Research Article

Some Paranormed Double Difference Sequence Spaces for Orlicz Functions and Bounded-Regular Matrices

S. A. Mohiuddine, 1 Kuldip Raj, 2 and Abdullah Alotaibi 1

1 Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
2 School of Mathematics, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir 182320, India

Correspondence should be addressed to S. A. Mohiuddine; mohiuddine@gmail.com

Received 23 November 2013; Accepted 14 January 2014; Published 10 March 2014

Academic Editor: M. Mursaleen

The aim of this paper is to introduce some new double difference sequence spaces with the help of the Musielak-Orlicz function \(\mathcal{F} = (F_{j,k}) \) and four-dimensional bounded-regular (shortly, RH-regular) matrices \(A = (a_{nmjk}) \). We also make an effort to study some topological properties and inclusion relations between these double difference sequence spaces.

1. Introduction, Notations, and Preliminaries

In [1], Hardy introduced the concept of regular convergence for double sequences. Some important work on double sequences is also found by Bromwich [2]. Later on, it was studied by various authors, for example, Móricz [3], Móricz and Rhoades [4], Başar and Sönalcan [5], Mursaleen and Mohiuddine [6–8], and many others. Mursaleen [9] has defined and characterized the notion of almost strong regularity of four-dimensional matrices and applied these matrices to establish a core theorem (also see [10, 11]). Altay and Başar [12] have recently introduced the double sequence spaces \(BS, BS(t), CS_p, CS_{bp}, CS_r, \) and \(BF \) consisting of all double series whose sequence of partial sums are in the spaces \(BS, BS(t), CS_p, CS_{bp}, CS_r, \) and \(BF \), respectively. Başar and Sever [13] extended the well-known space \(\ell_p \), from single sequence to double sequences, denoted by \(\mathcal{L}_{pq} \), and established its interesting properties. The authors of [14] defined some convex and paranormed sequences spaces and presented some interesting characterization. Most recently, Mohiuddine and Alotaibi [15] introduced some new double sequences spaces for \(\sigma \)-convergence of double sequences and invariant mean and also determined some inclusion results for these spaces. For more details on these concepts, one can be referred to [16–18].

The notion of difference sequence spaces was introduced by Kızmaz [19], who studied the difference sequence spaces \(\ell_\infty(\Delta), c(\Delta), \) and \(c_0(\Delta) \). The notion was further generalized by Et and Çölak [20] by introducing the spaces \(\ell_\infty(\Delta^r), c(\Delta^r), \) and \(c_0(\Delta^r) \).

Let \(w \) be the space of all complex or real sequences \(x = (x_k) \) and let \(r \) and \(s \) be two nonnegative integers. Then for \(Z = \ell_\infty^r, c, c_0 \), we have the following sequence spaces:

\[
Z(\Delta^r) = \{ x = (x_k) \in w : (\Delta^r_0 x_k) \in Z \},
\]

where \(\Delta^r_0 x_k = (\Delta^r_0 x_k) = (\Delta^r_1 x_k) = (\Delta^r_{-1} x_k - \Delta^r_{-1} x_{k+1}) \) and \(\Delta^0_0 x_k = x_k \) for all \(k \in \mathbb{N} \), which is equivalent to the following binomial representation:

\[
\Delta^r_0 x_k = \sum_{\nu=0}^{r} \binom{r}{\nu} x_{k+s\nu}
\]

We remark that for \(s = 1 \) and \(r = s = 1 \), we obtain the sequence spaces which were introduced and studied by Et and Çölak [20] and Kızmaz [19], respectively. For more details about sequence spaces see [21–27] and references therein.
An Orlicz function \(F : [0, \infty) \to [0, \infty) \) is continuous, nondecreasing, and convex such that \(F(0) = 0 \), \(F(x) > 0 \) for \(x > 0 \) and \(F(x) \to \infty \) as \(x \to \infty \). If convexity of Orlicz function is replaced by \(F(x + y) \leq F(x) + F(y) \), then this function is called modulus function. Lindenstrauss and Tzafriri [28] used the idea of Orlicz function to define the following sequence space:

\[
\ell_p = \left\{ x = (x_k) \in \mathbb{W} : \sum_{k=1}^{\infty} F\left(\frac{|x_k|}{\rho} \right) < \infty, \, \rho > 0 \right\},
\]

which is known as an Orlicz sequence space. The space \(\ell_p \) is a Banach space with the norm

\[
\|x\| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} F\left(\frac{|x_k|}{\rho} \right) \leq 1 \right\}. \tag{4}
\]

Also it was shown in [28] that every Orlicz sequence space \(\ell_p \) contains a subspace isomorphic to \(\ell_n \) (\(p \geq 1 \)). An Orlicz function \(F \) can always be represented in the following integral form:

\[
F(x) = \int_0^x \eta(t) \, dt, \tag{5}
\]

where \(\eta \) is known as the kernel of \(F \), is a right differentiable for \(t \geq 0 \), \(\eta(0) = 0 \), \(\eta(t) > 0 \), \(\eta \) is nondecreasing, and \(\eta(t) \to \infty \) as \(t \to \infty \).

A sequence \(\mathcal{F} = (F_k) \) of Orlicz functions is said to be a Musielak-Orlicz function (see [29, 30]). A sequence \(\mathcal{A} = (N_k) \) is defined by

\[
N_k(v) = \sup \{|v| - F_k(u) : u \geq 0\}, \quad k = 1, 2, \ldots, \tag{6}
\]

which is called the complementary function of a Musielak-Orlicz function \(\mathcal{F} \). For a given Musielak-Orlicz function \(\mathcal{F} \), the Musielak-Orlicz sequence space \(t_{\mathcal{F}} \) and its subspace \(h_{\mathcal{F}} \) are defined as follows:

\[
t_{\mathcal{F}} = \{ x \in \mathbb{W} : I_{\mathcal{F}}(cx) < \infty \text{ for some } c > 0 \},
\]

\[
h_{\mathcal{F}} = \{ x \in \mathbb{W} : I_{\mathcal{F}}(cx) < \infty \forall c > 0 \},
\]

where \(I_{\mathcal{F}} \) is a convex modular defined by

\[
I_{\mathcal{F}}(x) = \sum_{k=1}^{\infty} F_k(x_k), \quad x = (x_k) \in t_{\mathcal{F}}. \tag{8}
\]

We consider \(t_{\mathcal{F}} \) equipped with the Luxemburg norm

\[
\|x\| = \inf \left\{ k > 0 : I_{\mathcal{F}}\left(\frac{x}{k} \right) \leq 1 \right\}, \tag{9}
\]

or equipped with the Orlicz norm

\[
\|x\|^0 = \inf \left\{ \frac{1}{k} (1 + I_{\mathcal{F}}(kx)) : k > 0 \right\}. \tag{10}
\]

A Musielak-Orlicz function \(\mathcal{F} = (F_k) \) is said to satisfy \(\Delta_2 \)-condition if there exist constants \(a, K > 0 \) and a sequence \(c = (c_k)_{k=1}^{\infty} \in l^1_+ \) (the positive cone of \(l^1 \)) such that the inequality

\[
F_k(2u) \leq KF_k(u) + c_k \tag{11}
\]

holds for all \(k \in \mathbb{N} \) and \(u \in \mathbb{R}^+ \), whenever \(F_k(u) \leq a \).

