Determinants, Norms, and the Spread of Circulant Matrices with Tribonacci and Generalized Lucas Numbers

Juan Li, Zhaolin Jiang, and Fuliang Lu

1 Department of Mathematics, Linyi University, Linyi, Shandong 276000, China
2 Department of Mathematics, Shandong Normal University, Ji’nan, Shandong 250014, China

Correspondence should be addressed to Zhaolin Jiang; jzh1208@sina.com

Received 28 March 2014; Accepted 26 April 2014; Published 11 May 2014

Abstract and Applied Analysis

Volume 2014, Article ID 381829, 9 pages
http://dx.doi.org/10.1155/2014/381829

1. Introduction

Circulant matrices have important applications in solving various partial differential equations. By the radial properties of the fundamental solution and radial symmetric of the solution domain, Chen et al. [1] showed the circulant or block circulant features of the coefficient matrices for problems under pure Dirichlet or Neumann boundary condition. Lei and Sun [2] proposed the preconditioned CGNR (PCGNR) method with a circulant preconditioner to solve such Toeplitz-like systems. Using circulant matrix, Karasozen and Simsek [3] considered periodic boundary conditions such that no additional boundary terms will appear after semidiscretization. In [4], a semicirculant preconditioner applied to a problem, subject to Dirichlet boundary conditions at the inflow boundaries, was examined. In [5], the resulting dense linear system exhibits so much structure that it can be solved very efficiently by a circulant preconditioned conjugate gradient method. A method was described for obtaining finite difference approximation solutions of multidimensional partial differential equations satisfying boundary conditions specified on irregularly shaped boundaries by using circulant matrices and fast Fourier transform (FFT) convolutions in [6]. Brockett and Willems [7] showed how the important problems of linear system theory can be solved concisely for a particular class of linear systems, namely, block circulant systems, by exploiting the algebraic structure. The main theory of circulant dynamics considered in [8] is about circulant matrix.

Circulant matrices also play an important role in solving ordinary differential equations. By using a Strang-type block circulant preconditioner, Zhang et al. [9] speeded up the convergent rate of boundary-value methods. Delgado et al. [10] developed some techniques to obtain global hyperbolicity for a certain class of endomorphisms of \((\mathbb{R}^p)^n\) with \(p, n \geq 2\); this kind of endomorphisms was obtained from vectorial difference equations where the mapping defining these equations satisfies a circulant matrix condition. In [11], nonsymmetric, large, and sparse linear systems were solved by using the generalized minimal residual (GMRES) method; a circulant block preconditioner was proposed to speed up the convergence rate of the GMRES method. Wilde [12] developed a theory for the solution of ordinary and partial differential equations whose structure involves the algebra of circulants. He showed how the algebra of \(2 \times 2\) circulants relates to the study of the harmonic oscillator, the Cauchy-Riemann equations, Laplace’s equation, the Lorentz transformation, and the wave equation. And he used \(n \times n\) circulants to suggest natural generalizations of these equations to higher dimensions.
Circulant matrices have important applications in various disciplines including image processing [13–15], communication, signal processing [16], encoding, solving Toeplitz matrix problems, preconditioner, and solving least squares problems. They have been put on firm basis with the work of Davis [17] and Jiang and Zhou [18].

Some scholars have given various algorithms for the determinants and inverses of nonsingular circulant matrices [17, 18]. Unfortunately, the computational complexity of these algorithms is exorbitant with the order of matrix increasing. However, some authors gave the explicit determinants and inverses of circulant and skew circulant involving some famous numbers. For example, Jaiswal evaluated some determinants of circulant whose elements are the generalized Fibonacci numbers [19]. Lind presented the determinants of circulant whose elements are the generalized Lucas numbers. Furthermore, the norms and some upper and lower bounds for the spectral norms of scaled Toeplitz, circulant, reverse circulant, symmetric circulant, and a class of k-circulant matrices are discussed in [30].

Beginning with Mirsky [31], several authors [32–34] have obtained bounds for the spread of a matrix. In this paper, by using the inverse factorization of polynomial of degree n, the explicit determinants of the circulant and left circulant matrix involving Tribonacci numbers and generalized Lucas numbers are expressed by utilizing only Tribonacci numbers and generalized Lucas numbers. Furthermore, the norms and some upper and lower bounds for the spread of these matrices are given, respectively.

The Tribonacci sequence $\{T_n\}$ and the generalized Lucas sequence $\{L_n\}$ are defined by a third-order recurrence [35–37]:

$$
T_n = T_{n-1} + T_{n-2} + T_{n-3}, \quad n \geq 3,
$$

$$
L_n = L_{n-1} + L_{n-2} + L_{n-3}, \quad n \geq 3
$$

with the initial conditions $T_0 = 0$, $T_1 = 1$, $T_2 = 1$ and $L_0 = 3$, $L_1 = 1$, $L_2 = 3$.

A few values of the sequences are given by the following table:

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_n</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>13</td>
<td>24</td>
<td>44</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>L_n</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>11</td>
<td>21</td>
<td>39</td>
<td>71</td>
<td>131</td>
<td>241</td>
</tr>
</tbody>
</table>

Note that τ_i are the roots of the characteristic equation $x^3 - x^2 - x - 1 = 0$. Then, the Binet formulae of the sequences $\{T_n\}$ and $\{L_n\}$ are

$$
T_n = \Delta_1 \tau_1^{n+1} + \Delta_2 \tau_2^{n+1} + \Delta_3 \tau_3^{n+1},
$$

$$
L_n = \tau_1^n + \tau_2^n + \tau_3^n,
$$

where $\Delta_i = \prod_{j=1 \atop j \neq i}^3 (1/(\tau_i - \tau_j)), i = 1, 2, \ldots, n$.

