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The aggregate constraint homotopy method uses a single smoothing constraint instead of 𝑚-constraints to reduce the dimension
of its homotopy map, and hence it is expected to be more efficient than the combined homotopy interior point method when
the number of constraints is very large. However, the gradient and Hessian of the aggregate constraint function are complicated
combinations of gradients and Hessians of all constraint functions, and hence they are expensive to calculate when the number of
constraint functions is very large. In order to improve the performance of the aggregate constraint homotopy method for solving
nonlinear programming problems, with few variables and many nonlinear constraints, a flattened aggregate constraint homotopy
method, that can save much computation of gradients and Hessians of constraint functions, is presented. Under some similar
conditions for other homotopymethods, existence and convergence of a smooth homotopy path are proven. A numerical procedure
is given to implement the proposed homotopy method, preliminary computational results show its performance, and it is also
competitive with the state-of-the-art solver KNITRO for solving large-scale nonlinear optimization.

1. Introduction

In this paper, we consider the following nonlinear program-
ming problem:

min 𝑓 (𝑥) ,

s.t. 𝑔 (𝑥) ≤ 0,

(1)

where 𝑥 ∈ 𝑅
𝑛 is the variable, 𝑔(𝑥) = (𝑔

1
(𝑥), . . . , 𝑔

𝑚
(𝑥))
𝑇,

𝑓 : 𝑅
𝑛

→ 𝑅, and 𝑔
𝑖
(𝑥) : 𝑅

𝑛

→ 𝑅, 𝑖 = 1, . . . , 𝑚, are three
times continuously differentiable, and𝑚 is very large, but 𝑛 is
moderate. It has wide applications, and a typical situation is
the discretized semi-infinite programming problem.

From the mid-1980s, much attention has been paid to
interior point methods for mathematical programming, and
many results on theory, algorithms, and applications on
linear programming, convex programming, complementar-
ity problems, semidefinite programming, and linear cone
programming were obtained (see monographs [1–6] and

references therein). For nonlinear programming, the typical
algorithms used were the Newton-type methods to the per-
turbed first-order necessary conditions combined with line
search or trust region methods with a proper merit function
(e.g., [7–9]).The general conditions of global convergence for
these methods required that the feasible set be bounded and
that the Jacobian matrix be uniformly nonsingular. Another
typical class of globally convergent methods for nonlinear
programming was probability-one homotopy methods (e.g.,
[10–12]), whose global convergence can be established under
some weaker conditions than the ones for Newton-type
methods. The excellent feature is that, unlike line search or
trust region methods, they do not depend on the descent of
a merit function and so are insensitive to the local minimum
of the merit function, in which any search direction is not a
descent direction of the merit function.

In [10, 11], Feng et al. proposed a homotopy method for
nonlinear programming (1), which was called the combined
homotopy interior point (abbreviated by CHIP) method;
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its global convergence was proven under the normal cone
condition (see below for its definition) for the feasible set as
well as some common conditions. On the basis of the CHIP
method, some modified CHIP methods were presented in
[13, 14]; the global convergence was established under the
quasinormal cone and pseudocone condition for the feasible
set, respectively. In [12], Watson described some probability-
one homotopymethods for the unconstrained and inequality
constrained optimization, whose global convergence was
established under some weaker assumptions. Recently, Yu
and Shang proposed a constraint shifting combined homo-
topy method in [15, 16], in which not only the objective
function but also the constraint functions were regularly
deformed. The global convergence was proven under the
condition that the initial feasible set, which approaches the
feasible set of (1) as the homotopy parameter changes from 1
to 0, not necessarily the feasible set of (1), satisfies the normal
cone condition.

Let 𝑔max(𝑥) = max
1≤𝑖≤𝑚

{𝑔
𝑖
(𝑥)}; then (1) is equivalent to

min 𝑓 (𝑥) ,

s.t. 𝑔max (𝑥) ≤ 0,
(2)

which has only one, but nonsmooth, constraint. In [17],
the following aggregate function was introduced, which
is a smooth approximation of 𝑔max(𝑥) with a smoothing
parameter 𝑡 > 0 and induced from the max-entropy theory:

𝑔 (𝑥, 𝑡) = 𝑡 ln
𝑚

∑

𝑖=1

exp(
𝑔
𝑖
(𝑥)

𝑡

) . (3)

It is also known as exponential penalty function (see [18]). By
using it for all constraint functions of problem (1), an aggre-
gate constraint homotopy (abbreviated by ACH)method was
presented by Yu et al. in [19], whose global convergence was
obtained under the condition that the feasible set satisfies the
weak normal cone condition. Although the ACHmethod has
only one smoothing constraint, the gradient and Hessian of
the aggregate constraint function

∇
𝑥
𝑔 (𝑥, 𝑡) =

𝑚

∑

𝑖=1

𝑐
𝑖
(𝑥, 𝑡) ∇𝑔

𝑖
(𝑥) ,

𝜕𝑔 (𝑥, 𝑡)

𝜕𝑡

=

1

𝑡

(𝑔 (𝑥, 𝑡) −

𝑚

∑

𝑖=1

𝑐
𝑖
(𝑥, 𝑡) 𝑔

𝑖
(𝑥)) ,

∇
2

𝑥𝑥
𝑔 (𝑥, 𝑡)

=

𝑚

∑

𝑖=1

𝑐
𝑖
(𝑥, 𝑡) ∇

2

𝑔
𝑖
(𝑥)

+

1

𝑡

𝑚

∑

𝑖=1

𝑐
𝑖
(𝑥, 𝑡) ∇𝑔

𝑖
(𝑥) (∇𝑔

𝑖
(𝑥))
𝑇

−

1

𝑡

𝑚

∑

𝑖=1

𝑐
𝑖
(𝑥, 𝑡) ∇𝑔

𝑖
(𝑥)

𝑚

∑

𝑖=1

𝑐
𝑖
(𝑥, 𝑡) (∇𝑔

𝑖
(𝑥))
𝑇

,

∇
2

𝑥𝑡
𝑔 (𝑥, 𝑡)

=

1

𝑡
2
(

𝑚

∑

𝑖=1

𝑐
𝑖
(𝑥, 𝑡) ∇𝑔

𝑖
(𝑥)

𝑚

∑

𝑖=1

𝑐
𝑖
(𝑥, 𝑡) 𝑔

𝑖
(𝑥)

−

𝑚

∑

𝑖=1

𝑐
𝑖
(𝑥, 𝑡) 𝑔

𝑖
(𝑥) ∇𝑔

𝑖
(𝑥)) ,

(4)

where

𝑐
𝑖
(𝑥, 𝑡) =

exp (𝑔
𝑖
(𝑥) /𝑡)

∑
𝑚

𝑖=1
exp (𝑔

𝑖
(𝑥) /𝑡)

∈ (0, 1) ,

𝑚

∑

𝑖=1

𝑐
𝑖
(𝑥, 𝑡) = 1,

(5)

are complicated combinations of gradients and Hessians of
all constraint functions and, hence, are expensive to calculate
when𝑚 is very large.

Throughout this paper, we assume that the nonlinear
programming problem (1) possesses a very large number of
nonlinear constraints, but a small number of variables, and
the objective and constraint functions are not sparse. For
such a problem, the number of constraint functions can be
so large that the computation of gradients and Hessians of all
constraint functions is very expensive and cannot be stored
in memory and, hence, the general numerical methods for
solving nonlinear programming are not efficient. Although
active set methods only need to calculate gradients and
Hessians of a part of constraint functions, require lower
storage, and have faster numerical solution, the working set
is difficult to estimate without knowing the internal structure
of the problem.

In this paper, we present a new homotopy method called
the flattened aggregate constraint homotopy (abbreviated by
FACH) method for nonlinear programming (1) by using a
new smoothing technique, in which only a part of constraint
functions is aggregated. Under the normal cone condition for
the feasible set and some other general assumptions, we prove
that the FACH method can determine a smooth homotopy
path from a given interior point of the feasible set to a KKT
point of (1), and preliminary numerical results demonstrate
its efficiency.

The rest of this paper is organized as follows.We conclude
this section with some notations, definitions, and a lemma.
The flattened aggregate constraint function with some prop-
erties is given in Section 2.The homotopymap, existence and
convergence of a smooth homotopy path with proof are given
in Section 3. A numerical procedure for tracking the smooth
homotopy path, andnumerical test results with some remarks
are given in Section 4. Finally, we conclude the paper with
some remarks in Section 5.

When discussing scalars and scalar-valued functions,
subscripts refer to iteration step so that superscripts can be
used for exponentiation. In contrast, for vectors and vector-
valued functions, subscripts are used to indicate components,
whereas superscripts are used to indicate the iteration step.
The identity matrix is represented by 𝐼.

Unless otherwise specified, ‖ ⋅ ‖ denotes the Euclidean
norm. Ω = {𝑥 ∈ 𝑅

𝑛

| 𝑔(𝑥) ≤ 0} is the feasible set of (1),
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whereas Ω0 = {𝑥 ∈ 𝑅
𝑛

| 𝑔(𝑥) < 0} is the interior of Ω
and 𝜕Ω = Ω \ Ω

0 is the boundary of Ω. The symbols 𝑅𝑚
+

and 𝑅
𝑚

++
denote the nonnegative and positive quadrants of

𝑅
𝑚, respectively. The active index set is denoted by 𝐼(𝑥) =

{𝑖 ∈ {1, . . . , 𝑚} | 𝑔
𝑖
(𝑥) = 0} at 𝑥 ∈ Ω. For a function

𝐹 : 𝑅
𝑛

→ 𝑅
𝑚, ∇𝐹(𝑥) is the 𝑛 × 𝑚 matrix whose (𝑖, 𝑗)th

element is 𝜕𝐹
𝑗
(𝑥)/𝜕𝑥

𝑖
; 𝐹−1(𝑌) = {𝑥 | 𝐹(𝑥) ∈ 𝑌} is the set-

valued inverse for the set 𝑌 ⊆ 𝑅
𝑚.

