Abstract and Applied AnalysisVolume 2014 (2014), Article ID 524761, 6 pageshttp://dx.doi.org/10.1155/2014/524761
Research Article
A 
	
		

			𝑘
		

	
-Dimensional System of Fractional Neutral Functional Differential Equations with Bounded Delay
Dumitru Baleanu,1,2,3 Sayyedeh Zahra Nazemi,4 and Shahram Rezapour4
1Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia2Department of Mathematics, Cankaya University, Ogretmenler Caddesi 14, Balgat, 06530 Ankara, Turkey3Institute of Space Sciences,  Magurele, 76900 Bucharest, Romania4Department of Mathematics, Azarbaijan Shahid Madani University, Azarshahr, Tabriz, Iran
Received 6 October 2013; Accepted 15 March 2014; Published  10 April 2014
Academic Editor: M. Mursaleen 
Copyright © 2014 Dumitru Baleanu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract. 

					In 2010, Agarwal et al. studied the existence of a one-dimensional fractional neutral functional differential equation. In this paper, we study an initial value problem for a class of 
	
		

			𝑘
		

	
-dimensional systems of fractional neutral functional differential equations by using Krasnoselskii’s fixed point theorem. In fact, our main result generalizes their main result in a sense.


1. Introduction
As you know, many researchers are interested in developing the theoretical analysis and numerical methods of fractional equations, because different applications of this area have been foundedin various fields of sciences and engineering (see, e.g., [1–37]). In this paper, we investigate the initial value problem of a 
	
		

			𝑘
		

	
-dimensional system of fractional neutral functional differential equations with bounded delay:
						
	
 		
			(
			1
			)
		
 	

	
		

			𝑐
		

		

			𝐷
		

		

			𝛼
		

		

			1
		

		

			
		

		

			𝑥
		

		

			1
		

		

			(
		

		

			𝑡
		

		

			)
		

		
			−
			𝑔
		

		

			1
		

		

			
		

		
			𝑡
			,
			𝐱
		

		

			𝐭
		

		
			
			
		

		
			=
			𝑓
		

		

			1
		

		

			
		

		
			𝑡
			,
			𝐱
		

		

			𝐭
		

		

			
		

		

			,
		

		

			𝑐
		

		

			𝐷
		

		

			𝛼
		

		

			2
		

		

			
		

		

			𝑥
		

		

			2
		

		

			(
		

		

			𝑡
		

		

			)
		

		
			−
			𝑔
		

		

			2
		

		

			
		

		
			𝑡
			,
			𝐱
		

		

			𝐭
		

		
			
			
		

		
			=
			𝑓
		

		

			2
		

		

			
		

		
			𝑡
			,
			𝐱
		

		

			𝐭
		

		

			
		

		

			,
		

		

			⋮
		

		

			𝑐
		

		

			𝐷
		

		

			𝛼
		

		

			𝑘
		

		

			
		

		

			𝑥
		

		

			𝑘
		

		

			(
		

		

			𝑡
		

		

			)
		

		
			−
			𝑔
		

		

			𝑘
		

		

			
		

		
			𝑡
			,
			𝐱
		

		

			𝐭
		

		
			
			
		

		
			=
			𝑓
		

		

			𝑘
		

		

			
		

		
			𝑡
			,
			𝐱
		

		

			𝐭
		

		

			
		

		

			,
		

		

			𝑥
		

		

			1
		

		

			𝑡
		

		

			0
		

		
			=
			𝜙
		

		

			1
		

		
			,
			𝑥
		

		

			2
		

		

			𝑡
		

		

			0
		

		
			=
			𝜙
		

		

			2
		

		
			,
			…
			,
			𝑥
		

		

			𝑘
		

		

			𝑡
		

		

			0
		

		
			=
			𝜙
		

		

			𝑘
		

		

			,
		

	

					where 
	
		

			𝑡
		

		

			0
		

		
			≥
			0
		

	
, 
	
		
			𝑎
			>
			0
		

	
, and 
	
		
			𝑟
			>
			0
		

	
 are constants, 
	
		
			𝑡
			∈
			(
			𝑡
		

		

			0
		

		
			,
			∞
			)
		

	
, 
	
		
			0
			<
			𝛼
		

		

			𝑖
		

		
			<
			1
		

	
, for 
	
		
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
, 
	
		

			𝑐
		

		

			𝐷
		

	
 is the standard Caputo’s fractional derivative, 
	
		

			𝑓
		

		

			𝑖
		

		
			,
			𝑔
		

		

			𝑖
		

		
			∶
			[
			𝑡
		

		

			0
		

		
			,
			∞
			)
			×
			𝐶
			(
			[
			−
			𝑟
			,
			0
			]
			,
			ℝ
		

		

			𝑛
		

		
			)
			×
			𝐶
			(
			[
			−
			𝑟
			,
			0
			]
			,
			ℝ
		

		

			𝑛
		

		
			)
			×
			⋯
			×
			𝐶
			(
			[
			−
			𝑟
			,
			0
			]
			,
			ℝ
		

		

			𝑛
		

		
			)
			→
			ℝ
		

		

			𝑛
		

	
 are given functions 
	
		
			(
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
			)
		

	
 satisfying some assumptions that will be specified later,
	
		

			𝐱
		

		

			𝐭
		

		
			=
			(
			𝑥
		

		

			1
		

		

			𝑡
		

		
			,
			𝑥
		

		

			2
		

		

			𝑡
		

		
			,
			…
			,
			𝑥
		

		

			𝑘
		

		

			𝑡
		

		

			)
		

	
, and 
	
		

			𝜙
		

		

			𝑖
		

		
			∈
			𝐶
			(
			[
			−
			𝑟
			,
			0
			]
			,
			ℝ
		

		

			𝑛
		

		

			)
		

	
 for 
	
		
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
. If 
	
		
			𝑥
			∈
			𝐶
			(
			[
			𝑡
		

		

			0
		

		
			−
			𝑟
			,
			𝑡
		

		

			0
		

		
			+
			𝑎
			]
			,
			ℝ
		

		

			𝑛
		

		

			)
		

	
, then for each 
	
		
			𝑡
			∈
			[
			𝑡
		

		

			0
		

		
			,
			𝑡
		

		

			0
		

		
			+
			𝑎
			]
		

	
 define 
	
		

			𝑥
		

		

			𝑡
		

	
 by 
	
		

			𝑥
		

		

			𝑡
		

		
			(
			𝜃
			)
			=
			𝑥
			(
			𝑡
			+
			𝜃
			)
		

	
 for all 
	
		
			𝜃
			∈
			[
			−
			𝑟
			,
			0
			]
		

	
. One-dimensional version of the problem has been studied by Agarwal et al. (see [4]). We show that the problem (1) is equivalent to an integral equation and by using Krasnoselskii's fixed point theorem, we conclude that the equivalent operator has (at least) a fixed point. This implies that the problem (1) has at least one solution. One can find the following lemma in [38].
Lemma 1 (Krasnoselskii’s fixed point theorem).  Let 
	
		

			𝑋
		

	
 be a Banach space and 
	
		

			𝐸
		

	
 a closed convex subset of 
	
		

			𝑋
		

	
. Suppose that 
	
		

			𝑆
		

	
 and 
	
		

			𝑈
		

	
 are two maps of 
	
		

			𝐸
		

	
 into 
	
		

			𝑋
		

	
 such that 
	
		
			𝑆
			𝑥
			+
			𝑈
			𝑦
			∈
			𝐸
		

	
 for all 
	
		
			𝑥
			,
			𝑦
			∈
			𝐸
		

	
. If 
	
		

			𝑆
		

	
 is a contraction and 
	
		

			𝑈
		

	
 is completely continuous, then the equation 
	
		
			𝑆
			𝑥
			+
			𝑈
			𝑥
			=
			𝑥
		

	
 has a solution on 
	
		

			𝐸
		

	
.
Let 
	
		

			𝐼
		

	
 be an interval in 
	
		

			ℝ
		

	
 and 
	
		
			𝑋
			=
			𝐶
			(
			𝐼
			,
			ℝ
		

		

			𝑛
		

		

			)
		

	
 with the norm 
	
		
			‖
			𝑥
			‖
			=
			s
			u
			p
		

		
			𝑡
			∈
			𝐼
		

		
			|
			𝑥
			(
			𝑡
			)
			|
		

	
, where 
	
		
			|
			⋅
			|
		

	
 denotes a suitable complete norm on 
	
		

			ℝ
		

		

			𝑛
		

	
. Consider the product Banach space 
	
		
			(
			𝑋
		

		

			𝑘
		

		
			=
			𝑋
			×
			𝑋
			×
			⋯
			×
			𝑋
		

		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

		

			𝑘
		

		
			,
			‖
			⋅
			‖
		

		

			∗
		

		

			)
		

	
 with the norm 
	
		
			‖
			(
			𝑥
		

		

			1
		

		
			,
			𝑥
		

		

			2
		

		
			,
			…
			,
			𝑥
		

		

			𝑘
		

		
			)
			‖
		

		

			∗
		

		
			=
			m
			a
			x
			{
			‖
			𝑥
		

		

			1
		

		
			‖
			,
			‖
			𝑥
		

		

			2
		

		
			‖
			,
			…
			,
			‖
			𝑥
		

		

			𝑘
		

		
			‖
			}
		

	
. The fractional integral of order 
	
		

			𝑞
		

	
 with the lower limit 
	
		

			𝑡
		

		

			0
		

	
 for a function 
	
		

			𝑓
		

	
 is defined by 
	
		

			𝐼
		

		

			𝑞
		

		
			𝑓
			(
			𝑡
			)
			=
			(
			1
			/
			Γ
			(
			𝑞
			)
			)
		

		

			∫
		

		

			𝑡
		

		

			𝑡
		

		

			0
		

		
			(
			𝑓
			(
			𝑠
			)
			/
			(
			𝑡
			−
			𝑠
			)
		

		
			1
			−
			𝑞
		

		
			)
			𝑑
			𝑠
		

	
 for 
	
		
			𝑡
			>
			𝑡
		

		

			0
		

	
 and 
	
		
			𝑞
			>
			0
		

	
, provided the right-hand side is pointwise defined on 
	
		
			[
			𝑡
		

		

			0
		

		
			,
			∞
			)
		

	
. Here, 
	
		

			Γ
		

	
 is the gamma function. Also, Caputo’s derivative of order 
	
		