The relation between the roots and coefficient in the characteristic equations is

$$
\tau_1 + \tau_2 + \tau_3 = 1,
$$

$$
\tau_1 \tau_2 + \tau_1 \tau_3 + \tau_2 \tau_3 = -1,
$$

$$
\tau_1 \tau_2 \tau_3 = 1.
$$

Lemma 1. Several formulae concerning these sequences are listed as follows:

$$
\sum_{j=1}^n T_j = \frac{T_n + T_{n+2} - 1}{2},
$$

$$
\sum_{j=1}^n L_j = \frac{L_n + L_{n+2} - 3}{2},
$$

$$
\sum_{j=1}^n \tau_{n-j}^2 = 1 + 4T_n T_{n-1} - (T_{n+1} - T_{n-1})^2,
$$

$$
\sum_{j=1}^n \tau_{n-j}^2 = \frac{-L_{n-1}^2 + L_{n-3}^2 + L_{n+2}^2}{2}.
$$

Proof. Firstly, we can find formula (7) in [37]. Secondly, we give the computation about the sum of the first n numbers of those sequences.

According to the recurrence relations (1) and (4) and Binet formula of $\{T_n\}$, we can get

$$
\sum_{j=1}^n T_j = \sum_{j=1}^n \sum_{i=1}^3 \Delta_i \tau_i^{j+1} = \sum_{i=1}^3 \Delta_i \tau_i^3 \frac{1 - \tau_i^n}{1 - \tau_i}
$$

$$
= \sum_{i=1}^3 \Delta_i \frac{(\tau_1 + \tau_3 - 1) \tau_i^{n+1}}{(1 - \tau_1)(1 - \tau_2)(1 - \tau_3)}
$$

$$
= \frac{T_0 + T_2}{2} - \frac{T_{n+2}}{2}.
$$
The assertions about the representation $\sum_{j=1}^{n} L_j$ can be proved in the same way.

Finally, the quadratic sum of generalized Lucas sequences can be obtained as follows:

$$\sum_{j=1}^{n} L_j^2 = \sum_{j=1}^{n} \left(\sum_{i=1}^{3} t_i^j \right)^2$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{3} t_i^j + 2 \sum_{i<j}^{n} \sum_{k=1}^{i} (t_i t_k)$$

$$= 8 - 2L_{2n+1} - 2L_{2n}$$

$$+ 2 \times \left[\frac{L_{2n+1}^2 - 2L_{2(n+1)} + L_{2(n+1)}^2}{4} - \frac{L_{2n-1}^2 - 2L_{2(n-1)} + L_{2(n-1)}^2}{4} \right]$$

$$= \frac{-L_{n+1}^2 - L_{n-1}^2 + L_{2n+3} + L_{2n-2} - 2}{2}.$$

Hence, the proof is completed. \(\Box\)

Definition 2 (see [17, 18]). A circulant matrix $B \in M_n$, denoted by Circ(a_1, a_2, \ldots, a_n), is a matrix of the form

$$B := \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ a_2 & a_3 & \cdots & a_1 \\ \vdots & \vdots & \ddots & \vdots \\ a_n & a_1 & \cdots & a_{n-1} \end{pmatrix}.$$

Definition 3 (see [17, 18]). A left circulant matrix $C \in M_n$, denoted by LCirc(a_1, a_2, \ldots, a_n), is a matrix of the form

$$C := \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ a_2 & a_3 & \cdots & a_1 \\ \vdots & \vdots & \ddots & \vdots \\ a_n & a_1 & \cdots & a_{n-1} \end{pmatrix}.$$

Let $B = \text{Circ}(a_1, a_2, \ldots, a_n)$ and $C = \text{LCirc}(a_1, a_2, \ldots, a_n)$. By explicit computation, we find

$$C = \Gamma B,$$

where $\Gamma = \text{Lcirc}(1, 0, 0, \ldots, 0)$.

Definition 4 (see [29]). Let $A = (a_{ij})$ be an $n \times n$ matrix. The Euclidean (or Frobenius) norm, the spectral norm, the maximum column sum norm, and the maximum row sum norm of the matrix A are, respectively,

$$\|A\|_F = \left(\sum_{i,j=1}^{n} |a_{ij}|^2 \right)^{1/2},$$

$$\|A\|_\infty = \max_{1 \leq j \leq n} \left| \sum_{i=1}^{n} |a_{ij}| \right|,$$

$$\|A\|_1 = \sum_{i,j=1}^{n} |a_{ij}|,$$

$$\|A\|_\infty = \max_{1 \leq j \leq n} \sum_{i=1}^{n} |a_{ij}|,$$

where A^* denotes the conjugate transpose of A.

Definition 5 (see [32]). Let $A = (a_{ij})$ be an $n \times n$ matrix with eigenvalues $\lambda_i, i = 1, 2, \ldots, n$. The spread of A is defined as

$$s(A) = \max_{i \neq j} |\lambda_i - \lambda_j|.$$

An upper bound for the spread due to Mirsky [31] states that

$$s(A) \leq \sqrt{2\|A\|_F^2 - \frac{2}{n} \|\text{tr} A\|^2},$$

where $\|A\|_F$ denotes the Frobenius norm of A and $\text{tr} A$ is the trace of A.