Definition 1 (see [10]). The set Ω satisfies the normal cone
condition if and only if the normal cone of Ω at any 𝑥 ∈ 𝜕Ω

does not meetΩ0; that is,

{𝑥 + ∑

𝑖∈𝐼(𝑥)

𝑦
𝑖
∇𝑔
𝑖
(𝑥) | 𝑦

𝑖
≥ 0} ∩ Ω

0

= 0. (6)

Definition 2. If and only if there exists 𝜆∗ ∈ 𝑅
𝑚

+
such that

(𝑥
∗

, 𝜆
∗

) satisfies

∇𝑓 (𝑥
∗

) + ∇𝑔 (𝑥
∗

) 𝜆
∗

= 0,

𝜆
∗

𝑖
𝑔
𝑖
(𝑥
∗

) = 0, 𝜆
∗

𝑖
≥ 0, 𝑔

𝑖
(𝑥
∗

) ≤ 0, 𝑖 = 1, . . . , 𝑚,

(7)

then 𝑥∗ is called a KKT point of (1) and 𝜆∗ is the correspond-
ing Lagrangian multiplier.

Definition 3. Let 𝑈 ⊂ 𝑅
𝑛 be an open set and let 𝐹 : 𝑈 → 𝑅

𝑚

be a differentiable map. We say 𝑦 ∈ 𝑅𝑚 is a regular value of 𝐹
if and only if

Range [𝜕𝐹 (𝑥)
𝜕𝑥

] = 𝑅
𝑚

, ∀𝑥 ∈ 𝐹
−1

(𝑦) . (8)

Lemma 4 (parameterized Sard theorem [20]). Let 𝑈 ⊂ 𝑅
𝑛

and 𝑉 ⊂ 𝑅
𝑘 be two open sets and let 𝐹 : 𝑈 × 𝑉 → 𝑅

𝑚 be a
𝐶
𝑟 differentiable map with 𝑟 > max{0, 𝑛 − 𝑚}. If 0 ∈ 𝑅

𝑚 is
a regular value of 𝐹, then, for almost all 𝑎 ∈ 𝑉, 0 is a regular
value of 𝐹

𝑎
= 𝐹(⋅, 𝑎).

2. The Flattened Aggregate
Constraint Function

In this section, we suppose that the following assumptions
hold.

Assumption 5. Ω0 is nonempty and Ω is bounded.

Assumption 6. For any 𝑥 ∈ 𝜕Ω, {∇𝑔
𝑖
(𝑥) | 𝑖 ∈ 𝐼(𝑥)} are

positive independent; that is,

∑

𝑖∈𝐼(𝑥)

𝑦
𝑖
∇𝑔
𝑖
(𝑥) = 0, 𝑦

𝑖
≥ 0, 𝑖 ∈ 𝐼 (𝑥) 󳨐⇒ 𝑦

𝑖
= 0, 𝑖 ∈ 𝐼 (𝑥) .

(9)

Assumption 7. Ω satisfies the normal cone condition (see
Definition 1).

The first assumption is the Slater’s condition and the
boundedness of the feasible set, which are two basic con-
ditions. The second assumption provides the regularity of

constraints, which is weaker than the linear independence
constraint qualification. The last assumption, the normal
cone condition of the feasible set, is a generalization of the
convex condition for the feasible set. Indeed, ifΩ is a convex
set, then it satisfies the normal cone condition. Some simple
nonconvex sets, satisfying the normal cone condition, are
shown in [10].

In this paper, we construct a flattened aggregate con-
straint function as follows:

𝑔
(𝜃,𝑐
1
,𝑐
2
,𝛼)
(𝑥, 𝑡)

= 𝜃𝑡 ln(
𝑚

∑

𝑖=1

𝜑 (𝑔
𝑖
(𝑥) , 𝑡) exp(

𝑔
𝑖
(𝑥)

𝜃𝑡

) + exp (−𝜀 (𝑡)
𝜃𝑡

)) ,

(10)

where

𝜀 (𝑡) = 𝑐
1
𝑡 + 𝑐
2
, (11)

𝑐
1
> 0, 𝑐

2
> 0, 0 < 𝜃 ≤ 1 are some adjusting parameters,

𝜑(𝑧, 𝑡) : 𝑅×[0, 1] → [0, 1] is a𝐶3 bivariate function satisfying
𝜑(𝑧, 𝑡) = 0 for 𝑧 ≤ −𝛼𝜀(𝑡) with 𝛼 > 1, and 𝜑(𝑧, 𝑡) = 1 for
𝑧 ≥ −𝜀(𝑡). For simplicity of discussion, wewrite𝑔

(𝜃,𝑐
1
,𝑐
2
,𝛼)
(𝑥, 𝑡)

as 𝑔(𝑥, 𝑡). By its definition, 𝜑(𝑧, 𝑡) can be expressed as

𝜑 (𝑧, 𝑡) =

{
{

{
{

{

0, for 𝑧 ≤ −𝛼𝜀 (𝑡) with 𝛼 > 1,

1, for 𝑧 ≥ −𝜀 (𝑡) ,
𝜑 (𝑧, 𝑡) , otherwise,

(12)

where, for any 𝑡 ∈ [0, 1], 𝜑(𝑧, 𝑡) satisfies

𝜑 (−𝛼𝜀 (𝑡) , 𝑡) = 0,

𝜕𝜑 (−𝛼𝜀 (𝑡) , 𝑡)

𝜕𝑧

= 0,

𝜕
2

𝜑 (−𝛼𝜀 (𝑡) , 𝑡)

𝜕𝑧
2

= 0,

𝜕
3

𝜑 (−𝛼𝜀 (𝑡) , 𝑡)

𝜕𝑧
3

= 0,

𝜑 (−𝜀 (𝑡) , 𝑡) = 1,

𝜕𝜑 (−𝜀 (𝑡) , 𝑡)

𝜕𝑧

= 0,

𝜕
2

𝜑 (−𝜀 (𝑡) , 𝑡)

𝜕𝑧
2

= 0,

𝜕
3

𝜑 (−𝜀 (𝑡) , 𝑡)

𝜕𝑧
3

= 0.

(13)

There exist many kinds of functions 𝜑(𝑧, 𝑡), such as poly-
nomial functions and spline functions. Since polynomial
functions have simple mathematical expressions and many
excellent properties, throughout this paper, 𝜑(𝑧, 𝑡) is chosen
as

𝜑 (𝑧, 𝑡) =

−20(𝑧 + 𝜀 (𝑡))
7

(𝛼𝜀 (𝑡) − 𝜀 (𝑡))
7
+

−70(𝑧 + 𝜀 (𝑡))
6

(𝛼𝜀 (𝑡) − 𝜀 (𝑡))
6

+

−84(𝑧 + 𝜀 (𝑡))
5

(𝛼𝜀 (𝑡) − 𝜀 (𝑡))
5
+

−35(𝑧 + 𝜀 (𝑡))
4

(𝛼𝜀 (𝑡) − 𝜀 (𝑡))
4
+ 1.

(14)
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Let 𝐼
𝜀
(𝑥, 𝑡) = {𝑖 | 𝑔

𝑖
(𝑥) > −𝛼𝜀(𝑡)}; by the definition of

𝜑(𝑧, 𝑡), 𝑔(𝑥, 𝑡) in (10) can be rewritten as

𝑔 (𝑥, 𝑡) = 𝜃𝑡 ln( ∑

𝑖∈𝐼
𝜀(𝑥,𝑡)

𝜑 (𝑔
𝑖
(𝑥) , 𝑡) exp(

𝑔
𝑖
(𝑥)

𝜃𝑡

)

+ exp(−𝜀 (𝑡)
𝜃𝑡

)) .

(15)

The gradient of 𝑔(𝑥, 𝑡) with respect to 𝑥 is

∇
𝑥
𝑔 (𝑥, 𝑡) = ∑

𝑖∈𝐼
𝜀(𝑥,𝑡)

(𝜆
𝑖
(𝑥, 𝑡) + 𝜉

𝑖
(𝑥, 𝑡)) ∇𝑔

𝑖
(𝑥) , (16)

where

𝜆
𝑖
(𝑥, 𝑡)

=

𝜑 (𝑔
𝑖
(𝑥) , 𝑡) exp (𝑔

𝑖
(𝑥) /𝜃𝑡)

∑
𝑗∈𝐼
𝜀(𝑥,𝑡)

𝜑 (𝑔
𝑗
(𝑥) , 𝑡) exp (𝑔

𝑗
(𝑥) /𝜃𝑡) + exp (−𝜀 (𝑡) /𝜃𝑡)

,

(17)

𝜉
𝑖
(𝑥, 𝑡)

=

𝜃𝑡𝜕𝜑 (𝑔
𝑖
(𝑥) , 𝑡) /𝜕𝑧 exp (𝑔

𝑖
(𝑥) /𝜃𝑡)

∑
𝑗∈𝐼
𝜀(𝑥,𝑡)

𝜑 (𝑔
𝑗
(𝑥) , 𝑡) exp (𝑔

𝑗
(𝑥) /𝜃𝑡) + exp (−𝜀 (𝑡) /𝜃𝑡)

.

(18)

Then the gradient and Hessian of 𝑔(𝑥, 𝑡) only relate to a part
of constraint functions; that is, 𝑖 ∈ 𝐼

𝜀
(𝑥, 𝑡).

Proposition 8. For any 𝜃 > 0, 𝑡 ∈ (0, 1], 𝑥 ∈ Ω with 𝜃𝑡 ↓ 0,
𝑡 → 𝑡 ∈ [0, 1], 𝑥 → 𝑥 ∈ 𝜕Ω,

(1) 𝜆
𝑖
(𝑥, 𝑡) → 0 for 𝑖 ∉ 𝐼(𝑥);

(2) ∑
𝑖∈𝐼(𝑥)

𝜆
𝑖
(𝑥, 𝑡) → 1;

(3) 𝜉(𝑥, 𝑡) → 0.

Proof. (1) Because 𝑥 ∈ 𝜕Ω, there exists 𝑖∗ ∈ 𝐼(𝑥) such that
𝑔
𝑖
∗(𝑥) = 0. By the continuity of𝜑(𝑧, 𝑡) and𝑔(𝑥), we know that

lim
𝑥→𝑥,𝑡→𝑡

𝜑(𝑔
𝑖
∗(𝑥), 𝑡) = 𝜑(𝑔

𝑖
∗(𝑥), 𝑡) = 1 and lim

𝑥→𝑥
(𝑔
𝑖
(𝑥) −

𝑔
𝑖
∗(𝑥)) = 𝑔

𝑖
(𝑥) < 0 for 𝑖 ∉ 𝐼(𝑥); hence

0 ≤ 𝜆
𝑖
(𝑥, 𝑡)

≤

exp (𝑔
𝑖
(𝑥) /𝜃𝑡)

𝜑 (𝑔
𝑖
∗ (𝑥) , 𝑡) exp (𝑔

𝑖
∗ (𝑥) /𝜃𝑡)

=

exp ((𝑔
𝑖
(𝑥) − 𝑔

𝑖
∗ (𝑥)) /𝜃𝑡)

𝜑 (𝑔
𝑖
∗ (𝑥) , 𝑡)

󳨀→ 0.

