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Abstract. 
The global asymptotic robust stability of equilibrium is considered for neutral-type hybrid bidirectional associative memory neural networks with time-varying delays and parameters uncertainties. The results we obtained in this paper are delay-derivative-dependent and establish various relationships between the network parameters only. Therefore, the results of this paper are applicable to a larger class of neural networks and can be easily verified when compared with the previously reported literature results. Two numerical examples are illustrated to verify our results.


1. Introduction
Stability analysis of neural networks is an issue of both theoretical and practical importance due to the fact that in some applications the designed neural network is required to have a unique and stable equilibrium point [1–3]. Time delays are unavoidably encountered in the implementation of neural networks, which may cause undesirable dynamic network behaviors such as oscillation and instability. On the other hand, in practice, the weight coefficients of the neurons depend on certain resistance and capacitance values which are subject to uncertainties. In the design of neural networks, it is important to ensure that the system is stable with respect to these uncertainties.
It is well known that a series of neural networks related to bidirectional associative memory (BAM) models have been proposed by Kosko [4, 5]. These models generalized the single-layer autoassociative Hebbian correlation to a two-layer pattern-matched heteroassociative circuit. This class of networks has been successfully applied to pattern recognition and artificial intelligence. A great number of results for BAM neural networks concerning the existence of equilibrium point and global asymptotic or robust stability have been derived [6–32].
Moreover, due to the complicated dynamic properties of the neural cells in the real world, the existing neural network models in many cases cannot characterize the properties of a neural reaction process precisely. It is natural and important that systems will contain some information about the derivative of the past state to further describe and model the dynamics for such complex neural reactions [33, 34]. However, the stability analysis of BAM neural networks of neutral type has been investigated by only a few researchers [18, 35–37].
However, the existing stability results [18, 36, 37] derived for the BAM neural networks can be applicable when only a pure delayed neural network model is considered. Recently, a more general class of BAM neural network models, called the hybrid BAM neural network in which both instantaneous and delayed signaling occur, was considered and some sufficient condition for robust stability of this class of BAM neural networks has been presented [23, 25, 38]. But, up to now, there are few results on stability of neutral-type hybrid BAM neural networks with time-varying delays.
Motivated by the preceding discussion, in this paper, we are going to deal with the problem of global asymptotic robust stability for neutral-type hybrid bidirectional associative memory neural networks with time-varying delays and parameters uncertainties. By constructing a novel Lyapunov functional, novel delay-derivative-dependent criteria are derived. Finally, two examples are provided to demonstrate the effectiveness of the obtained results.
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2. Problem Formulation
Dynamical behavior of a neutral-type hybrid BAM neural network with time-varying delays is described by the following set of differential equations:
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				,
				̂
				𝑥
				,
				̂
				𝑦
				∈
				ℜ
			

		
	
.(H3)There exist positive constants 
	
		
			

				𝑀
			

			

				𝑖
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑛
			

		
	
, and 
	
		
			

				𝐿
			

			

				𝑗
			

		
	
, 
	
		
			
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑚
			

		
	
, such that 
	
		
			

				|
			

			

				∼
			

			

				𝑔
			

			

				𝑖
			

			
				(
				𝑢
				)
				|
				≤
				𝑀
			

			

				𝑖
			

		
	
 and 
	
		
			

				|
			

			

				∼
			

			

				𝑔
			

			

				𝑗
			

			
				(
				𝑧
				)
				|
				≤
				𝐿
			

			

				𝑖
			

		
	
 for all 
	
		
			
				𝑢
				,
				𝑧
				∈
				ℜ
			

		
	
. Note that this assumption implies that the activation functions are bounded.

        Assume that 
	
		
			

				𝑢
			

			

				∗
			

			
				=
				(
				𝑢
			

			
				∗
				1
			

			
				,
				𝑢
			

			
				∗
				2
			

			
				,
				…
				,
				𝑢
			

			
				∗
				𝑛
			

			

				)
			

			

				𝑇
			

		
	
 and 
	
		
			

				𝑧
			

			

				∗
			

			
				=
				(
				𝑧
			

			
				∗
				1
			

			
				,
				𝑧
			

			
				∗
				2
			

			
				,
				…
				,
				𝑧
			

			
				∗
				𝑚
			

			

				)
			

			

				𝑇
			

		
	
 are the equilibrium points of the system. In order to simplify our analysis, we transform the equilibrium points to the origin by the relationship
						
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			

				𝑥
			

			

				𝑖
			

			
				(
				𝑡
				)
				=
				𝑢
			

			

				𝑖
			

			
				(
				𝑡
				)
				−
				𝑢
			

			
				∗
				𝑖
			

			
				,
				𝑦
			

			

				𝑖
			

			
				(
				𝑡
				)
				=
				𝑧
			

			

				𝑗
			

			
				(
				𝑡
				)
				−
				𝑧
			

			
				∗
				𝑗
			

			

				.
			

		
	

Then, the transformed system is as follows:
						
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				̇
				𝑥
				(
				𝑡
				)
				+
				𝐸
				̇
				𝑥
				(
				𝑡
				−
				ℎ
				)
				=
				−
				𝐴
				𝑥
				(
				𝑡
				)
				+
				𝑊
				𝑓
				(
				𝑦
				(
				𝑡
				)
				)
				+
				𝑊
			

			

				𝜏
			

			
				𝑓
				(
				𝑦
				(
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				)
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑛
				,
				̇
				𝑦
				(
				𝑡
				)
				+
				Σ
				̇
				𝑦
				(
				𝑡
				−
				𝑑
				)
				=
				−
				𝐵
				𝑦
				(
				𝑡
				)
				+
				𝑉
				𝑔
				(
				𝑥
				(
				𝑡
				)
				)
				+
				𝑉
			

			

				𝜎
			

			
				𝑔
				(
				𝑥
				(
				𝑡
				−
				𝜎
				(
				𝑡
				)
				)
				)
				,
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑚
				,
			

		
	

					where 
	
		
			
				𝑥
				(
				𝑡
				)
				=
				(
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				,
				…
				,
				𝑥
			

			

				𝑛
			

			
				(
				𝑡
				)
				)
			

			

				𝑇
			

		
	
, 
	
		
			
				𝑦
				(
				𝑡
				)
			

		
	
 = 
	
		
			
				(
				𝑦
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝑦
			

			

				2
			

			
				(
				𝑡
				)
				,
				…
				,
				𝑦
			

			

				𝑛
			

			
				(
				𝑡
				)
				)
			

			

				𝑇
			

		
	
, 
	
		
			
				𝑔
				(
				𝑥
				(
				𝑡
				)
				)
				=
				(
				𝑔
			

			

				1
			

			
				(
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				)
				,
				𝑔
			

			

				2
			

			
				(
				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				)
				,
				…
				,
				𝑔
			

			

				𝑛
			

			
				(
				𝑥
			

			

				𝑛
			

			
				(
				𝑡
				)
				)
				)
			

			

				𝑇
			

		
	
, 
	
		
			
				𝑓
				(
				𝑦
				(
				𝑡
				)
				)
				=
				(
				𝑓
			

			

				1
			

			
				(
				𝑦
			

			

				1
			

			
				(
				𝑡
				)
				)
				,
				𝑓
			

			

				2
			

			
				(
				𝑦
			

			

				2
			

			
				(
				𝑡
				)
				)
				,
				…
				,
				𝑓
			

			

				𝑛
			

			
				(
				𝑦
			

			