Lemma 6 (see [34]). If $A = (a_{ij})$ is an $n \times n$ matrix, then

(i) if A is real and normal, then $s(A) \geq (1/(n - 1)) \sum_{i \neq j} |a_{ij}|$;

(ii) if A is Hermitian, then $s(A) \geq 2 \max_{i \neq j} |a_{ij}|$.

Lemma 7 (see [30]). If A is an $n \times n$ real symmetric or normal matrix, then we have $\|A\|_1 = \max_{1 \leq i \leq n} |\lambda_i|$, where $\lambda_i (i = 1, 2, \ldots, n)$ are the eigenvalues of A.

Lemma 8 (see [17, 18]). Let ϵ_k ($k = 1, 2, \ldots, n$) be the roots of the equation $x^n - 1 = 0$. If $A = \text{Circ}(a_1, a_2, \ldots, a_n)$, then the eigenvalues and determinant of A are $\lambda_k = \sum_{j=1}^{n} a_j \epsilon_k^{j-1}$ and

$$\det A = \prod_{k=1}^{n} \lambda_k = \prod_{k=1}^{n} \sum_{j=1}^{n} a_j \epsilon_k^{j-1},$$

respectively.

Lemma 9 (see [20]). Let ϵ_k ($k = 1, 2, \ldots, n$) satisfy the equation $x^n - 1 = 0$; then $\prod_{k=1}^{n} (y - \epsilon_k z) = y^n - z^n, y, z \in \mathbb{C}$.

Lemma 10 (see [38]). Let $\theta_k = (2\pi k/n), r_k = \sum_{i=1}^{n} a_i \cos((t - 1)\theta_k)$, and $s_k = \sum_{i=1}^{n} a_i \sin((t - 1)\theta_k)$. If $N = \text{LCirc}(a_1, a_2, \ldots, a_n)$, then the eigenvalues of N are given by

$$\lambda_k = -\lambda_{n-k} = \sqrt{r_k^2 + s_k^2},$$

$$1 \leq k \leq \left\lfloor \frac{n-1}{2} \right\rfloor,$$

and $\lambda_n = \sum_{i=1}^{n} a_i \lfloor x \rfloor$ is the largest integer less than or equal to x. Note that, if n is even, then $\lambda_{n/2} = \sum_{i=1}^{n} (-1)^{i+1} a_i$.

2. Determinant, Norms, and the Spread of Circulant and Left Circulant Matrices with Tribonacci Numbers

Theorem 11. Let $A_n = \text{Circ}(T_1, T_2, \ldots, T_n)$. Then the determinant of A_n is

$$\det A_n = \left(1 - T_{n+1}\right)^n - \left(T_1^n + T_2^n\right) + (-T_n)^n,$$

$$\sum_{n=1}^{\infty} \frac{n^a}{n!} = e^{ae^x},$$

where A^* denotes the conjugate transpose of A.

$$\text{det} A_n = \left(1 - T_{n+1}\right)^n - \left(T_1^n + T_2^n\right) + (-T_n)^n,$$

$$\sum_{n=1}^{\infty} \frac{n^a}{n!} = e^{ae^x},$$

where A^* denotes the conjugate transpose of A.

$$\text{det} A_n = \left(1 - T_{n+1}\right)^n - \left(T_1^n + T_2^n\right) + (-T_n)^n,$$

$$\sum_{n=1}^{\infty} \frac{n^a}{n!} = e^{ae^x},$$

where A^* denotes the conjugate transpose of A.
where
\[c_1 = \frac{(T_{n+2} - T_{m+1}) + \mu_1}{2} , \]
\[d_1 = \frac{(T_{n+2} - T_{m+1}) - \mu_1}{2} , \]
\[\mu_1 = \sqrt{(T_{n+2} - T_{m+1})^2 - 4T_n(T_{m+1} - 1)} . \]