(19)

Hence, item 1 is satisfied for 𝜃𝑡 ↓ 0, 𝑡 → 𝑡, and 𝑥 → 𝑥.

(2) By lim
𝑥→𝑥,𝑡→𝑡

(−𝜀(𝑡) − 𝑔
𝑖
∗(𝑥)) = −𝜀(𝑡) < 0, we have

1 ≥ ∑

𝑖∈𝐼
𝜀(𝑥,𝑡)

𝜆
𝑖
(𝑥, 𝑡)

=

∑
𝑖∈𝐼
𝜀(𝑥,𝑡)

𝜑 (𝑔
𝑖
(𝑥) , 𝑡) exp (𝑔

𝑖
(𝑥) /𝜃𝑡)

∑
𝑗∈𝐼
𝜀(𝑥,𝑡)

𝜑 (𝑔
𝑗
(𝑥) , 𝑡) exp (𝑔

𝑗
(𝑥) /𝜃𝑡) + exp (−𝜀 (𝑡) /𝜃𝑡)

≥

𝜑 (𝑔
𝑖
∗ (𝑥) , 𝑡) exp (𝑔

𝑖
∗ (𝑥) /𝜃𝑡)

𝜑 (𝑔
𝑖
∗ (𝑥) , 𝑡) exp (𝑔

𝑖
∗ (𝑥) /𝜃𝑡) + exp (−𝜀 (𝑡) /𝜃𝑡)

≥

𝜑 (𝑔
𝑖
∗ (𝑥) , 𝑡)

1 + exp ((−𝜀 (𝑡) − 𝑔
𝑖
∗ (𝑥)) /𝜃𝑡)

󳨀→ 1.

(20)

Hence, ∑
𝑖∈𝐼
𝜀
(𝑥,𝑡)

𝜆
𝑖
(𝑥, 𝑡) → 1. Together with item 1, we have

∑
𝑖∈𝐼(𝑥)

𝜆
𝑖
(𝑥, 𝑡) → 1 for 𝜃𝑡 ↓ 0, 𝑡 → 𝑡, and 𝑥 → 𝑥.

(3) If 𝑔
𝑖
(𝑥) ≥ −𝜀(𝑡), then 𝜕𝜑(𝑔

𝑖
(𝑥), 𝑡)/𝜕𝑧 = 0 by its

definition, and hence

𝜉
𝑖
(𝑥, 𝑡) = 0; (21)

else

󵄨
󵄨
󵄨
󵄨
𝜉
𝑖
(𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨
≤

𝜃𝑡
󵄨
󵄨
󵄨
󵄨
𝜕𝜑 (𝑔
𝑖
(𝑥) , 𝑡) /𝜕𝑧

󵄨
󵄨
󵄨
󵄨
exp (𝑔

𝑖
(𝑥) /𝜃𝑡)

exp (−𝜀 (𝑡) /𝜃𝑡)
≤ 𝜃𝑡𝑀,

(22)

where 𝑀 = max
(𝑧,𝑡)∈𝑅×[0,1]

|𝜕𝜑(𝑧, 𝑡)/𝜕𝑧|. Then, we have
𝜉(𝑥, 𝑡) → 0 for 𝜃𝑡 ↓ 0, 𝑡 → 𝑡, and 𝑥 → 𝑥.

Proposition 9. For any given 0 < 𝜃 ≤ 1,

(1) −𝜀(𝑡) ≤ 𝑔(𝑥, 𝑡) ≤ max{𝑔max(𝑥), −𝜀(𝑡)}+𝜃𝑡 ln(𝑚𝐼
𝜀

+1),

(2) 𝑔max(𝑥) ≤ 𝑔(𝑥, 𝑡) ≤ 𝑔max(𝑥) + 𝜃𝑡 ln(𝑚
𝐼
𝜀

+ 1)

when 𝑔max(𝑥) ≥ −𝜀(𝑡),

(3) 𝑔(𝑥, 𝑡) = −𝜀(𝑡) when 𝑔max(𝑥) ≤ −𝛼𝜀(𝑡) with 𝛼 > 1,

where𝑚
𝐼
𝜀

denotes the cardinality of 𝐼
𝜀
(𝑥, 𝑡).

Proof. (1) By 𝜑(𝑧, 𝑡) ≥ 0, we have

𝑔 (𝑥, 𝑡) = 𝜃𝑡 ln( ∑

𝑖∈𝐼
𝜀(𝑥,𝑡)

𝜑 (𝑔
𝑖
(𝑥) , 𝑡) exp(

𝑔
𝑖
(𝑥)

𝜃𝑡

)

+ exp (−𝜀 (𝑡)
𝜃𝑡

))

≥ 𝜃𝑡 ln(exp(−𝜀 (𝑡)
𝜃𝑡

))

= −𝜀 (𝑡) .

(23)
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Then the left inequality can be obtained. By 𝜑(𝑧, 𝑡) ≤ 1, we
have

𝑔 (𝑥, 𝑡) = 𝜃𝑡 ln( ∑

𝑖∈𝐼
𝜀(𝑥,𝑡)

𝜑 (𝑔
𝑖
(𝑥) , 𝑡) exp(

𝑔
𝑖
(𝑥)

𝜃𝑡

)

+ exp(−𝜀 (𝑡)
𝜃𝑡

))

≤ 𝜃𝑡 ln( ∑

𝑖∈𝐼
𝜀(𝑥,𝑡)

exp(
𝑔
𝑖
(𝑥)

𝜃𝑡

) + exp(−𝜀 (𝑡)
𝜃𝑡

)) .

(24)

Then the right inequality can be obtained by Proposition 2.3
in [19].

(2) For any 𝑥, 𝑡with 𝑔max(𝑥) ≥ −𝜀(𝑡), let 𝑔𝑖∗(𝑥) = 𝑔max(𝑥);
then 𝜑(𝑔

𝑖
∗(𝑥), 𝑡) = 1 by its definition, and hence

𝑔 (𝑥, 𝑡) = 𝜃𝑡 ln( ∑

𝑖∈𝐼
𝜀(𝑥,𝑡)

𝜑 (𝑔
𝑖
(𝑥) , 𝑡) exp(

𝑔
𝑖
(𝑥)

𝜃𝑡

)

+ exp(−𝜀 (𝑡)
𝜃𝑡

))

≥ 𝜃𝑡 ln(𝜑 (𝑔
𝑖
∗ (𝑥) , 𝑡) exp(

𝑔
𝑖
∗ (𝑥)

𝜃𝑡

))

= 𝜃𝑡 ln(exp(
𝑔
𝑖
∗ (𝑥)

𝜃𝑡

))

= 𝑔
𝑖
∗ (𝑥)

= 𝑔max (𝑥) ;

(25)

then the left inequality is true. The right inequality can be
obtained by item 1.

(3) It is trivial by the definition of 𝑔(𝑥, 𝑡).

Proposition 10. Let Ω
𝜃
(𝑡) = {𝑥 | 𝑔(𝑥, 𝑡) ≤ 0} and Ω

𝜃
(𝑡)
0

=

{𝑥 | 𝑔(𝑥, 𝑡) < 0}; one has

(1) Ω
𝜃
(𝑡) ⊂ Ω for 𝑡 ∈ (0, 1];

(2) for any bounded and closed set Ω̂ ⊂ Ω
0, there exists

a 𝜃 ∈ (0, 1], such that Ω̂ ⊂ Ω
𝜃
(1)
0;

(3) Ω
𝜃
(𝑡) → Ω as 𝑡 ↓ 0.

Proof. (1) If 𝑥 ∉ Ω, which is equivalent to 𝑔max(𝑥) > 0, by
Proposition 9(2),

0 < 𝑔max (𝑥) ≤ 𝑔 (𝑥, 𝑡) , (26)

which means 𝑥 ∉ Ω
𝜃
(𝑡); then we haveΩ

𝜃
(𝑡) ⊂ Ω.

(2) By the continuity of 𝑔(𝑥) and the fact that Ω̂ is a
bounded closed set, there exists a point 𝑥∗ ∈ Ω̂ such that
𝑔max(𝑥) reaches itsmaximum in Ω̂, and𝑔max(𝑥

∗

) < 0. For any

𝜃 ∈ (0, 1] satisfying 𝜃 ≤ −max{𝑔max(𝑥
∗

), −𝜀(1)}/(2 ln(𝑚+1)),
by Proposition 9(1), for any 𝑥 ∈ Ω̂,

𝑔 (𝑥, 1) ≤ max {𝑔max (𝑥) , −𝜀 (1)} + 𝜃 ln (𝑚 + 1)

≤ max {𝑔max (𝑥
∗

) , −𝜀 (1)} + 𝜃 ln (𝑚 + 1)

=

1

2

max {𝑔max (𝑥
∗

) , −𝜀 (1)}

< 0,

(27)

which means Ω̂ ⊂ Ω
𝜃
(1)
0.

(3) For any 𝑥 ∈ Ω, that is, 𝑔max(𝑥) ≤ 0, by the right
inequality of Proposition 9(1),

lim
𝑡↓0

𝑔 (𝑥, 𝑡) ≤ lim
𝑡↓0

max {𝑔max (𝑥) , −𝜀 (𝑡)}

≤ max {𝑔max (𝑥) , −𝑐2} ≤ 0,

(28)

where the second inequality comes from −𝜀(𝑡) = −𝑐
1
𝑡 − 𝑐
2
≤

−𝑐
2
< 0 for 𝑡 ∈ [0, 1], which means Ω ⊂ lim

𝑡↓0
Ω
𝜃
(𝑡). Then,

together with item 1,

lim
𝑡↓0

Ω
𝜃
(𝑡) = Ω. (29)

Proposition 11. There exists a 𝜃 ∈ (0, 1] such that, for any
𝑡 ∈ (0, 1], 𝑥 ∈ 𝜕Ω

𝜃
(𝑡); then ∇

𝑥
𝑔(𝑥, 𝑡) ̸= 0.