				𝑛
			

			
				(
				𝑡
				)
				)
				)
			

			

				𝑇
			

		
	
, 
	
		
			
				𝑔
				(
				𝑥
				(
				𝑡
				−
				𝜎
				(
				𝑡
				)
				)
				)
				=
				(
				𝑔
			

			

				1
			

			
				(
				𝑥
			

			

				1
			

			
				(
				𝑡
				−
				𝜎
				(
				𝑡
				)
				)
				,
				𝑔
			

			

				2
			

			
				(
				𝑥
			

			

				2
			

			
				(
				𝑡
				−
				𝜎
				(
				𝑡
				)
				)
				)
				,
				…
				,
				𝑔
			

			

				𝑛
			

			
				(
				𝑥
			

			

				𝑛
			

			
				(
				𝑡
				−
				𝜎
				(
				𝑡
				)
				)
				)
				)
			

			

				𝑇
			

		
	
, 
	
		
			
				𝑓
				(
				𝑦
				(
				𝑡
				−
				𝜏
				)
				)
				=
				(
				𝑓
			

			

				1
			

			
				(
				𝑦
			

			

				1
			

			
				(
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				)
				,
				𝑓
			

			

				2
			

			
				(
				𝑦
			

			

				2
			

			
				(
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				)
				,
				…
				,
				𝑓
			

			

				𝑚
			

			
				(
				𝑦
			

			

				𝑚
			

			
				(
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				)
				)
			

			

				𝑇
			

		
	
. The functions 
	
		
			

				𝑔
			

			

				𝑖
			

			
				(
				𝑥
			

			

				𝑖
			

			

				)
			

		
	
, and 
	
		
			

				𝑓
			

			

				𝑗
			

			
				(
				𝑦
			

			

				𝑗
			

			

				)
			

		
	
 are of the form
						
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			

				𝑔
			

			

				𝑖
			

			
				
				𝑥
			

			

				𝑖
			

			
				
				=
				(
				⋅
				)
			

			

				∼
			

			

				𝑔
			

			

				𝑖
			

			
				
				𝑥
			

			

				𝑖
			

			
				(
				⋅
				)
				+
				𝑢
			

			
				∗
				𝑖
			

			
				
				−
			

			

				∼
			

			

				𝑔
			

			

				𝑖
			

			
				
				𝑢
			

			
				∗
				𝑖
			

			
				
				𝑓
				
				𝑦
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑛
				,
			

			

				𝑗
			

			
				
				=
				(
				⋅
				)
			

			

				∼
			

			

				𝑓
			

			

				𝑗
			

			
				
				𝑦
			

			

				𝑗
			

			
				(
				⋅
				)
				+
				𝑧
			

			
				∗
				𝑗
			

			
				
				−
			

			

				∼
			

			

				𝑓
			

			

				𝑗
			

			
				
				𝑧
			

			
				∗
				𝑗
			

			
				
				,
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑚
				.
			

		
	

It can be verified that the functions 
	
		
			

				𝑔
			

			

				𝑖
			

		
	
 and 
	
		
			

				𝑓
			

			

				𝑗
			

		
	
 satisfy the assumptions on 
	
		
			

				𝑔
			

			

				𝑖
			

		
	
 and 
	
		
			

				𝑓
			

			

				𝑗
			

		
	
; that is, 
	
		
			

				𝑔
			

			

				𝑖
			

			
				∈
				𝛽
			

		
	
, 
	
		
			

				𝑓
			

			

				𝑗
			

			
				∈
				𝜅
			

		
	
, and 
	
		
			

				𝑔
			

			

				𝑖
			

			
				∈
				𝛽
			

		
	
, 
	
		
			

				𝑓
			

			

				𝑗
			

			
				∈
				𝛽
			

		
	
 implies that 
	
		
			

				𝑔
			

			

				𝑖
			

			
				∈
				𝛽
			

		
	
 and 
	
		
			

				𝑓
			

			

				𝑗
			

			
				∈
				𝛽
			

		
	
, respectively. We also note that 
	
		
			

				𝑔
			

			

				𝑖
			

			
				(
				0
				)
				=
				0
			

		
	
 and 
	
		
			

				𝑓
			

			

				𝑗
			

			
				(
				0
				)
				=
				0
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑛
			

		
	
.
By assumption (H2) and the above equations, we can have
						
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				0
				≤
				𝑓
				(
				𝑦
				)
			

			
				
			
			
				𝑦
				≤
				ℓ
			

			

				𝑖
			

			
				,
				0
				≤
				𝑔
				(
				𝑥
				)
			

			
				
			
			
				𝑥
				≤
				𝜅
			

			

				𝑖
			

			

				.
			

		
	

3. Preliminaries
In this paper, we will assume that the norms of the matrices 
	
		
			
				𝐴
				,
				𝐵
				,
				𝑊
				=
				(
				𝑊
			

			
				𝑗
				𝑖
			

			

				)
			

		
	
, 
	
		
			

				𝑊
			

			

				𝜏
			

			
				=
				(
				𝑊
			

			
				𝜏
				𝑗
				𝑖
			

			

				)
			

		
	
, 
	
		
			
				𝑉
				=
				(
				𝑉
			

			
				𝑖
				𝑗
			

			

				)
			

		
	
, and 
	
		
			

				𝑉
			

			

				𝜎
			

			
				=
				(
				𝑊
			

			
				𝜎
				𝑖
				𝑗
			

			

				)
			

		
	
 are bounded. Based on this property, we can directly observe the following facts. 
Fact 1. If 
	
		
			
				𝐴
				,
				𝐵
				,
				𝑊
				=
				(
				𝑊
			

			
				𝑗
				𝑖
			

			

				)
			

		
	
, 
	
		
			

				𝑊
			

			

				𝜏
			

			
				=
				(
				𝑊
			

			
				𝜏
				𝑗
				𝑖
			

			

				)
			

		
	
, 
	
		
			
				𝑉
				=
				(
				𝑉
			

			
				𝑖
				𝑗
			

			

				)
			

		
	
, and 
	
		
			

				𝑉
			

			

				𝜎
			

			
				=
				(
				𝑊
			

			
				𝜎
				𝑖
				𝑗
			

			

				)
			

		
	
 satisfy the parameter ranges defined by (4) and have bounded norms, then there exist some positive constants 
	
		
			
				𝜎
				(
				𝑊
				)
			

		
	
, 
	
		
			
				𝜎
				(
				𝑊
			

			

				𝜏
			

			

				)
			

		
	
, 
	
		
			
				𝜎
				(
				𝑉
				)
			

		
	
, and 
	
		
			
				𝜎
				(
				𝑉
			

			

				𝜎
			

			
				)
				∶
			

		
	

	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				‖
				𝐴
				‖
			

			

				2
			

			
				≤
				𝜎
				(
				𝐴
				)
				,
				‖
				𝐵
				‖
			

			

				2
			

			
				≤
				𝜎
				(
				𝐵
				)
				,
				‖
				𝑊
				‖
			

			

				2
			

			
				≤
				𝜎
				(
				𝑊
				)
				,
				‖
				𝑊
			

			

				𝜏
			

			

				‖
			

			

				2
			

			
				≤
				𝜎
				(
				𝑊
			

			

				𝜏
			

			
				)
				,
				‖
				𝑉
				‖
			

			

				2
			

			
				≤
				𝜎
				(
				𝑉
				)
				,
				‖
				𝑉
			

			

				𝜎
			

			

				‖
			

			

				2
			

			
				≤
				𝜎
				(
				𝑉
			

			

				𝜎
			

			
				)
				.
			