			𝑞
		

	
 with the lower limit 
	
		

			𝑡
		

		

			0
		

	
 for a function 
	
		
			𝑓
			∶
			[
			𝑡
		

		

			0
		

		
			,
			∞
			)
			→
			ℝ
		

	
 is defined by
						
	
 		
			(
			2
			)
		
 	

	
		

			𝑐
		

		

			𝐷
		

		

			𝑞
		

		

			𝑓
		

		

			(
		

		

			𝑡
		

		

			)
		

		

			=
		

		

			1
		

		
			
		
		

			Γ
		

		

			(
		

		
			𝑛
			−
			𝑞
		

		

			)
		

		

			
		

		

			𝑡
		

		

			𝑡
		

		

			0
		

		

			𝑓
		

		
			(
			𝑛
			)
		

		

			(
		

		

			𝑠
		

		

			)
		

		
			
		
		

			(
		

		
			𝑡
			−
			𝑠
		

		

			)
		

		
			𝑞
			+
			1
			−
			𝑛
		

		
			𝑑
			𝑠
			=
			𝐼
		

		
			𝑛
			−
			𝑞
		

		

			𝑓
		

		
			(
			𝑛
			)
		

		

			(
		

		

			𝑡
		

		

			)
		

	

					for 
	
		
			𝑡
			>
			𝑡
		

		

			0
		

	
 and 
	
		
			𝑛
			−
			1
			<
			𝑞
			<
			𝑛
		

	
 ([34]).
2. Main Results
Consider the problem (1). Let 
	
		

			𝛿
		

	
 and 
	
		

			𝛾
		

	
 be positive constants, 
	
		

			𝐼
		

		

			0
		

		
			=
			[
			𝑡
		

		

			0
		

		
			,
			𝑡
		

		

			0
		

		
			+
			𝛿
			]
		

	
, and
						
	
 		
			(
			3
			)
		
 	

	
		

			𝐴
		

		

			(
		

		
			𝛿
			,
			𝛾
		

		

			)
		

		

			=
		

		

			
		

		

			
		

		

			𝑥
		

		

			1
		

		
			,
			𝑥
		

		

			2
		

		
			,
			…
			,
			𝑥
		

		

			𝑘
		

		

			
		

		
			∶
			𝑥
		

		

			𝑖
		

		

			𝑡
		

		

			0
		

		
			=
			𝜙
		

		

			𝑖
		

		

			,
		

		
			s
			u
			p
		

		

			𝑡
		

		

			0
		

		
			≤
			𝑡
			≤
			𝑡
		

		

			0
		

		
			+
			𝛿
		

		

			|
		

		

			|
		

		

			𝑥
		

		

			𝑖
		

		

			(
		

		

			𝑡
		

		

			)
		

		
			−
			𝜙
		

		

			𝑖
		

		

			(
		

		

			0
		

		

			)
		

		

			|
		

		

			|
		

		
			≤
			𝛾
			,
			∀
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

		

			
		

		

			,
		

	

					where 
	
		

			𝑥
		

		

			𝑖
		

		
			∈
			𝐶
			(
			[
			𝑡
		

		

			0
		

		
			−
			𝑟
			,
			𝑡
		

		

			0
		

		
			+
			𝛿
			]
			,
			ℝ
		

		

			𝑛
		

		

			)
		

	
. For obtaining our results, we need the following conditions:(H1)
	
		

			𝑓
		

		

			𝑖
		

		
			(
			𝑡
			,
			𝜑
		

		

			1
		

		
			,
			𝜑
		

		

			2
		

		
			,
			…
			,
			𝜑
		

		

			𝑘
		

		

			)
		

	
 is measurable with respect to 
	
		

			𝑡
		

	
 on 
	
		

			𝐼
		

		

			0
		

	
 for all 
	
		
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
,(H2)
	
		

			𝑓
		

		

			𝑖
		

		
			(
			𝑡
			,
			𝜑
		

		

			1
		

		
			,
			𝜑
		

		

			2
		

		
			,
			…
			,
			𝜑
		

		

			𝑘
		

		

			)
		

	
 is continuous with respect to 
	
		

			𝜑
		

		

			𝑗
		

	
 on 
	
		
			𝐶
			(
			[
			−
			𝑟
			,
			0
			]
			,
			ℝ
		

		

			𝑛
		

		

			)
		

	
 for all 
	
		
			𝑖
			,
			𝑗
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
,(H3)there exist 
	
		

			𝛼
		

		
			𝑖
			1
		

		
			∈
			(
			0
			,
			𝛼
		

		

			𝑖
		

		

			)
		

	
 and a real-valued function 
	
		

			𝑚
		

		

			𝑖
		

		
			(
			𝑡
			)
			∈
			𝐿
		

		
			1
			/
			𝛼
		

		
			𝑖
			1
		

		
			(
			𝐼
		

		

			0
		

		

			)
		

	
 such that
									
	
 		
			(
			4
			)
		
 	

	
		

			|
		

		

			|
		

		

			𝑓
		

		

			𝑖
		

		

			
		

		
			𝑡
			,
			𝐱
		

		

			𝐭
		

		

			
		

		

			|
		

		

			|
		

		
			≤
			𝑚
		

		

			𝑖
		

		

			(
		

		

			𝑡
		

		

			)
		

	

								for all 
	
		
			(
			𝑥
		

		

			1
		

		
			,
			𝑥
		

		

			2
		

		
			,
			…
			,
			𝑥
		

		

			𝑘
		

		
			)
			∈
			𝐴
			(
			𝛿
			,
			𝛾
			)
		

	
, 
	
		
			𝑡
			∈
			𝐼
		

		

			0
		

	
, and 
	
		
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
,(H4)
	
		

			𝑔
		

		

			𝑖
		

		
			(
			𝑡
			,
			𝐱
		

		

			𝐭
		

		
			)
			=
			𝑔
		

		
			𝑖
			1
		

		
			(
			𝑡
			,
			𝐱
		

		

			𝐭
		

		
			)
			+
			𝑔
		

		
			𝑖
			2
		

		
			(
			𝑡
			,
			𝐱
		

		

			𝐭
		

		

			)
		

	
 for all 
	
		
			(
			𝑥
		

		

			1
		

		
			,
			𝑥
		

		

			2
		

		
			,
			…
			,
			𝑥
		

		

			𝑘
		

		
			)
			∈
			𝐴
			(
			𝛿
			,
			𝛾
			)
		

	
,(H5)
	
		

			𝑔
		

		
			𝑖
			1
		

	
 is continuous and
									
	
 		
			(
			5
			)
		
 	

	
		

			|
		

		

			|
		

		

			𝑔
		

		
			𝑖
			1
		

		

			
		

		
			𝑡
			,
			𝐱
		

		

			𝐭
		

		

			
		

		
			−
			𝑔
		

		
			𝑖
			1
		

		

			
		

		
			𝑡
			,
			𝐲
		

		

			𝐭
		

		

			
		

		

			|
		

		

			|
		

		
			≤
			𝑙
		

		

			𝑖
		

		

			‖
		

		
			𝑥
			−
			𝑦
		

		

			‖
		

		

			∗
		

	

								for all 
	
		
			𝑥
			=
			(
			𝑥
		

		

			1
		

		
			,
			𝑥
		

		

			2
		

		
			,
			…
			,
			𝑥
		

		

			𝑘
		

		
			)
			,
			𝑦
			=
			(
			𝑦
		

		

			1
		

		
			,
			𝑦
		

		

			2
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		
			)
			∈
			𝐴
			(
			𝛿
			,
			𝛾
			)
		

	
, and 
	
		
			𝑡
			∈
			𝐼
		

		

			0
		

	
, where 
	
		

			𝑙
		

		

			𝑖
		

		
			∈
			(
			0
			,
			1
			)
		

	
 is a constant, for all 
	
		
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
,(H6)
	
		

			𝑔
		

		
			𝑖
			2
		

	
 is completely continuous and the family 
	
		
			{
			𝑡
			⊢
			𝑔
		

		
			𝑖
			2
		

		
			(
			𝑡
			,
			𝐱
		

		

			𝐭
		

		
			)
			∶
			(
			𝑥
		

		

			1
		

		
			,
			𝑥
		

		

			2
		

		
			,
			…
			,
			𝑥
		

		

			𝑘
		

		
			)
			∈
			Λ
			}
		

	
 is equicontinuous on 
	
		
			𝐶
			(
			𝐼
		

		

			0
		

		
			,
			ℝ
		

		

			𝑛
		

		
			)
			×
			𝐶
			(
			𝐼
		

		

			0
		

		
			,
			ℝ
		

		

			𝑛
		

		
			)
			×
			⋯
			×
			𝐶
			(
			𝐼
		

		

			0
		

		
			,
			ℝ
		

		

			𝑛
		

		

			)
		

		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

		

			𝑘
		

	
 for all bounded set 
	
		

			Λ
		

	
 in 
	
		
			𝐴
			(
			𝛿
			,
			𝜆
			)
		

	
 and 
	
		
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
.
Lemma 2.  Suppose that there exist 
	
		
			𝛿
			∈
			(
			0
			,
			𝑎
			)
		

	
 and 
	
		
			𝛾
			∈
			(
			0
			,
			∞
			)
		

	
 such that 
	
		
			(
			𝐻
		

		

			1
		

		

			)
		

		
			-
			-
		

		
			(
			𝐻
		

		

			3
		

		

			)
		

	
 hold. Then the problem (1) for 
	
		
			𝑡
			∈
			(
			𝑡
		

		

			0
		

		
			,
			𝑡
		

		

			0
		

		
			+
			𝛿
			]
		

	
 is equivalent to the equation
							
	
		

			𝑥
		

		

			𝑖
		

		

			(
		

		

			𝑡
		

		

			)
		

		
			=
			𝜙
		

		

			𝑖
		

		

			(
		

		

			0
		

		

			)
		

		
			−
			𝑔
		

		

			𝑖
		

		

			
		

		

			𝑡
		

		

			0
		

		
			,
			𝜙
		

		

			1
		

		
			,
			𝜙
		

		

			2
		

		
			,
			…
			,
			𝜙
		

		

			𝑘
		

		

			
		

		
			+
			𝑔
		

		

			𝑖
		

		

			
		

		
			𝑡
			,
			𝐱
		

		

			𝐭
		

		

			
		

		

			+
		

		

			1
		

		
			
		
		

			Γ
		

		

			
		