Proof. If not, for any 𝜃 ∈ (0, 1], there exist corresponding
𝑡
𝜃
∈ (0, 1] and 𝑥𝜃 ∈ 𝜕Ω

𝜃
(𝑡
𝜃
) such that ∇

𝑥
𝑔(𝑥
𝜃

, 𝑡
𝜃
) = 0, which

means that there must exist three sequences {𝜃
𝑘
}
∞

𝑘=1
⊂ (0, 1],

{𝑡
𝑘
}
∞

𝑘=1
⊂ (0, 1], and {𝑥𝑘}∞

𝑘=1
with 𝑥𝑘 ∈ 𝜕Ω

𝜃
𝑘

(𝑡
𝑘
), such that

𝜃
𝑘
↓ 0, 𝑡
𝑘
→ 𝑡, 𝑥𝑘 → 𝑥 ∈ 𝜕Ω, and

∇
𝑥
𝑔 (𝑥
𝑘

, 𝑡
𝑘
)

= ∑

𝑖∈𝐼
𝜀(𝑥
𝑘
,𝑡
𝑘)

(𝜆
𝑖
(𝑥
𝑘

, 𝑡
𝑘
) + 𝜉
𝑖
(𝑥
𝑘

, 𝑡
𝑘
)) ∇𝑔
𝑖
(𝑥
𝑘

) 󳨀→ 0

(30)

as 𝑘 → ∞. Then, by Proposition 8, we know that 𝜆(𝑥𝑘, 𝑡
𝑘
) →

𝜆, 𝜉(𝑥𝑘, 𝑡
𝑘
) → 0 as 𝑘 → ∞, and

∑

𝑖∈lim
𝑘󳨀→∞
𝐼
𝜀(𝑥
𝑘
,𝑡
𝑘)

𝜆
𝑖
= ∑

𝑖∈𝐼(𝑥)

𝜆
𝑖
= 1, (31)

where the first equality comes from that 𝜆
𝑖
= 0 for 𝑖 ∉ 𝐼(𝑥).

Therefore, we have ∑
𝑖∈𝐼(𝑥)

𝜆
𝑖
∇𝑔
𝑖
(𝑥) = 0 by taking limits on

(30); this is a contradiction to Assumption 6.

Proposition 12. For any bounded closed set Ω̂ ⊂ Ω
0, there

exists a 𝜃 ∈ (0, 1] such that

{𝑥 + 𝜆∇
𝑥
𝑔 (𝑥, 1) | 𝜆 > 0} ∩ Ω̂ = 0, (32)

for any 𝑥 ∈ 𝜕Ω
𝜃
(1).
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Proof. If not, there exist a bounded closed set Ω̂ and four
sequences {𝜃

𝑘
}
∞

𝑘=1
⊂ (0, 1], {𝑥𝑘}∞

𝑘=1
with 𝑥

𝑘

∈ 𝜕Ω
𝜃
𝑘

(1),
{𝑥
𝑘

}
∞

𝑘=1
⊂ Ω̂, and {𝜆𝑘}∞

𝑘=1
> 0 such that 𝜃

𝑘
↓ 0, 𝑥𝑘 → 𝑥 ∈ 𝜕Ω,

𝑥
𝑘

→ 𝑥 ∈ Ω̂, 𝜆
𝑖
(𝑥
𝑘

, 1) → 𝜆
∗

𝑖
≥ 0, 𝜉

𝑖
(𝑥
𝑘

, 1) → 0 as 𝑘 → ∞,
and

𝑥
𝑘

= 𝑥
𝑘

+ 𝜆
𝑘

∑

𝑖∈𝐼
𝜀(𝑥
𝑘
,1)

(𝜆
𝑖
(𝑥
𝑘

, 1) + 𝜉
𝑖
(𝑥
𝑘

, 1)) ∇𝑔
𝑖
(𝑥
𝑘

) .

(33)

By Proposition 8, we have

∑

𝑖∈lim
𝑘󳨀→∞
𝐼
𝜀(𝑥
𝑘
,1)

𝜆
∗

𝑖
= ∑

𝑖∈𝐼(𝑥)

𝜆
∗

𝑖
= 1, (34)

where the first equality comes from that 𝜆∗
𝑖
= 0 for 𝑖 ∉ 𝐼(𝑥).

Then, we have

∑

𝑖∈𝐼
𝜀(𝑥
𝑘
,1)

(𝜆
𝑖
(𝑥
𝑘

, 1) + 𝜉
𝑖
(𝑥
𝑘

, 1)) ∇𝑔
𝑖
(𝑥
𝑘

)

󳨀→ ∑

𝑖∈𝐼(𝑥)

𝜆
∗

𝑖
∇𝑔
𝑖
(𝑥) .

(35)

By Assumption 6 and using (34),

∑

𝑖∈𝐼(𝑥)

𝜆
∗

𝑖
∇𝑔
𝑖
(𝑥) ̸= 0. (36)

Hence {𝜆𝑘}∞
𝑘=1

is a bounded sequence, and there must exist a
subsequence converging to 𝜆 > 0; then we have by (33)

𝑥 = 𝑥 + 𝜆 ∑

𝑖∈𝐼(𝑥)

𝜆
∗

𝑖
∇𝑔
𝑖
(𝑥) , (37)

which contradicts Assumption 7.

3. The Flattened Aggregate Constraint
Homotopy Method

In [19], the following aggregate constraint homotopy was
introduced:

𝐻(𝑥, 𝜆, 𝑡)

= (

(1 − 𝑡) (∇𝑓 (𝑥) + 𝜆∇
𝑥
𝑔
𝜃
(𝑥, 𝑡)) + 𝑡 (𝑥 − 𝑥

0

)

𝜆𝑔
𝜃
(𝑥, 𝑡) − 𝑡𝜆

0

𝑔
𝜃
(𝑥
0

, 1)

)

= 0,

(38)

where 𝑔
𝜃
(𝑥, 𝑡) = 𝜃𝑡 ln∑𝑚

𝑖=1
exp(𝑔

𝑖
(𝑥)/𝜃𝑡) with 𝜃 ∈ (0, 1],

𝜆 is the Lagrangian multiplier of the aggregate constraint
function 𝑔

𝜃
(𝑥, 𝑡), and (𝑥0, 𝜆0) is the starting point in Ω̂×𝑅

++
.

Under the weak normal cone condition, which is similar
to the normal cone condition, it was proved that the ACH
determines a smooth interior path from a given interior point
to a KKT point. Then, the predictor-corrector procedure can
be applied to trace the homotopy path from (𝑥

0

, 𝜆
0

, 1) to
(𝑥
∗

, 𝜆
∗

, 0), in which (𝑥∗, 𝜆∗) is a KKT point of (1).

3.1. The Flattened Aggregate Constraint Homotopy. Using
the flattened aggregate constraint function 𝑔(𝑥, 𝑡) in (10),
we construct the following flattened aggregate constraint
homotopy:

𝐻(𝑥, 𝜆, 𝑡)

= (

(1 − 𝑡) (∇𝑓 (𝑥) + 𝜆∇
𝑥
𝑔 (𝑥, 𝑡)) + 𝑡 (𝑥 − 𝑥

0

)

𝜆𝑔 (𝑥, 𝑡) − 𝑡𝜆
0

𝑔 (𝑥
0

, 1)

)

= 0,

(39)

where𝜆 is the Lagrangianmultiplier of the flattened aggregate
constraint and (𝑥

0

, 𝜆
0

) is the starting point and can be
randomly chosen from Ω̂ × 𝑅

++
.

We give the main theorem on the existence and conver-
gence of a smooth path from (𝑥

0

, 𝜆
0

, 1) to (𝑥∗, 𝜆∗, 0), inwhich
(𝑥
∗

, 𝜆
∗

) is a solution of the KKT system of (1), and hence
the global convergence of our proposal, namely, the FACH
method, can be proven.

Theorem 13. Suppose that Assumptions 5–7 hold and 𝜃 ∈

(0, 1] satisfies Propositions 10–12 for the bounded closed set Ω̂ ⊂

Ω
𝜃
(1)
0

⊂ Ω
0; then for almost all starting points𝑤0 = (𝑥0, 𝜆0) ∈

Ω̂ × 𝑅
++
, the zero-points set𝐻−1(0) = {(𝑥, 𝜆, 𝑡) | 𝐻(𝑥, 𝜆, 𝑡) =

0} defines a smooth path Γ
𝑤
0 , which starts at (𝑥0, 𝜆0, 1) and

approaches the hyperplane 𝑡 = 0. Furthermore, let (𝑥∗, 𝜆∗, 0)
be any limit point of Γ

𝑤
0 , and 𝑦∗ = 𝜆

∗

𝜆(𝑥
∗

, 0) (𝜆(𝑥∗, 0) is a
limit of 𝜆(𝑥, 𝑡) as 𝑥 → 𝑥

∗

, 𝑡 ↓ 0), then 𝑥∗ is a KKT point of (1)
and 𝑦∗ is the corresponding Lagrangian multiplier.

Proof. Consider 𝐻 as a map of the variable (𝑤0, 𝑥, 𝜆, 𝑡), for
any (𝑤0, 𝑡) ∈ Ω̂ × 𝑅

++
× (0, 1], which means 𝑥0 ∈ Ω

𝜃
(1)
0;

hence 𝑔(𝑥0, 1) < 0, because

𝜕𝐻(𝑤
0

, 𝑥, 𝜆, 𝑡)

𝜕𝑤
0

= (

−𝑡𝐼 0

−𝑡𝜆
0

(∇
𝑥
𝑔 (𝑥
0

, 1))

𝑇

−𝑡𝑔 (𝑥
0

, 1)

)

(40)

is nonsingular and the Jacobi matrix of𝐻(𝑤0, 𝑥, 𝜆, 𝑡) is of full
row rank. Using the parameterized Sard theorem, Lemma 4,
for almost all 𝑤0 ∈ Ω̂ × 𝑅

++
, 0 is a regular value of𝐻(𝑥, 𝜆, 𝑡).