		
	

Lemma 1 (Faydasicok and Arik [39]).  For 
	
		
			
				𝑊
				∈
				𝑊
			

			

				𝐼
			

			
				∶
				=
				{
				𝑊
				=
				(
				𝑤
			

			
				𝑖
				𝑗
			

			
				)
				∶
				𝑊
			

			
				
			
			
				≤
				𝑊
				≤
			

			
				
			
			
				𝑊
				,
				𝑖
				.
				𝑒
				.
				,
				𝑤
			

			
				
			
			
				𝑖
				𝑗
			

			
				≤
				𝑤
			

			
				𝑖
				𝑗
			

			

				≤
			

			
				
			
			

				𝑤
			

			
				𝑖
				𝑗
			

			
				,
				𝑖
				,
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑛
				}
			

		
	
, the following equation holds:
							
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			

				𝜎
			

			

				1
			

			
				
				(
				𝑊
				)
				=
			

			
				
			
			
				‖
				‖
				|
				|
				𝑊
			

			
				∗
				𝑇
			

			

				𝑊
			

			

				∗
			

			
				|
				|
				|
				|
				𝑊
				+
				2
			

			
				∗
				𝑇
			

			
				|
				|
				𝑊
			

			

				∗
			

			
				+
				𝑊
			

			
				𝑇
				∗
			

			

				𝑊
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			

				,
			

		
	

						where 
	
		
			

				𝑊
			

			

				∗
			

			
				=
				(
				1
				/
				2
				)
				(
			

			
				
			
			
				𝑊
				+
				𝑊
			

			
				
			
			

				)
			

		
	
 and 
	
		
			

				𝑊
			

			

				∗
			

			
				=
				(
				1
				/
				2
				)
				(
			

			
				
			
			
				𝑊
				−
				𝑊
			

			
				
			
			

				)
			

		
	
.
Lemma 2 (Cao et al. [40]).  For 
	
		
			
				𝑊
				∈
				𝑊
			

			

				𝐼
			

			
				∶
				=
				{
				𝑊
				=
				(
				𝑤
			

			
				𝑖
				𝑗
			

			
				)
				∶
				𝑊
			

			
				
			
			
				≤
				𝑊
				≤
			

			
				
			
			
				𝑊
				,
				𝑖
				.
				𝑒
				.
				,
				𝑤
			

			
				
			
			
				𝑖
				𝑗
			

			
				≤
				𝑤
			

			
				𝑖
				𝑗
			

			

				≤
			

			
				
			
			

				𝑤
			

			
				𝑖
				𝑗
			

			
				,
				𝑖
				,
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑛
				}
			

		
	
, the following equation holds:
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			

				𝜎
			

			

				2
			

			
				(
				𝑊
				)
				=
				‖
				𝑊
			

			

				∗
			

			

				‖
			

			

				2
			

			
				+
				‖
				‖
				𝑊
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			

				,
			

		
	

						where 
	
		
			

				𝑊
			

			

				∗
			

			
				=
				(
				1
				/
				2
				)
				(
			

			
				
			
			
				𝑊
				+
				𝑊
			

			
				
			
			

				)
			

		
	
 and 
	
		
			

				𝑊
			

			

				∗
			

			
				=
				(
				1
				/
				2
				)
				(
			

			
				
			
			
				𝑊
				−
				𝑊
			

			
				
			
			

				)
			

		
	
.
Lemma 3 (Ensari and Arik [41]).  For 
	
		
			
				𝑊
				∈
				𝑊
			

			

				𝐼
			

			
				∶
				=
				{
				𝑊
				=
				(
				𝑤
			

			
				𝑖
				𝑗
			

			
				)
				∶
				𝑊
			

			
				
			
			
				≤
				𝑊
				≤
			

			
				
			
			
				𝑊
				,
				𝑖
				.
				𝑒
				.
				,
				𝑤
			

			
				
			
			
				𝑖
				𝑗
			

			
				≤
				𝑤
			

			
				𝑖
				𝑗
			

			

				≤
			

			
				
			
			

				𝑤
			

			
				𝑖
				𝑗
			

			
				,
				𝑖
				,
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑛
				}
			

		
	
, the following equation holds:
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			

				𝜎
			

			

				3
			

			
				
				(
				𝑊
				)
				=
			

			
				
			
			
				‖
				𝑊
			

			

				∗
			

			

				‖
			

			
				2
				2
			

			
				+
				‖
				‖
				𝑊
			

			

				∗
			

			
				‖
				‖
			

			
				2
				2
			

			
				‖
				‖
				𝑊
				+
				2
			

			
				𝑇
				∗
			

			
				|
				|
				𝑊
			

			

				∗
			

			
				|
				|
				‖
				‖
			

			

				2
			

			

				,
			

		
	

						where 
	
		
			

				𝑊
			

			

				∗
			

			
				=
				(
				1
				/
				2
				)
				(
			

			
				
			
			
				𝑊
				+
				𝑊
			

			
				
			
			

				)
			

		
	
 and  
	
		
			

				𝑊
			

			

				∗
			

			
				=
				(
				1
				/
				2
				)
				(
			

			
				
			
			
				𝑊
				−
				𝑊
			

			
				
			
			

				)
			

		
	
.
Lemma 4 (Singh [42]).  For 
	
		
			
				𝑊
				∈
				𝑊
			

			

				𝐼
			

			
				∶
				=
				{
				𝑊
				=
				(
				𝑤
			

			
				𝑖
				𝑗
			

			
				)
				∶
				𝑊
			

			
				
			
			
				≤
				𝑊
				≤
			

			
				
			
			
				𝑊
				,
				𝑡
				ℎ
				𝑎
				𝑡
				𝑖
				𝑠
				,
				𝑤
			

			
				
			
			
				𝑖
				𝑗
			

			
				≤
				𝑤
			

			
				𝑖
				𝑗
			

			

				≤
			

			
				
			
			

				𝑤
			

			
				𝑖
				𝑗
			

			
				,
				𝑖
				,
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑛
				}
			

		
	
, the following equation holds:
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			

				𝜎
			

			

				4
			

			
				‖
				‖
				
				𝑊
				‖
				‖
				(
				𝑊
				)
				=
			

			

				2
			

			

				,
			

		
	

						where 
	
		
			
				
				
				𝑤
				𝑊
				=
				(
			

			
				𝑖
				𝑗
			

			

				)
			

			
				𝑛
				×
				𝑛
			

		
	
 with 
	
		
			
				
				𝑤
			

			
				𝑖
				𝑗
			

			
				=
				m
				a
				x
				{
				|
				𝑤
			

			
				
			
			
				𝑖
				𝑗
			

			
				|
				,
				|
			

			
				
			
			

				𝑤
			

			
				𝑖
				𝑗
			

			
				|
				}
			

		
	
.
Lemma 5.  For any two vectors 
	
		
			
				𝜔
				=
				(
				𝜔
			

			

				1
			

			
				,
				𝜔
			

			

				2
			

			
				,
				…
				,
				𝜔
			

			

				𝑛
			

			

				)
			

			

				𝑇
			

		
	
 and 
	
		
			
				𝜐
				=
				(
				𝜐
			

			

				1
			

			
				,
				𝜐
			

			