		

			𝛼
		

		

			𝑖
		

		

			
		

		

			
		

		

			𝑡
		

		

			𝑡
		

		

			0
		

		

			(
		

		
			𝑡
			−
			𝑠
		

		

			)
		

		

			𝛼
		

		

			𝑖
		

		
			−
			1
		

		

			𝑓
		

		

			𝑖
		

		

			
		

		
			𝑠
			,
			𝐱
		

		

			𝐬
		

		

			
		

		
			𝑑
			𝑠
		

		

			(
		

		

			∗
		

		

			)
		

	

	
		

			𝑥
		

		

			𝑖
		

		

			(
		

		

			𝑡
		

		

			)
		

		
			=
			𝜙
		

		

			𝑖
		

		

			(
		

		

			0
		

		

			)
		

		
			−
			𝑔
		

		

			𝑖
		

		

			
		

		

			𝑡
		

		

			0
		

		
			,
			𝜙
		

		

			1
		

		
			,
			𝜙
		

		

			2
		

		
			,
			…
			,
			𝜙
		

		

			𝑘
		

		

			
		

		
			+
			𝑔
		

		

			𝑖
		

		

			
		

		
			𝑡
			,
			𝐱
		

		

			𝐭
		

		

			
		

		

			+
		

		

			1
		

		
			
		
		

			Γ
		

		

			
		

		

			𝛼
		

		

			𝑖
		

		

			
		

		

			
		

		

			𝑡
		

		

			𝑡
		

		

			0
		

		

			(
		

		
			𝑡
			−
			𝑠
		

		

			)
		

		

			𝛼
		

		

			𝑖
		

		
			−
			1
		

		

			𝑓
		

		

			𝑖
		

		

			
		

		
			𝑠
			,
			𝐱
		

		

			𝐬
		

		

			
		

		
			𝑑
			𝑠
		

	

						with conditions 
	
		

			𝑥
		

		

			𝑖
		

		

			𝑡
		

		

			0
		

		
			=
			𝜙
		

		

			𝑖
		

	
 for 
	
		
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
 and 
	
		

			t
		

		
			∈
			𝐼
		

		

			0
		

	
.
Proof. It is easy to see that 
	
		

			𝑓
		

		

			𝑖
		

		
			(
			𝑡
			,
			𝐱
		

		

			𝐭
		

		

			)
		

	
 is Lebesgue measurable on 
	
		

			𝐼
		

		

			0
		

	
 by using conditions (H1) and (H2) for all 
	
		
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
. Also, a direct calculation shows that 
	
		
			(
			𝑡
			−
			𝑠
			)
		

		

			𝛼
		

		

			𝑖
		

		
			−
			1
		

		
			∈
			𝐿
		

		
			1
			/
			(
			1
			−
			𝛼
		

		
			𝑖
			1
		

		

			)
		

		
			(
			[
			𝑡
		

		

			0
		

		
			,
			𝑡
			]
			)
		

	
 for 
	
		
			𝑡
			∈
			𝐼
		

		

			0
		

	
. By using Holder's inequality and condition (H3), we get that 
	
		
			(
			𝑡
			−
			𝑠
			)
		

		

			𝛼
		

		

			𝑖
		

		
			−
			1
		

		

			𝑓
		

		

			𝑖
		

		
			(
			𝑠
			,
			𝐱
		

		

			𝐬
		

		

			)
		

	
 is Lebesgue integrable with respect to 
	
		
			𝑠
			∈
			[
			𝑡
		

		

			0
		

		
			,
			𝑡
			]
		

	
 for all 
	
		
			𝑡
			∈
			𝐼
		

		

			0
		

	
, 
	
		
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
, and 
	
		
			(
			𝑥
		

		

			1
		

		
			,
			𝑥
		

		

			2
		

		
			,
			…
			,
			𝑥
		

		

			𝑘
		

		
			)
			∈
			𝐴
			(
			𝛿
			,
			𝛾
			)
		

	
, and
							
	
 		
			(
			6
			)
		
 	

	
		

			
		

		

			𝑡
		

		

			𝑡
		

		

			0
		

		

			|
		

		

			|
		

		

			(
		

		
			𝑡
			−
			𝑠
		

		

			)
		

		

			𝛼
		

		

			𝑖
		

		
			−
			1
		

		

			𝑓
		

		

			𝑖
		

		

			
		

		
			𝑠
			,
			𝐱
		

		

			𝐬
		

		

			
		

		

			|
		

		

			|
		

		
			𝑑
			𝑠
		

		

			≤
		

		

			‖
		

		

			‖
		

		

			(
		

		
			𝑡
			−
			𝑠
		

		

			)
		

		

			𝛼
		

		

			𝑖
		

		
			−
			1
		

		

			‖
		

		

			‖
		

		

			𝐿
		

		
			1
			/
			(
			1
			−
			𝛼
		

		
			𝑖
			1
		

		

			)
		

		
			(
			[
			𝑡
		

		

			0
		

		
			,
			𝑡
			]
			)
		

		

			‖
		

		

			‖
		

		

			𝑚
		

		

			𝑖
		

		

			‖
		

		

			‖
		

		

			𝐿
		

		
			1
			/
			𝛼
		

		
			𝑖
			1
		

		
			(
			𝐼
		

		

			0
		

		

			)
		

		

			.
		

	

						It is easy to see that if 
	
		
			𝑥
			=
			(
			𝑥
		

		

			1
		

		
			,
			𝑥
		

		

			2
		

		
			,
			…
			,
			𝑥
		

		

			𝑘
		

		

			)
		

	
 is a solution of the problem (1), then 
	
		

			𝑥
		

	
 is a solution of 
	
		

			(
		

		

			∗
		

		

			)
		

	
. Now, suppose that 
	
		
			𝑥
			=
			(
			𝑥
		

		

			1
		

		
			,
			𝑥
		

		

			2
		

		
			,
			…
			,
			𝑥
		

		

			𝑘
		

		

			)
		

	
 is a solution of the equation 
	
		

			(
		

		

			∗
		

		

			)
		

	
 and 
	
		
			𝑡
			∈
			(
			𝑡
		

		

			0
		

		
			,
			𝑡
		

		

			0
		

		
			+
			𝛿
			]
		

	
. Then 
	
		

			𝑥
		

		

			𝑖
		

		

			𝑡
		

		

			0
		

		
			=
			𝜙
		

		

			𝑖
		

	
 and 
	
		

			𝑐
		

		

			𝐷
		

		

			𝛼
		

		

			𝑖
		

		
			(
			𝑥
		

		

			𝑖
		

		
			(
			𝑡
			)
			−
			𝑔
		

		

			𝑖
		

		
			(
			𝑡
			,
			𝐱
		

		

			𝐭
		

		
			)
			)
			=
			𝑓
		

		

			𝑖
		

		
			(
			𝑡
			,
			𝐱
		

		

			𝐭
		

		

			)
		

	
 for all 
	
		
			𝑡
			∈
			(
			𝑡
		

		

			0
		

		
			,
			𝑡
		

		

			0
		

		
			+
			𝛿
			]
		

	
 and 
	
		
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
. Thus, 
	
		
			𝑥
			=
			(
			𝑥
		

		

			1
		

		
			,
			𝑥
		

		

			2
		

		
			,
			…
			,
			𝑥
		

		

			𝑘
		

		

			)
		

	
 is a solution of the problem (1). This completes the proof.
Theorem 3.  Suppose that there exist 
	
		
			𝛿
			∈
			(
			0
			,
			𝑎
			)
		

	
 and 
	
		
			𝛾
			∈
			(
			0
			,
			∞
			)
		

	
 such that 
	
		
			(
			𝐻
		

		

			1
		

		

			)
		

		
			-
			-
		

		
			(
			𝐻
		

		

			6
		

		

			)
		

	
 hold. Then the problem (1) has at least one solution on 
	
		
			[
			𝑡
		

		

			0
		

		
			,
			𝑡
		

		

			0
		

		
			+
			𝜂
			]
		

	
 for some positive number 
	
		

			𝜂
		

	
.
Proof. Since condition (H4) holds, the equation 
	
		

			(
		

		

			∗
		

		

			)
		

	
 is equivalent to the equation
							
	
 		
			(
			7
			)
		
 	

	
		

			𝑥
		

		

			𝑖
		

		

			(
		

		

			𝑡
		

		

			)
		

		
			=
			𝜙
		

		

			𝑖
		

		

			(
		

		

			0
		

		

			)
		

		
			−
			𝑔
		

		
			𝑖
			1
		

		

			
		

		

			𝑡
		

		

			0
		

		
			,
			𝜙
		

		

			1
		

		
			,
			𝜙
		

		

			2
		

		
			,
			…
			,
			𝜙
		

		

			𝑘
		

		

			
		

		
			−
			𝑔
		

		
			𝑖
			2
		

		

			
		

		

			𝑡
		

		

			0
		

		
			,
			𝜙
		

		

			1
		

		
			,
			𝜙
		

		

			2
		

		
			,
			…
			,
			𝜙
		

		

			𝑘
		

		

			
		

		
			+
			𝑔
		

		
			𝑖
			1
		

		

			
		

		
			𝑡
			,
			𝐱
		

		

			𝐭
		

		

			
		

		
			+
			𝑔
		

		
			𝑖
			2
		

		

			
		

		
			𝑡
			,
			𝐱
		

		

			𝐭
		

		

			
		

		

			+
		

		

			1
		

		
			
		
		

			Γ
		

		

			
		

		

			𝛼
		

		

			𝑖
		

		

			
		

		

			
		

		

			𝑡
		

		

			𝑡
		

		

			0
		

		

			(
		

		
			𝑡
			−
			𝑠
		

		

			)
		

		

			𝛼
		

		

			𝑖
		

		
			−
			1
		

		

			𝑓
		

		

			𝑖
		

		

			
		

		
			𝑠
			,
			𝐱
		

		

			𝐬
		

		

			
		

		
			𝑑
			𝑠
		

	

						and 
	
		

			𝑥
		

		

			𝑖
		

		

			𝑡
		

		

			0
		

		
			=
			𝜙
		

		

			𝑖
		

	
 for all 
	
		
			𝑡
			∈
			𝐼
		

		

			0
		

	
 and 
	
		
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
. Let 
	
		

			(
		

		

			∼
		

		

			𝜙
		

		

			1
		

		

			,
		

		

			∼
		

		

			𝜙
		

		