From

𝐻(𝑥, 𝜆, 1) = (

𝑥 − 𝑥
0

𝜆𝑔 (𝑥, 1) − 𝜆
0

𝑔 (𝑥
0

, 1)

) , (41)

we know that (𝑥0, 𝜆0) is the unique and simple solution of
𝐻(𝑥, 𝜆, 1) = 0. Then, by the implicit function theorem, there
exists a smooth curve Γ

𝑤
0 ⊂ Ω

𝜃
(𝑡)
0

×𝑅
++
×(0, 1] starting from

(𝑥
0

, 𝜆
0

, 1) and being transversal to the hyperplane 𝑡 = 1.
Since Γ

𝑤
0 can be extended in Ω

𝜃
(𝑡)
0

× 𝑅
++

× (0, 1) until
it converges to the boundary of Ω

𝜃
(𝑡)
0

× 𝑅
++

× (0, 1), there
must exist an extreme point (𝑥, 𝜆, 𝑡) ∈ 𝜕(Ω

𝜃
(𝑡) × 𝑅

+
× [0, 1]).

Let (𝑥, 𝜆, 𝑡) be any extreme point of Γ
𝑤
0 other than (𝑥0, 𝜆0, 1);

then only the following five cases are possible:

(1) (𝑥, 𝜆, 𝑡) ∈ Ω × 𝑅
+
× {0}, 𝜆 < +∞;
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(2) (𝑥, 𝜆, 𝑡) ∈ Ω
𝜃
(1) × 𝑅

+
× {1}, 𝜆 < +∞;

(3) (𝑥, 𝜆, 𝑡) ∈ 𝜕Ω
𝜃
(𝑡) × 𝑅

++
× (0, 1), 𝜆 < +∞;

(4) (𝑥, 𝜆, 𝑡) ∈ Ω
𝜃
(𝑡) × {0} × (0, 1);

(5) (𝑥, 𝜆, 𝑡) ∈ Ω
𝜃
(𝑡) × {+∞} × [0, 1].

Case (2) means that 𝐻(𝑥, 𝜆, 1) = 0 has another solution
(𝑥, 𝜆) except (𝑥0, 𝜆0), or (𝑥

0

, 𝜆
0

) is a double solution of
𝐻(𝑥, 𝜆, 1) = 0, which contradicts the fact that (𝑥0, 𝜆0) is the
unique and simple solution of𝐻(𝑥, 𝜆, 1) = 0. Case (3) means
𝑔(𝑥, 𝑡) = 0, 0 < 𝜆 < ∞, and 0 < 𝑡 < 1; hence

𝜆𝑔 (𝑥, 𝑡) − 𝑡𝜆
0

𝑔 (𝑥
0

, 1) = −𝑡𝜆
0

𝑔 (𝑥
0

, 1) < 0, (42)

which contradicts the last equation of (39). Case (4) means
𝑔(𝑥, 𝑡) ≤ 0, 𝜆 = 0, and 0 < 𝑡 < 1; hence

𝜆𝑔 (𝑥, 𝑡) − 𝑡𝜆
0

𝑔 (𝑥
0

, 1) = −𝑡𝜆
0

𝑔 (𝑥
0

, 1) < 0, (43)

which contradicts the last equation of (39). Then, Cases (2),
(3), and (4) are impossible.

Because 𝐻(𝑥, 𝜆, 1) = 0 has only one and also unique
solution (𝑥0, 𝜆0), Case (2) is impossible. By the continuity and
the last equation of (39), we know that Cases (3) and (4) are
impossible.

If Case (5) holds, there must exist a sequence
{(𝑥
𝑘

, 𝜆
𝑘

, 𝑡
𝑘
)}
∞

𝑘=1
on Γ
𝑤
0 such that 𝑥𝑘 → 𝑥, 𝜆𝑘 → ∞,

and 𝑡
𝑘
→ 𝑡. By the last equation of (39), we have

𝑔 (𝑥
𝑘

, 𝑡
𝑘
) =

𝑡
𝑘
𝜆
0

𝑔 (𝑥
0

, 1)

𝜆
𝑘

󳨀→ 0
(44)

as 𝑘 → ∞, which means 𝑥 ∈ 𝜕Ω
𝜃
(𝑡). The following two cases

may be possible.

(1) If 𝑡 = 1, let 𝛼 be any accumulation point of
{(1 − 𝑡

𝑘
)𝜆
𝑘

}, which is known to exist from (39) and
lim
𝑘→∞

∇
𝑥
𝑔(𝑥
𝑘

, 𝑡
𝑘
) ̸= 0; then we have

𝑥
0

= 𝑥 + 𝛼∇
𝑥
𝑔 (𝑥, 1) . (45)

If 𝛼 = 0, then 𝑥 = 𝑥
0 contradicts 𝑥0 ∈ Ω

𝜃
(1)
0; else

contradicts Proposition 12.
(2) If 𝑡 < 1, by (39), we have

(1 − 𝑡) lim
𝑘󳨀→∞

𝜆
𝑘

∇
𝑥
𝑔 (𝑥
𝑘

, 𝑡
𝑘
) = − (1 − 𝑡) ∇𝑓 (𝑥) − 𝑡 (𝑥 − 𝑥

0

) ,

(46)

the right-hand is finite; however, by
lim
𝑘→∞

∇
𝑥
𝑔(𝑥
𝑘

, 𝑡
𝑘
) ̸= 0, we know that the left-hand is

infinite; this is a contradiction.

As a conclusion, Case (1) is the only possible case. This
implies that Γ

𝑤
0 must approach the hyperplane 𝑡 = 0.

Because {𝜆(𝑥𝑘, 𝑡
𝑘
)}
∞

𝑘=1
(defined in (17)), {𝑥𝑘}∞

𝑘=1
, and {𝜆

𝑘

}
∞

𝑘=1

are bounded sequences, we know that {(𝑥𝑘, 𝜆𝑘, 𝜆(𝑥𝑘, 𝑡
𝑘
))}
∞

𝑘=1

has at least one accumulation point as 𝑘 → ∞.

Let (𝑥∗, 𝜆∗, 𝜆(𝑥∗, 0)) be any accumulation point; 𝑦∗
𝑖

=

𝜆
∗

𝜆
𝑖
(𝑥
∗

, 0). By (39) and the fact that 𝜉(𝑥, 𝑡) → 0 as 𝑡 ↓ 0,
we have

∇𝑓 (𝑥
∗

) +

𝑚

∑

𝑖=1

𝑦
∗

𝑖
∇𝑔
𝑖
(𝑥
∗

) = 0. (47)

By the fact that lim
𝑡↓0
Ω
𝜃
(𝑡) = Ω, we have 𝑥∗ ∈ Ω. If 𝑥∗ ∈

Ω
0, we know that

lim
𝑥󳨀→𝑥

∗
,𝑡↓0

𝑔 (𝑥, 𝑡)

≤ lim
𝑥󳨀→𝑥

∗
,𝑡↓0

(max {𝑔max (𝑥) , −𝜀 (𝑡)} + 𝜃𝑡 ln (𝑚𝐼
𝜀

+ 1))

= max {𝑔max (𝑥
∗

) , 𝜀 (0)}

= max {𝑔max (𝑥
∗

) , −𝛼𝑐
2
}

< 0,

(48)

where the first inequality comes from Proposition 9(1), the
second equality comes from the continuity, and the third
equality comes from the definition of 𝜀(𝑡) in (11); hence𝜆∗ = 0
by the last equation of (39); else 𝑥∗ ∈ 𝜕Ω, lim

𝑥→𝑥
∗
,𝑡↓0
𝑔(𝑥, 𝑡) =

𝑔max(𝑥
∗

) = 0 by Proposition 9(2) and 𝜆
𝑖
(𝑥
∗

, 0) = 0 for
𝑖 ∉ 𝐼(𝑥

∗

) by Proposition 8. Thus we have

𝑦
∗

𝑖
𝑔
𝑖
(𝑥
∗

) = 0, 𝑖 = 1, . . . , 𝑚. (49)

Summing up, (𝑥∗, 𝑦∗) is a solution of the KKT system of
(1), which means that 𝑥∗ is a KKT point of (1) and 𝑦∗ is the
corresponding Lagrangian multiplier.

3.2. The Modified Flattened Aggregate Constraint Homotopy.
From Proposition 8(3), we know that 𝜉(𝑥, 𝑡) → 0 as 𝑡 ↓ 0

for any 𝑥 ∈ Ω and, hence, we can use the following modified
flattened aggregate constraint homotopy (MFACH) instead of
the FACH:

𝐻(𝑥, 𝜆, 𝑡) = (

(1 − 𝑡) (∇𝑓 (𝑥) + 𝜆ℎ (𝑥, 𝑡)) + 𝑡 (𝑥 − 𝑥
0

)

𝜆𝑔 (𝑥, 𝑡) − 𝑡𝜆
0

𝑔 (𝑥
0

, 1)

)

= 0,

(50)

where

ℎ (𝑥, 𝑡) = ∑

𝑖∈𝐼
𝜀(𝑥,𝑡)

𝜆
𝑖
(𝑥, 𝑡) ∇𝑔

𝑖
(𝑥) . (51)

Remarks. (i) Since 𝜉(𝑥, 𝑡) is dropped in (51), the expressions of
the homotopymap (50) and its Jacobian and hence the corre-
sponding code become simpler. Moreover, the computation
of H in (50) and its Jacobi matrix DH is a little cheaper than
that for the FACHmethod.

(ii) To guarantee that𝐻(𝑥, 𝜆, 𝑡) in (39) be a𝐶2map,𝜑(𝑧, 𝑡)
must be 𝐶3; hence, if 𝜑(𝑧, 𝑡) is chosen as a polynomial, the
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total degree should be seven; in contrast, for the homotopy
map in (50), 𝜑(𝑧, 𝑡) is only needed to be 𝐶2. Then 𝜑(𝑧, 𝑡)

should satisfy

𝜑 (−𝛼𝜀 (𝑡) , 𝑡) = 0,

𝜕𝜑 (−𝛼𝜀 (𝑡) , 𝑡)

𝜕𝑧

= 0,

𝜕
2

𝜑 (−𝛼𝜀 (𝑡) , 𝑡)

𝜕𝑧
2

= 0,

𝜑 (−𝜀 (𝑡) , 𝑡) = 1,

𝜕𝜑 (−𝜀 (𝑡) , 𝑡)

𝜕𝑧

= 0,

𝜕
2

𝜑 (−𝜀 (𝑡) , 𝑡)

𝜕𝑧
2

= 0

(52)

and 𝜑(𝑧, 𝑡) can be chosen as

𝜑 (𝑧, 𝑡) =

6(𝑧 + 𝜀 (𝑡))
5

(𝛼𝜀 (𝑡) − 𝜀 (𝑡))
5
+

15(𝑧 + 𝜀 (𝑡))
4

(𝛼𝜀 (𝑡) − 𝜀 (𝑡))
4

+

10(𝑧 + 𝜀 (𝑡))
3

(𝛼𝜀 (𝑡) − 𝜀 (𝑡))
3
+ 1.

