Editorial

Approximation Theory and Numerical Analysis

Sofiya Ostrovska, 1 Elena Berdysheva, 2 Grzegorz Nowak, 3 and Ahmet Yaşar Özban 1

1 Department of Mathematics, Atılım University, Incek, 06836 Ankara, Turkey
2 Department of Mathematics and Science, German University of Technology in Oman, P.O. Box 1816, 130 Muscat, Oman
3 The Great Poland University of Social and Economics in Sroda Wielkopolska, 63000 Sroda Wielkopolska, Poland

Correspondence should be addressed to Sofiya Ostrovska; ostrovsk@atilim.edu.tr

Received 24 September 2014; Accepted 24 September 2014; Published 22 December 2014

Copyright © 2014 Sofiya Ostrovska et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Approximation Theory and Numerical Analysis are closely related areas of mathematics. Approximation Theory lies in the crossroads of pure and applied mathematics. It includes a wide spectrum of areas ranging from abstract problems in real, complex, and functional analysis to direct applications in engineering and industry. Therefore, Approximation Theory employs a great variety of methods, which originate in analysis, operator theory, harmonic analysis, quantum calculus, algorithms, probability theory, and further areas of mathematics.

This special issue was launched in November 2013 aiming at bringing out new developments in these subjects with main focus on the interaction between Approximation Theory and Numerical Analysis. All papers submitted to the issue have been refereed by experts in their respective fields and examined by the academic editors. Thoroughly selected papers falling into the scope of the issue have been published, and hopefully they will be of interest for the reader.

The issue contains a number of papers related to the Bernstein type operators based on the \(q \)-integers. After \(q \)-analogues of the Bernstein polynomials had been introduced by A. Lupas in 1987 and G. Phillips in 1997, the study of various \(q \)-analogues of the classical operators became an area of intensive research. The present special issue supplies a selection of papers on the \(q \)-operators including those written by well-known specialists in the area such as N. I. Mahmudov, H. Wang, and X. Wu. In those works, distinct modifications of the \(q \)-Bernstein polynomials have been studied, for example, \(q \)-Bernstein-Durrmeyer polynomials, \(q \)-Lupas operator, \(q \)-Szász-Mirakjan operator, and truncated \(q \)-Bernstein polynomials. The authors deal with the convergence of the operators, both in real and complex cases, shape-preserving properties, and discuss possible generalizations of the classical results. Moreover, the paper by X. Wu presents a complete solution to the long-standing open problem on the approximation of all continuous functions on \([0,1]\) by the \(q \)-Bernstein polynomials in the case \(q \to 1^+ \).

Furthermore, the issue includes a paper on inequalities for real functions. To be specific, the subject of the paper of A. Qayyum et al. is Ostrowski type inequalities, that is, inequalities giving bounds for the deviation of a function from its integral mean. The authors obtain bounds for the deviation of a function from a combination of integral means over two subintervals covering the entire interval in terms of the \(L_p \)-norms of the second derivative of the function, \(1 \leq p \leq \infty \).

The issue contains a paper on the bivariate interpolation and some related topics. Particularly, the paper by L. Zou and S. Tang studies the interpolation theorem, algorithms, and dual interpolation. It also provides many kinds of interpolation schemes.

A classical topic—solution of nonlinear equations—is also represented in the issue. F. Dubeau's paper is devoted to studying Schröder’s processes which are fixed point processes for finding simple roots of nonlinear equations. The author shows that Schröder’s processes of the first kind and of the second kind are related by polynomial and rational approximations, thus giving an answer to a question raised by M. Petković to find and explain a possible link between the two processes.

The papers outlined below regard the area of Numerical Analysis. The first deals with \(LM - g \) splines. \(LM - g \) splines
had been introduced by R. J. P. de Figueiredo in 1977 as a
generalization of the $L - g$ splines in terms of two differential
operators L and M, and they reduce to $L - g$ splines if M is the
identity operator. In their paper, X. Liu et al. investigate the
structural properties of the $LM - g$ splines by optimization
and optimal control theory as well as the relationship between
$LM - g$ splines and $L - g$ splines.