Proof. According to Lemma 8 and the Binet form of \([T_n]\), we obtain that the eigenvalues of \(A_n\) are
\[
\lambda_k = \sum_{j=1}^{n} T_j \epsilon_{k,j}^{-1} = \sum_{j=1}^{n} \left(\sum_{i=1}^{3} \Delta_i T_j^{i+1} \right) \epsilon_{k,j}^{i-1}
\]
\[= \frac{1}{M} \left[\Delta_1 \epsilon_{k,j}^2 \left(1 - \tau_1^j \right) \left(1 - \tau_2^j \right) \left(1 - \tau_3^j \right) \epsilon_k + \Delta_2 \epsilon_{k,j}^2 \left(1 - \tau_1^j \right) \left(1 - \tau_2^j \right) \left(1 - \tau_3^j \right) \epsilon_k + \Delta_3 \epsilon_{k,j}^2 \left(1 - \tau_1^j \right) \left(1 - \tau_2^j \right) \left(1 - \tau_3^j \right) \epsilon_k \right] \]
\[= \frac{1}{M} \left[\left(-T_n \right) \epsilon_{k,j}^2 + \left(T_{n+1} - T_{n+2} \right) \epsilon_k + \left(1 - T_{n+1} \right) \right] \]
\[= \frac{1}{M} \left[\left(-T_n \right) \epsilon_{k,j}^2 + \left(T_{n+1} - T_{n+2} \right) \epsilon_k + \left(1 - T_{n+1} \right) \right] , \]
where \(M = \prod_{j=1}^{n} (1 - \tau_i \epsilon_k)\) and \(\epsilon_k (k = 1, 2, \ldots, n)\) are the roots of \(x^n - 1 = 0\). From (4), we have
\[
\lambda_k = \frac{1}{M} \left[\left(-T_n \right) \epsilon_{k,j}^2 + \left(T_{n+1} - T_{n+2} \right) \epsilon_k + \left(1 - T_{n+1} \right) \right] \]
\[= \frac{1}{M} \left[\left(-T_n \right) \epsilon_{k,j}^2 + \left(T_{n+1} - T_{n+2} \right) \epsilon_k + \left(1 - T_{n+1} \right) \right] , \]
where \(\epsilon_i (i = 1, 2)\) are the roots of equation \((-T_n) \epsilon_i^2 + (T_{n+1} - T_{n+2}) \epsilon_k + (1 - T_{n+1}) = 0\). Applying Lemma 9, we have
\[
\det A_n = \frac{\left(-T_n \right)^n \left(\epsilon_i^n - 1 \right) (\epsilon_i^n - 1)}{(1 - \tau_1^n) \left(1 - \tau_2^n \right) \left(1 - \tau_3^n \right) - 1 - \mu_1 - \mu_2 - 1} \]
\[= \frac{\left(-T_n \right)^n \left(\epsilon_i^n - 1 \right) (\epsilon_i^n - 1)}{1 - \mu_1 - \mu_2 - 1} \]
\[= \frac{\left(-T_n \right)^n \left(\epsilon_i^n - 1 \right) (\epsilon_i^n - 1)}{1 - \mu_1 - \mu_2 - 1} , \]
where
\[c_1 = \frac{(T_{n+2} - T_{m+1}) + \mu_1}{2} , \]
\[d_1 = \frac{(T_{n+2} - T_{m+1}) - \mu_1}{2} , \]
\[\mu_1 = \sqrt{(T_{n+2} - T_{m+1})^2 - 4T_n(T_{m+1} - 1)} . \]

Theorem 12. Let \(A_n = \text{Circ}(T_1, T_2, \ldots, T_n)\). Then three kinds of norms of \(A_n\) are given by
\[
\|A_n\|_1 = \frac{T_n + T_{n+2} - 1}{2} ,
\]
\[
\|A_n\|_\infty = \sqrt{n \cdot \frac{1 + 4T_nT_{n+1} - (T_{m+1} - T_{m-1})^2}{4}} .
\]

Proof. On the basis of the definitions of norms and (5) in Lemma 1, we have \(\|A_n\|_1 = \|A_n\|_\infty = \sum_{j=1}^{n} T_j = \frac{(T_n + T_{n+2} - 1)}{2}\).

According to the definition of norms and (7) in Lemma 1, we know that
\[
\|A_n\|_2^2 = \sum_{i,j=1}^{n} |\epsilon_{i,j}|^2 = n \sum_{j=1}^{n} T_j^2
\]
\[= n \cdot \frac{1 + 4T_nT_{n+1} - (T_{m+1} - T_{m-1})^2}{4} , \]
hence, the Frobenius norm of \(A_n\) is
\[
\|A_n\|_F = \sqrt{n \cdot \frac{1 + 4T_nT_{n+1} - (T_{m+1} - T_{m-1})^2}{4}} .
\]

Theorem 13. Let \(A_n = \text{Circ}(T_1, T_2, \ldots, T_n)\); then the spectral norm of \(A_n\) is
\[
\|A_n\|_2 = \frac{T_n + T_{n+2} - 1}{2} .
\]

Proof. The modulus of the eigenvalues of \(A_n\) satisfy
\[
|\lambda_k(A_n)| = \left| \sum_{j=1}^{n} T_j \epsilon_{i,j}^{-1} \right| \leq \sum_{j=1}^{n} \left| T_j \right| |\epsilon_{i,j}^{-1}| = \sum_{j=1}^{n} |T_j| = \sum_{j=1}^{n} T_j ,
\]
\[A_n \cdot (1, 1, \ldots, 1)^T = \left(\sum_{j=1}^{n} T_j \right) (1, 1, \ldots, 1)^T \]
\[= \left(\sum_{j=1}^{n} T_j \right) (1, 1, \ldots, 1)^T , \]
which implies that \(\sum_{j=1}^{n} T_j\) is an eigenvalue of \(A_n\) and \(\max_{1 \leq k \leq n} |\lambda_k(A_n)| = \sum_{j=1}^{n} T_j\). Hence, by Lemma 7 and equality (5) in Lemma 1, we have \(\|A\|_2 = \max_{1 \leq k \leq n} |\lambda_k(A_n)| = \sum_{j=1}^{n} T_j = \frac{(T_n + T_{n+2} - 1)}{2}\).\]
Theorem 14. Let \(A_n = \text{Circ}(T_1, T_2, \ldots, T_n) \). Then the bounds for the spread of \(A_n \) are
\[
s(A_n) \geq \frac{n \cdot T_n + T_{n+2} - 3}{2},
\]
\[
s(A_n) \leq \sqrt{\frac{n \cdot 4T_n T_{n+1} - (T_{n+1} - T_{n-1})^2}{2}}.
\]