(53)

(iii)The existence and convergence of the homotopy path
defined by the MFACH can be proven in a similar way with
that of the FACH.

4. The FACH-S-N Procedure and
Numerical Results

4.1. The FACH-S-N Procedure. In this section, we give a
numerical procedure, FACH-S-N procedure, to trace the
flattened aggregate constraint homotopy path by secant
predictor and Newton corrector steps. It consists of three
main steps: the predictor step, the corrector step, and the end
game.

Thepredictor step is an approximate step along the homo-
topy path: it uses a predictor direction 𝑑

𝑘 and a steplength
ℎ
𝑘
to get a predictor point. The first predictor direction uses

the tangent direction, and others use the secant direction.The
steplength is determined by several parameters. It is set to no
more than 1, which can ensure that the predictor point is close
to the homotopy path and hence stays in the convergence
domain of Newton’s method in the corrector step. If the
angle of the predictor direction and the previous one 𝛽𝑘 is
greater than 𝜋/4, the steplength will be decreased to avoid
using the opposite direction as the predictor direction. If the
corrector criteria are satisfiedwith nomore than fourNewton
iterations for three times in succession, the steplength will be
increased or kept invariable. Otherwise, the steplengthwill be
decreased.

Once a predictor point (𝑤(𝑘,0), 𝑡
(𝑘,0)

) is calculated, one
or more Newton iterations are used to bring the predictor
point back to the homotopy path in the corrector step. The
corrector points (𝑤(𝑘,𝑖), 𝑡

(𝑘,𝑖)
), 𝑖 = 1, . . . , 5, are calculated by

(𝑤
(𝑘,𝑖+1)

, 𝑡
(𝑘,𝑖+1)

) = (𝑤
(𝑘,𝑖)

, 𝑡
(𝑘,𝑖)

) + 𝑑
(𝑘,𝑖+1), 𝑖 = 0, . . . , 4, where

the step𝑑(𝑘,𝑖+1) is the solution of an augmented systemdefined
by the homotopy equation and the direction perpendicular to

the predictor direction. The corrector step terminates when
𝑑
(𝑘,𝑖) and𝐻(𝑤(𝑘,𝑖), 𝑡

(𝑘,𝑖)
) satisfy the tolerance criterions.

At each predictor step and corrector step, the feasibil-
ity of the predictor point (𝑤𝑘, 𝑡

𝑘
) and the corrector point

(𝑤
(𝑘,𝑖)

, 𝑡
(𝑘,𝑖)

) needs to be checked. If 𝑡
𝑘
< 𝑡
𝑐
in the predictor

step or 𝑡
𝑘
< 0 in the corrector step, a damping step is used

to get a new point (𝑤(𝑘,0), 0). Then, if 𝑤(𝑘,0) is feasible, the
end game, a more efficient strategy than predictor-corrector
steps when the homotopy parameter is close to 0, is invoked.
Starting with 𝑤(𝑘,0), Newton’s method is used to solve

𝐹
𝑡
𝑐
(𝑥, 𝜆) = (

∇𝑓 (𝑥) + 𝜆ℎ (𝑥, 𝑡
𝑐
)

𝜆𝑔 (𝑥, 𝑡
𝑐
)

) = 0, (54)

where 𝑡
𝑐
is a small positive constant. For other situations, the

steplength will be decreased tomake new predictor-corrector
steps (see Algorithm 1).

4.2. The Numerical Experiment. Although there exist so
many test problems, such as the CUTEr test set [21], we
cannot find a large collection of test problems with moderate
variables and very many complicated nonlinear constraints.
In this paper, six test problems are chosen to test the
algorithm. Problem 4.1 is chosen from the CUTEr test set and
it is used to illustrate a special situation; others are derived
from the discretized semi-infinite programming problems.
We also give two artificial test problems 4.2 and 4.3 and use
three problems 4.4–4.6 in [22]. The numbers of variables in
problem 4.2 and the number of constrains in problems 4.2–
4.6 can be arbitrary. For each test problem, the gradients
and Hessians of the objective and constraint functions are
evaluated analytically.

The FACH-S-N procedure was implemented in MAT-
LAB. To illustrate its efficiency, we also implemented the
ACH method in [19] using a similar procedure. In addition,
we downloaded the state-of-the-art solver KNITRO, which
provides three algorithms for solving large-scale nonlinear
programming problems, and we used the interior-point
direct method with default parameters to compare with the
FACH and MFACH methods. For any iterate point 𝑥𝑘, if
𝑔max(𝑥

𝑘

) < 10
−6, it was treated as a feasible point. The

test results were obtained by running MATLAB R2008a on
a desktop with Windows XP Professional operation system,
Intel(R) Core(TM) i5-750 2.66GHz processor, and 8GB of
memory. The default parameters were chosen as follows.

(i) Parameters for the flattened aggregate constraint
function: 𝜃 = 0.01, 𝑐

1
= 0.05, 𝑐

2
= 0.5 ∗ 10

−5, and
𝛼 = 2.

(ii) Parameters in the end game section: 𝑡
𝑐
= 10
−6 and

𝑡end = 0.1.

(iii) Step size parameters: ℎ
0
= 0.1, 𝐵min = [0.5, 0.75], and

𝐵max = [3, 1.5].

(iv) Tracking tolerances:𝐻tol = 10
−5 and𝐻final = 10

−12.

(v) Initial Lagrangian multipliers: 1 for ACH, FACH, and
MFACHmethods.
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Input Give 𝜃 ∈ (0, 1], 𝑐
1
> 0, 𝑐
2
> 0, 𝛼 > 1, 𝑡end and 𝑡𝑐; starting point 𝑤

0

∈ Ω̂ × 𝑅
++
; initial steplength ℎ

1
, steplength

contraction factor 𝐵min, steplength expansion factor 𝐵max; tracking tolerances𝐻tol and𝐻final for correction. Set
𝑡
0
= 1, 𝑘 = 1, IT = 0,𝑁good = 2, 𝛽

1

= 0.
Step 1. The predictor step.

Step 1.1. Compute the predictor direction.
If 𝑘 = 1, compute 𝑑 by solving

(

𝐻
󸀠

(𝑥
0

, 𝜆
0

, 1)

(𝑑
0

)

𝑇 )𝑑 = −𝑑
0,

where 𝑑0 = (0, . . . , 0, −1) ∈ 𝑅𝑛+2, set the predictor direction 𝑑1 = 𝑑/ ‖𝑑‖;
else, compute the predictor direction 𝑑𝑘, the angle 𝛽𝑘 between 𝑑𝑘 and 𝑑𝑘−1:

𝑑
𝑘

=

(𝑤
𝑘−1

, 𝑡
𝑘−1
) − (𝑤

𝑘−2

, 𝑡
𝑘−2
)

‖(𝑤
𝑘−1

, 𝑡
𝑘−1
) − (𝑤

𝑘−2
, 𝑡
𝑘−2
)‖

, 𝛽
𝑘

= arccos((𝑑𝑘)
𝑇

𝑑

𝑘−1

) .

Step 1.2. Adjust the steplength.
Adjust the steplength ℎ

𝑘
as follows:

if the predictor point is infeasible, set ℎ
𝑘
= 𝐵min(1)ℎ𝑘,𝑁good = 0;

else if the corrector step fails or 𝛽𝑘 > 𝜋/4, set ℎ
𝑘
= 𝐵min(1)ℎ𝑘−1,𝑁good = 0;

else if 𝑖 = 5, set ℎ
𝑘
= 𝐵min(2)ℎ𝑘−1,𝑁good = 0;

else if 𝑖 = 4, set ℎ
𝑘
= ℎ
𝑘−1

,𝑁good = 𝑁good + 1;
else if 𝑖 = 3, set𝑁good = 𝑁good + 1,

if𝑁good > 2, set ℎ𝑘 = min{1, 𝐵max(2)ℎ𝑘−1}, else, set ℎ𝑘 = ℎ𝑘−1;
else, set𝑁good = 𝑁good + 1,

if𝑁good > 2, set ℎ𝑘 = min{1, 𝐵max(1)ℎ𝑘−1}, else, set ℎ𝑘 = ℎ𝑘−1.
If ℎ
𝑘
< 10
−10, stop the algorithm with an error flag.

Step 1.3. Compute the predictor point and check its feasibility.
Compute the predictor point

(𝑤
(𝑘,0)

, 𝑡
(𝑘,0)

) = (𝑤
𝑘−1

, 𝑡
𝑘−1
) + ℎ
𝑘
𝑑
𝑘.

If 𝑤(𝑘,0) ∉ Ω
𝜃
(𝑡
(𝑘,0)

)
0

× 𝑅
++

or 𝑡
(𝑘,0)

≥ 1,
the predictor point is infeasible, goto Step 1.2;

else if 𝑡
(𝑘,0)

≤ 𝑡end,
adjust the steplength ℎ

𝑘
, compute the point (𝑤(𝑘,0), 0), if 𝑤(𝑘,0) ∈ Ω × 𝑅

+
, goto Step 3, else, the predictor

point is infeasible, goto Step 1.2;
else, goto Step 2.