			2
		

		
			,
			…
			,
		

		

			∼
		

		

			𝜙
		

		

			𝑘
		

		
			)
			∈
			𝐴
			(
			𝛿
			,
			𝛾
			)
		

	
 be defined by 
	
		

			∼
		

		

			𝜙
		

		

			𝑖
		

		

			𝑡
		

		

			0
		

		
			=
			𝜙
		

		

			𝑖
		

	
 and 
	
		

			∼
		

		

			𝜙
		

		

			𝑖
		

		
			(
			𝑡
		

		

			0
		

		
			+
			𝑡
			)
			=
			𝜙
		

		

			𝑖
		

		
			(
			0
			)
		

	
 for all 
	
		
			𝑡
			∈
			[
			0
			,
			𝛿
			]
		

	
 and 
	
		
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
. If 
	
		
			𝑥
			=
			(
			𝑥
		

		

			1
		

		
			,
			𝑥
		

		

			2
		

		
			,
			…
			,
			𝑥
		

		

			𝑘
		

		

			)
		

	
 is a solution of problem (1) and 
	
		

			𝑥
		

		

			𝑖
		

		
			(
			𝑡
		

		

			0
		

		
			+
			𝑡
			)
			=
		

		

			∼
		

		

			𝜙
		

		

			𝑖
		

		
			(
			𝑡
		

		

			0
		

		
			+
			𝑡
			)
			+
			𝑦
		

		

			𝑖
		

		
			(
			𝑡
			)
		

	
 for 
	
		
			𝑡
			∈
			[
			−
			𝑟
			,
			𝛿
			]
		

	
 and 
	
		
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
, then 
	
		

			𝑥
		

		

			𝑖
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		

			=
		

		

			∼
		

		

			𝜙
		

		

			𝑖
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		
			+
			𝑦
		

		

			𝑖
		

		

			𝑡
		

	
 for 
	
		
			𝑡
			∈
			[
			0
			,
			𝛿
			]
		

	
 and 
	
		
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
. Thus,
							
	
		

			𝑦
		

		

			𝑖
		

		

			(
		

		

			𝑡
		

		

			)
		

		
			=
			−
			𝑔
		

		
			𝑖
			1
		

		

			
		

		

			𝑡
		

		

			0
		

		
			,
			𝜙
		

		

			1
		

		
			,
			𝜙
		

		

			2
		

		
			,
			…
			,
			𝜙
		

		

			𝑘
		

		

			
		

		
			−
			𝑔
		

		
			𝑖
			2
		

		

			
		

		

			𝑡
		

		

			0
		

		
			,
			𝜙
		

		

			1
		

		
			,
			𝜙
		

		

			2
		

		
			,
			…
			,
			𝜙
		

		

			𝑘
		

		

			
		

		
			+
			𝑔
		

		
			𝑖
			1
		

		

			
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
			,
			𝑦
		

		

			1
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			1
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		
			,
			𝑦
		

		

			2
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			2
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			𝑘
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		

			
		

		
			+
			𝑔
		

		
			𝑖
			2
		

		

			
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
			,
			𝑦
		

		

			1
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			1
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		
			,
			𝑦
		

		

			2
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			2
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			𝑘
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		

			
		

		

			+
		

		

			1
		

		
			
		
		

			Γ
		

		

			
		

		

			𝛼
		

		

			𝑖
		

		

			
		

		

			
		

		

			𝑡
		

		

			0
		

		

			(
		

		
			𝑡
			−
			𝑠
		

		

			)
		

		

			𝛼
		

		

			𝑖
		

		
			−
			1
		

		

			𝑓
		

		

			𝑖
		

		

			
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
			,
			𝑦
		

		

			1
		

		

			𝑠
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			1
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
		

		
			,
			𝑦
		

		

			2
		

		

			𝑠
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			2
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		

			𝑠
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			𝑘
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
		

		

			
		

		
			𝑑
			𝑠
		

		

			(
		

		
			∗
			∗
		

		

			)
		

	

	
		

			𝑦
		

		

			𝑖
		

		

			(
		

		

			𝑡
		

		

			)
		

		
			=
			−
			𝑔
		

		
			𝑖
			1
		

		

			
		

		

			𝑡
		

		

			0
		

		
			,
			𝜙
		

		

			1
		

		
			,
			𝜙
		

		

			2
		

		
			,
			…
			,
			𝜙
		

		

			𝑘
		

		

			
		

		
			−
			𝑔
		

		
			𝑖
			2
		

		

			
		

		

			𝑡
		

		

			0
		

		
			,
			𝜙
		

		

			1
		

		
			,
			𝜙
		

		

			2
		

		
			,
			…
			,
			𝜙
		

		

			𝑘
		

		

			
		

		
			+
			𝑔
		

		
			𝑖
			1
		

		

			
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
			,
			𝑦
		

		

			1
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			1
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		
			,
			𝑦
		

		

			2
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			2
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			𝑘
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		

			
		

		
			+
			𝑔
		

		
			𝑖
			2
		

		

			
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
			,
			𝑦
		

		

			1
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			1
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		
			,
			𝑦
		

		

			2
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			2
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			𝑘
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		

			
		

		

			+
		

		

			1
		

		
			
		
		

			Γ
		

		

			
		

		

			𝛼
		

		

			𝑖
		

		

			
		

		

			
		

		

			𝑡
		

		

			0
		

		

			(
		

		
			𝑡
			−
			𝑠
		

		

			)
		

		

			𝛼
		

		

			𝑖
		

		
			−
			1
		

		

			𝑓
		

		

			𝑖
		

		

			
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
			,
			𝑦
		

		

			1
		

		

			𝑠
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			1
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
		

		
			,
			𝑦
		

		

			2
		

		

			𝑠
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			2
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		

			𝑠
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			𝑘
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
		

		

			
		

		
			𝑑
			𝑠
		

	

						for 
	
		
			𝑡
			∈
			[
			0
			,
			𝛿
			]
		

	
 and 
	
		
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
. Since 
	
		

			𝑔
		

		
			𝑖
			1
		

	
, 
	
		

			𝑔
		

		
			𝑖
			2
		

	
 are continuous and 
	
		

			𝑥
		

		

			𝑖
		

		

			𝑡
		

	
 is continuous in 
	
		

			𝑡
		

	
 for all 
	
		
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
, there exists 
	
		

			𝛿
		

		

			
		

		
			>
			0
		

	
 such that 
	
		
			|
			𝑔
		

		
			𝑖
			1
		

		
			(
			𝑡
		

		

			0
		

		
			+
			𝑡
			,
			𝑦
		

		

			1
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			1
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		
			,
			𝑦
		

		

			2
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			2
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			𝑘
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		
			)
			−
			𝑔
		

		
			𝑖
			1
		

		
			(
			𝑡
		

		

			0
		

		
			,
			𝜙
		

		

			1
		

		
			,
			𝜙
		

		

			2
		

		
			,
			…
			,
			𝜙
		

		

			𝑘
		

		
			)
			|
			<
			𝛾
			/
			3
		

	
 and 
	
		
			|
			𝑔
		

		
			𝑖
			2
		

		
			(
			𝑡
		

		

			0
		

		
			+
			𝑡
			,
			𝑦
		

		

			1
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			1
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		
			,
			𝑦
		

		

			2
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			2
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			𝑘
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		
			)
			−
			𝑔
		

		
			𝑖
			2
		

		
			(
			𝑡
		

		

			0
		

		
			,
			𝜙
		

		

			1
		

		
			,
			𝜙
		

		

			2
		

		
			,
			…
			,
			𝜙
		

		

			𝑘
		

		
			)
			|
			<
			𝛾
			/
			3
		

	
 for 
	
		
			0
			<
			𝑡
			<
			𝛿
		

		

			
		

	
 and 
	
		
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
. Put 
	
		
			𝜂
			=
			m
			i
			n
		

		
			1
			≤
			𝑖
			≤
			𝑘
		

		
			{
			𝛿
			,
			𝛿
		

		

			
		

		
			,
			(
			𝛾
			Γ
			(
			𝛼
		

		

			𝑖
		

		
			)
			(
			1
			+
			𝛽
		

		

			𝑖
		

		

			)
		

		
			1
			−
			𝛼
		

		
			𝑖
			1
		

		
			/
			3
			𝑀
		

		

			𝑖
		

		

			)
		

		
			1
			/
			(
			1
			+
			𝛽
		

		

			𝑖
		

		
			)
			(
			1
			−
			𝛼
		

		
			𝑖
			1
		

		

			)
		

		

			}
		

	
, where 
	
		

			𝛽
		

		

			𝑖
		

		
			=
			(
			𝛼
		

		

			𝑖
		

		
			−
			1
			)
			/
			(
			1
			−
			𝛼
		

		
			𝑖
			1
		

		
			)
			∈
			(
			−
			1
			,
			0
			)
		

	
 and 
	
		

			𝑀
		

		

			𝑖
		

		
			=
			‖
			𝑚
		

		

			𝑖
		

		

			‖
		

		

			𝐿
		

		
			1
			/
			𝛼
		

		
			𝑖
			1
		

		
			(
			𝐼
		

		

			0
		

		

			)
		

	
 for all 
	
		
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
. Define
							
	
 		
			(
			8
			)
		
 	

	
		

			𝐸
		

		

			(
		

		
			𝜂
			,
			𝛾
		

		

			)
		

		

			=
		

		
			
			
		

		

			𝑦
		

		

			1
		

		
			,
			𝑦
		

		

			2
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		

			
		

		
			∶
			𝑦
		

		

			𝑖
		

		
			∈
			𝐶
		

		

			(
		

		

			[
		

		
			−
			𝑟
			,
			𝜂
		

		

			]
		

		
			,
			ℝ
		

		

			𝑛
		

		

			)
		

		
			,
			𝑦
		

		

			𝑖
		

		

			(
		

		

			𝑠
		

		

			)
		

		
			=
			0
			,
		

		

			‖
		

		

			‖
		

		

			𝑦
		

		

			𝑖
		

		

			‖
		

		

			‖
		

		
			≤
			𝛾
		

		
			f
			o
			r
		

		
			𝑠
			∈
		

		

			[
		

		
			−
			𝑟
			,
			0
		

		

			]
		

		
			,
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

		

			
		

		

			.
		