A double sequence \(x = (x_{jk}) \) is said to be bounded if \(\|x\|_{\mathcal{F}, \mathcal{A}} = \sup_{j,k} |x_{jk}| < \infty \). We denote by \(\ell_{\mathcal{F}, \mathcal{A}} \) the space of all bounded double sequences.

By the convergence of double sequence \(x = (x_{jk}) \) we mean the convergence in the Pringsheim sense; that is, a double sequence \(x = (x_{jk}) \) is said to converge to the limit \(L \) in Pringsheim sense (denoted by, \(P\)-lim \(x \to L \)) provided that given \(\epsilon > 0 \) there exists \(n \in \mathbb{N} \) such that \(|x_{jk} - L| < \epsilon \) whenever \(j, k > n \) (see [31]). We will write more briefly as \(P\)-convergent. If, in addition, \(x \in \ell_{\mathcal{F}, \mathcal{A}} \), then \(x \) is said to be \(P \)-convergent to \(L \). We will denote the space of all \(P \)-convergent double sequences (or \(P \)-convergent) by \(\ell_{\mathcal{F}, \mathcal{A}}^2 \).

Let \(S \subseteq \mathbb{N} \times \mathbb{N} \) and let \(\epsilon > 0 \) be given. By \(\mathcal{X}_\mathcal{S}(\epsilon) \), we denote the characteristic function of the set \(\mathcal{S}(x; \epsilon) = \{(j, k) \in \mathbb{N} \times \mathbb{N} : |x_{jk}| \geq \epsilon \} \).

Let \(\mathcal{A} = (a_{nmkj}) \) be a four-dimensional infinite matrix of scalars. For all \(m, n \in \mathbb{N}_0 \), where \(\mathbb{N}_0 := \mathbb{N} \cup \{0\} \), the sum

\[
y_{mn} = \sum_{j,k=0}^{\infty} a_{nmkj} x_{jk} \tag{12}
\]

is called the \(A \)-means of the double sequence \((x_{jk}) \). A double sequence \((x_{jk}) \) is said to be \(A \)-summable to the limit \(L \) if the \(A \)-means exist for all \(m, n \) in the sense of Pringsheim's convergence:

\[
P_{-} \lim_{p\to \infty} \sum_{j,k=0}^{p} a_{nmkj} x_{jk} = y_{mn}, \quad P_{-} \lim_{n,m \to \infty} y_{mn} = L. \tag{13}
\]

A four-dimensional matrix \(A \) is said to be \(bounded \)-regular (or \(RH \)-regular) if every bounded \(P \)-convergent sequence is \(A \)-summable to the same limit and the \(A \)-means are also bounded.

The following is a four-dimensional analogue of the well-known Silverman-Toeplitz theorem [32].

Theorem 1 (Robison [33] and Hamilton [34]). The four-dimensional matrix \(A \) is \(RH \)-regular if and only if

- \(RH_1 \) \(P\)-lim \(a_{nmkj} = 0 \) for each \(j \) and \(k \),
- \(RH_2 \) \(P\)-lim \(\sum_{j,k=0}^{\infty} |a_{nmkj}| = 1 \),
- \(RH_3 \) \(P\)-lim \(\sum_{j=0}^{\infty} |a_{nmkj}| = 0 \) for each \(k \),
- \(RH_4 \) \(P\)-lim \(\sum_{k=0}^{\infty} |a_{nmkj}| = 0 \) for each \(j \),
- \(RH_5 \) \(\sum_{j,k=0}^{\infty} |a_{nmkj}| < \infty \) for all \(n, m \in \mathbb{N}_0 \).
2. The Double Difference Sequence Spaces

In this section, we define some new paranormed double difference sequence spaces with the help of Musielak-Orlicz functions and four-dimensional bounded-regular matrices. Before proceeding further, first we recall the notion of paranormed space as follows.

A linear topological space X over the real field \mathbb{R} (the set of real numbers) is said to be a paranormed space if there is a subadditive function $g : X \rightarrow \mathbb{R}$ such that $g(\theta) = 0$, $g(x) = g(-x)$, and scalar multiplication is continuous; that is, $|\alpha_n - \alpha| \rightarrow 0$ and $g(x_n - x) \rightarrow 0$ imply $g(\alpha_n x_n - \alpha x) \rightarrow 0$ for all α's in \mathbb{R} and all x's in X, where θ is the zero vector in the linear space X.

The linear spaces $l_\infty(p)$, $c(p)$, and $c_0(p)$ were defined by Maddox [35] (also, see Simons [36]).

Let $\mathcal{F} = (F_{j,k})$ be a Musielak-Orlicz function; that is, \mathcal{F} is a sequence of Orlicz functions and let $A = (a_{nmj,k})$ be a nonnegative four-dimensional bounded-regular matrix. Then, we define the following:

$$W_0^2(A, \mathcal{F}, u, \Delta'_s, p)$$

$$= \left\{ x = (x_{j,k}) : \right.$$

$$P\lim_{n,m} \sum_{j,k=0}^{\infty} a_{nmj,k} \left[F_{j,k} \left(u_{j,k} \Delta'_s x_{j,k} \right) \right]^{p_{j,k}} = 0 \right\},$$

$$W^2(A, \mathcal{F}, u, \Delta'_s, p)$$

$$= \left\{ x = (x_{j,k}) : \right.$$

$$P\lim_{n,m} \sum_{j,k=0}^{\infty} a_{nmj,k} \left[F_{j,k} \left(u_{j,k} \Delta'_s x_{j,k} - L \right) \right]^{p_{j,k}} = 0 \right\}$$

(14)

where $p = (p_{j,k})$ is a double sequence of real numbers such that $p_{j,k} > 0$ for j,k, $\sup_{j,k} p_{j,k} = H < \infty$, and $u = (u_{j,k})$ is a double sequence of strictly positive real numbers.