Step 2. The corrector step.
Set 𝑖 = 0.
Repeat

If 𝑖 = 5, set IT = IT + 5, 𝑤𝑘 = 𝑤𝑘−1, 𝑡
𝑘
= 𝑡
𝑘−1

, 𝑑𝑘+1 = 𝑑𝑘, 𝑘 = 𝑘 + 1, the corrector step fails, goto Step 1.2.
Compute the Newton step 𝑑(𝑘,𝑖+1) by solving

(

𝐻
󸀠

(𝑤
(𝑘,𝑖)

, 𝑡
(𝑘,𝑖)

)

(𝑑
𝑘

)

𝑇 )𝑑
(𝑘,𝑖+1)

= (

−𝐻(𝑤
(𝑘,𝑖)

, 𝑡
(𝑘,𝑖)

)

0

),

the corrector point
(𝑤
(𝑘,𝑖+1)

, 𝑡
(𝑘,𝑖+1)

) = (𝑤
(𝑘,𝑖)

, 𝑡
(𝑘,𝑖)

) + 𝑑
(𝑘,𝑖+1);

set 𝑖 = 𝑖 + 1.
If 𝑤(𝑘,𝑖) ∉ Ω

𝜃
(𝑡
(𝑘,𝑖)

)
0

× 𝑅
++

or 𝑡
(𝑘,𝑖)

≥ 1,
set IT = IT + 𝑖, 𝑤𝑘 = 𝑤𝑘−1, 𝑡

𝑘
= 𝑡
𝑘−1

, 𝑑𝑘+1 = 𝑑𝑘, 𝑘 = 𝑘 + 1, the corrector step fails, goto Step 1.2;
else if 𝑡

(𝑘,𝑖)
< 0,

compute the point (𝑤(𝑘,0), 0) by a damping Newton step, set IT = IT + 𝑖, if 𝑤(𝑘,0) ∈ Ω × 𝑅
+
, goto Step 3,

else, set 𝑤𝑘 = 𝑤𝑘−1, 𝑡
𝑘
= 𝑡
𝑘−1

, 𝑑𝑘+1 = 𝑑𝑘, 𝑘 = 𝑘 + 1, the corrector step fails, goto Step 1.2.
Until ‖𝐻(𝑤(𝑘,𝑖), 𝑡

(𝑘,𝑖)
)‖inf ≤ 𝐻tol and ‖𝑑

(𝑘,𝑖)

‖ ≤ 𝐻tol.
If 𝑡
𝑘
< 𝑡
𝑐
, return with 𝑥∗ = 𝑥𝑘, stop the algorithm; else, set𝐻tol = min{𝐻tol, 𝑡𝑘}, 𝑘 = 𝑘 + 1, goto Step 1.

Step 3. The end game.
Set 𝑙 = 0.
Repeat

If 𝑙 = 5 or ‖𝑑(𝑘,𝑙)‖ > ‖𝑑(𝑘,𝑙−1)‖ for 𝑙 > 1, or 𝑤(𝑘,𝑙) ∉ Ω × 𝑅
+
, set 𝑡end = 0.3 ∗ 𝑡end, 𝑤

𝑘

= 𝑤
𝑘−1, 𝑡
𝑘
= 𝑡
𝑘−1

,
𝑑
𝑘+1

= 𝑑
𝑘, IT = IT + 𝑙, 𝑘 = 𝑘 + 1, the corrector step fails, goto Step 1.2.

Compute the Newton step 𝑑(𝑘,𝑙+1) by solving 𝐹󸀠
𝑡𝑐

(𝑤
(𝑘,𝑙)

)𝑑
(𝑘,𝑙+1)

= −𝐹
𝑡𝑐
(𝑤
(𝑘,𝑙)

), the corrector point
𝑤
(𝑘,𝑙+1)

= 𝑤
(𝑘,𝑙)

+ 𝑑
(𝑘,𝑙+1);

Algorithm 1: Continued.
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set 𝑙 = 𝑙 + 1.
Until ‖𝐹

𝑡𝑐
(𝑤
(𝑘,𝑙)

)‖inf ≤ 𝐻final and ‖𝑑
(𝑘,𝑙)

‖ ≤ 𝐻final.
Set IT = IT + 𝑙, return with 𝑥∗ = 𝑥(𝑘,𝑙), stop the algorithm.

Algorithm 1: The FACH-S-N procedure.

For each problem with different parameters, we list the
value of objective function 𝑓(𝑥) and the maximal function
of constraints 𝑔max(𝑥) at 𝑥

∗, the number of iterations 𝐼𝑇, the
number of evaluations of gradients of individual constraint
functions in the FACH andMFACHmethods𝑁

𝑠
(in contrast,

𝑁
𝑠
is 𝑚 ∗ 𝐼𝑇 in the ACH method), and the running time

in seconds 𝑇𝑖𝑚𝑒. For problems that were not solved by the
conservative setting, we also give the reason for failure. The
notation “fail1” indicates that the steplength in predictor step
is smaller than 10−10; it is generally due to poor conditioned
Jacobian matrix. The notation “fail2” means out of memory.
Thenotation “fail3”means no result in 5000 iterations or 3600
seconds.

Example 14 (see [21]). Consider

𝑓 (𝑥) = sin (𝑥
1
− 1 + 1.5𝜋)

+ ∑

2≤𝑖≤1000

100 sin (−𝑥
𝑖
+ 1.5𝜋 + 𝑥

2

𝑖−1
) ,

𝑔
𝑖
(𝑥) =

{
{
{
{

{
{
{
{

{

𝑥
1
− 𝜋 𝑖 = 1;

𝑥
2

𝑖−1
− 𝑥
𝑖
− 𝜋 𝑖 = 2, . . . , 1000;

−𝑥
1
− 𝜋 𝑖 = 1001;

−𝑥
2

𝑖−1
+ 𝑥
𝑖
− 𝜋 𝑖 = 1002, . . . , 2000,

𝑥
0

= (1, . . . , 1) ∈ 𝑅
1000

.

(55)

Remark 15. In this example, the starting point happens to be
an unconstrainedminimizer of the objective function and we
found that the 𝑥-components of iterative points generated by
the FACH andMFACHmethods (not other homotopymeth-
ods) remain invariant.This is not an occasional phenomenon.
In fact, if (𝑥0, 0) ∈ Ω0 × 𝑅𝑚

+
is a solution of the KKT system,

that is, 𝑥0 is a stationary point of the objective function 𝑓(𝑥),
when the parameters 𝛼, 𝑐

1
, and 𝑐

2
in FACH and MFACH

methods satisfy 𝑔max(𝑥
0

) ≤ −𝛼(𝑐
1
+ 𝑐
2
), the 𝑥-components

of points on the homotopy path Γ
𝑤
0 will remain invariant,

which can be derived from the fact that (𝑥0, 𝑡𝜆0𝜀(1)/𝜀(𝑡), 𝑡)
is the solution of (39) and (50) for 𝑡 ∈ (0, 1]. Moreover, since

𝐻
󸀠

(𝑥
0

, 𝜆
0

, 1) = (

𝐼 0 0

0 𝑔 (𝑥
0

, 1) ∗
) , (56)

the 𝑥-component of 𝑑1 is 0. By a similar discussion, the 𝑥-
component of 𝑑(1,𝑖) is 0, and hence 𝑥1 = 𝑥

(1,𝑖)

= 𝑥
0. In this

analogy, we know that 𝑥𝑘 = 𝑥
(𝑘,𝑖)

= 𝑥
0 for any 𝑘 and 𝑖 in

algorithm FACH-S-N.

Table 1: Test results for Example 14.

Method 𝑓(𝑥
∗

) 𝑔max(𝑥
∗

) IT 𝑁
𝑠

Time
ACH −99901.0000 −2.1416 35 — 85.5496
KNITRO −99901.0000 −2.1416 0 — 2.8733
FACH −99901.0000 −2.1416 4 0 8.3912
MFACH −99901.0000 −2.1416 4 0 8.4150

Example 16. Consider

𝑓 (𝑥) = 𝑥
2

3
+ 𝑥
2

4
,

𝑔
𝑖,𝑗
(𝑥) =

(𝑡
𝑖
− 𝑥
1
)
2

𝑥
2

3

+

(𝑡
󸀠

𝑗
− 𝑥
2
)

2

𝑥
2

4

− 1,

𝑡
𝑖
=

𝑖

(√𝑚 − 1)

, 𝑖 = 0, . . . , √𝑚 − 1,

𝑡
󸀠

𝑗
=

𝑗

(√𝑚 − 1)

, 𝑗 = 0, . . . , √𝑚 − 1,

𝑥
0

= (0, 0, 100, 100) ∈ 𝑅
4

.

(57)

Example 17. Consider

𝑓 (𝑥) =

1

𝑛

∑

1≤𝑘≤𝑛

(𝑥
𝑘
− 1)
2

,

𝑔
𝑖
(𝑥) = ∏

1≤𝑘≤𝑛

cos (𝑡
𝑖
𝑥
𝑘
) + 𝑡
𝑖
∑

1≤𝑘≤𝑛

𝑥
3

𝑘
,

𝑡
𝑖
=

0.5 + 𝜋𝑖

(𝑚 − 1)

, 𝑖 = 0, . . . , 𝑚 − 1,

𝑥
0

= (−2, . . . , −2) ∈ 𝑅
𝑛

.

(58)

Example 18 (see [22]). Consider

𝑓 (𝑥) = 𝑥
2

1
+ 𝑥
2

2
+ 𝑥
2

3
,

𝑔
𝑖
(𝑥) = 𝑥

1
+ 𝑥
2
exp (𝑥

3
𝑡
𝑖
) + exp (2𝑡

𝑖
) − 2 sin (4𝑡

𝑖
) ,

𝑡
𝑖
=

𝑖

(𝑚 − 1)

, 𝑖 = 0, . . . , 𝑚 − 1,

𝑥
0

= (−200, −200, 200) ∈ 𝑅
3

.

(59)
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Table 2: Test results for Example 16.

𝑚 Method 𝑓(𝑥
∗

) 𝑔max(𝑥
∗

) IT 𝑁
𝑠

Time

10
2

ACH 1.0000 −1.3863e − 08 394 — 0.2423
KNITRO 1.0000 −7.1233e − 10 18 — 0.2288
FACH 1.0000 −1.3863e − 08 541 721 0.3270
MFACH 1.0000 −1.3863e − 08 567 823 0.2692

10
4

ACH 1.0000 −1.3863e − 08 397 — 1.9730
KNITRO 1.0000 −8.0005e − 10 20 — 0.7227
FACH 1.0000 −1.3863e − 08 541 721 0.4359
MFACH 1.0000 −1.3863e − 08 567 823 0.4676

10
6

ACH 1.0000 −1.3863e − 08 404 — 249.3395
KNITRO 1.0000 −7.8830e − 10 13 — 2170.4301
FACH 1.0000 −1.3863e − 08 541 805 10.9486
MFACH 1.0000 −1.3863e − 08 567 907 11.2815

Table 3: (a) Test results for Example 17 with 𝑛 = 100. (b) Test results for Example 17 with 𝑛 = 500. (c) Test results for Example 17 with
𝑛 = 1000. (d) Test results for Example 17 with 𝑛 = 2000.