				2
			

			
				,
				…
				,
				𝜐
			

			

				𝑛
			

			

				)
			

			

				𝑇
			

		
	
, the following inequality holds:
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				2
				𝜔
			

			

				𝑇
			

			
				𝜐
				=
				2
				𝜐
			

			

				𝑇
			

			
				𝜔
				≤
				𝛾
				𝜔
			

			

				𝑇
			

			
				1
				𝜛
				+
			

			
				
			
			
				𝛾
				𝜐
			

			

				𝑇
			

			
				𝜐
				,
			

		
	

						where 
	
		
			

				𝛾
			

		
	
 is any positive constant.
4. Global Robust Stability Results
Note that the equilibrium point of system (3) is globally asymptotically stable, if the origin of system (8) is a globally asymptotically stable equilibrium point. Therefore, in order to prove the global asymptotic stability of the equilibrium point of system (3), it will be sufficient to prove the global asymptotic stability of the origin of system (8). We can now proceed with the following result.
Theorem 6.  For given scalars 
	
		
			
				0
				≤
				𝜇
			

			

				1
			

			
				≤
				1
			

		
	
 and  
	
		
			
				0
				≤
				𝜇
			

			

				2
			

			
				≤
				1
			

		
	
, let the activation functions satisfy assumptions (H2) and (H3) and let the network parameters satisfy (4). Then, the origin of neural network model (8) is globally asymptotically stable, if there exist positive diagonal matrices 
	
		
			

				𝐻
			

			

				1
			

			
				=
				d
				i
				a
				g
				(
				ℎ
			

			
				1
				𝑖
			

			
				>
				0
				)
			

		
	
 and  
	
		
			

				𝐻
			

			

				2
			

			
				=
				d
				i
				a
				g
				(
				ℎ
			

			
				2
				𝑗
			

			
				>
				0
				)
			

		
	
, positive definite matrices 
	
		
			

				𝑅
			

		
	
, and 
	
		
			

				𝑇
			

		
	
, and four positive scalars 
	
		
			

				𝛼
			

		
	
, 
	
		
			

				𝛽
			

		
	
, 
	
		
			

				𝜒
			

		
	
, and  
	
		
			

				𝛿
			

		
	
, such that
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			

				𝜃
			

			

				1
			

			
				=
				‖
				‖
				𝐴
			

			
				
			
			
				‖
				‖
			

			

				2
			

			
				−
				‖
				‖
				𝐻
			

			

				1
			

			
				‖
				‖
			

			

				2
			

			
				−
				1
			

			
				
			
			
				𝛼
				−
				1
			

			
				
			
			
				𝛽
				
				1
				−
				𝜇
			

			

				1
			

			
				
				−
				𝜎
			

			

				2
			

			
				‖
				‖
				𝑅
				(
				𝐴
				)
			

			
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				𝜃
				>
				0
				,
			

			

				2
			

			
				=
				‖
				‖
				𝐻
			

			

				1
			

			
				‖
				‖
			

			

				2
			

			
				−
				3
				𝜎
			

			

				2
			

			
				(
				𝐸
				)
				‖
				𝑅
				‖
			

			

				2
			

			
				𝜃
				>
				0
				,
			

			

				3
			

			
				=
				‖
				‖
				𝐴
			

			
				
			
			
				‖
				‖
			

			

				2
			

			
				‖
				‖
				𝐾
			

			
				−
				2
			

			
				‖
				‖
			

			

				2
			

			
				−
				𝜒
				𝜎
			

			

				2
			

			
				(
				𝑉
				)
				−
				𝜎
			

			

				2
			

			
				‖
				‖
				𝑇
				(
				𝑉
				)
			

			
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				−
				1
			

			
				
			
			
				
				1
				−
				𝜇
			

			

				2
			

			
				
				𝜎
			

			

				2
			

			
				(
				𝑉
			

			

				𝜎
			

			
				)
				‖
				‖
				𝑇
			

			
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				−
				𝛿
				𝜎
			

			

				2
			

			
				(
				𝑉
			

			

				𝜎
			

			
				𝜃
				)
				>
				0
				,
			

			

				4
			

			
				=
				‖
				‖
				𝐵
			

			
				
			
			
				‖
				‖
			

			

				2
			

			
				−
				‖
				‖
				𝐻
			

			

				2
			

			
				‖
				‖
			

			

				2
			

			
				−
				1
			

			
				
			
			
				𝜒
				−
				1
			

			
				
			
			
				𝛿
				
				1
				−
				𝜇
			

			

				2
			

			
				
				−
				𝜎
			

			

				2
			

			
				‖
				‖
				𝑇
				(
				𝐵
				)
			

			
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				𝜃
				>
				0
				,
			

			

				5
			

			
				=
				‖
				‖
				𝐻
			

			

				2
			

			
				‖
				‖
			

			

				2
			

			
				−
				3
				𝜎
			

			

				2
			

			
				(
				Σ
				)
				‖
				𝑇
				‖
			

			

				2
			

			
				𝜃
				>
				0
				,
			

			

				6
			

			
				=
				‖
				‖
				𝐵
			

			
				
			
			
				‖
				‖
			

			

				2
			

			
				‖
				‖
				𝐿
			

			
				−
				2
			

			
				‖
				‖
			

			

				2
			

			
				−
				𝛼
				𝜎
			

			

				2
			

			
				(
				𝑊
				)
				−
				𝜎
			

			

				2
			

			
				‖
				‖
				𝑅
				(
				𝑊
				)
			

			
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				−
				1
			

			
				
			
			
				
				1
				−
				𝜇
			

			

				1
			

			
				
				𝜎
			

			

				2
			

			
				(
				𝑊
			

			

				𝜏
			

			
				)
				‖
				‖
				𝑅
			

			
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				−
				𝛽
				𝜎
			

			

				2
			

			
				(
				𝑊
			

			

				𝜏
			

			
				)
				>
				0
				,
			

		
	

						where
							
	
 		
 			
				(
				1
				8
				)
			
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				
				
				𝜎
				(
				𝐴
				)
				=
				m
				i
				n
			

			
				
			
			
				‖
				‖
				|
				|
				𝐴
			

			
				∗
				𝑇
			

			

				𝐴
			

			

				∗
			

			
				|
				|
				|
				|
				𝐴
				+
				2
			

			
				∗
				𝑇
			

			
				|
				|
				𝐴
			

			

				∗
			

			
				+
				𝐴
			

			
				𝑇
				∗
			

			

				𝐴
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				,
				‖
				𝐴
			

			

				∗
			

			

				‖
			

			

				2
			

			
				+
				‖
				‖
				𝐴
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				,
				
			

			
				
			
			
				‖
				𝐴
			

			

				∗
			

			

				‖
			

			
				2
				2
			

			
				+
				‖
				‖
				𝐴
			

			

				∗
			

			
				‖
				‖
			

			
				2
				2
			

			
				‖
				‖
				𝐴
				+
				2
			

			
				𝑇
				∗
			

			
				|
				|
				𝐴
			

			

				∗
			

			
				|
				|
				‖
				‖
			

			

				2
			

			
				,
				‖
				‖
				
				𝐴
				‖
				‖
			

			

				2
			

			
				
				,
				
				
				𝜎
				(
				𝐵
				)
				=
				m
				i
				n
			

			
				
			
			
				‖
				‖
				|
				|
				𝐵
			

			
				∗
				𝑇
			

			

				𝐵
			

			

