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Abstract. 
Some sufficient conditions are obtained for the existence, uniqueness, and global exponential stability of weighted pseudo-almost periodic solutions to a class of neutral type high-order Hopfield neural networks with distributed delays by employing fixed point theorem and differential inequality techniques. The results of this paper are new and they complement previously known results. Moreover, an example is given to show the effectiveness of the proposed method and results.



1. Introduction
Since high-order Hopfield neural networks (HHNNs) have stronger approximation property, faster convergence rate, greater storage capacity, and higher fault tolerance than lower-order Hopfield neural networks, the study of high-order Hopfield neural networks has recently gained a lot of attention and there have been extensive results on the problem of the existence and stability of equilibrium points, periodic solutions, and almost periodic solutions of high-order Hopfield neural networks in the literature. We refer the reader to [1–9] and the references cited therein. Also, since it is natural and important that systems will contain some information about the derivative of the past state to further describe and model the dynamics for such complex neural reactions [10], many authors investigated the dynamical behaviors of neutral type neural networks with delays [11–25]. Moreover, it is well known that, compared with periodic effects, almost periodic effects are more frequent, and many phenomena exhibit great regularity with being pseudo-almost periodic which allow complex repetitive phenomena to be represented as an almost periodic process plus an ergodic component. However, to the best of our knowledge, few authors have considered the exponential convergence on the pseudo-almost periodic solution for neutral type neural networks with delays. Motivated by the above, in this paper, we consider the following high-order Hopfield neural networks with neutral distributed delays: 
						
					where  corresponds to the number of units in a neural network,  corresponds to the state vector of the th unit at the time ,  represents the rate with which the th unit will reset its potential to the resting state in isolation when disconnected from the network and external inputs,  and  are the first- and second-order connection weights of the neural network,  is the kernel,  denote the external inputs at time , and  and  are the activation functions of signal transmission.
The initial conditions of (1) are the form
						
					where  denotes a differential real-value bounded function defined on  and satisfies that  is bounded on .
To the best of our knowledge, there is no paper published on the global exponential stability and existence of weighted pseudo-almost periodic solution to system (1). Our main purpose of this paper is, for fixed  will be defined in Section 2), to study the existence, uniqueness, and globally exponential stability of weighted pseudo-almost periodic solution by employing fixed point theorem and differential inequality techniques.
This paper is organized as follows. In Section 2, we introduce some notations and definitions and state some preliminary results which are needed in later sections. In Section 3, we establish some sufficient conditions for the existence of weighted pseudo-almost periodic solutions of (1). In Section 4, we prove that the weighted pseudo-almost periodic solution is globally exponentially stable. In Section 5, we give an example to illustrate the feasibility of our results obtained in previous sections.
2. Assumptions and Preliminaries
Throughout this paper we assume that(H1),  are almost periodic functions, and , ;(H2)there exist positive constants , , , and  such that , , , and , for all , and , ;(H3)for , the delay kernels  are continuous and integrable with
									(H4)for fixed ,  is a weighted pseudo-almost periodic function.
Definition 1 (see [26, 27]). Let  be continuous in ;  is said to be almost periodic on  if, for any , the set  is relatively dense; that is, for all , it is possible to find a real number ; for any interval with length , there exists a number  in this interval such that , for all .
For , we define .
Definition 2 (see [26, 27]). Let  and let  be an  continuous matrix defined on . The linear system 
							
						is said to admit an exponential dichotomy on  if there exist positive constants , ; projection  and the fundamental solution matrix  of (4) satisfy
							
Lemma 3 (see [26, 27]).  Let  be an almost periodic function on ; then  is bounded on  and  is uniformly continuous in .
The collection of all almost periodic functions which go from  to  will be denoted by .  equipped with the sup-norm is a Banach space.
Let  denote the collection of functions (weights) , which are locally integrable over  such that  almost everywhere. If  and for , we set  and 
						
					Let  and .
Definition 4 (see [28]). Fix . A continuous function  is called weighted pseudo-almost periodic if it can be written as , with  and , where the space  is defined by 
							
						The collection of all weighted pseudo-almost periodic functions  will be denoted by .
Remark 5. If , then ; if , , then .
Lemma 6 (see [29]).  Fix . Suppose that, for any ,
							