Remark 2. If we take $\mathcal{F}(x) = x$ in $W_0^2(A, \mathcal{F}, u, \Delta'_s, p)$ and $W^2(A, \mathcal{F}, u, \Delta'_s, p)$, then we have the following spaces:

$$W_0^2(A, u, \Delta'_s, p)$$

$$= \left\{ x = (x_{j,k}) : \right.$$

$$P\lim_{n,m} \sum_{j,k=0}^{\infty} a_{nmj,k} \left[u_{j,k} \Delta'_s x_{j,k} \right]^{p_{j,k}} = 0 \right\},$$

$$W^2(A, u, \Delta'_s, p)$$

$$= \left\{ x = (x_{j,k}) : \right.$$

$$P\lim_{n,m} \sum_{j,k=0}^{\infty} a_{nmj,k} \left[u_{j,k} \Delta'_s x_{j,k} - L \right]^{p_{j,k}} = 0 \right\}$$

(15)

Remark 3. Let $p = (p_{j,k}) = 1$ for all j,k. Then $W_0^2(A, \mathcal{F}, u, \Delta'_s, p)$ and $W^2(A, \mathcal{F}, u, \Delta'_s, p)$ are reduced to

$$W_0^2(A, \mathcal{F}, u, \Delta'_s)$$

$$= \left\{ x = (x_{j,k}) : \right.$$

$$P\lim_{n,m} \sum_{j,k=0}^{\infty} a_{nmj,k} \left[F_{j,k} \left(u_{j,k} \Delta'_s x_{j,k} \right) \right] = 0 \right\},$$

$$W^2(A, \mathcal{F}, u, \Delta'_s)$$

$$= \left\{ x = (x_{j,k}) : \right.$$

$$P\lim_{n,m} \sum_{j,k=0}^{\infty} a_{nmj,k} \left[F_{j,k} \left(u_{j,k} \Delta'_s x_{j,k} - L \right) \right] = 0 \right\}$$

(16)

respectively.
Remark 4. Let \(u = (u_{jk}) = 1 \) for all \(j, k \). Then, the spaces \(W^2_0(A, \mathcal{F}, u, \Delta'_r, p) \) and \(W^2(A, \mathcal{F}, u, \Delta'_r, p) \) are reduced to

\[
W^2_0(A, \mathcal{F}, \Delta'_r, p) = \left\{ x = (x_{jk}) : \lim_{n,m}^{\infty, \infty} a_{nmjk} \left[F_{jk}(|\Delta'_r x_{jk}|)^{p_n} \right] = 0 \right\},
\]

\[
W^2(A, \mathcal{F}, \Delta'_r, p) = \left\{ x = (x_{jk}) : \lim_{n,m}^{m-1,n-1} \sum_{j,k=0}^{\infty} a_{nmjk} \left[F_{jk}(|\Delta'_r x_{jk} - L|)^{p_n} \right] = 0 \right\} = 0 \quad \text{for some } L \in \mathbb{C},
\]

(17)

respectively.

Remark 5. If we take \(A = (C, 1, 1) \) in \(W^2_0(A, \mathcal{F}, u, \Delta'_r, p) \) and \(W^2(A, \mathcal{F}, u, \Delta'_r, p) \), then we have the following spaces:

\[
W^2_0(\mathcal{F}, u, \Delta'_r, p) = \left\{ x = (x_{jk}) : \lim_{n,m}^{m-1,n-1} \sum_{j,k=0}^{\infty} a_{nmjk} \left[F_{jk}(|\Delta'_r x_{jk}|)^{p_n} \right] = 0 \right\},
\]

\[
W^2(\mathcal{F}, u, \Delta'_r, p) = \left\{ x = (x_{jk}) : \lim_{n,m}^{m-1,n-1} \sum_{j,k=0}^{\infty} a_{nmjk} \left[F_{jk}(|\Delta'_r x_{jk} - L|)^{p_n} \right] = 0 \right\} = 0 \quad \text{for some } L \in \mathbb{C},
\]

(18)

Remark 6. If we take \(A = (C, 1, 1) \) and \(\mathcal{F}(x) = x \) in \(W^2_0(A, \mathcal{F}, u, \Delta'_r, p) \) and \(W^2(A, \mathcal{F}, u, \Delta'_r, p) \), then we have the following spaces:

\[
W^2_0(u, \Delta'_r, p) = \left\{ x = (x_{jk}) : \lim_{n,m}^{m-1,n-1} \sum_{j,k=0}^{\infty} a_{nmjk} \left[F_{jk}(|\Delta'_r x_{jk}|)^{p_n} \right] = 0 \right\},
\]

\[
W^2(u, \Delta'_r, p) = \left\{ x = (x_{jk}) : \lim_{n,m}^{m-1,n-1} \sum_{j,k=0}^{\infty} a_{nmjk} \left[F_{jk}(|\Delta'_r x_{jk} - L|)^{p_n} \right] = 0 \right\} = 0 \quad \text{for some } L \in \mathbb{C},
\]

(19)

Remark 7. Let \(p_{jk} = u_{jk} = 1 \) for all \(j, k \). If, in addition, \(\mathcal{F}(x) = F(x) \) and \(r = 0 \), then the spaces \(W^2_0(A, \mathcal{F}, u, \Delta'_r, p) \) and \(W^2(A, \mathcal{F}, u, \Delta'_r, p) \) are reduced to \(W^2_0(A, F) \) and \(W^2(A, F) \) which were introduced and studied by Yurdakadim and Tas [37] as below:

\[
W^2_0(A, F) = \left\{ x = (x_{jk}) : \lim_{n,m}^{m-1,n-1} \sum_{j,k=0}^{\infty} a_{nmjk} F_{jk}(|x_{jk}|) = 0 \right\},
\]

\[
W^2(A, F) = \left\{ x = (x_{jk}) : \lim_{n,m}^{m-1,n-1} \sum_{j,k=0}^{\infty} a_{nmjk} F_{jk}(|x_{jk} - L|) = 0 \right\} = 0 \quad \text{for some } L \in \mathbb{C},
\]

(20)