Proof. The trace of \(A_n \) is \(\text{tr} A_n = nT_1 = n \) and \(\sum_{i \neq j} a_{ij} = n(\sum_{j=1}^n T_j - T_1) = n((T_n + T_{n+2} - 3)/2). \) Since \(A_n \) is a real and normal matrix, by using Lemma 6, we can get \(s(A_n) \geq (1/(n-1)) \sum_{i \neq j} a_{ij} = (n/(n-1)) \cdot ((T_n + T_{n+2} - 3)/2). \)

Beside that, by Theorem 12, we have
\[
2\|A_n\|_F^2 - 2\|\text{tr} A_n\|^2 = 2n \cdot \frac{1 + 4T_n T_{n+1} - (T_{n+1} - T_{n-1})^2}{2} = \frac{2n \cdot n^2}{2};
\]
by (16), we obtain
\[
s(A_n) \leq \sqrt{\frac{n \cdot 4T_n T_{n+1} - (T_{n+1} - T_{n-1})^2}{2}}.
\]

Theorem 15. Let \(B_n = \text{LCirc}(T_1, T_2, \ldots, T_n) \). Then the determinant of \(B_n \) is
\[
\det B_n = \frac{(1 - T_{n+1})^n}{\prod_{i=1}^{n-1} T_i} \cdot (\prod_{i=1}^{n-2} T_i)^2 - \frac{1}{2} (n-1)(n-2)/2.
\]

Proof. Since
\[
\det B_n = (-1)^{(n-1)(n-2)/2},
\]
the result can be derived from Theorem 11 and relation (13).

Theorem 16. Let \(B_n = \text{LCirc}(T_1, T_2, \ldots, T_n) \); then
\[
\|B_n\|_1 = \|B_n\|_{\infty} = \frac{T_n + T_{n+2} - 1}{2},
\]
\[
\|B_n\|_F = \sqrt{\frac{1 + 4T_n T_{n+1} - (T_{n+1} - T_{n-1})^2}{2}}.
\]

Proof. By the definition of norms and formula (5) in Lemma 1, we know that \(\|B_n\|_1 = \|B_n\|_{\infty} = \sum_{j=1}^n T_j = ((T_n + T_{n+2} - 1)/2). \)

According to Definition 4 and (7) in Lemma 1, we have
\[
\|B_n\|_F^2 = \sum_{i,j=1}^n |b_{ij}|^2 = \sum_{j=1}^n T_j^2 = n \cdot \frac{1 + 4T_n T_{n+1} - (T_{n+1} - T_{n-1})^2}{2};
\]
thus, the Frobenius norm of \(B_n \) is
\[
\|B_n\|_F = \sqrt{\frac{1 + 4T_n T_{n+1} - (T_{n+1} - T_{n-1})^2}{2}}.
\]

Theorem 17. Let \(B_n = \text{LCirc}(T_1, T_2, \ldots, T_n) \); then the spectral norm of \(B_n \) is
\[
\|B_n\|_2 = \frac{T_n + T_{n+2} - 1}{2}.
\]

Proof. Obviously, the modules of the first \(n-1 \) eigenvalues of \(B_n \) are
\[
|\lambda_k| = |\lambda_{n-k}| = \sqrt{r_k^2 + s_k^2}, \quad 1 \leq k \leq \frac{(n-1)}{2},
\]
and \(\lambda_n = \sum_{j=1}^n T_j \) by Lemma 10. Since
\[
\sqrt{r_k^2 + s_k^2} = \left| \sum_{j=1}^n T_j \cos ((j-1) \theta_k) + i \sum_{j=1}^n T_j \sin ((j-1) \theta_k) \right| = \left| \sum_{j=1}^n T_j e^{(j-1)\theta_k} \right| \leq \sum_{j=1}^n |T_j| = \sum_{j=1}^n |T_j|,
\]
we have \(|\lambda_k| = |\lambda_{n-k}| = \sqrt{r_k^2 + s_k^2} \leq \sum_{j=1}^n T_j \). Beside that, if \(n \) is even, then
\[
\left| \sum_{j=1}^n (-1)^{(j-1)/2} T_j \right| \leq \sum_{j=1}^n |T_j| = \sum_{j=1}^n |T_j| = \sum_{j=1}^n |T_j|.
\]
In other words, for any \(k = 1, 2, \ldots, n \), we have \(|\lambda_k| \leq \sum_{j=1}^n T_j = \lambda_n \), and \(\lambda_n \) is an eigenvalue of \(B_n \). So,
\[
\max_{1 \leq k \leq n}|\lambda_k(B_n)| = \sum_{j=1}^n T_j. \]
Since \(B_n \) is a real symmetric matrix, we can get \(\|B_n\|_2 = \max_{1 \leq k \leq n}|\lambda_k(B_n)| = \sum_{j=1}^n T_j = ((T_n + T_{n+2} - 1)/2) \) by Lemma 7 and (5) in Lemma 1.

Theorem 18. Let \(B_n = \text{LCirc}(T_1, T_2, \ldots, T_n) \); then the bounds for the spread of \(B_n \) are
\[
s(B_n) \geq 2T_n,
\]
\[
s(B_n) \leq \frac{1}{\mu_2} \cdot \frac{(T_n + T_{n+2} - 1)^2}{2n} \quad \text{(n is odd)},
\]
\[
s(B_n) \leq \frac{1}{\mu_2} \cdot \frac{2}{(T_n + T_{n-1})^2} \quad \text{(n is even)},
\]
where
\[
\mu_2 = \frac{n \left[1 + 4T_n T_{n+1} - (T_{n+1} - T_{n-1})^2 \right]}{2}.
\]

Proof. It follows from the elements in \(B_n \) that max\(_{i\neq j} |b_{ij}| = T_n \); since \(B_n \) is a Hermitian matrix, so s(B\(_n\)) \(\geq 2 \max\(_{i\neq j} |b_{ij}| = 2T_n \).