						Then  is translation-invariant.
Denote .
Remark 7. Fix . Let
							
						Then  is a Banach space with the norm defined by , where , .
3. Existence of Weighted Pseudo-Almost Periodic Solution
To obtain the existence of weighted pseudo-almost periodic solution to system (1), we need the following lemmas.
Lemma 8 (see [26, 27]).  If the linear system (4) admits an exponential dichotomy, then the almost periodic system 
							
						has a unique almost periodic solution , and
							
Lemma 9 (see [26, 27]).  Let  be an almost periodic function on , and 
							
						Then the linear system
							
						admits an exponential dichotomy on .
Lemma 10.  Fix . If  satisfies the Lipschitz condition,  is continuous and integrable, and satisfying  (where  is a positive constant) and , then  belongs to .
Proof. Since , there exist  and  such that ; then
							
						First, we prove that . Since  satisfies the Lipschitz condition, there exists a positive constant , such that  for all . For any , since , it is possible to find a real number ; for any interval with length , there exists a number  in this interval such that  for all ; then
							
						which implies that . Next, we prove that . Consider
							
						Consider the following function:
							
						obviously,  is bounded, and, by using Lemma 6, we have . Consequently, by the Lebesgue dominated convergence theorem, we get
							
						which implies that . The proof is complete.
Lemma 11.  Fix . Suppose that assumptions (H1)–(H3) hold. For each , define a nonlinear operator as follows: 
							
						where, for , 
							
						and then  maps  into itself.
Proof. Let ; by Lemma 10 and in view of (H1)–(H4), we have ; that is,  can be rewritten as , where  and . Hence,
							
						Consider the following almost periodic system:
							
						Since , from Lemmas 8 and 9, system (22) has an almost periodic solution which can be expressed as follows: 
							
						that is, . Let
							
						in order to prove that , we will prove . Notice that
							
						where . Since the function , then the functions  defined by
							
						are bounded and satisfy . Consequently, by the Lebesgue dominated convergence theorem, we have
							
						that is, . Now, we can get that , and
							
						obviously, ; that is,  maps  into itself.
For the sake of convenience, we introduce the following notations:
						
Theorem 12.  Suppose that (H 1)–(H 4) and 
							
						hold; then there exists a unique continuously differentiable weighted pseudo-almost periodic solution of system (1) in the region .
Proof. , from Lemma 11,  maps  into itself. By the definition of the norm of Banach space , we have
							
						Hence, , we obtain
							
						Next, we show that  maps the closed set  into itself. In fact, for any , we obtain by (H2)-(H3) that
							
						Furthermore, we have
							
						Thus, it follows from (33) and (34) that 
							
						which implies that . So, the mapping  is a self-mapping from  to . Finally, we prove that  is a contraction mapping of the . In fact, in view of , for any , we obtain
							
						Thus, 
							
						Notice that ; it means that the mapping  is a contraction mapping. By Banach fixed point theorem, there exists a unique fixed point  such that , which implies that system (1) has a unique weighted pseudo-almost periodic solution. This completes the proof.
Since  and  are Banach spaces, we can get the following corollary.
Corollary 13.  If (H 1)–(H 3) and  hold, furthermore, assume that  are almost periodic functions; then there exists a unique continuously differentiable almost periodic solution of system (1) in the region
							
						where .
Corollary 14.  If (H 1)–(H 3) and  hold, furthermore, assume that  are pseudo-almost periodic functions; then there exists a unique continuously differentiable pseudo-almost periodic solution of system (1) in the region
							
						where .
4. Global Exponential Stability of Weighted Pseudo-Almost Periodic Solution
Definition 15. Fix . The weighted pseudo-almost periodic solution
							
						of system (1) with initial value  is said to be globally exponentially stable. If there exist constants  and  such that for every solution  of system (1) with any initial value  satisfies
							
						where 
							
Theorem 16.  Fix . If conditions (H 1)–(H 5) hold, then system (1) has a unique continuously differentiable weighted pseudo-almost periodic solution  which is globally exponentially stable.
Proof. It follows from Theorem 12 that system (1) has a unique weighted pseudo-almost periodic solution
							
						with initial value . Let  be an arbitrary solution of system (1) with initial value . Let , ; then 
							
						where . Let  and  be defined by
							
						where . By , we obtain that
							
						Since  are continuous on  and  as , there exist  such that , and  for ,   for . By choosing , we have
							
						So, we can choose a positive constant  such that  and , which implies that
							
						where .
Multiplying both sides of (44) by  and integrating it over , we have
							
						Let
							
						By , we have . Thus,
							
						where  as in (48). We claim that
							
						To prove (53), we first show that, for any , the following inequality holds:
							