	

						In fact, 
	
		
			𝐸
			(
			𝜂
			,
			𝛾
			)
		

	
 is a closed, bounded, and convex subset of 
	
		
			𝐶
			(
			[
			−
			𝑟
			,
			𝜂
			]
			,
			ℝ
		

		

			𝑛
		

		
			)
			×
			𝐶
			(
			[
			−
			𝑟
			,
			𝜂
			]
			,
			ℝ
		

		

			𝑛
		

		
			)
			×
			⋯
			×
			𝐶
			(
			[
			−
			𝑟
			,
			𝜂
			]
			,
			ℝ
		

		

			𝑛
		

		

			)
		

	
. Define the operators 
	
		

			𝑆
		

	
 and 
	
		

			𝑈
		

	
 on 
	
		
			𝐸
			(
			𝜂
			,
			𝛾
			)
		

	
 by
							
	
 		
			(
			9
			)
		
 	

	
		

			𝑆
		

		

			
		

		

			𝑦
		

		

			1
		

		
			,
			𝑦
		

		

			2
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		

			
		

		

			(
		

		

			𝑡
		

		

			)
		

		

			=
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			𝑆
		

		

			1
		

		

			
		

		

			𝑦
		

		

			1
		

		
			,
			𝑦
		

		

			2
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		

			
		

		

			(
		

		

			𝑡
		

		

			)
		

		

			𝑆
		

		

			2
		

		

			
		

		

			𝑦
		

		

			1
		

		
			,
			𝑦
		

		

			2
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		

			
		

		

			(
		

		

			𝑡
		

		

			)
		

		

			⋮
		

		

			𝑆
		

		

			𝑘
		

		

			
		

		

			𝑦
		

		

			1
		

		
			,
			𝑦
		

		

			2
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		

			
		

		

			(
		

		

			𝑡
		

		

			)
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			,
		

		

			𝑈
		

		

			
		

		

			𝑦
		

		

			1
		

		
			,
			𝑦
		

		

			2
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		

			
		

		

			(
		

		

			𝑡
		

		

			)
		

		

			=
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			𝑈
		

		

			1
		

		

			
		

		

			𝑦
		

		

			1
		

		
			,
			𝑦
		

		

			2
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		

			
		

		

			(
		

		

			𝑡
		

		

			)
		

		

			𝑈
		

		

			2
		

		

			
		

		

			𝑦
		

		

			1
		

		
			,
			𝑦
		

		

			2
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		

			
		

		

			(
		

		

			𝑡
		

		

			)
		

		

			⋮
		

		

			𝑈
		

		

			𝑘
		

		

			
		

		

			𝑦
		

		

			1
		

		
			,
			𝑦
		

		

			2
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		

			
		

		

			(
		

		

			𝑡
		

		

			)
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			,
		

	

						where
							
	
 		
			(
			1
			0
			)
		
 	

	
		

			𝑆
		

		

			𝑖
		

		

			
		

		

			𝑦
		

		

			1
		

		
			,
			𝑦
		

		

			2
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		

			
		

		

			(
		

		

			𝑡
		

		

			)
		

		

			=
		

		

			⎧
		

		

			⎪
		

		

			⎪
		

		

			⎪
		

		

			⎨
		

		

			⎪
		

		

			⎪
		

		

			⎪
		

		

			⎩
		

		
			0
			𝑡
			∈
		

		

			[
		

		
			−
			𝑟
			,
			0
		

		

			]
		

		

			,
		

		
			−
			𝑔
		

		
			𝑖
			1
		

		

			
		

		

			𝑡
		

		

			0
		

		
			,
			𝜙
		

		

			1
		

		
			,
			𝜙
		

		

			2
		

		
			,
			…
			,
			𝜙
		

		

			𝑘
		

		

			
		

		
			+
			𝑔
		

		
			𝑖
			1
		

		

			
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
			,
			𝑦
		

		

			1
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			1
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		
			,
			𝑦
		

		

			2
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			2
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			𝑘
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		

			
		

		
			𝑡
			∈
		

		

			[
		

		
			0
			,
			𝜂
		

		

			]
		

		

			,
		

		

			𝑈
		

		

			𝑖
		

		

			
		

		

			𝑦
		

		

			1
		

		
			,
			𝑦
		

		

			2
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		

			
		

		

			(
		

		

			𝑡
		

		

			)
		

		

			=
		

		

			⎧
		

		

			⎪
		

		

			⎪
		

		

			⎪
		

		

			⎪
		

		

			⎪
		

		

			⎪
		

		

			⎨
		

		

			⎪
		

		

			⎪
		

		

			⎪
		

		

			⎪
		

		

			⎪
		

		

			⎪
		

		

			⎩
		

		
			0
			𝑡
			∈
		

		

			[
		

		
			−
			𝑟
			,
			0
		

		

			]
		

		

			,
		

		
			−
			𝑔
		

		
			𝑖
			2
		

		

			
		

		

			𝑡
		

		

			0
		

		
			,
			𝜙
		

		

			1
		

		
			,
			𝜙
		

		

			2
		

		
			,
			…
			,
			𝜙
		

		

			𝑘
		

		

			
		

		
			+
			𝑔
		

		
			𝑖
			2
		

		

			
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
			,
			𝑦
		

		

			1
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			1
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		
			,
			𝑦
		

		

			2
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			2
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			𝑘
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		

			
		

		

			+
		

		

			1
		

		
			
		
		

			Γ
		

		

			
		

		

			𝛼
		

		

			𝑖
		

		

			
		

		

			
		

		

			𝑡
		

		

			0
		

		

			(
		

		
			𝑡
			−
			𝑠
		

		

			)
		

		

			𝛼
		

		

			𝑖
		

		
			−
			1
		

		
			×
			𝑓
		

		

			𝑖
		

		

			
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
			,
			𝑦
		

		

			1
		

		

			𝑠
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			1
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
		

		
			,
			𝑦
		

		

			2
		

		

			𝑠
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			2
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		

			𝑠
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			𝑘
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
		

		

			
		

		
			𝑑
			𝑠
			𝑡
			∈
		

		

			[
		

		
			0
			,
			𝜂
		

		

			]
		

		

			,
		

	

						for 
	
		
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
. It is easy to check that the operator equation 
	
		
			𝑦
			=
			𝑆
			𝑦
			+
			𝑈
			𝑦
		

	
 has a solution 
	
		
			𝑦
			=
			(
			𝑦
		

		

			1
		

		
			,
			𝑦
		

		

			2
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		

			)
		

	
 if and only if 
	
		

			𝑦
		

		

			𝑖
		

	
 is a solution for 
	
		

			(
		

		
			∗
			∗
		

		

			)
		

	
 for all 
	
		
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
. In this case, 
	
		

			𝑥
		

		

			𝑖
		

		
			(
			𝑡
		

		

			0
		

		
			+
			𝑡
			)
			=
			𝑦
		

		

			𝑖
		

		
			(
			𝑡
			)
			+
		

		

			∼
		

		

			𝜙
		

		

			𝑖
		

		
			(
			𝑡
		

		

			0
		

		
			+
			𝑡
			)
		

	
 will be a solution of the problem (1) on 
	
		
			[
			0
			,
			𝜂
			]
		

	
. Thus, the existence of a solution of the problem (1) is equivalent to the existence of a fixed point for the operator 
	
		
			𝑆
			+
			𝑈
		

	
 on 
	
		
			𝐸
			(
			𝜂
			,
			𝛾
			)
		

	
. Hence, it is sufficient that we show that 
	
		
			𝑆
			+
			𝑈
		

	
 has a fixed point in 
	
		
			𝐸
			(
			𝜂
			,
			𝛾
			)
		

	
. We prove it in three steps.Step  I. 
	
		
			𝑆
			𝑧
			+
			𝑈
			𝑦
			∈
			𝐸
			(
			𝜂
			,
			𝛾
			)
		

	
 for all 
	
		
			𝑧
			=
			(
			𝑧
		

		

			1
		

		
			,
			𝑧
		

		

			2
		

		
			,
			…
			,
			𝑧
		

		

			𝑘
		

		
			)
			,
			𝑦
			=
			(
			𝑦
		

		

			1
		

		
			,
			𝑦
		

		

			2
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		
			)
			∈
			𝐸
			(
			𝜂
			,
			𝛾
			)
		

	
.Let 
	
		
			𝑧
			,
			𝑦
			∈
			𝐸
			(
			𝜂
			,
			𝛾
			)
		

	
 be given. Then, 
	
		

			𝑆
		

		

			𝑖
		

		
			𝑧
			+
			𝑈
		

		

			𝑖
		

		
			𝑦
			∈
			𝐶
			(
			[
			−
			𝑟
			,
			𝜂
			]
			,
			ℝ
		

		

			𝑛
		

		

			)
		

	
 for all 
	
		
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
. It is easy to check that 
	
		
			(
			𝑆
			𝑧
			+
			𝑈
			𝑦
			)
			(
			𝑡
			)
			=
			0
		

	
 for all 
	
		
			𝑡
			∈
			[
			−
			𝑟
			,
			0
			]
		

	
. Also, we have
							
	
 		
			(
			1
			1
			)
		
 	

	
		

			|
		

		

			|
		

		

			𝑆
		

		

			𝑖
		

		

			𝑧
		

		

			(
		

		

			𝑡
		

		

			)
		

		
			+
			𝑈
		

		

			𝑖
		

		

			𝑦
		

		

			(
		

		

			𝑡
		

		

			)
		

		

			|
		

		

			|
		

		

			≤
		

		

			|
		

		

			|
		

		

			|
		

		
			−
			𝑔
		

		
			𝑖
			1
		

		

			
		

		

			𝑡
		

		

			0
		

		
			,
			𝜙
		

		

			1
		

		
			,
			𝜙
		

		

			2
		

		
			,
			…
			,
			𝜙
		

		

			𝑘
		

		

			
		

		
			+
			𝑔
		

		
			𝑖
			1
		

		

			
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
			,
			𝑧
		

		

			1
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			1
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		
			,
			𝑧
		

		

			2
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			2
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		
			,
			…
			,
			𝑧
		

		

			𝑘
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			𝑘
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		

			
		

		

			|
		

		

			|
		

		

			|
		

		

			+
		

		

			|
		

		

			|
		

		

			|
		

		
			−
			𝑔
		

		
			𝑖
			2
		

		

			
		

		

			𝑡
		

		

			0
		

		
			,
			𝜙
		

		

			1
		

		
			,
			𝜙
		

		

			2
		

		
			,
			…
			,
			𝜙
		

		