Throughout the paper, we will use the following inequality: let \((a_{jk}) \) and \((b_{jk}) \) be two double sequences. Then

\[
|a_{jk} + b_{jk}|^{p_{jk}} \leq K \left(|a_{jk}|^{p_{jk}} + |b_{jk}|^{p_{jk}} \right),
\]

(21)

where \(K = \max(1, 2^{H-1}) \) and \(\sup_{j,k} p_{jk} = H \) (see [15]). We will also assume throughout this paper that the symbol \(\mathcal{F} \) will denote the sublinear Musielak-Orlicz function.
3. Main Results

Theorem 8. Let $\mathcal{F} = (F_{jk})$ be a sublinear Musielak-Orlicz function, $A = (a_{mnj})$ a nonnegative four-dimensional RH-regular matrix, $p = (p_{jk})$ a bounded sequence of positive real numbers, and $u = (u_{jk})$ a sequence of strictly positive real numbers. Then $W^2_0(A, \mathcal{F}, u, \Delta'_s, p)$ and $W^2(A, \mathcal{F}, u, \Delta'_s, p)$ are linear spaces over the complex field \mathbb{C}.

Proof. Let $x = (x_{jk}), y = (y_{jk}) \in W^2_0(A, \mathcal{F}, u, \Delta'_s, p)$ and $\alpha, \beta \in \mathbb{C}$.

Since $\mathcal{F} = (F_{jk})$ is a nondecreasing function, so by inequality (21), we have

$$
\begin{align*}
\sum_{j,k=0}^{\infty} a_{mnj} \left[F_{jk}(u_{jk} \left| \Delta'_s (ax_{jk} + \beta y_{jk}) \right|) \right]^{p_{jk}} & \leq \sum_{j,k=0}^{\infty} a_{mnj} \left[F_{jk}(u_{jk} \left| ax_{jk} + \beta y_{jk} \right|) \right]^{p_{jk}} \\
& \leq K \sum_{j,k=0}^{\infty} a_{mnj} \left[F_{jk}(u_{jk} \left| \Delta'_s x_{jk} \right|) \right]^{p_{jk}} \\
& + K \sum_{j,k=0}^{\infty} a_{mnj} \left[F_{jk}(u_{jk} \left| \Delta'_s y_{jk} \right|) \right]^{p_{jk}} \\
& \leq KM^2 \sum_{j,k=0}^{\infty} a_{mnj} \left[F_{jk}(u_{jk} \left| \Delta'_s x_{jk} \right|) \right]^{p_{jk}} \\
& + KN^2 \sum_{j,k=0}^{\infty} a_{mnj} \left[F_{jk}(u_{jk} \left| \Delta'_s y_{jk} \right|) \right]^{p_{jk}} \longrightarrow 0.
\end{align*}
$$

Thus $ax + \beta y \in W^2_0(A, \mathcal{F}, u, \Delta'_s, p)$. This proves that $W^2_0(A, \mathcal{F}, u, \Delta'_s, p)$ is a linear space. Similarly we can prove that $W^2(A, \mathcal{F}, u, \Delta'_s, p)$ is also a linear space. \(\square\)

Theorem 9. Let $\mathcal{F} = (F_{jk})$ be a sublinear Musielak-Orlicz function, $A = (a_{mnj})$ a nonnegative four-dimensional RH-regular matrix, $p = (p_{jk})$ a bounded sequence of positive real numbers, and $u = (u_{jk})$ a sequence of strictly positive real numbers. Then $W^2_0(A, \mathcal{F}, u, \Delta'_s, p)$ and $W^2(A, \mathcal{F}, u, \Delta'_s, p)$ are paranormed spaces with the paranorm

$$
g(x) = \sup_{n,m} \left\{ \sum_{j,k=0}^{\infty} a_{mnj} \left[F_{jk}(u_{jk} \left| \Delta'_s x_{jk} \right|) \right]^{p_{jk}} \right\}^{1/M}, \tag{23}
$$

where $0 < p_{jk} \leq \sup p_{jk} = H < \infty$ and $M = \max(1,H)$.

Proof. We will prove the result for $W^2_0(A, \mathcal{F}, u, \Delta'_s, p)$. Let $x = (x_{jk}) \in W^2_0(A, \mathcal{F}, u, \Delta'_s, p)$. Then for each $x = (x_{jk}) \in W^2_0(A, \mathcal{F}, u, \Delta'_s, p)$, $g(x)$ exists. Also it is clear that $g(0) = 0$, $g(-x) = g(x)$, and $g(x + y) \leq g(x) + g(y)$.

We now show that the scalar multiplication is continuous. First observe the following:

$$
g(\lambda x) = \sup_{n,m} \sum_{j,k=0}^{\infty} a_{mnj} \left[F_{jk}(u_{jk} \left| \lambda \Delta'_s x_{jk} \right|) \right]^{p_{jk}} \leq (1 + [\lambda]) g(x), \tag{24}
$$

where $[\lambda]$ denotes the integer part of $|\lambda|$. It is also clear that if $x \to 0$ and $\lambda \to 0$ implies $g(\lambda x) \to 0$. For fixed λ, if $x \to 0$, then $g(\lambda x) \to 0$. We need to show that for fixed $x, \lambda \to 0$ implies $g(\lambda x) \to 0$. Let $x \in W^2(A, \mathcal{F}, u, \Delta'_s, p)$. Thus

$$
P \lim_{n,m} \sum_{j,k=0}^{\infty} a_{mnj} \left[F_{jk}(u_{jk} \left| \Delta'_s x_{jk} - L \right|) \right]^{p_{jk}} = 0. \tag{25}
$$

Then, for $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$
\sum_{j,k=0}^{\infty} a_{mnj} \left[F_{jk}(u_{jk} \left| \Delta'_s x_{jk} - L \right|) \right]^{p_{jk}} < \frac{\epsilon}{4}, \tag{26}
$$

for $m, n > N$. Also, for each m, n with $1 \leq m, n \leq N$, since

$$
\sum_{j,k=0}^{\infty} a_{mnj} \left[F_{jk}(u_{jk} \left| \Delta'_s x_{jk} - L \right|) \right]^{p_{jk}} < \infty, \tag{27}
$$

there exists an integer $M_{m,n}$ such that

$$
\sum_{j,k>M_{m,n}} a_{mnj} \left[F_{jk}(u_{jk} \left| \Delta'_s x_{jk} - L \right|) \right]^{p_{jk}} < \frac{\epsilon}{4}. \tag{28}
$$