						If (54) is not true, then there must be some  and some ,  such that
							
						By (48)–(51), (56), and , we get
							
						Direct differentiation of (49) gives
							
						where . Thus, we have by (48) and (58) and (H2)-(H3) that 
							
						In view of (57) and (59), we obtain 
							
						which contradicts the equality (55), and so (54) holds. Letting , (53) holds. Hence, the weighted pseudo-almost periodic solution of system (1) is globally exponentially stable.
Corollary 17.  If conditions (H 1)–(H 3) and  hold, furthermore, assume that  are almost periodic functions; then system (1) has a unique continuously differentiable almost periodic solution which is globally exponentially stable.
Corollary 18.  If conditions (H 1)–(H 3) and  hold, furthermore, assume that  are pseudo-almost periodic functions; then system (1) has a unique continuously differentiable pseudo-almost periodic solution which is globally exponentially stable.
5. An Example
In this section, we give one example to illustrate our result. Consider the weight  and let 
						
Then system (1) has exactly one continuously differentiable weighted pseudo-almost periodic solution, which is globally exponentially stable.
Proof. By calculating,
							
						hence we have
							
						It is obvious that (H1)–(H5) are satisfied. By Theorems 12 and 16, system (1) has exactly one continuously differentiable weighted pseudo-almost periodic solution, which is globally exponentially stable (see Figures 1, 2, and 3).




	
	
		
		
			
		
		
			
		
		
			
		
		
			
		
		
		
		
		
		
			
		
		
		
		
		
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
				
			
				
		
	


Figure 1: Responds of ,  with time .






	
	
		
		
		
		
		
		
			
		
		
		
			
		
		
		
		
		
			
		
		
		
			
		
		
		
			
		
		
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 2: Responds of , .






	
	
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
				
		
		
			
				
		
			
		
			
				
	


Figure 3: Responds of ,  with time .