				∗
			

			
				|
				|
				|
				|
				𝐵
				+
				2
			

			
				∗
				𝑇
			

			
				|
				|
				𝐵
			

			

				∗
			

			
				+
				𝐵
			

			
				𝑇
				∗
			

			

				𝐵
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				,
				‖
				𝐵
			

			

				∗
			

			

				‖
			

			

				2
			

			
				+
				‖
				‖
				𝐵
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				,
				
			

			
				
			
			
				‖
				𝐵
			

			

				∗
			

			

				‖
			

			
				2
				2
			

			
				+
				‖
				‖
				𝐵
			

			

				∗
			

			
				‖
				‖
			

			
				2
				2
			

			
				‖
				‖
				𝐵
				+
				2
			

			
				𝑇
				∗
			

			
				|
				|
				𝐵
			

			

				∗
			

			
				|
				|
				‖
				‖
			

			

				2
			

			
				,
				‖
				‖
				
				𝐵
				‖
				‖
			

			

				2
			

			
				
				,
				
				
				𝜎
				(
				𝑊
				)
				=
				m
				i
				n
			

			
				
			
			
				‖
				‖
				|
				|
				𝑊
			

			
				∗
				𝑇
			

			

				𝑊
			

			

				∗
			

			
				|
				|
				|
				|
				𝑊
				+
				2
			

			
				∗
				𝑇
			

			
				|
				|
				𝑊
			

			

				∗
			

			
				+
				𝑊
			

			
				𝑇
				∗
			

			

				𝑊
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				,
				‖
				𝑊
			

			

				∗
			

			

				‖
			

			

				2
			

			
				+
				‖
				‖
				𝑊
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				,
				
			

			
				
			
			
				‖
				𝑊
			

			

				∗
			

			

				‖
			

			
				2
				2
			

			
				+
				‖
				‖
				𝑊
			

			

				∗
			

			
				‖
				‖
			

			
				2
				2
			

			
				‖
				‖
				𝑊
				+
				2
			

			
				𝑇
				∗
			

			
				|
				|
				𝑊
			

			

				∗
			

			
				|
				|
				‖
				‖
			

			

				2
			

			
				,
				‖
				‖
				
				𝑊
				‖
				‖
			

			

				2
			

			
				
				,
				𝜎
				
				
				(
				𝑉
				)
				=
				m
				i
				n
			

			
				
			
			
				‖
				‖
				|
				|
				𝑉
			

			
				∗
				𝑇
			

			

				𝑉
			

			

				∗
			

			
				|
				|
				|
				|
				𝑉
				+
				2
			

			
				∗
				𝑇
			

			
				|
				|
				𝑉
			

			

				∗
			

			
				+
				𝑉
			

			
				𝑇
				∗
			

			

				𝑉
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				,
				‖
				𝑉
			

			

				∗
			

			

				‖
			

			

				2
			

			
				+
				‖
				‖
				𝑉
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				,
				
			

			
				
			
			
				‖
				𝑉
			

			

				∗
			

			

				‖
			

			
				2
				2
			

			
				+
				‖
				‖
				𝑉
			

			

				∗
			

			
				‖
				‖
			

			
				2
				2
			

			
				‖
				‖
				𝑉
				+
				2
			

			
				𝑇
				∗
			

			
				|
				|
				𝑉
			

			

				∗
			

			
				|
				|
				‖
				‖
			

			

				2
			

			
				,
				‖
				‖
				
				𝑉
				‖
				‖
			

			

				2
			

			
				
				,
				𝜎
				(
				𝑊
			

			

				𝜏
			

			
				)
				
				
				=
				m
				i
				n
			

			
				
			
			
				‖
				‖
				|
				|
				𝑊
			

			
				𝜏
				∗
				𝑇
			

			

				𝑊
			

			
				𝜏
				∗
			

			
				|
				|
				|
				|
				𝑊
				+
				2
			

			
				𝜏
				∗
				𝑇
			

			
				|
				|
				𝑊
			

			
				𝜏
				∗
			

			
				+
				𝑊
			

			
				∗
				𝜏
				𝑇
			

			

				𝑊
			

			
				𝜏
				∗
			

			
				‖
				‖
			

			

				2
			

			
				,
				‖
				𝑊
			

			
				𝜏
				∗
			

			

				‖
			

			

				2
			

			
				+
				‖
				‖
				𝑊
			

			
				𝜏
				∗
			

			
				‖
				‖
			

			

				2
			

			
				,
				
			

			
				
			
			
				‖
				𝑊
			

			
				𝜏
				∗
			

			

				‖
			

			
				2
				2
			

			
				+
				‖
				‖
				𝑊
			

			
				𝜏
				∗
			

			
				‖
				‖
			

			
				2
				2
			

			
				‖
				‖
				𝑊
				+
				2
			

			
				∗
				𝜏
				𝑇
			

			
				|
				|
				𝑊
			

			
				𝜏
				∗
			

			
				|
				|
				‖
				‖
			

			

				2
			

			
				,
				‖
				‖
				
				𝑊
			

			

				𝜏
			

			
				‖
				‖
			

			

				2
			

			
				
				,
				𝜎
				(
				𝑉
			

			

				𝜎
			

			
				)
				
				
				=
				m
				i
				n
			

			
				
			
			
				‖
				‖
				|
				|
				𝑉
			

			
				𝜎
				∗
				𝑇
			

			

				𝑉
			

			
				𝜎
				∗
			

			
				|
				|
				|
				|
				𝑉
				+
				2
			

			
				𝜎
				∗
				𝑇
			

			
				|
				|
				𝑉
			

			
				𝜎
				∗
			

			
				+
				𝑉
			

			
				∗
				𝜎
				𝑇
			

			

				𝑉
			

			
				𝜎
				∗
			

			
				‖
				‖
			

			

				2
			

			
				,
				‖
				𝑉
			

			
				𝜎
				∗
			

			

				‖
			

			

				2
			

			
				+
				‖
				‖
				𝑉
			

			
				𝜎
				∗
			

			
				‖
				‖
			

			

				2
			

			
				,
				
			

			
				
			
			
				‖
				𝑉
			

			
				𝜎
				∗
			

			

				‖
			

			
				2
				2
			

			
				+
				‖
				‖
				𝑉
			

			
				𝜎
				∗
			

			
				‖
				‖
			

			
				2
				2
			

			
				‖
				‖
				𝑉
				+
				2
			

			
				∗
				𝜎
				𝑇
			

			
				|
				|
				𝑉
			

			
				𝜎
				∗
			

			
				|
				|
				‖
				‖
			

			

				2
			

			
				,
				‖
				‖
				
				𝑉
			

			

				𝜎
			

			
				‖
				‖
			

			

				2
			

			
				
				,
				𝐴
			

			

				∗
			

			
				=
				1
			

			
				
			
			
				2
				
			

			
				
			
			
				𝐴
				+
				𝐴
			

			
				
			
			
				
				,
				𝐴
			

			

				∗
			

			
				=
				1
			

			
				
			
			
				2
				
			

			
				
			
			
				𝐴
				−
				𝐴
			

			
				
			
			
				
				,
				𝐵
			

			

				∗
			

			
				=
				1
			

			
				
			
			
				2
				
			

			
				
			
			
				𝐵
				+
				𝐵
			

			
				
			
			
				
				,
				𝐵
			

			

				∗
			

			
				=
				1
			

			
				
			
			
				2
				
			