Let $M = \max_{1 \leq (m,n) \leq N \setminus (M_{m,n})} M_{m,n}$. We have for each m, n with $1 \leq m, n \leq N$

$$
\sum_{j,k=M} a_{mnj} \left[F_{jk}(u_{jk} \left| \Delta'_s x_{jk} - L \right|) \right]^{p_{jk}} < \frac{\epsilon}{4}. \tag{29}
$$

Also from (26), for $m, n > N$, we have

$$
\sum_{j,k>M} a_{mnj} \left[F_{jk}(u_{jk} \left| \Delta'_s x_{jk} - L \right|) \right]^{p_{jk}} < \frac{\epsilon}{4}. \tag{30}
$$

Thus M is an integer independent of m, n such that

$$
\sum_{j,k>M} a_{mnj} \left[F_{jk}(u_{jk} \left| \Delta'_s x_{jk} - L \right|) \right]^{p_{jk}} < \frac{\epsilon}{4}. \tag{31}
$$
Since $|\lambda|^{p_\lambda} \leq \max(1, |\lambda|^{H})$, therefore
\[
\sum_{j,k=0}^{\infty} a_{nmjk} \left[F(jk(u_{jk} | \Delta_{x_{jk}}^\nu') \right]^{p_\lambda} \\
= \sum_{j,k=0}^{\infty} a_{nmjk} \left[F(jk(u_{jk} | \Delta_{x_{jk}}^\nu') - \lambda + \lambda L) \right]^{p_\lambda} \\
\leq \sum_{j,k>0} a_{nmjk} \left[F(jk(u_{jk} | \Delta_{x_{jk}}^\nu') - \lambda L) \right]^{p_\lambda} \\
+ \sum_{j,k>0} a_{nmjk} \left[F(jk(u_{jk} | \lambda L) \right]^{p_\lambda} \\
\leq \sum_{j,k>0} a_{nmjk} \left[F(jk(u_{jk} | \Delta_{x_{jk}}^\nu') - \lambda L) \right]^{p_\lambda} \\
+ \sum_{j,k>0} a_{nmjk} \left[F(jk(u_{jk} | \lambda L) \right]^{p_\lambda} \\
\leq \sum_{j,k>0} a_{nmjk} \left[F(jk(u_{jk} | \Delta_{x_{jk}}^\nu') - \lambda L) \right]^{p_\lambda} \\
+ \sum_{j,k>0} a_{nmjk} \left[F(jk(u_{jk} | \lambda L) \right]^{p_\lambda}.
\]
For each m, n and by the continuity of F as $\lambda \to 0$, we have the following:
\[
\sum_{j,k} a_{nmjk} \left[F(jk(u_{jk} | \Delta_{x_{jk}}^\nu') - \lambda L) \right]^{p_\lambda} \\
+ \sum_{j,k=0}^{\infty} a_{nmjk} \left[F(jk(u_{jk} | \lambda L) \right]^{p_\lambda} \to 0
\]
in Pringsheim’s sense. Now choose $\delta < 1$ such that $|\lambda| < \delta$ implies
\[
\sum_{j,k} a_{nmjk} \left[F(jk(u_{jk} | \Delta_{x_{jk}}^\nu') - \lambda L) \right]^{p_\lambda} \\
+ \sum_{j,k=0}^{\infty} a_{nmjk} \left[F(jk(u_{jk} | \lambda L) \right]^{p_\lambda} < \varepsilon.
\]
In the same manner, we have
\[
\sum_{j,k} a_{nmjk} \left[F(jk(u_{jk} | \Delta_{x_{jk}}^\nu') - \lambda L) \right]^{p_\lambda} < \varepsilon/4, \quad (35)
\]
\[
\sum_{j,k} a_{nmjk} \left[F(jk(u_{jk} | \Delta_{x_{jk}}^\nu') - \lambda L) \right]^{p_\lambda} < \varepsilon/4, \quad (36)
\]
It follows from (31), (34), (35), and (36) that
\[
\sum_{j,k} a_{nmjk} \left[F(jk(u_{jk} | \Delta_{x_{jk}}^\nu') \right]^{p_\lambda} < \varepsilon \quad \forall m,n.
\]
Thus $g(\lambda x) \to 0$ as $\lambda \to 0$. Therefore $W^2(\lambda A, F, u, \Delta^\nu, p)$ is a paranormed space. Similarly, we can prove that $W^2(A, \mathcal{F}, u, \Delta^\nu, p)$ is a paranormed space. This completes the proof.

Theorem 10. Let $\mathcal{F} = (F(jk))$ be a sublinear Musielak-Orlicz function, $A = (a_{nmjk})$ a nonnegative four-dimensional RH-regular matrix, $p = (p_{jk})$ a bounded sequence of positive real numbers, and $u = (u_{jk})$ a sequence of strictly positive real numbers. Then $W^2(\lambda A, \mathcal{F}, u, \Delta^\nu, p)$ and $W^2(A, \mathcal{F}, u, \Delta^\nu, p)$ are complete topological linear spaces.

Proof. Let (x_{jk}^q) be a Cauchy sequence in $W^2(\lambda A, \mathcal{F}, u, \Delta^\nu, p)$; that is, $g(x_{jk}^q - x_{jk}^{q'}) \to 0$ as $q, t \to \infty$. Then, we have
\[
\sum_{j,k=0}^{\infty} a_{nmjk} \left[F(jk(u_{jk} | \Delta_{x_{jk}}^\nu') - \lambda L) \right]^{p_\lambda} \to 0.
\]
Thus for each fixed j and k as $q, t \to \infty$, since $A = (a_{nmjk})$ is nonnegative, we are granted that
\[
F(jk(u_{jk} | \Delta_{x_{jk}}^\nu') - \lambda L) \to 0,
\]
and by continuity of $\mathcal{F} = (F(jk))$, (x_{jk}^q) is a Cauchy sequence in \mathcal{C} for each fixed j and k.