If \(n \) is odd, the trace of \(B_n \) is
\[
\text{tr} B_n = \sum_{j=1}^{n} T_j = \left((T_n + T_{n+2}) - 1 / 2 \right).
\]

If using Theorem 16, we know that
\[
2\|B_n\|_F^2 - 2n |\text{tr} B_n|^2 = \frac{2n}{4} \left[1 + 4T_n T_{n+1} - (T_{n+1} - T_{n-1})^2 \right],
\]
\[
\frac{|\text{tr} B_n|^2}{2} = \frac{2n}{4} \left[T_n + T_{n+2} - 1 \right]^2.
\]

\[
\frac{|\text{tr} B_n|^2}{2} = \frac{2n}{4} \left[T_n + T_{n+2} - 1 \right]^2.
\]

by using Theorem 16, we have
\[
2\|B_n\|_F^2 - 2n |\text{tr} B_n|^2 = \frac{2n}{4} \left[1 + 4T_n T_{n+1} - (T_{n+1} - T_{n-1})^2 \right],
\]
\[
\frac{|\text{tr} B_n|^2}{2} = \frac{2n}{4} \left[T_n + T_{n+2} - 1 \right]^2.
\]

According to (16), the proof is completed. \(\square \)

3. Determinant, Norms, and the Spread of Circulant and Left Circulant Matrices with Generalized Lucas Numbers

Theorem 19. Let \(C_n = \text{Circ}(l_1, l_2, \ldots, l_n) \). Then the determinant of \(C_n \) is
\[
\det C_n = \frac{(1 - l_{n+1})^n - (c_2^2 + d_2^2) + (3 - l_n)^n}{l_{n+1} - l_n},
\]
where
\[
c_2 = \frac{(l_{n+2} - l_{n+1} - 2) + \mu_3}{2},
\]
\[
d_2 = \frac{(l_{n+2} - l_{n+1} - 2) - \mu_3}{2},
\]
\[
\mu_3 = \sqrt{(l_{n+2} - l_{n+1} - 2)^2 - 4 (l_n - 3) (l_{n+1} - 1)}.
\]

Proof. By Lemma 8 and the Binet form of \(\{l_n\} \), the eigenvalues of \(C_n \) are
\[
\lambda_k = \sum_{j=1}^{n} l_j e_j^{-1} - \sum_{j=1}^{n} \sum_{i=1}^{n} l_{j-i} e_k^{-1}
\]
\[
= \sum_{i=1}^{3} \left(\sum_{j=0}^{2} l_j^i e_k^i \right) = \sum_{i=1}^{3} \frac{r_i (1 - r_n^i)}{1 - r_k e_k}
\]
\[
= \frac{1}{M} \left[r_1 (1 - r_n^1) (1 - r_k e_k) \right] + \frac{r_2 (1 - r_n^2) (1 - r_1 e_k) (1 - r_k e_k)}{1 - r_k e_k}
\]
\[
+ \frac{r_3 (1 - r_n^3) (1 - r_2 e_k) (1 - r_k e_k)}{1 - r_k e_k}.
\]

acording to (4), we have
\[
\lambda_k = \frac{1}{M} \sum_{i=1}^{3} (1 - r_n^i) \left[e_k^i - r_1 (1 - r_i) e_k + r_i \right]
\]
\[
= \frac{1}{M} \left[(3 - l_n) e_k^2 + (2 + l_{n+1} - l_{n+2}) e_k
\]
\[
+ (1 - l_{n+1}) \right]
\]
\[
= \frac{1}{M} \left(3 - l_n \right) \left(x_3 - e_k \right) \left(x_4 - e_k \right),
\]

where \(x_i \) (\(i = 3, 4 \)) are the roots of equation \((3 - l_n)e_k^2 + (2 + l_{n+1} - l_{n+2})e_k + (1 - l_{n+1}) = 0 \).

According to Lemma 9, we have
\[
det C_n = \frac{(3 - l_n)^n (x_3^2 - 1) (x_4^2 - 1)}{l_{n+1} - l_n}
\]
\[
= \frac{(3 - l_n)^n [x_3^2 x_4^2 - (x_3^2 + x_4^2) + 1]}{1 - l_{n+1} - l_n - 1}
\]
\[
= \frac{(1 - l_{n+1})^n - (c_2^2 + d_2^2) + (3 - l_n)^n}{l_{n+1} - l_n},
\]

where
\[
c_2 = \frac{(l_{n+2} - l_{n+1} - 2) + \mu_3}{2},
\]
\[
d_2 = \frac{(l_{n+2} - l_{n+1} - 2) - \mu_3}{2},
\]
\[
\mu_3 = \sqrt{(l_{n+2} - l_{n+1} - 2)^2 - 4 (l_n - 3) (l_{n+1} - 1)}.
\]

\(\square \)
Theorem 20. Let $C_n = \text{Circ}(L_1, L_2, \ldots, L_n)$; then the norms of C_n are
\[
\|C_n\|_1 = \|C_n\|_\infty = \frac{L_n + L_{n+2}}{2} - 3,
\]
\[
\|C_n\|_F = \sqrt{n \left[\frac{-L_{n+1}^2 - L_{n+2}^2 + L_{2n+3} + L_{2n-2}}{2} \right]}.
\] (53)

Proof. According to the definition of norms and formula (6) in Lemma 1, we obtain $\|C_n\|_1 = \|C_n\|_\infty = \sum_{j=1}^n L_j = (L_n + L_{n+2})/2 - 3$.