			
				
			
			
				𝐵
				−
				𝐵
			

			
				
			
			
				
				,
				𝑊
			

			

				∗
			

			
				=
				1
			

			
				
			
			
				2
				
			

			
				
			
			
				𝑊
				+
				𝑊
			

			
				
			
			
				
				,
				𝑊
			

			

				∗
			

			
				=
				1
			

			
				
			
			
				2
				
			

			
				
			
			
				𝑊
				−
				𝑊
			

			
				
			
			
				
				,
				𝑊
			

			
				𝜏
				∗
			

			
				=
				1
			

			
				
			
			
				2
				
			

			
				
			
			

				𝑊
			

			

				𝜏
			

			
				+
				𝑊
			

			
				
			
			

				𝜏
			

			
				
				,
				𝑊
			

			
				𝜏
				∗
			

			
				=
				1
			

			
				
			
			
				2
				
			

			
				
			
			

				𝑊
			

			

				𝜏
			

			
				−
				𝑊
			

			
				
			
			

				𝜏
			

			
				
				,
				𝑉
			

			

				∗
			

			
				=
				1
			

			
				
			
			
				2
				
			

			
				
			
			
				𝑉
				+
				𝑉
			

			
				
			
			
				
				,
				𝑉
			

			

				∗
			

			
				=
				1
			

			
				
			
			
				2
				
			

			
				
			
			
				𝑉
				−
				𝑉
			

			
				
			
			
				
				,
				𝑉
			

			
				𝜎
				∗
			

			
				=
				1
			

			
				
			
			
				2
				
			

			
				
			
			

				𝑉
			

			

				𝜎
			

			
				+
				𝑉
			

			
				
			
			

				𝜎
			

			
				
				,
				𝑉
			

			
				𝜎
				∗
			

			
				=
				1
			

			
				
			
			
				2
				
			

			
				
			
			

				𝑉
			

			

				𝜎
			

			
				−
				𝑉
			

			
				
			
			

				𝜎
			

			
				
				,
				
				
				𝐴
				=
				d
				i
				a
				g
				̂
				𝑎
			

			

				𝑖
			

			
				
				w
				i
				t
				h
				̂
				𝑎
			

			

				𝑖
			

			
				
				|
				|
				𝑎
				=
				m
				a
				x
			

			
				
			
			

				𝑖
			

			
				|
				|
				,
				|
				|
			

			
				
			
			

				𝑎
			

			

				𝑖
			

			
				|
				|
				
				,
				
				
				̂
				𝑏
				𝐵
				=
				d
				i
				a
				g
			

			

				𝑗
			

			
				
				̂
				𝑏
				w
				i
				t
				h
			

			

				𝑗
			

			
				
				|
				|
				|
				𝑏
				=
				m
				a
				x
			

			
				
			
			

				𝑗
			

			
				|
				|
				|
				,
				|
				|
				|
			

			
				
			
			

				𝑏
			

			

				𝑗
			

			
				|
				|
				|
				
				,
				
				
				
				𝑤
				𝑊
				=
			

			
				𝑖
				𝑗
			

			

				
			

			
				𝑛
				×
				𝑛
			

			
				
				𝑤
				w
				i
				t
				h
			

			
				𝑖
				𝑗
			

			
				
				|
				|
				|
				𝑤
				=
				m
				a
				x
			

			
				
			
			
				𝑖
				𝑗
			

			
				|
				|
				|
				,
				|
				|
			

			
				
			
			

				𝑤
			

			
				𝑖
				𝑗
			

			
				|
				|
				
				,
				
				𝑊
			

			

				𝜏
			

			
				=
				
				
				𝑤
			

			
				𝜏
				𝑖
				𝑗
			

			

				
			

			
				𝑛
				×
				𝑛
			

			
				
				𝑤
				w
				i
				t
				h
			

			
				𝜏
				𝑖
				𝑗
			

			
				
				|
				|
				|
				𝑤
				=
				m
				a
				x
			

			
				
			
			
				𝜏
				𝑖
				𝑗
			

			
				|
				|
				|
				,
				|
				|
			

			
				
			
			

				𝑤
			

			
				𝜏
				𝑖
				𝑗
			

			
				|
				|
				
				,
				
				𝜅
				𝐾
				=
				d
				i
				a
				g
			

			

				𝑗
			

			
				
				,
				
				
				̂
				𝑣
				>
				0
				𝑉
				=
			

			
				𝑖
				𝑗
			

			

				
			

			
				𝑛
				×
				𝑛
			

			
				̂
				𝑣
				w
				i
				t
				h
			

			
				𝑖
				𝑗
			

			
				
				|
				|
				|
				𝑣
				=
				m
				a
				x
			

			
				
			
			
				𝑖
				𝑗
			

			
				|
				|
				|
				,
				|
				|
			

			
				
			
			

				𝑣
			

			
				𝑖
				𝑗
			

			
				|
				|
				
				,
				
				𝑉
			

			

				𝜎
			

			
				=
				
				̂
				𝑣
			

			
				𝜎
				𝑖
				𝑗
			

			

				
			

			
				𝑛
				×
				𝑛
			

			
				̂
				𝑣
				w
				i
				t
				h
			

			
				𝜎
				𝑖
				𝑗
			

			
				
				|
				|
				|
				𝑣
				=
				m
				a
				x
			

			
				
			
			
				𝜎
				𝑖
				𝑗
			

			
				|
				|
				|
				,
				|
				|
			

			
				
			
			

				𝑣
			

			
				𝜎
				𝑖
				𝑗
			

			
				|
				|
				
				,
				
				ℓ
				𝐿
				=
				d
				i
				a
				g
			

			

				𝑖
			

			
				
				.
				>
				0
			

		
	

Proof. Define the following positive definite Lyapunov functional:
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				𝑉
				=
				[
				]
				(
				𝑥
				(
				𝑡
				)
				,
				𝑦
				(
				𝑡
				)
				)
				𝑥
				(
				𝑡
				)
				+
				𝐸
				𝑥
				(
				𝑡
				−
				ℎ
				)
			

			

				𝑇
			

			
				[
				]
				+
				𝑥
				(
				𝑡
				)
				+
				𝐸
				𝑥
				(
				𝑡
				−
				ℎ
				)
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				ℎ
			

			
				1
				𝑖
			

			

				
			

			
				𝑡
				𝑡
				−
				ℎ
			

			

				𝑥
			

			
				2
				𝑖
			

			
				+
				[
				]
				(
				𝑠
				)
				𝑑
				𝑠
				𝑦
				(
				𝑡
				)
				+
				Σ
				𝑦
				(
				𝑡
				−
				𝑑
				)
			

			

				𝑇
			

			
				[
				]
				+
				𝑦
				(
				𝑡
				)
				+
				Σ
				𝑦
				(
				𝑡
				−
				𝑑
				)
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				ℎ
			

			
				2
				𝑗
			

			

				
			

			
				𝑡
				𝑡
				−
				𝑑
			

			

				𝑦
			

			
				2
				𝑗
			

			
				+
				
				𝛾
				(
				𝑠
				)
				𝑑
				𝑠
			

			

				1
			

			
				+
				𝛽
			

			

				1
			

			

				
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				
			

			
				𝑡
				𝑡
				−
				𝜏
				(
				𝑡
				)
			

			

				𝑓
			

			

				𝑗
			

			
				
				𝑦
			

			

				𝑗
			

			
				
				+
				
				𝛾
				(
				𝜉
				)
				𝑑
				𝜉
			

			

				2
			

			
				+
				𝛽
			

			

				2
			

			

				
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				
			

			
				𝑡
				𝑡
				−
				𝜎
				(
				𝑡
				)
			

			

				𝑔
			

			

				𝑖
			

			
				
				𝑥
			

			

				𝑖
			

			
				(
				
				𝜉
				)
				𝑑
				𝜉
				.
			