			𝑘
		

		

			
		

		
			+
			𝑔
		

		
			𝑖
			2
		

		

			
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
			,
			𝑦
		

		

			1
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			1
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		
			,
			𝑦
		

		

			2
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			2
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			𝑘
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		

			
		

		

			|
		

		

			|
		

		

			|
		

		

			+
		

		

			1
		

		
			
		
		

			Γ
		

		

			
		

		

			𝛼
		

		

			𝑖
		

		

			
		

		

			
		

		

			𝑡
		

		

			0
		

		

			|
		

		

			|
		

		

			|
		

		

			(
		

		
			𝑡
			−
			𝑠
		

		

			)
		

		

			𝛼
		

		

			𝑖
		

		
			−
			1
		

		

			𝑓
		

		

			𝑖
		

		

			
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
			,
			𝑦
		

		

			1
		

		

			𝑠
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			1
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
		

		
			,
			𝑦
		

		

			2
		

		

			𝑠
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			2
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		

			𝑠
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			𝑘
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
		

		

			
		

		

			|
		

		

			|
		

		

			|
		

		
			𝑑
			𝑠
		

		

			≤
		

		
			2
			𝛾
		

		
			
		
		

			3
		

		

			+
		

		

			1
		

		
			
		
		

			Γ
		

		

			
		

		

			𝛼
		

		

			𝑖
		

		

			
		

		

			
		

		

			
		

		

			𝑡
		

		

			0
		

		

			(
		

		
			𝑡
			−
			𝑠
		

		

			)
		

		
			(
			𝛼
		

		

			𝑖
		

		
			−
			1
			)
			/
			(
			1
			−
			𝛼
		

		
			𝑖
			1
		

		

			)
		

		
			𝑑
			𝑠
		

		

			
		

		
			1
			−
			𝛼
		

		
			𝑖
			1
		

		

			×
		

		

			
		

		

			
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		

			𝑡
		

		

			0
		

		

			
		

		

			𝑚
		

		

			𝑖
		

		

			(
		

		

			𝑠
		

		

			)
		

		

			
		

		
			1
			/
			𝛼
		

		
			𝑖
			1
		

		
			𝑑
			𝑠
		

		

			
		

		

			𝛼
		

		
			𝑖
			1
		

		

			≤
		

		
			2
			𝛾
		

		
			
		
		

			3
		

		

			+
		

		

			𝑀
		

		

			𝑖
		

		

			𝜂
		

		
			(
			1
			+
			𝛽
		

		

			𝑖
		

		
			)
			(
			1
			−
			𝛼
		

		
			𝑖
			1
		

		

			)
		

		
			
		
		

			Γ
		

		

			
		

		

			𝛼
		

		

			𝑖
		

		
			
			
		

		
			1
			+
			𝛽
		

		

			𝑖
		

		

			
		

		
			1
			−
			𝛼
		

		
			𝑖
			1
		

		
			≤
			𝛾
		

	

						for all 
	
		
			𝑡
			∈
			[
			0
			,
			𝜂
			]
		

	
 and 
	
		
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
. Thus, 
	
		
			‖
			𝑆
		

		

			𝑖
		

		
			𝑧
			+
			𝑈
		

		

			𝑖
		

		
			𝑦
			‖
			=
			s
			u
			p
		

		
			𝑡
			∈
			[
			0
			,
			𝜂
			]
		

		
			|
			(
			𝑆
		

		

			𝑖
		

		
			𝑧
			)
			(
			𝑡
			)
			−
			(
			𝑈
		

		

			𝑖
		

		
			𝑦
			)
			(
			𝑡
			)
			|
			≤
			𝛾
		

	
 for all 
	
		
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
. Hence, 
	
		
			𝑆
			𝑧
			+
			𝑈
			𝑦
			∈
			𝐸
			(
			𝜂
			,
			𝛾
			)
		

	
 for all 
	
		
			𝑧
			,
			𝑦
			∈
			𝐸
			(
			𝜂
			,
			𝛾
			)
		

	
.Step  II. 
	
		

			𝑆
		

	
 is a contraction on 
	
		
			𝐸
			(
			𝜂
			,
			𝛾
			)
		

	
.Let 
	
		

			𝑦
		

		

			
		

		
			=
			(
			𝑦
		

		

			
		

		

			1
		

		
			,
			𝑦
		

		

			
		

		

			2
		

		
			,
			…
			,
			𝑦
		

		

			
		

		

			𝑘
		

		
			)
			,
			𝑦
		

		
			
			
		

		
			=
			(
			𝑦
		

		
			
			
		

		

			1
		

		
			,
			𝑦
		

		
			
			
		

		

			2
		

		
			,
			…
			,
			𝑦
		

		
			
			
		

		

			𝑘
		

		
			)
			∈
			𝐸
			(
			𝜂
			,
			𝛾
			)
		

	
. Then,
							
	
 		
			(
			1
			2
			)
		
 	

	
		

			
		

		

			𝑦
		

		

			
		

		

			1
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			1
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		
			,
			𝑦
		

		

			
		

		

			2
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			2
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		
			,
			…
			,
			𝑦
		

		

			
		

		

			𝑘
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			𝑘
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		

			
		

		

			,
		

		

			
		

		

			𝑦
		

		
			
			
		

		

			1
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			1
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		
			,
			𝑦
		

		
			
			
		

		

			2
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			2
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		
			,
			…
			,
			𝑦
		

		
			
			
		

		

			𝑘
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			𝑘
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		

			
		

		
			∈
			𝐴
		

		

			(
		

		
			𝛿
			,
			𝛾
		

		

			)
		

	

						and so 
							
	
 		
			(
			1
			3
			)
		
 	

	
		

			|
		

		

			|
		

		

			𝑆
		

		

			𝑖
		

		

			𝑦
		

		

			
		

		

			(
		

		

			𝑡
		

		

			)
		

		
			−
			𝑆
		

		

			𝑖
		

		

			𝑦
		

		
			
			
		

		

			(
		

		

			𝑡
		

		

			)
		

		

			|
		

		

			|
		

		

			=
		

		

			|
		

		

			|
		

		

			|
		

		

			𝑔
		

		
			𝑖
			1
		

		

			
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
			,
			𝑦
		

		

			
		

		

			1
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			1
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		
			,
			𝑦
		

		

			
		

		

			2
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			2
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		
			,
			…
			,
			𝑦
		

		

			
		

		

			𝑘
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			𝑘
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		

			
		

		
			−
			𝑔
		

		
			𝑖
			1
		

		

			
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
			,
			𝑦
		

		
			
			
		

		

			1
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			1
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		
			,
			𝑦
		

		
			
			
		

		

			2
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			2
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		
			,
			…
			,
			𝑦
		

		
			
			
		

		

			𝑘
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			𝑘
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		

			
		

		

			|
		

		

			|
		

		

			|
		

		
			≤
			𝑙
		

		

			𝑖
		

		

			‖
		

		

			‖
		

		

			𝑦
		

		

			
		

		
			−
			𝑦
		

		
			
			
		

		

			‖
		

		

			‖
		

		

			∗
		

	

						for all 
	
		
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
. This implies that 
	
		
			‖
			𝑆
			𝑦
		

		

			
		

		
			−
			𝑆
			𝑦
		

		
			
			
		

		

			‖
		

		

			∗
		

		
			≤
			𝑙
			‖
			𝑦
		

		

			
		

		
			−
			𝑦
		

		
			
			
		

		

			‖
		

		

			∗
		

	
, where 
	
		
			𝑙
			=
			m
			a
			x
			{
			𝑙
		

		

			1
		

		
			,
			𝑙
		

		

			2
		

		
			,
			…
			,
			𝑙
		

		

			𝑘
		

		

			}
		

	
. Since 
	
		
			0
			<
			𝑙
			<
			1
		

	
, 
	
		

			𝑆
		

	
 is a contraction on 
	
		
			𝐸
			(
			𝜂
			,
			𝛾
			)
		

	
.Step  III. 
	
		

			𝑈
		

	
 is a completely continuous operator.Suppose that
							
	
 		
			(
			1
			4
			)
		
 	

	
		

			𝑈
		

		
			𝑖
			1
		

		

			
		

		

			𝑦
		

		

			1
		

		
			,
			𝑦
		

		

			2
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		

			
		

		

			(
		

		

			𝑡
		

		

			)
		

		

			=
		

		

			⎧
		

		

			⎪
		

		

			⎪
		

		

			⎪
		

		

			⎨
		

		

			⎪
		

		

			⎪
		

		

			⎪
		

		

			⎩
		

		
			0
			𝑡
			∈
		

		

			[
		

		
			−
			𝑟
			.
			0
		

		

			]
		

		

			,
		

		
			−
			𝑔
		

		
			𝑖
			2
		

		

			
		

		

			𝑡
		

		

			0
		

		
			,
			𝜙
		

		

			1
		

		
			,
			𝜙
		

		

			2
		

		
			,
			…
			,
			𝜙
		

		

			𝑘
		

		

			
		

		
			+
			𝑔
		

		
			𝑖
			2
		

		

			
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
			,
			𝑦
		

		

			1
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			1
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		
			,
			𝑦
		

		

			2
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			2
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		

			𝑡
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			𝑘
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		

			
		

		
			𝑡
			∈
		

		

			[
		

		
			0
			,
			𝜂
		

		

			]
		

		

			,
		

		

			𝑈
		

		
			𝑖
			2
		

		

			
		

		

			𝑦
		

		

			1
		

		
			,
			𝑦
		

		

			2
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		

			
		

		

			(
		

		

			𝑡
		

		

			)
		

		

			=
		

		

			⎧
		

		

			⎪
		

		

			⎪
		

		

			⎪
		

		

			⎨
		

		

			⎪
		

		

			⎪
		

		

			⎪
		

		

			⎩
		

		
			0
			𝑡
			∈
		

		

			[
		

		
			−
			𝑟
			.
			0
		

		

			]
		

		

			,
		

		

			1
		

		
			
		
		

			Γ
		

		

			
		

		

			𝛼
		

		

			𝑖
		

		

			
		

		

			
		

		

			𝑡
		

		

			0
		

		

			(
		

		
			𝑡
			−
			𝑠
		

		

			)
		

		

			𝛼
		

		

			𝑖
		

		
			−
			1
		

		
			×
			𝑓
		

		

			𝑖
		

		

			
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
			,
			𝑦
		

		

			1
		

		

			𝑠
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			1
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
		

		
			,
			𝑦
		

		

			2
		

		

			𝑠
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			2
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		

			𝑠
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			𝑘
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
		

		

			
		

		
			𝑑
			𝑠
			𝑡
			∈
		

		

			[
		

		
			0
			,
			𝜂
		

		

			]
		

		

			,
		

	

						for 
	
		
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
. It is clear that
							
	
 		
			(
			1
			5
			)
		
 	

	
		
			𝑈
			=
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			𝑈
		

		
			1
			1
		

		
			+
			𝑈
		

		
			1
			2
		

		

			𝑈
		

		
			2
			1
		

		
			+
			𝑈
		

		
			2
			2
		

		

			⋮
		

		

			𝑈
		

		
			𝑘
			1
		

		
			+
			𝑈
		

		
			𝑘
			2
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			.
		