Since \mathcal{C} is complete as $t \to \infty$, we have $x_{jk}^q \to x_{jk}$ for each (j,k). Now from (36), we have that, for $\varepsilon > 0$, there exists a natural number N such that
\[
\sum_{j,k=0}^{\infty} a_{nmjk} \left[F(jk(u_{jk} | \Delta_{x_{jk}}^\nu') - \lambda L) \right]^{p_\lambda} < \varepsilon \quad \forall m,n.
\]
Since for any fixed natural number M, from (38) we have
\[
\sum_{j,k=0}^{\infty} a_{nmjk} \left[F(jk(u_{jk} | \Delta_{x_{jk}}^\nu') - \lambda L) \right]^{p_\lambda} < \varepsilon \quad \forall m,n.
\]
By letting $t \to \infty$ in the above expression we obtain
\[
\sum_{j,k=0}^{\infty} a_{nmjk} \left[F(jk(u_{jk} | \Delta_{x_{jk}}^\nu') - \lambda L) \right]^{p_\lambda} < \varepsilon.
\]
Since M is arbitrary, by letting $M \to \infty$ we obtain
\[
\sum_{j,k=0}^{\infty} a_{nmjk} \left[F(jk(u_{jk} | \Delta_{x_{jk}}^\nu') - \lambda L) \right]^{p_\lambda} < \varepsilon \quad \forall m,n.
\]
Thus $g(x_{jk}^q - x_{jk}^{q'}) \to 0$ as $q \to \infty$. This proves that $W^2(A, \mathcal{F}, u, \Delta^\nu, p)$ is a complete topological linear space.
Now we will show that $W^2(A, \mathcal{F}, u, \Delta'_s, p)$ is a complete topological linear space. For this, since (\mathcal{X}_n^p) is also a sequence in $W^2(A, \mathcal{F}, u, \Delta'_s, p)$ by definition of $W^2(A, \mathcal{F}, u, \Delta'_s, p)$, for each q, there exists L^3 with
\[
\sum_{j,k=0}^{\infty, \infty} a_{nmj}(F_j u_j [\Delta'_s x_{jk} - L])^{p,n} \to 0
\]
(44)
as $m,n \to \infty$;
whence from the fact that $\sup_{r=0} a_{nmj} < \infty$ and from the definition of Musielak-Orlicz function, we have $F_j u_j [\Delta'_s x_{jk} - L] \to 0$ as $q \to \infty$ and so L^3 converges to L. Thus
\[
\sum_{j,k=0}^{\infty, \infty} a_{nmj}(F_j u_j [\Delta'_s x_{jk} - L])^{p,n} \to 0
\]
as $m,n \to \infty$.

Hence $x \in W^2(A, \mathcal{F}, u, \Delta'_s, p)$ and this completes the proof. \hfill \Box

Theorem 11. Let $\mathcal{F} = (F_j)$ be a sublinear Musielak-Orlicz function which satisfies the Δ_2-condition. Then $W^2(A, u, \Delta'_s, p) \subseteq W^2(A, \mathcal{F}, u, \Delta'_s, p)$.

Proof. Let $x = (x_j) \in W^2(A, u, \Delta'_s, p)$; that is,
\[
\lim_{n \to \infty} \sum_{j,k} a_{nmj}(F_j u_j [\Delta'_s x_{jk} - L])^{p,n} = 0.
\]
(46)

Let $\epsilon > 0$ and choose δ with $0 < \delta < 1$ such that $F_j(t) < \epsilon$ for $0 \leq t \leq \delta$. Write $y_{jk} = (u_j [\Delta'_s x_{jk} - L])$ and consider
\[
\sum_{j,k} a_{nmj}(F_j(y_j))^{p,n} = \sum_{j,k : |y_{jk}| < \delta} a_{nmj}(F_j(y_j))^{p,n} \\
+ \sum_{j,k : |y_{jk}| \geq \delta} a_{nmj}(F_j(y_j))^{p,n} = \epsilon \sum_{j,k : |y_{jk}| < \delta} a_{nmj}(F_j(y_j))^{p,n} \\
+ \sum_{j,k : |y_{jk}| \geq \delta} a_{nmj}(F_j(y_j))^{p,n}.
\]
(47)

For $y_{jk} > \delta$, we use the fact that $y_{jk} < y_{jk}/\delta < 1 + y_{jk}/\delta$. Hence
\[
F_j(y_{jk}) < F_j \left(1 + \frac{y_{jk}}{\delta}\right) < F_j(2) + \frac{1}{\delta} y_{jk}(2) \frac{y_{jk}}{\delta}.
\]
(48)

Since \mathcal{F} satisfies the Δ_2-condition, we have
\[
F_j(y_{jk}) < K \frac{y_{jk}}{\delta} F_j(2) + K \frac{y_{jk}}{\delta} F_j(2) = K \frac{y_{jk}}{\delta} F_j(2),
\]
(49)

and hence
\[
\sum_{j,k : |y_{jk}| \geq \delta} a_{nmj}(F_j(y_{jk}))^{p,n} \leq K \frac{F_j(2)}{\delta} \sum_{j,k} a_{nmj}(u_j [\Delta'_s x_{jk} - L])^{p,n}.
\]
(50)

Since A is RH-regular and $x \in W^2(A, u, \Delta'_s, p)$, we get $x \in W^2(A, \mathcal{F}, u, \Delta'_s, p)$. \Box

Theorem 12. Let $\mathcal{F} = (F_j)$ be a sublinear Musielak-Orlicz function and let $A = (a_{nmj})$ be a nonnegative four-dimensional RH-regular matrix. Suppose that $\beta = \lim_{t \to \infty} (F_j(t)/t) < \infty$. Then
\[
W^2(A, u, \Delta'_s, p) = W^2(A, \mathcal{F}, u, \Delta'_s, p).
\]
(51)

Proof. In order to prove that $W^2(A, u, \Delta'_s, p) = W^2(A, \mathcal{F}, u, \Delta'_s, p)$, it is sufficient to show that $W^2(A, \mathcal{F}, u, \Delta'_s, p) \subseteq W^2(A, u, \Delta'_s, p)$. Now, let $\beta > 0$. By definition of β, we have $F_j(t) \geq \beta t$ for all $t \geq 0$. Since $\beta > 0$, we have $t \leq (1/\beta) F_j(t)$ for all $t \geq 0$. Let $x = (x_{jk}) \in W^2(A, \mathcal{F}, u, \Delta'_s, p)$. Thus, we have
\[
\sum_{j,k=0}^{\infty, \infty} a_{nmj}(F_j u_j [\Delta'_s x_{jk} - L])^{p,n} \leq \frac{1}{\beta} \sum_{j,k=0}^{\infty, \infty} a_{nmj}(F_j u_j [\Delta'_s x_{jk} - L])^{p,n},
\]
(52)

which implies that $x = (x_{jk}) \in W^2(A, u, \Delta'_s, p)$. This completes the proof. \Box

Theorem 13. (i) Let $0 < \inf p_j < p_j \leq 1$. Then
\[
W^2(A, \mathcal{F}, u, \Delta'_s, p) \subseteq W^2(A, \mathcal{F}, u, \Delta'_s).
\]
(53)

(ii) Let $1 \leq p_j \leq \sup p_j < \infty$. Then
\[
W^2(A, \mathcal{F}, u, \Delta'_s) \subseteq W^2(A, \mathcal{F}, u, \Delta'_s, p).
\]
(54)

Proof. (i) Let $x = (x_{jk}) \in W^2(A, \mathcal{F}, u, \Delta'_s, p)$. Then since $0 < \inf p_j < p_j \leq 1$, we obtain the following:
\[
\sum_{j,k=0}^{\infty, \infty} a_{nmj}(F_j u_j [\Delta'_s x_{jk} - L])^{p,n} \leq \sum_{j,k=0}^{\infty, \infty} a_{nmj}(F_j u_j [\Delta'_s x_{jk} - L])^{p,n},
\]
(55)

Thus $x = (x_{jk}) \in W^2(A, \mathcal{F}, u, \Delta'_s)$.

