alpha) N)^2 - (\lambda + n - 1)^2 N^2\} \leq 0,
\]
(35)

and the last inequality is equivalent to
\[
v^2 \left[(1 - \lambda)^2 - (1 - \alpha - (\lambda - \alpha) N)^2 + (\lambda + n - 1)^2 N^2 \right]
\]
\[
\leq u^2 \left[(1 - \alpha - (\lambda - \alpha) N)^2 - (\lambda + n - 1)^2 N^2 \right].
\]
(36)

Furthermore, in view of (24) and (36), after a geometric argument, we deduce that
\[
\frac{v^2}{u^2} \leq \frac{N^2}{1 - N^2}
\]
\[
\leq \frac{(1 - \alpha - (\lambda - \alpha) N)^2 - (\lambda + n - 1)^2 N^2}{(1 - \lambda)^2 - (1 - \alpha - (\lambda - \alpha) N)^2 + (\lambda + n - 1)^2 N^2}.
\]
(37)

It follows from (37) that \(\Delta \leq 0\), which implies that \(F(\beta) \geq 0\). But this contradicts (28). Therefore, we know that \(\Re(p(z)) > 0\) in \(U\). By virtue of (26), we conclude that
\[
\Re \left(\frac{zf^{(n)}(z)}{f(z)} \right) < -\Re \left((1 - \alpha)p(z) + \alpha \right) < -\alpha.
\]
(38)

This evidently completes the proof of Theorem 2.

\[\Box\]

Taking \(\alpha = 0\) in Theorem 2, we obtain the following result.

Corollary 3. Let \(n \in \mathbb{N}\) and \(\lambda > 1\). If \(f \in \Sigma_n\) satisfies the inequality
\[
|z^2 f''(z) + \lambda zf(z) + 1 - \lambda| < \frac{(\lambda + n - 1)}{\lambda + \sqrt{(1 - \lambda)^2 + (\lambda + n - 1)^2}}\]
\[
then f \in \mathcal{M} \Delta_n^*.
\]

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

The present investigation was supported by the National Natural Science Foundation under Grants nos. 11301008, 11226088, and 11101053, the Foundation for Excellent Youth Teachers of Colleges and Universities of Henan Province under Grant no. 2013GGJS-146, and the Natural Science Foundation of Educational Committee of Henan Province under Grant no. 14B110012 of China.

References