Besides, a new interpolation spline with two parameters,
called an EH interpolation spline, which is the extension of the
standard cubic Hermite interpolation spline, is presented in
the paper by J. Xie and X. Liu. The authors demonstrate
properties and advantages of this spline for a class of interpo-
lation problems.

In the paper by R. An and X. Wang, new models are
considered which help to understand the behavior of nu-
cmerical methods in presence of layers in more complex
problems like the Navier-Stokes equations in fluid dynamics
or convection diffusion equations in chemical reaction pro-
cesses. Moreover, a new stabilized finite element method for
incompressible flows based on Brezzi-Pitkäranta stabilized
method is presented. The stability and error estimates of
finite element solutions are derived for the classical one-
level method. Authors also propose a new Newton correction
scheme based on the above two-level iteration methods.
In addition, some numerical experiments are given to support
the theoretical results and to check the efficiency of these two-
level iteration methods.

A first supercloseness analysis for higher order FEM/LDG
coupled method for solving singularly perturbed convection-
diffusion problem is presented by S. Xie et al. Based on
piecewise polynomial approximations of degree k ($k \geq 1$),
a supercloseness property of order $k + 1/2$ in DG norm is
established on an S-type mesh. Numerical experiments
complement the theoretical results.

S. B. G. Karakoç et al. employ a septic B-spline collocation
method to find numerical solutions of the modified regular-
ized long wave (MRLW) equation for the motion of a single
solitary wave, the interaction of two and three solitary waves,
and the development of the Maxwellian initial condition into
solitary waves. Moreover, they give a linear stability analysis
of their methods.

The article by C.-X. Li et al. considers the numerical
solution of complex symmetric linear systems. They intro-
duce a generalized preconditioned modified Hermitian and
skew Hermitian splitting (GPMHSS) method based on the
modified Hermitian and skew-Hermitian splitting (MHSS)
and preconditioned MHSS (PMHSS) methods. Numerical
test results discussing the efficiency of GPMHSS and inexact
GPMHSS are provided.

The paper by H. Wang and Y. Sun discusses a feasible
interval of the parameter k and a general expression of the
matrix X which satisfies the rank equation $r(A - BXC) = k$.
The authors study the problems to determine the maximal
and minimal ranks under this rank constraint, as well as to
derive the least squares solutions of $\|BXC - A\|_F = \text{min}$.

A backward perturbation analysis for the block skew
circulant linear systems with skew circulant blocks has been
carried out by Z. Jiang et al. First, they give a block style
spectral decomposition of the coefficient matrix of the linear
system. Then, based on this decomposition, they perform
structured backward perturbation analysis for the block skew
circulant linear systems.

M. I. Berenguer et al. introduce a new iterative method
for the numerical solution of systems of nonlinear Fredholm
integrodifferential equations of the second kind by employing
Banach fixed-point theorem and Schauder basis and perform
the convergence analysis of their methods.

The paper by P. Hessari et al. aims to solve an elliptic
interface problem with a discontinuous coefficient and a
singular source term by the spectral collocation method. An
algorithm for this problem has been designed. Afterwards, its
efficiency has been demonstrated.

Another topic covered by the issue is the applications
of numerical analysis in optimal control theory. Namely, in
the paper of J. Zhou, Legendre-Galerkin spectral methods are
employed to solve state-constrained optimal control prob-
lems. Explicit formulae of the constants in the a posteriori
error indicator are investigated.

The paper authored by A. S. Al-Fhaid et al. aims to
construct a matrix iteration for finding approximate inverses
of nonsingular square matrices and also apply the new
method for computing the Drazin inverse. It is proved that
the method possesses the convergence rate nine. Numerical
experiments are performed to support the findings.

On the whole, the issue comprises papers which cover a
variety of different topics within the scope of Approximation
Theory and Numerical Analysis. Hopefully, they will be use-
ful and interesting for the reader working in those subjects.

Acknowledgments

The guest editors would like to express their deepest gratitude
to all contributors who chose this special issue to publish find-
ings of their researches. Our appreciation goes to all reviewers
whose precious comments and professional judgments are
of the paramount importance for both the authors and the
editors.

Sofiya Ostrov ska
Elena Berdysheva
Grzegorz Nowak
Ahmet Yas¸ar ¨Ozban
Submit your manuscripts at
http://www.hindawi.com