(ii) Let $p_j \geq 1$ for each j and k and $\sup p_j < \infty$. Let $x = (x_{jk}) \in W^2(A, \mathcal{F}, u, \Delta'_s)$. Then for each $0 < \epsilon < 1$ there exists a positive integer N such that
\[
\sum_{j,k=0}^{\infty, \infty} a_{nmj}(F_j u_j [\Delta'_s x_{jk} - L])^{p,n} \leq \epsilon < 1 \quad \forall m,n \geq N.
\]
(56)
This implies that
\[
\sum_{j,k=0}^{\infty} a_{nmjk} \left[F_{jk}(u_{jk} | \Delta^r x_{jk} - L) \right] \leq \sum_{j,k=0}^{\infty} a_{nmjk} \left[F_{jk}(u_{jk} | \Delta^r y_{jk}) \right].
\]

Therefore \(x = (x_{jk}) \in W^2(A, F, u, \Delta_s, p) \). This completes the proof. \(\Box \)

Lemma 14. Let \(S = (F, K) \) be a sublinear Musielak-Orlicz function which satisfies the \(\Delta_2 \)-condition and let \(A = (a_{nmjk}) \) be a nonnegative four-dimensional RH-regular matrix. Then \(W^2_0(A, F, u, \Delta_s, p) \cap l^2_{\infty} \) is an ideal in \(l^2_{\infty} \).

Proof. Let \(x \in W^2_0(A, F, u, \Delta_s, p) \cap l^2_{\infty} \) and \(y \in l^2_{\infty} \). We need to show that \(xy \in W^2_0(A, F, u, \Delta_s, p) \cap l^2_{\infty} \). Since \(y \in l^2_{\infty} \), there exists \(T_1 > 1 \) such that \(\|y\| < T_1 \). In this case \(\|x_{jk} y_{jk}\| < T_1 \|x_{jk}\| \) for all \(j, k \). Since \(S \) is nondecreasing and satisfies the \(\Delta_2 \)-condition, we have
\[
\left[F_{jk}(u_{jk} | \Delta^r x_{jk} y_{jk}) \right] \leq T(T_1) \left[F_{jk}(u_{jk} | \Delta^r x_{jk}) \right],
\]
and for all \(j, k \) and \(T > 0 \). Therefore \(\lim_{n,m} \sum_{j,k} a_{nmjk} \left[F_{jk}(u_{jk} | \Delta^r (x_{jk} y_{jk})) \right] = 0 \). Thus \(xy \in W^2_0(A, F, u, \Delta_s, p) \cap l^2_{\infty} \). This completes the proof. \(\Box \)

Lemma 15. Let \(G \) be an ideal in \(l^2_{\infty} \) and let \(x = (x_{jk}) \in l^2_{\infty} \). Then \(x \) is in the closure of \(G \) in \(l^2_{\infty} \) if and only if \(\|x_{jk}\| \leq K |x_{jk}| \) for all \(j, k \).

Proof. Let \(x \) be in the closure of \(G \) and let \(\epsilon > 0 \) be given. Suppose that \(z = (z_{jk}) \in G \) such that \(\|x - z\| < \epsilon/2 \) and observe that \(S(x; \epsilon) \subseteq S(z; \epsilon/2) \). Define a double sequence \(y = (y_{jk}) \in l^2_{\infty} \) by
\[
y_{jk} = \begin{cases} \frac{1}{z_{jk}}, & \text{if } |z_{jk}| \geq \frac{\epsilon}{2} \\ 0, & \text{otherwise}. \end{cases}
\]
Clearly \(yz = x_{\|x_{jk}\|/2} \in G \). Since \(S(x; \epsilon) \subseteq S(z; \epsilon/2) \) and \(x_{\|x_{jk}\|} \in l^2_{\infty} \), hence \(x_{\|x_{jk}\|} = x_{\|x_{jk}\|/2} \in G \).

Conversely, if \(x \in l^2_{\infty} \) then \(\|x - x_{\|x_{jk}\|/2}\| < \epsilon \). It follows that \(x_{\|x_{jk}\|/2} \in G \) for all \(\epsilon > 0 \); then \(x \) is in the closure of \(G \). \(\Box \)

Lemma 16. If \(A \) is a nonnegative four-dimensional RH-regular matrix, then \(W^2_0(A, u, \Delta_s, p) \cap l^2_{\infty} \) is a closed ideal in \(l^2_{\infty} \).

Proof. We have \(W^2_0(A, S, u, \Delta_s, p) \cap l^2_{\infty} \subset l^2_{\infty} \) and it is clear that \(W^2_0(A, S, u, \Delta_s, p) \cap l^2_{\infty} \neq \emptyset \). For \(x, y \in W^2_0(A, S, u, \Delta_s, p) \cap l^2_{\infty} \), we get \(|x_{jk} + y_{jk}| < |x_{jk}| + |y_{jk}| \). Now, we have
\[
\left[F_{jk}(u_{jk} | \Delta^r x_{jk} y_{jk}) \right] \leq \left[F_{jk}(u_{jk} | \Delta^r x_{jk}) \right] + \left[F_{jk}(u_{jk} | \Delta^r y_{jk}) \right]
\]
where \(K = \max\{|K_1, K_2|\} \), so \(x + y, x - y \in W^2_0(A, S, u, \Delta_s, p) \cap l^2_{\infty} \).