(a)

𝑚 Method 𝑓(𝑥
∗

) 𝑔max(𝑥
∗

) IT 𝑁
𝑠

Time

10
2

ACH 1.4918 −1.5282e − 03 243 — 36.9898
KNITRO 0.2603 −1.9708e − 06 32 — 4.1262
FACH 1.4915 −6.6613e − 16 156 96 0.4067
MFACH 1.4915 6.1062e − 15 144 85 0.3186

10
3

ACH 1.4918 −1.5282e − 03 243 — 325.6083
KNITRO 0.2603 −2.7042e − 05 19 — 25.1720
FACH 1.4915 −6.6613e − 16 156 96 0.6852
MFACH 1.4915 6.1062e − 15 144 85 0.5342

10
4

ACH 1.4918 −1.5282e − 03 243 — 3218.5422
KNITRO 0.2603 −2.5434e − 04 18 — 271.1651
FACH 1.4915 −6.6614e − 16 156 96 5.1941
MFACH 1.4915 6.1062e − 15 144 86 4.0120

(b)

𝑚 Method 𝑓(𝑥
∗

) 𝑔max(𝑥
∗

) IT 𝑁
𝑠

Time

10
2

ACH 1.2524 −1.0693e − 02 405 — 1371.0198
KNITRO 0.1417 −2.0927e − 05 31 — 95.1782
FACH 1.2510 1.2490e − 14 159 45 3.9951
MFACH 1.2510 1.2490e − 14 139 25 2.9676

10
3

ACH — — — — fail3

KNITRO — — — — fail3

FACH 1.2510 1.2490e − 14 159 45 6.5173
MFACH 1.2510 1.2490e − 14 139 25 4.6898

10
4

ACH — — — — fail2

KNITRO — — — — fail2

FACH 1.2510 1.2490e − 14 159 45 31.7107
MFACH 1.2510 1.2490e − 14 139 25 25.1842

(c)

𝑚 Method 𝑓(𝑥
∗

) 𝑔max(𝑥
∗

) IT 𝑁
𝑠

Time

10
2

ACH — — — — fail3

KNITRO 0.1099 −5.6905e − 05 27 — 359.4507
FACH 1.1880 2.3370e − 14 197 46 20.8919
MFACH 1.1880 2.4258e − 14 197 46 21.2641
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(c) Continued.

𝑚 Method 𝑓(𝑥
∗

) 𝑔max(𝑥
∗

) IT 𝑁
𝑠

Time

10
3

ACH — — — — fail2

KNITRO — — — — fail2

FACH 1.1880 2.3370e − 14 197 46 28.8674
MFACH 1.1880 2.4258e − 14 197 46 27.5140

10
4

ACH — — — — fail2

KNITRO — — — — fail2

FACH 1.1880 2.3370e − 14 197 46 101.3199
MFACH 1.1880 2.4258e − 14 197 46 99.1354

(d)

𝑚 Method 𝑓(𝑥
∗

) 𝑔max(𝑥
∗

) IT 𝑁
𝑠

Time

10
2

ACH — — — — fail3

KNITRO — — — — fail3

FACH 1.1406 −6.2839e − 14 260 47 126.6290
MFACH 1.1406 4.0967e − 14 258 46 125.7973

10
3

ACH — — — — fail2

KNITRO — — — — fail2

FACH 1.1406 −6.2839e − 14 260 47 146.6079
MFACH 1.1406 4.0967e − 14 258 46 145.7293

10
4

ACH — — — — fail2

KNITRO — — — — fail2

FACH 1.1406 −6.2839e − 14 260 47 368.5331
MFACH 1.1406 4.0967e − 14 258 46 369.3701

Table 4: Test results for Example 18.

𝑚 Method 𝑓(𝑥
∗

) 𝑔max(𝑥
∗

) IT 𝑁
𝑠

Time

10
2

ACH 5.3347 −4.4409e − 16 1605 — 0.7546
KNITRO 1.2000e + 05 −3.9900e + 02 2 — 0.0141
FACH 5.3347 1.3323e − 15 815 288 0.2977
MFACH 5.3347 1.3323e − 15 820 293 0.3004

10
4

ACH 5.3347 −4.4409e − 16 1605 — 7.0581
KNITRO 1.2000e + 05 −3.9900e + 02 2 — 0.3163
FACH 5.3347 1.3323e − 15 815 288 1.3127
MFACH 5.3347 1.3323e − 15 820 294 1.3185

10
6

ACH 5.3347 1.3323e − 15 1606 — 575.4663
KNITRO 1.2000e + 05 −3.9900e + 02 2 — 3243.2201
FACH 5.3347 −9.2480e − 08 960 6444 42.7664
MFACH 5.3347 −1.1278e − 07 931 7094 41.7933

Example 19 (see [22]). Consider

𝑓 (𝑥) = (𝑥
1
− 2𝑥
2
+ 5𝑥
2

2
− 𝑥
3

2
− 13)

2

+ (𝑥
1
− 14𝑥

2
+ 𝑥
2

2
+ 𝑥
3

2
− 29)

2

,

𝑔
𝑖
(𝑥) = 𝑥

2

1
+ 2𝑥
2
𝑡
2

𝑖
+ exp (𝑥

1
+ 𝑥
2
) − exp (𝑡

𝑖
) ,

𝑡
𝑖
=

𝑖

(𝑚 − 1)

, 𝑖 = 0, . . . , 𝑚 − 1,

𝑥
0

= (0, −45) ∈ 𝑅
2

.

(60)

Example 20 (see [22]). Consider

𝑓 (𝑥) =

𝑥
2

1

3

+

𝑥
1

2

+ 𝑥
2

2
,

𝑔
𝑖
(𝑥) = (1 − 𝑥

2

1
𝑡
2

𝑖
)

2

− 𝑥
1
𝑡
2

𝑖
− 𝑥
2

2
+ 𝑥
2
,

𝑡
𝑖
=

𝑖

(𝑚 − 1)

, 𝑖 = 0, . . . , 𝑚 − 1,

𝑥
0

= (−1, 100) ∈ 𝑅
2

.

(61)

To explain the numerical efficiency, we make the following
remarks by numerical results in Tables 1, 2, 3, 4, 5 and 6.
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Table 5: Test results for Example 19.

𝑚 Method 𝑓(𝑥
∗

) 𝑔max(𝑥
∗

) IT 𝑁
𝑠

Time

10
2

ACH 97.1589 0.0000 213 — 0.0964
KNITRO 97.1592 −7.5266 − 05 68 — 0.5162
FACH 97.1589 0.0000 170 191 0.0795
MFACH 97.1589 0.0000 160 183 0.0608

10
4

ACH 97.1589 0.0000 227 — 0.5310
KNITRO 102.2095 −6.7465 − 01 263 — 15.4868
FACH 97.1589 0.0000 249 10926 0.2846
MFACH 97.1589 0.0000 251 11321 0.2783

10
6

ACH 97.1589 0.0000 229 — 50.8763
KNITRO 188.9496 −8.3841e − 01 17 — 2206.4660
FACH 97.1589 0.0000 334 427520 9.5724
MFACH 97.1589 0.0000 253 486506 6.8910

Table 6: Test results for Example 20.

𝑚 Method 𝑓(𝑥
∗

) 𝑔max(𝑥
∗

) IT 𝑁
𝑠

Time

10
2

ACH 2.4305 0.0000 342 — 0.1749
KNITRO 2.4305 −1.3822e − 10 21 — 0.0291
FACH 2.4305 2.2204e − 16 348 387 0.1368
MFACH 2.4305 2.2204e − 16 341 374 0.1276

10
4

ACH 2.4305 −6.6632e − 09 344 — 0.9804
KNITRO 2.4305 −1.6180e − 10 38 — 1.0329
FACH 2.4305 −6.6632e − 09 296 14710 0.2610
MFACH 2.4305 −6.6632e − 09 358 23559 0.2802

10
6

ACH 2.4305 −4.9783e − 08 344 — 94.3943
KNITRO 2.6182 −1.2609e − 04 61 — 2372.2093
FACH — — — — fail1

MFACH 2.4305 −4.9021e − 08 516 2231308 16.3756

(i) If 𝑔max(𝑥) ≤ −𝛼𝜀(𝑡) for any (𝑥, 𝜆, 𝑡) ∈ Γ
𝑤
0 , the FACH

and MFACH methods do not need to calculate the
gradient and Hessian of any constraint functions.

(ii) For problems whose gradients and Hessians of con-
straint functions are expensive to evaluate, the per-
formance of the FACH and MFACH methods is
much better than the ACH method based on similar
numerical tracing procedures.

(iii) Compared to the interior-point direct algorithm of
the state-of-the-art solver KNITRO, the test results
show that the FACH and MFACH methods perform
worse when 𝑚 is small but much better when 𝑚 is
large for most problems. In addition, we can see that
their time cost increases more slowly than KNITRO
solver as𝑚 increases.

(iv) The function 𝜑(𝑧, 𝑡) is important for the flat-
tened aggregate constraint function.Theoretically, the
parameters 𝑐

1
, 𝑐
2
, and 𝛼 in the FACH and MFACH

methods can be chosen freely. However, they do
matter in the practical efficiency of the FACH and
MFACH methods and should be suitably chosen. If

these parameters are too large, then too many gradi-
ents and Hessians of individual constraint functions
need to be evaluated and, hence, cause low efficiency.
On the other hand, if they are too small, the Hessian
of the flattened aggregated constraint function (10)
may become ill-conditioned. In our numerical tests,
we fixed 𝑐

1
= 0.05, 𝑐

2
= 0.5 ∗ 10

−5, and 𝛼 = 2. In
addition, the function 𝜑(𝑧, 𝑡) can be defined in many
ways, and preliminary numerical experiments show
that the algorithms with different functions 𝜑(𝑧, 𝑡)
have similar efficiencies.

(v) In algorithm FACH-S-N, we gave only a simple
implementation of the ACH, FACH, and MFACH
methods. To improve implementation of the FACH
and MFACH methods, a lot of work needs to be
done on all processes of numerical path tracing,
say, schemes of predictor and corrector, steplength
updating, linear system solving, and end game. Other
practical strategies in the literature for large-scale
nonlinear programming problems (e.g., [9, 23–26])
are also very important for improving the efficiency.
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5. Conclusions

By introducing a flattened aggregate constraint function, a
flattened aggregate constraint homotopy method is proposed
for nonlinear programming problems with few variables and
many nonlinear constraints, and its global convergence is
proven. By greatly reducing the computation of gradients
and Hessians of constraint functions in each iteration, the
proposedmethod is very competitive for nonlinear program-
ming problemswith a large number of complicated constraint
functions.
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