	
Since 
	
		

			𝑔
		

		
			𝑖
			2
		

	
 is completely continuous for all 
	
		
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
, 
	
		

			𝑈
		

		
			𝑖
			1
		

	
 is continuous and also 
	
		
			{
			𝑈
		

		
			𝑖
			1
		

		
			(
			𝑦
			)
			∶
			𝑦
			∈
			𝐸
			(
			𝜂
			,
			𝛾
			)
			}
		

	
 is uniformly bounded. By using condition (H6), it is easy to check that 
	
		
			{
			𝑈
		

		
			𝑖
			1
		

		
			(
			𝑦
			)
			∶
			𝑦
			∈
			𝐸
			(
			𝜂
			,
			𝛾
			)
			}
		

	
 is equicontinuous. On the other hand,
							
	
 		
			(
			1
			6
			)
		
 	

	
		

			|
		

		

			|
		

		

			𝑈
		

		
			𝑖
			2
		

		

			𝑦
		

		

			(
		

		

			𝑡
		

		

			)
		

		

			|
		

		

			|
		

		

			≤
		

		

			1
		

		
			
		
		

			Γ
		

		

			
		

		

			𝛼
		

		

			𝑖
		

		

			
		

		

			
		

		

			𝑡
		

		

			0
		

		

			(
		

		
			𝑡
			−
			𝑠
		

		

			)
		

		

			𝛼
		

		

			𝑖
		

		
			−
			1
		

		

			|
		

		

			|
		

		

			|
		

		

			𝑓
		

		

			𝑖
		

		

			
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
			,
			𝑦
		

		

			1
		

		

			𝑠
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			1
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
		

		
			,
			𝑦
		

		

			2
		

		

			𝑠
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			2
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		

			𝑠
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			𝑘
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
		

		

			
		

		

			|
		

		

			|
		

		

			|
		

		
			𝑑
			𝑠
		

		

			≤
		

		

			1
		

		
			
		
		

			Γ
		

		

			
		

		

			𝛼
		

		

			𝑖
		

		

			
		

		

			
		

		

			
		

		

			𝑡
		

		

			0
		

		

			(
		

		
			𝑡
			−
			𝑠
		

		

			)
		

		
			(
			𝛼
		

		

			𝑖
		

		
			−
			1
			)
			/
			(
			1
			−
			𝛼
		

		
			𝑖
			1
		

		

			)
		

		
			𝑑
			𝑠
		

		

			
		

		
			1
			−
			𝛼
		

		
			𝑖
			1
		

		

			×
		

		

			
		

		

			
		

		

			𝑡
		

		

			0
		

		
			+
			𝑡
		

		

			𝑡
		

		

			0
		

		

			
		

		

			𝑚
		

		

			𝑖
		

		

			(
		

		

			𝑠
		

		

			)
		

		

			
		

		
			1
			/
			𝛼
		

		
			𝑖
			1
		

		
			𝑑
			𝑠
		

		

			
		

		

			𝛼
		

		
			𝑖
			1
		

		

			≤
		

		

			𝑀
		

		

			𝑖
		

		

			𝜂
		

		
			(
			1
			+
			𝛽
		

		

			𝑖
		

		
			)
			(
			1
			−
			𝛼
		

		
			𝑖
			1
		

		

			)
		

		
			
		
		

			Γ
		

		

			
		

		

			𝛼
		

		

			𝑖
		

		
			
			
		

		
			1
			+
			𝛽
		

		

			𝑖
		

		

			
		

		
			1
			−
			𝛼
		

		
			𝑖
			1
		

	

						for all 
	
		
			𝑡
			∈
			[
			0
			,
			𝜂
			]
		

	
 and 
	
		
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
. This implies that 
	
		
			{
			𝑈
		

		
			𝑖
			2
		

		
			𝑦
			∶
			𝑦
			∈
			𝐸
			(
			𝜂
			,
			𝛾
			)
			}
		

	
 is uniformly bounded. Now, we prove that 
	
		
			{
			𝑈
		

		
			𝑖
			2
		

		
			𝑦
			∶
			𝑦
			∈
			𝐸
			(
			𝜂
			,
			𝛾
			)
			}
		

	
 is equicontinuous. Let 
	
		
			0
			≤
			𝑡
		

		

			1
		

		
			<
			𝑡
		

		

			2
		

		
			≤
			𝜂
		

	
 and 
	
		
			𝑦
			∈
			𝐸
			(
			𝜂
			,
			𝛾
			)
		

	
 be given. Then, we have
							
	
 		
			(
			1
			7
			)
		
 	

	
		

			|
		

		

			|
		

		

			𝑈
		

		
			𝑖
			2
		

		

			𝑦
		

		

			
		

		

			𝑡
		

		

			2
		

		

			
		

		
			−
			𝑈
		

		
			𝑖
			2
		

		

			𝑦
		

		

			
		

		

			𝑡
		

		

			1
		

		

			
		

		

			|
		

		

			|
		

		

			=
		

		

			|
		

		

			|
		

		

			|
		

		

			|
		

		

			|
		

		

			1
		

		
			
		
		

			Γ
		

		

			
		

		

			𝛼
		

		

			𝑖
		

		

			
		

		

			
		

		

			𝑡
		

		

			1
		

		

			0
		

		

			
		

		

			
		

		

			𝑡
		

		

			2
		

		
			−
			𝑠
		

		

			
		

		

			𝛼
		

		

			𝑖
		

		
			−
			1
		

		

			−
		

		

			
		

		

			𝑡
		

		

			1
		

		
			−
			𝑠
		

		

			
		

		

			𝛼
		

		

			𝑖
		

		
			−
			1
		

		

			
		

		
			×
			𝑓
		

		

			𝑖
		

		

			
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
			,
			𝑦
		

		

			1
		

		

			𝑠
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			1
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
		

		
			,
			𝑦
		

		

			2
		

		

			𝑠
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			2
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		

			𝑠
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			𝑘
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
		

		

			
		

		
			𝑑
			𝑠
		

		

			+
		

		

			1
		

		
			
		
		

			Γ
		

		

			
		

		

			𝛼
		

		

			𝑖
		

		

			
		

		

			
		

		

			𝑡
		

		

			2
		

		

			𝑡
		

		

			1
		

		

			
		

		

			𝑡
		

		

			2
		

		
			−
			𝑠
		

		

			
		

		

			𝛼
		

		

			𝑖
		

		
			−
			1
		

		

			𝑓
		

		

			𝑖
		

		

			
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
			,
			𝑦
		

		

			1
		

		

			𝑠
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			1
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
		

		
			,
			𝑦
		

		

			2
		

		

			𝑠
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			2
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		

			𝑠
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			𝑘
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
		

		

			
		

		
			𝑑
			𝑠
		

		

			|
		

		

			|
		

		

			|
		

		

			|
		

		

			|
		

		

			≤
		

		

			1
		

		
			
		
		

			Γ
		

		

			
		

		

			𝛼
		

		

			𝑖
		

		

			
		

		

			
		

		

			𝑡
		

		

			1
		

		

			0
		

		

			
		

		

			
		

		

			𝑡
		

		

			1
		

		
			−
			𝑠
		

		

			
		

		

			𝛼
		

		

			𝑖
		

		
			−
			1
		

		

			−
		

		

			
		

		

			𝑡
		

		

			2
		

		
			−
			𝑠
		

		

			
		

		

			𝛼
		

		

			𝑖
		

		
			−
			1
		

		

			
		

		

			×
		

		

			|
		

		

			|
		

		

			|
		

		

			𝑓
		

		

			𝑖
		

		

			
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
			,
			𝑦
		

		

			1
		

		

			𝑠
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			1
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
		

		
			,
			𝑦
		

		

			2
		

		

			𝑠
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			2
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		

			𝑠
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			𝑘
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
		

		

			
		

		

			|
		

		

			|
		

		

			|
		

		
			𝑑
			𝑠
		

		

			+
		

		

			1
		

		
			
		
		

			Γ
		

		

			
		

		

			𝛼
		

		

			𝑖
		

		

			
		

		

			
		

		

			𝑡
		

		

			2
		

		

			𝑡
		

		

			1
		

		

			
		

		

			𝑡
		

		

			2
		

		
			−
			𝑠
		

		

			
		

		

			𝛼
		

		

			𝑖
		

		
			−
			1
		

		

			|
		

		

			|
		

		

			|
		

		

			𝑓
		

		

			𝑖
		

		

			
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
			,
			𝑦
		

		

			1
		

		

			𝑠
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			1
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
		

		
			,
			𝑦
		

		

			2
		

		

			𝑠
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			2
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		

			𝑠
		

		

			+
		

		

			∼
		

		

			𝜙
		

		

			𝑘
		

		

			𝑡
		

		

			0
		

		
			+
			𝑠
		

		

			
		

		

			|
		

		

			|
		

		

			|
		

		
			𝑑
			𝑠
		

		

			≤
		

		

			𝑀
		

		

			𝑖
		

		
			
		
		

			Γ
		

		

			
		

		

			𝛼
		

		

			𝑖
		

		

			
		

		

			
		

		

			
		

		

			𝑡
		

		

			1
		

		

			0
		

		

			
		

		

			
		

		

			𝑡
		

		

			1
		

		
			−
			𝑠
		

		

			
		

		

			𝛼
		

		

			𝑖
		

		
			−
			1
		

		

			−
		

		

			
		

		

			𝑡
		

		

			2
		

		
			−
			𝑠
		

		

			
		

		

			𝛼
		

		

			𝑖
		

		
			−
			1
		

		

			
		