6. Conclusion
In this paper, we employ fixed point theorem and differential inequality techniques to study the existence, uniqueness, and global exponential stability of weighted pseudo-almost periodic solutions to a class of neutral type high-order Hopfield neural networks with infinitely distributed delays. Our results of this paper are new and complement previously known results, and our methods used in this paper can be used to investigate other types of neural networks such as neutral type BAM neural networks, neutral type Cohen-Grossberg neural networks, and neutral type high-order Hopfield neural networks with delays in the leakage term and so on.
Conflict of Interests
The authors declare that there is no conflict of interests regarding the publication of this paper.
Acknowledgment
This work is supported by the National Natural Sciences Foundation of China under Grant 11361072.
References
	Z. Wang, J. Fang, and X. Liu, “Global stability of stochastic high-order neural networks with discrete and distributed delays,” Chaos, Solitons and Fractals, vol. 36, no. 2, pp. 388–396, 2008.
	Y. K. Li, L. Zhao, and P. Liu, “Existence and exponential stability of periodic solution of high-order hopfield neural network with delays on time scales,” Discrete Dynamics in Nature and Society, vol. 2009, Article ID 573534, 18 pages, 2009.
	S. Mohamad, “Exponential stability in Hopfield-type neural networks with impulses,” Chaos, Solitons and Fractals, vol. 32, no. 2, pp. 456–467, 2007.
	B. Xu, X. Liu, and X. Liao, “Global asymptotic stability of high-order Hopfield type neural networks with time delays,” Computers & Mathematics with Applications, vol. 45, no. 10-11, pp. 1729–1737, 2003.
	E. B. Kosmatopoulos and M. A. Christodoulou, “Structural properties of gradient recurrent high-order neural networks,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 42, no. 9, pp. 592–603, 1995.
	F. Zhang and Y. Li, “Almost periodic solutions for higher-order Hopfield neural networks without bounded activation functions,” Electronic Journal of Differential Equations, vol. 2007, no. 97, pp. 1–10, 2007.
	X.-Y. Lou and B.-T. Cui, “Novel global stability criteria for high-order Hopfield-type neural networks with time-varying delays,” Journal of Mathematical Analysis and Applications, vol. 330, no. 1, pp. 144–158, 2007.
	R. Rakkiyappan, C. Pradeep, A. Vinodkumar, and F. A. Rihan, “Dynamic analysis for high-order Hopfield neural networks with leakage delay and impulsive effects,” Neural Computing and Applications, vol. 22, no. 1, pp. 55–73, 2013.
	Q. Wang, Y. Fang, H. Li, L. Su, and B. Dai, “Anti-periodic solutions for high-order Hopfield neural networks with impulses,” Neurocomputing, vol. 138, pp. 339–346, 2014.
	J. H. Park, C. H. Park, O. M. Kwon, and S. M. Lee, “A new stability criterion for bidirectional associative memory neural networks of neutral-type,” Applied Mathematics and Computation, vol. 199, no. 2, pp. 716–722, 2008.
	R. Rakkiyappan and P. Balasubramaniam, “New global exponential stability results for neutral type neural networks with distributed time delays,” Neurocomputing, vol. 71, no. 4–6, pp. 1039–1045, 2008.
	R. Rakkiyappan and P. Balasubramaniam, “LMI conditions for global asymptotic stability results for neutral-type neural networks with distributed time delays,” Applied Mathematics and Computation, vol. 204, no. 1, pp. 317–324, 2008.
	C. Bai, “Global stability of almost periodic solutions of Hopfield neural networks with neutral time-varying delays,” Applied Mathematics and Computation, vol. 203, no. 1, pp. 72–79, 2008.
	B. Xiao, “Existence and uniqueness of almost periodic solutions for a class of Hopfield neural networks with neutral delays,” Applied Mathematics Letters, vol. 22, no. 4, pp. 528–533, 2009.
	H. Xiang and J. Cao, “Almost periodic solution of Cohen-Grossberg neural networks with bounded and unbounded delays,” Nonlinear Analysis: Real World Applications, vol. 10, no. 4, pp. 2407–2419, 2009.
	K. Wang and Y. Zhu, “Stability of almost periodic solution for a generalized neutral-type neural networks with delays,” Neurocomputing, vol. 73, no. 16–18, pp. 3300–3307, 2010.
	J. Liu and G. Zong, “New delay-dependent asymptotic stability conditions concerning BAM neural networks of neutral type,” Neurocomputing, vol. 72, no. 10–12, pp. 2549–2555, 2009.
	R. Samli and S. Arik, “New results for global stability of a class of neutral-type neural systems with time delays,” Applied Mathematics and Computation, vol. 210, no. 2, pp. 564–570, 2009.
	R. Samidurai, S. M. Anthoni, and K. Balachandran, “Global exponential stability of neutral-type impulsive neural networks with discrete and distributed delays,” Nonlinear Analysis: Hybrid Systems, vol. 4, no. 1, pp. 103–112, 2010.
	R. Rakkiyappan, P. Balasubramaniam, and J. Cao, “Global exponential stability results for neutral-type impulsive neural networks,” Nonlinear Analysis: Real World Applications, vol. 11, no. 1, pp. 122–130, 2010.
	Y. Li, L. Zhao, and X. Chen, “Existence of periodic solutions for neutral type cellular neural networks with delays,” Applied Mathematical Modelling, vol. 36, no. 3, pp. 1173–1183, 2012.
	Y. Li and L. Yang, “Almost periodic solutions for neutral-type BAM neural networks with delays on time scales,” Journal of Applied Mathematics, vol. 2013, Article ID 942309, 13 pages, 2013.
	Y. K. Li and Y. Q. Li, “Existence and exponential stability of almost periodic solution for neutral delay BAM neural networks with time-varying delays in leakage terms,” Journal of the Franklin Institute. Engineering and Applied Mathematics, vol. 350, no. 9, pp. 2808–2825, 2013.
	X. Li and J. Cao, “Delay-dependent stability of neural networks of neutral type with time delay in the leakage term,” Nonlinearity, vol. 23, no. 7, pp. 1709–1726, 2010.
	P. Balasubramaniam, G. Nagamani, and R. Rakkiyappan, “Passivity analysis for neural networks of neutral type with Markovian jumping parameters and time delay in the leakage term,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 11, pp. 4422–4437, 2011.
	A. M. Fink, Almost Periodic Differential Equations, vol. 377 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 1974.
	C. Y. He, Almost Periodic Differential Equations, Higher Education Publishing House, Beijing, China, 1992 (Chinese).
	T. Diagana, Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, Springer, Berlin , Germany, 2013.
	D. Ji and C. Zhang, “Translation invariance of weighted pseudo almost periodic functions and related problems,” Journal of Mathematical Analysis and Applications, vol. 391, no. 2, pp. 350–362, 2012.


EPUB/Navigation/nav.xhtml


		

			

		  1. Introduction

		  2. Assumptions and Preliminaries

		  3. Existence of Weighted Pseudo-Almost Periodic Solution

		  4. Global Exponential Stability of Weighted Pseudo-Almost Periodic Solution

		  5. An Example

		  6. Conclusion

		  References 





EPUB/Content/page-template.xpgt
 

   


     
	 
    

     
	 
    


     
	 
    


     
         
             
             
             
        
    

  