Let \(x \in W^2_0(A, S, u, \Delta_s, p) \cap l^2_{\infty} \) and \(y \in l^2_{\infty} \). Thus, there exists a positive integer \(K \), so that, for every \(j, k \), we have \(|x_{jk} y_{jk}| \leq K |x_{jk}| \). Therefore
\[
\left[F_{jk}(u_{jk} | \Delta^r x_{jk} y_{jk}) \right] \leq \left[F_{jk}(u_{jk} K | \Delta^r x_{jk}) \right] \leq T \left[F_{jk}(u_{jk} | \Delta^r x_{jk}) \right],
\]
and so
\[
\sum_{j,k} a_{nmjk} \left[F_{jk}(u_{jk} | \Delta^r x_{jk} y_{jk}) \right] \leq T \sum_{j,k} a_{nmjk} \left[F_{jk}(u_{jk} | \Delta^r x_{jk}) \right]
\]
Hence \(xy \in W^2_0(A, S, u, \Delta_s, p) \cap l^2_{\infty} \). So \(W^2_0(A, S, u, \Delta_s, p) \cap l^2_{\infty} \) is an ideal in \(l^2_{\infty} \) for a Musielak-Orlicz function which satisfies the \(\Delta_2 \)-condition.

Now, we have to show that \(W^2_0(A, S, u, \Delta_s, p) \cap l^2_{\infty} \) is closed. Let \(x \in W^2_0(A, S, u, \Delta_s, p) \cap l^2_{\infty} \), there exists \(x_{\epsilon} = x_{\|x_{jk}\|/2} \in W^2_0(A, S, u, \Delta_s, p) \cap l^2_{\infty} \) such that \(x_{\epsilon} \rightarrow x \in l^2_{\infty} \).
For every $\varepsilon > 0$ there exists $N_1(\varepsilon) \in \mathbb{N}$ such that, for all $c, d > N_1(\varepsilon)$,
$$|\Delta r^s x_{c,d} - \Delta r^s x_{j,k}| < \varepsilon.$$ Now, for $\varepsilon > 0$, we have
$$\sum_{j,k} a_{n,mj,k} \left[F_{jk}(u_{jk} | \Delta r^s x_{j,k}) \right]^{p,n}$$
$$= \sum_{j,k} a_{n,mj,k} \left[F_{jk}(u_{jk} | \Delta r^s x_{j,k} - \Delta r^s x_{j,k} + \Delta r^s x_{j,k}) \right]^{p,n}$$
$$\leq \sum_{j,k} a_{n,mj,k} \left[F_{jk}(u_{jk} | \Delta r^s x_{j,k} - \Delta r^s x_{j,k} + \Delta r^s x_{j,k}) \right]^{p,n} \right]^{p,n}$$
$$\leq \frac{1}{2} \sum_{j,k} a_{n,mj,k} \left[F_{jk}(u_{jk} | \Delta r^s x_{j,k} - \Delta r^s x_{j,k}) \right]^{p,n} \right]^{p,n}$$
$$+ \frac{1}{2} \sum_{j,k} a_{n,mj,k} \left[F_{jk}(u_{jk} | \Delta r^s x_{j,k} - \Delta r^s x_{j,k}) \right]^{p,n} \right]^{p,n}$$
$$\leq \frac{1}{2} K F_{jk}(\varepsilon) \sum_{j,k} a_{n,mj,k} + \frac{1}{2} k \sum_{j,k} a_{n,mj,k} \left[F_{jk}(u_{jk} | \Delta r^s x_{j,k}) \right]^{p,n}$$
$$\leq \frac{1}{2} K F_{jk}(\varepsilon) \sum_{j,k} a_{n,mj,k} + \frac{1}{2} k \sum_{j,k} a_{n,mj,k} \left[F_{jk}(u_{jk} | \Delta r^s x_{j,k}) \right]^{p,n}.$$

Since $x^{c,d} \in W_0^2(A, \mathcal{F}, u, \Delta^s, p) \cap l^2_{\infty}$ and A is RH-regular, we get
$$\lim_{n \to \infty} \sum_{j,k} a_{n,mj,k} \left[F_{jk}(u_{jk} | \Delta r^s x_{j,k}) \right]^{p,n} = 0;$$
so $x \in W_0^2(A, \mathcal{F}, u, \Delta^s, p) \cap l^2_{\infty}$. This completes the proof. \Box

Theorem 17. Let $x = (x_{j,k})$ be a bounded sequence, $\mathcal{F} = (F_{jk})$ a sublinear Musielak-Orlicz function which satisfies the Δ_2-condition, and A a nonnegative four-dimensional RH-regular matrix. Then $W^2(A, \mathcal{F}, u, \Delta^s, p) \cap l^2_{\infty} = W^2(A, u, \Delta^s, p) \cap l^2_{\infty}$.

Proof. Without loss of generality we may take $L = 0$ and establish
$$W^2_0(A, \mathcal{F}, u, \Delta^s, p) \cap l^2_{\infty} = W^2_0(A, u, \Delta^s, p) \cap l^2_{\infty}. \quad (66)$$
Since $W^2_0(A, u, \Delta^s, p) \subseteq W^2_0(A, \mathcal{F}, u, \Delta^s, p)$, therefore $W^2_0(A, u, \Delta^s, p) \cap l^2_{\infty} \subseteq W^2_0(A, \mathcal{F}, u, \Delta^s, p) \cap l^2_{\infty}$. We need to show that $W^2_0(A, \mathcal{F}, u, \Delta^s, p) \cap l^2_{\infty} \subseteq W^2_0(A, u, \Delta^s, p) \cap l^2_{\infty}$. Notice that if $S \subset \mathbb{N} \times \mathbb{N}$, then
$$\sum_{j,k} a_{n,mj,k} \left[F_{jk}(\Delta S_{j,k}) \right]^{p,n} = F_{jk}(1) \sum_{j,k} a_{n,mj,k} \left[\Delta S_{j,k} \right]^{p,n},$$
for all n, m. Observe that $\Delta S_{j,k} \in W^2_0(A, u, \Delta^s, p) \cap l^2_{\infty}$, whenever $x \in W^2_0(A, \mathcal{F}, u, \Delta^s, p) \cap l^2_{\infty}$ by Lemmas 14 and 15, so
$$W^2_0(A, \mathcal{F}, u, \Delta^s, p) \cap l^2_{\infty} \subseteq W^2_0(A, u, \Delta^s, p) \cap l^2_{\infty}. \quad (68)$$
The proof is complete. \Box

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

The authors gratefully acknowledge the financial support from King Abdulaziz University, Jeddah, Saudi Arabia.

References