		
			1
			/
			(
			1
			−
			𝛼
		

		
			𝑖
			1
		

		

			)
		

		
			𝑑
			𝑠
		

		

			
		

		
			1
			−
			𝛼
		

		
			𝑖
			1
		

		

			+
		

		

			𝑀
		

		

			𝑖
		

		
			
		
		

			Γ
		

		

			
		

		

			𝛼
		

		

			𝑖
		

		

			
		

		

			
		

		

			
		

		

			𝑡
		

		

			2
		

		

			𝑡
		

		

			1
		

		

			
		

		

			
		

		

			𝑡
		

		

			2
		

		
			−
			𝑠
		

		

			
		

		

			𝛼
		

		

			𝑖
		

		
			−
			1
		

		

			
		

		
			1
			/
			(
			1
			−
			𝛼
		

		
			𝑖
			1
		

		

			)
		

		
			𝑑
			𝑠
		

		

			
		

		
			1
			−
			𝛼
		

		
			𝑖
			1
		

		

			≤
		

		

			𝑀
		

		

			𝑖
		

		
			
		
		

			Γ
		

		

			
		

		

			𝛼
		

		

			𝑖
		

		

			
		

		

			
		

		

			
		

		

			𝑡
		

		

			1
		

		

			0
		

		

			
		

		

			
		

		

			𝑡
		

		

			1
		

		
			−
			𝑠
		

		

			
		

		

			𝛽
		

		

			𝑖
		

		

			−
		

		

			
		

		

			𝑡
		

		

			2
		

		
			−
			𝑠
		

		

			
		

		

			𝛽
		

		

			𝑖
		

		

			
		

		
			𝑑
			𝑠
		

		

			
		

		
			1
			−
			𝛼
		

		
			𝑖
			1
		

		

			+
		

		

			𝑀
		

		

			𝑖
		

		
			
		
		

			Γ
		

		

			
		

		

			𝛼
		

		

			𝑖
		

		

			
		

		

			
		

		

			
		

		

			𝑡
		

		

			2
		

		

			𝑡
		

		

			1
		

		

			
		

		

			𝑡
		

		

			2
		

		
			−
			𝑠
		

		

			
		

		

			𝛽
		

		

			𝑖
		

		
			𝑑
			𝑠
		

		

			
		

		
			1
			−
			𝛼
		

		
			𝑖
			1
		

		

			≤
		

		

			𝑀
		

		

			𝑖
		

		
			
		
		

			Γ
		

		

			
		

		

			𝛼
		

		

			𝑖
		

		
			
			
		

		
			1
			+
			𝛽
		

		

			𝑖
		

		

			
		

		
			1
			−
			𝛼
		

		
			𝑖
			1
		

		

			
		

		

			𝑡
		

		
			1
			+
			𝛽
		

		

			𝑖
		

		

			1
		

		
			−
			𝑡
		

		
			1
			+
			𝛽
		

		

			𝑖
		

		

			2
		

		

			+
		

		

			
		

		

			𝑡
		

		

			2
		

		
			−
			𝑡
		

		

			1
		

		

			
		

		
			1
			+
			𝛽
		

		

			𝑖
		

		

			
		

		
			1
			−
			𝛼
		

		
			𝑖
			1
		

		

			+
		

		

			𝑀
		

		

			𝑖
		

		
			
		
		

			Γ
		

		

			
		

		

			𝛼
		

		

			𝑖
		

		
			
			
		

		
			1
			+
			𝛽
		

		

			𝑖
		

		

			
		

		
			1
			−
			𝛼
		

		
			𝑖
			1
		

		

			
		

		

			𝑡
		

		

			2
		

		
			−
			𝑡
		

		

			1
		

		

			
		

		
			(
			1
			+
			𝛽
		

		

			𝑖
		

		
			)
			(
			1
			−
			𝛼
		

		
			𝑖
			1
		

		

			)
		

		

			≤
		

		
			2
			𝑀
		

		

			𝑖
		

		
			
		
		

			Γ
		

		

			
		

		

			𝛼
		

		

			𝑖
		

		
			
			
		

		
			1
			+
			𝛽
		

		

			𝑖
		

		

			
		

		
			1
			−
			𝛼
		

		
			𝑖
			1
		

		

			
		

		

			𝑡
		

		

			2
		

		
			−
			𝑡
		

		

			1
		

		

			
		

		
			(
			1
			+
			𝛽
		

		

			𝑖
		

		
			)
			(
			1
			−
			𝛼
		

		
			𝑖
			1
		

		

			)
		

	

						for all 
	
		
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
. Thus, 
	
		
			{
			𝑈
		

		
			𝑖
			2
		

		
			𝑦
			∶
			𝑦
			∈
			𝐸
			(
			𝜂
			,
			𝛾
			)
			}
		

	
 is equicontinuous. Moreover, it is clear that 
	
		

			𝑈
		

		
			𝑖
			2
		

	
 is continuous for all 
	
		
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
. This implies that 
	
		

			𝑈
		

	
 is a completely continuous operator. Now, by using Krasnoselskii's fixed point theorem we get that 
	
		
			𝑆
			+
			𝑈
		

	
 has a fixed point on 
	
		
			𝐸
			(
			𝜂
			,
			𝛾
			)
		

	
 and so the problem (1) has a solution 
	
		
			𝑥
			=
			(
			𝑥
		

		

			1
		

		
			,
			…
			,
			𝑥
		

		

			𝑘
		

		

			)
		

	
, where 
	
		

			𝑥
		

		

			𝑖
		

		
			(
			𝑡
			)
			=
			𝜙
		

		

			𝑖
		

		
			(
			0
			)
			+
			𝑦
		

		

			𝑖
		

		
			(
			𝑡
			−
			𝑡
		

		

			0
		

		

			)
		

	
 for all 
	
		
			𝑡
			∈
			[
			𝑡
		

		

			0
		

		
			,
			𝑡
		

		

			0
		

		
			+
			𝜂
			]
		

	
 and 
	
		
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
.
If we put 
	
		

			𝑔
		

		
			𝑖
			1
		

		
			=
			0
		

	
 for all 
	
		
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
, then we obtain next result.
Corollary 4.  Suppose that there exist 
	
		
			𝛿
			∈
			(
			0
			,
			𝑎
			)
		

	
 and 
	
		
			𝛾
			∈
			(
			0
			,
			∞
			)
		

	
 such that conditions 
	
		
			(
			𝐻
		

		

			1
		

		

			)
		

		
			-
			-
		

		
			(
			𝐻
		

		

			3
		

		

			)
		

	
 hold, 
	
		

			𝑔
		

		

			𝑖
		

	
 is continuous for all 
	
		
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
, and 
	
		
			|
			𝑔
		

		

			𝑖
		

		
			(
			𝑡
			,
			𝐱
		

		

			𝐭
		

		
			)
			−
			𝑔
		

		

			𝑖
		

		
			(
			𝑡
			,
			𝐲
		

		

			𝐭
		

		
			)
			|
			≤
			𝑙
		

		

			𝑖
		

		
			‖
			𝑥
			−
			𝑦
			‖
		

		

			∗
		

	
 for all 
	
		
			𝑥
			=
			(
			𝑥
		

		

			1
		

		
			,
			𝑥
		

		

			2
		

		
			,
			…
			,
			𝑥
		

		

			𝑘
		

		

			)
		

	
, 
	
		
			𝑦
			=
			(
			𝑦
		

		

			1
		

		
			,
			𝑦
		

		

			2
		

		
			,
			…
			,
			𝑦
		

		

			𝑘
		

		
			)
			∈
			𝐴
			(
			𝛿
			,
			𝛾
			)
		

	
, and 
	
		
			𝑡
			∈
			𝐼
		

		

			0
		

	
, where 
	
		

			𝑙
		

		

			𝑖
		

		
			∈
			(
			0
			,
			1
			)
		

	
 is a constant for all 
	
		
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
. Then the problem (1) has at least one solution on 
	
		
			[
			𝑡
		

		

			0
		

		
			,
			𝑡
		

		

			0
		

		
			+
			𝜂
			]
		

	
 for some positive number 
	
		

			𝜂
		

	
.
If we put 
	
		

			𝑔
		

		
			𝑖
			2
		

		
			=
			0
		

	
 for all 
	
		
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
, then we obtain next result.
Corollary 5.  Suppose that there exist 
	
		
			𝛿
			∈
			(
			0
			,
			𝑎
			)
		

	
 and 
	
		
			𝛾
			∈
			(
			0
			,
			∞
			)
		

	
 such that conditions 
	
		
			(
			𝐻
		

		

			1
		

		

			)
		

		
			-
			-
		

		
			(
			𝐻
		

		

			3
		

		

			)
		

	
 hold, 
	
		

			𝑔
		

		

			𝑖
		

	
 is completely continuous for all 
	
		
			𝑖
			=
			1
			,
			2
			,
			…
			,
			𝑘
		

	
, and the family 
	
		
			{
			𝑡
			⊢
			𝑔
		

		

			𝑖
		

		
			(
			𝑡
			,
			𝐱
		

		

			𝐭
		

		
			)
			∶
			(
			𝑥
		

		

			1
		

		
			,
			𝑥
		

		

			2
		

		
			,
			…
			,
			𝑥
		

		

			𝑘
		

		
			)
			∈
			Λ
			}
		

	
 is equicontinuous on 
	
		
			𝐶
			(
			𝐼
		

		

			0
		

		
			,
			ℝ
		

		

			𝑛
		

		
			)
			×
			𝐶
			(
			𝐼
		

		

			0
		

		
			,
			ℝ
		

		

			𝑛
		

		
			)
			×
			⋯
			×
			𝐶
			(
			𝐼
		

		

			0
		

		
			,
			ℝ
		

		

			𝑛
		

		

			)
		

	
 for all bounded set 
	
		

			Λ
		

	
 in 
	
		
			𝐴
			(
			𝛿
			,
			𝜆
			)
		

	
. Then the problem (1) has at least one solution on 
	
		
			[
			𝑡
		

		

			0
		

		
			,
			𝑡
		

		

			0
		

		
			+
			𝜂
			]
		

	
 for some positive number 
	
		

			𝜂
		

	
.
3. Conclusions
In this work, we study an initial value problem for a class of 
	
		

			𝑘
		

	
-dimensional systems of fractional neutral functional differential equations by using Krasnoselskii’s fixed point theorem. Our result generalizes some old related results in a sense.
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