According to the definition of norms and (8) in Lemma 1, we can get
\[
\|C_n\|_F^2 = \sum_{i,j=1}^n |c_{ij}|^2 = n \sum_{j=1}^n L_j^2
\] (54)
\[
= n \left[\frac{-L_{n+1}^2 - L_{n+2}^2 + L_{2n+3} + L_{2n-2}}{2} \right];
\]
thus, the spectral norm of C_n is
\[
\|C_n\|_F = \sqrt{n \left[\frac{-L_{n+1}^2 - L_{n+2}^2 + L_{2n+3} + L_{2n-2}}{2} \right].}
\] (55)

Theorem 21. Let $C_n = \text{Circ}(L_1, L_2, \ldots, L_n)$; then the spectral norm of C_n is
\[
\|C_n\|_2 = \frac{L_n + L_{n+2}}{2} - 3.
\] (56)

Proof. The modules of the eigenvalues of C_n satisfy
\[
|\lambda_k(C_n)| = \left| \sum_{j=1}^n L_j L_{j-k} \right| \leq \sum_{j=1}^n |L_j| \left| L_{j-k} \right| = \sum_{j=1}^n |L_j| = \sum_{j=1}^n L_j,
\]
\[
C_n \cdot (1, 1, \ldots, 1)^T = \left(\sum_{j=1}^n L_j, \ldots, \sum_{j=1}^n L_j \right)^T
\] (57)
\[
= \left[\sum_{j=1}^n L_j \right] (1, 1, \ldots, 1)^T,
\]
which means that $\sum_{j=1}^n L_j$ is an eigenvalue of C_n, so $\max_{1 \leq k \leq n} |\lambda_k(C_n)| = \sum_{j=1}^n L_j$. Hence, the spectral norm of C_n is $\|C_n\|_2 = \max_{1 \leq k \leq n} |\lambda_k(C_n)| = \sum_{j=1}^n L_j = ((L_n + L_{n+2})/2) - 3$ by Lemma 7 and formula (6) in Lemma 1.

Theorem 22. Let $C_n = \text{Circ}(L_1, L_2, \ldots, L_n)$; then the bounds for the spread of C_n are
\[
s(C_n) \geq \frac{n}{n-1} \left[\frac{L_n + L_{n+2}}{2} - 4 \right],
\] (58)
\[
s(C_n) \leq \sqrt{n \left[-L_{n+1}^2 - L_{n+2}^2 + L_{2n+3} + L_{2n-2} - 6 \right]}
\]
Proof. The trace of C_n is $\text{tr} C_n = nL_1 = n$ and $\sum_{i,j} c_{ij} = nL_1 + n(L_{n+2})/2 - 4$. Since C_n is a real normal matrix, by Lemma 6, we can get
\[
s(C_n) \geq \frac{1}{n-1} \left| \sum_{i,j} c_{ij} \right| = \frac{n}{n-1} \left[\frac{L_n + L_{n+2}}{2} - 4 \right].
\] (59)

Beside that, by Theorem 20, we have
\[
2\|C_n\|_F^2 - 2n |\text{tr} C_n|^2
\]
\[
= 2n \left[\frac{-L_{n+1}^2 - L_{n+2}^2 + L_{2n+3} + L_{2n-2}}{2} \right]
\]
\[
- \frac{2}{n} n^2.
\]
By (16), the proof is completed.

Theorem 23. Let $D_n = LCirc(L_1, L_2, \ldots, L_n)$. Then
\[
\det D_n = \frac{(1 - L_{n+1})^n - (L_n^2 + d_n^2) + (3 - L_n)n}{L_n - L_n}
\]
\[
\times (-1)^{(n-1)(n-2)/2}
\]
Proof. The conclusion can be proved by Theorem 19 and relation (13).

Theorem 24. Let $D_n = LCirc(L_1, L_2, \ldots, L_n)$; then the norms of D_n are
\[
\|D_n\|_1 = \|D_n\|_\infty = \frac{L_n + L_{n+2}}{2} - 3,
\]
\[
\|D_n\|_F = \sqrt{n \left[\frac{-L_{n+1}^2 - L_{n+2}^2 + L_{2n+3} + L_{2n-2}}{2} \right]}
\] (62)

Proof. According to the definition of norm and formula (6) in Lemma 1, we have $\|D_n\|_1 = \|D_n\|_\infty = \sum_{j=1}^n L_j = ((L_n + L_{n+2})/2) - 3$.