		
	

          The derivative of 
	
		
			
				𝑉
				(
				𝑥
				(
				𝑡
				)
				,
				𝑦
				(
				𝑡
				)
				)
			

		
	
 along the trajectories of the system is obtained as follows:
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				̇
				𝑉
				(
				𝑥
				(
				𝑡
				)
				,
				𝑦
				(
				𝑡
				)
				)
				=
				−
				2
				𝑥
			

			

				𝑇
			

			
				(
				𝑡
				)
				𝐴
				𝑥
				(
				𝑡
				)
				+
				2
				𝑥
			

			

				𝑇
			

			
				(
				𝑡
				)
				𝑊
				𝑓
				(
				𝑦
				(
				𝑡
				)
				)
				+
				2
				𝑥
			

			

				𝑇
			

			
				(
				𝑡
				)
				𝑊
			

			

				𝜏
			

			
				𝑓
				(
				𝑦
				(
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				)
				−
				2
				𝑥
			

			

				𝑇
			

			
				(
				𝑡
				−
				ℎ
				)
				𝐸
			

			

				𝑇
			

			
				𝐴
				𝑥
				(
				𝑡
				)
				+
				2
				𝑥
			

			

				𝑇
			

			
				(
				𝑡
				−
				ℎ
				)
				𝐸
			

			

				𝑇
			

			
				𝑊
				𝑓
				(
				𝑦
				(
				𝑡
				)
				)
				+
				2
				𝑥
			

			

				𝑇
			

			
				(
				𝑡
				−
				ℎ
				)
				𝐸
			

			

				𝑇
			

			

				𝑊
			

			

				𝜏
			

			
				𝑓
				(
				𝑦
				(
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				)
				+
				𝑥
			

			

				𝑇
			

			
				(
				𝑡
				)
				𝐻
			

			

				1
			

			
				𝑥
				(
				𝑡
				)
				−
				𝑥
			

			

				𝑇
			

			
				(
				𝑡
				−
				ℎ
				)
				𝐻
			

			

				1
			

			
				𝑥
				(
				𝑡
				−
				ℎ
				)
				−
				2
				𝑦
			

			

				𝑇
			

			
				(
				𝑡
				)
				𝐵
				𝑦
				(
				𝑡
				)
				+
				2
				𝑦
			

			

				𝑇
			

			
				(
				𝑡
				)
				𝑉
				𝑔
				(
				𝑥
				(
				𝑡
				)
				)
				+
				2
				𝑦
			

			

				𝑇
			

			
				(
				𝑡
				)
				𝑉
			

			

				𝜎
			

			
				𝑔
				(
				𝑥
				(
				𝑡
				−
				𝜎
				(
				𝑡
				)
				)
				)
				−
				2
				𝑦
			

			

				𝑇
			

			
				(
				𝑡
				−
				𝑑
				)
				Σ
			

			

				𝑇
			

			
				𝐵
				𝑦
				(
				𝑡
				)
				+
				2
				𝑦
			

			

				𝑇
			

			
				(
				𝑡
				−
				𝑑
				)
				Σ
			

			

				𝑇
			

			
				𝑉
				𝑔
				(
				𝑥
				(
				𝑡
				)
				)
				+
				2
				𝑦
			

			

				𝑇
			

			
				(
				𝑡
				−
				𝑑
				)
				Σ
			

			

				𝑇
			

			

				𝑉
			

			

				𝜎
			

			
				𝑔
				(
				𝑥
				(
				𝑡
				−
				𝜎
				(
				𝑡
				)
				)
				)
				+
				𝑦
			

			

				𝑇
			

			
				(
				𝑡
				)
				𝐻
			

			

				2
			

			
				𝑦
				(
				𝑡
				)
				−
				𝑦
			

			

				𝑇
			

			
				(
				𝑡
				−
				𝑑
				)
				𝐻
			

			

				2
			

			
				𝑦
				(
				𝑡
				−
				𝑑
				)
				+
				𝛾
			

			

				1
			

			
				‖
				𝑓
				(
				𝑦
				(
				𝑡
				)
				)
				‖
			

			
				2
				2
			

			
				−
				𝛾
			

			

				1
			

			
				
				1
				−
				𝜇
			

			

				1
			

			
				
				‖
				𝑓
				(
				𝑦
				(
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				)
				‖
			

			
				2
				2
			

			
				+
				𝛽
			

			

				1
			

			
				‖
				𝑓
				(
				𝑦
				(
				𝑡
				)
				)
				‖
			

			
				2
				2
			

			
				−
				𝛽
			

			

				1
			

			
				
				1
				−
				𝜇
			

			

				1
			

			
				
				‖
				𝑓
				(
				𝑦
				(
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				)
				‖
			

			
				2
				2
			

			
				+
				𝛾
			

			

				2
			

			
				‖
				𝑔
				(
				𝑥
				(
				𝑡
				)
				)
				‖
			

			
				2
				2
			

			
				−
				𝛾
			

			

				2
			

			
				
				1
				−
				𝜇
			

			

				2
			

			
				
				‖
				𝑔
				(
				𝑥
				(
				𝑡
				−
				𝜎
				(
				𝑡
				)
				)
				)
				‖
			

			
				2
				2
			

			
				+
				𝛽
			

			

				2
			

			
				‖
				𝑔
				(
				𝑥
				(
				𝑡
				)
				)
				‖
			

			
				2
				2
			

			
				−
				𝛽
			

			

				2
			

			
				
				1
				−
				𝜇
			

			

				2
			

			
				
				‖
				𝑔
				(
				𝑥
				(
				𝑡
				−
				𝜎
				(
				𝑡
				)
				)
				)
				‖
			

			
				2
				2
			

			

				.
			

		
	

          We can write the following inequalities as follows:
							
	
 		
 			
				(
				2
				2
				)
			
 			
				(
				2
				3
				)
			
 			
				(
				2
				4
				)
			
 			
				(
				2
				5
				)
			
 			
				(
				2
				6
				)
			
 			
				(
				2
				7
				)
			
 			
				(
				2
				8
				)
			
 			
				(
				2
				9
				)
			
 			
				(
				3
				0
				)
			
 			
				(
				3
				1
				)
			
 		
	

	
		
			
				2
				𝑥
			

			

				𝑇
			

			
				≤
				1
				(
				𝑡
				)
				𝑊
				𝑓
				(
				𝑦
				(
				𝑡
				)
				)
			

			
				
			
			
				𝛼
				𝑥
			

			

				𝑇
			

			
				(
				𝑡
				)
				𝑥
				(
				𝑡
				)
				+
				𝛼
				𝑓
			

			

				𝑇
			

			
				(
				𝑦
				(
				𝑡
				)
				)
				𝑊
			

			

				𝑇
			

			
				≤
				1
				𝑊
				𝑓
				(
				𝑦
				(
				𝑡
				)
				)
			

			
				
			
			