According to the definition of norm and (8) in Lemma 1, we can get
\[
\|D_n\|_F^2 = \sum_{i,j=1}^n |d_{ij}|^2 = n \sum_{j=1}^n L_j^2
\] (63)
\[
= n \left[\frac{-L_{n+1}^2 - L_{n+2}^2 + L_{2n+3} + L_{2n-2}}{2} \right];
\]
thus, the Frobenius norm of D_n is $\|D_n\|_F = \sqrt{n \left[-L_{n+1}^2 - L_{n+2}^2 + L_{2n+3} + L_{2n-2} - 2 \right]}$.
Theorem 25. Let $D_n = L\text{Circ}(L_1, L_2, \ldots, L_n)$; then the spectral norm of D_n is
\[
\|D_n\|_2 = \frac{\|L_n + L_{n+2}\|}{2} - 3. \tag{64}
\]

Proof. Obviously, the modules of the first $n - 1$ eigenvalues of D_n are
\[
|\lambda_k| = |\lambda_{n-k}| = \sqrt{k^2 + s_k^2}, \quad 1 \leq k \leq \left\lfloor \frac{n-1}{2} \right\rfloor, \tag{65}
\]
and $\lambda_n = \sum_{j=1}^{n} L_j$ by Lemma 10. Since
\[
\sqrt{k^2 + s_k^2} = \sum_{j=1}^{n} L_j \cos ((j - 1) \theta_k) + i \sum_{j=1}^{n} L_j \sin ((j - 1) \theta_k)
\]
\[
= \sum_{j=1}^{n} L_j e^{i(j-1)\theta_k}
\]
\[
\leq \sum_{j=1}^{n} |L_j| e^{i(j-1)\theta_k} = \sum_{j=1}^{n} |L_j| = \sum_{j=1}^{n} L_j,
\]
we have $|\lambda_k| = |\lambda_{n-k}| = \sqrt{k^2 + s_k^2} \leq \sum_{j=1}^{n} L_j$. Beside that, if n is even, then
\[
|\lambda_n/2| = \left\lfloor \sum_{j=1}^{n} (1)^{j-1} L_j \right\rfloor
\]
\[
\leq \sum_{j=1}^{n} |L_j| (1)^{j-1} = \sum_{j=1}^{n} L_j = \sum_{j=1}^{n} L_j.
\]
In other words, for any $k = 1, 2, \ldots, n$, we have $|\lambda_k| \leq \sum_{j=1}^{n} L_j = \lambda_n$, and λ_n is an eigenvalue of D_n. So max$_{1 \leq k \leq n} |\lambda_k(D_n)| = \sum_{j=1}^{n} L_j$. Since D_n is a real symmetric matrix, we can get $\|D_n\|_2 = \max_{1 \leq k \leq n} |\lambda_k(D_n)| = \sum_{j=1}^{n} L_j = ((\|L_n + L_{n+2}\|)/2) - 3$ by Lemma 7 and (6) in Lemma 1. \qed

Theorem 26. Let $D_n = L\text{Circ}(L_1, L_2, \ldots, L_n)$; then the bounds for the spread of D_n are
\[
s(D_n) \geq 2L_n,
\]
\[
s(D_n) \leq \sqrt{n \cdot \mu_4 - \frac{(\|L_n + L_{n+2}\| - 6)^2}{2n}}, \quad (n \text{ is odd}),
\]
\[
s(D_n) \leq \sqrt{n \cdot \mu_4 - \frac{2}{n} \cdot (\|L_n + L_{n-1}\| - 2)^2}, \quad (n \text{ is even}),
\]
\[
\mu_4 = -L_{n+1} - L_{n-1} + L_{2n+3} + L_{2n-2} - 4. \tag{68}
\]

Proof. From the elements in D_n, we know that max$_{i \neq j} |d_{ij}| = \|L_n\|$; since D_n is a Hermitian matrix, so $s(D_n) \geq 2\max_{i \neq j} |d_{ij}| = 2\|L_n\|$.

If n is odd, the trace of D_n is $\text{tr}D_n = \sum_{j=1}^{n} L_j = ((\|L_n + L_{n+2}\|)/2) - 3$; by using Theorem 24, we have
\[
2\|D_n\|_F^2 - \frac{2}{n} |\text{tr}D_n|^2
\]
\[
= 2n \left[\frac{-L_{n+1} - L_{n-1} + L_{2n+3} + L_{2n-2} - 2}{2} \right]
\]
\[
- \frac{2}{n} \left[\frac{\|L_n + L_{n+2}\|}{2} - 3 \right]^2. \tag{69}
\]

If n is even,
\[
\text{tr}D_n = 2 (L_1 + L_3 + L_5 + \ldots + L_{n-1})
\]
\[
= 2 \sum_{i=1}^{n} \tau_i \left(1 - \tau_i^{-2(n/2)}\right) = 2 \cdot \frac{4 + 2 (L_{n-1} - L_{n+1})}{-4}
\]
\[
= L_{n+2} - L_{n-1} = L_n + L_{n-1} - 2;
\]

by using Theorem 24, we have
\[
2\|D_n\|_F^2 - \frac{2}{n} |\text{tr}D_n|^2
\]
\[
= 2n \left[\frac{-L_{n+1} - L_{n-1} + L_{2n+3} + L_{2n-2} - 2}{2} \right]
\]
\[
- \frac{2}{n} \left[L_n + L_{n-1} - 2 \right]^2. \tag{70}
\]

According to (16), the conclusions are obtained. \qed

4. Conclusion

The related problems of circulant matrix and some famous numbers are studied in this paper. We not only study basic properties of circulant matrix or famous numbers, respectively, but also explore the explicit determinant and the four kinds of norms and give the upper and lower bounds for the spread of circulant matrix and left circulant matrix involving Tribonacci numbers and generalized Lucas numbers. If we combine famous numbers with circulant matrix and left circulant matrix, a lot of good results would be obtained, and we wish the results could be useful in solving some differential equations.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

The research was supported by the Development Project of Science and Technology of Shandong Province (Grant no. 2012GGX10115) and NSFC (Grant no.11301251) and the AMEP of Linyi University, China.
References