				𝛼
				‖
				𝑥
				(
				𝑡
				)
				‖
			

			
				2
				2
			

			
				+
				𝛼
				‖
				𝑊
				‖
			

			
				2
				2
			

			
				‖
				𝑓
				(
				𝑦
				(
				𝑡
				)
				)
				‖
			

			
				2
				2
			

			
				,
				2
				𝑥
			

			

				𝑇
			

			
				(
				𝑡
				)
				𝑊
			

			

				𝜏
			

			
				≤
				1
				𝑓
				(
				𝑦
				(
				𝑡
				−
				𝜏
				)
				)
			

			
				
			
			
				𝛽
				
				1
				−
				𝜇
			

			

				1
			

			
				
				𝑥
			

			

				𝑇
			

			
				(
				
				𝑡
				)
				𝑥
				(
				𝑡
				)
				+
				𝛽
				1
				−
				𝜇
			

			

				1
			

			
				
				𝑓
			

			

				𝑇
			

			
				(
				𝑦
				(
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				)
				𝑊
			

			
				𝜏
				𝑇
			

			
				×
				𝑊
			

			

				𝜏
			

			
				≤
				1
				𝑓
				(
				𝑦
				(
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				)
			

			
				
			
			
				𝛽
				
				1
				−
				𝜇
			

			

				1
			

			
				
				(
				‖
				𝑥
				𝑡
				)
				‖
			

			
				2
				2
			

			
				
				+
				𝛽
				1
				−
				𝜇
			

			

				1
			

			
				
				‖
				𝑊
			

			

				𝜏
			

			

				‖
			

			
				2
				2
			

			
				×
				‖
				𝑓
				(
				𝑦
				(
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				)
				‖
			

			
				2
				2
			

			
				,
				−
				2
				𝑥
			

			

				𝑇
			

			
				(
				𝑡
				−
				ℎ
				)
				𝐸
			

			

				𝑇
			

			
				𝐴
				𝑥
				(
				𝑡
				)
				≤
				𝑥
			

			

				𝑇
			

			
				(
				𝑡
				−
				ℎ
				)
				𝐸
			

			

				𝑇
			

			
				𝑅
				𝐸
				𝑥
				(
				𝑡
				−
				ℎ
				)
				+
				𝑥
			

			

				𝑇
			

			
				(
				𝑡
				)
				𝐴
			

			

				𝑇
			

			

				𝑅
			

			
				−
				1
			

			
				𝐴
				𝑥
				(
				𝑡
				)
				≤
				‖
				𝐸
				‖
			

			
				2
				2
			

			
				‖
				𝑅
				‖
			

			

				2
			

			
				‖
				𝑥
				(
				𝑡
				−
				ℎ
				)
				‖
			

			
				2
				2
			

			
				+
				‖
				𝐴
				‖
			

			
				2
				2
			

			
				‖
				‖
				𝑅
			

			
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				‖
				𝑥
				(
				𝑡
				)
				‖
			

			
				2
				2
			

			
				,
				2
				𝑥
			

			

				𝑇
			

			
				(
				𝑡
				−
				ℎ
				)
				𝐸
			

			

				𝑇
			

			
				𝑊
				𝑓
				(
				𝑦
				(
				𝑡
				)
				)
				≤
				𝑥
			

			

				𝑇
			

			
				(
				𝑡
				−
				ℎ
				)
				𝐸
			

			

				𝑇
			

			
				𝑅
				𝐸
				𝑥
				(
				𝑡
				−
				ℎ
				)
				+
				𝑓
				(
				𝑦
				(
				𝑡
				)
				)
				𝑊
			

			

				𝑇
			

			

				𝑅
			

			
				−
				1
			

			
				𝑊
				𝑓
				(
				𝑦
				(
				𝑡
				)
				)
				≤
				‖
				𝐸
				‖
			

			
				2
				2
			

			
				‖
				𝑅
				‖
			

			

				2
			

			
				‖
				𝑥
				(
				𝑡
				−
				ℎ
				)
				‖
			

			
				2
				2
			

			
				+
				‖
				𝑊
				‖
			

			
				2
				2
			

			
				‖
				‖
				𝑅
			

			
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				‖
				𝑓
				(
				𝑦
				(
				𝑡
				)
				)
				‖
			

			
				2
				2
			

			
				,
				2
				𝑥
			

			

				𝑇
			

			
				(
				𝑡
				−
				ℎ
				)
				𝐸
			

			

				𝑇
			

			

				𝑊
			

			

				𝜏
			

			
				𝑓
				(
				𝑦
				(
				𝑡
				−
				𝜏
				)
				)
				≤
				𝑥
			

			

				𝑇
			

			
				(
				𝑡
				−
				ℎ
				)
				𝐸
			

			

				𝑇
			

			
				𝑅
				𝐸
				𝑥
				(
				𝑡
				−
				ℎ
				)
				+
				𝑓
				(
				𝑦
				(
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				)
				𝑊
			

			
				𝜏
				𝑇
			

			
				×
				𝑅
			

			
				−
				1
			

			

				𝑊
			

			

				𝜏
			

			
				𝑓
				(
				𝑦
				(
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				)
				≤
				‖
				𝐸
				‖
			

			
				2
				2
			

			
				‖
				𝑅
				‖
			

			

				2
			

			
				‖
				‖
				𝑥
				(
				𝑡
				−
				ℎ
				)
			

			
				2
				2
			

			
				+
				‖
				𝑊
			

			

				𝜏
			

			

				‖
			

			
				2
				2
			

			
				‖
				‖
				𝑅
			

			
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				‖
				𝑓
				(
				𝑦
				(
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				)
				‖
			

			
				2
				2
			

			
				,
				2
				𝑦
			

			

				𝑇
			

			
				≤
				1
				(
				𝑡
				)
				𝑉
				𝑔
				(
				𝑥
				(
				𝑡
				)
				)
			

			
				
			
			
				𝜒
				𝑦
			

			

				𝑇
			

			
				(
				𝑡
				)
				𝑦
				(
				𝑡
				)
				+
				𝜒
				𝑔
			

			

				𝑇
			

			
				(
				𝑥
				(
				𝑡
				)
				)
				×
				𝑉
			

			

				𝑇
			

			
				≤
				1
				𝑉
				𝑔
				(
				𝑥
				(
				𝑡
				)
				)
			

			
				
			
			
				𝜒
				‖
				𝑦
				(
				𝑡
				)
				‖
			

			
				2
				2
			

			
				+
				𝜒
				‖
				𝑉
				‖
			

			
				2
				2
			

			
				‖
				𝑔
				(
				𝑥
				(
				𝑡
				)
				)
				‖
			

			
				2
				2
			

			
				,
				2
				𝑦
			

			

				𝑇
			

			
				(
				𝑡
				)
				𝑉
			

			

				𝜎
			

			
				≤
				1
				𝑔
				(
				𝑥
				(
				𝑡
				−
				𝜎
				)
				)
			

			
				
			
			
				𝛿
				
				1
				−
				𝜇
			

			

				2
			

			
				
				𝑦
			

			

				𝑇
			

			
				
				(
				𝑡
				)
				𝑦
				(
				𝑡
				)
				+
				𝛿
				1
				−
				𝜇
			

			

				2
			

			
				
				𝑔
			

			

				𝑇
			

			
				×
				(
				𝑥
				(
				𝑡
				−
				𝜎
				(
				𝑡
				)
				)
				)
				𝑉
			

			
				𝜎
				𝑇
			

			

				𝑉
			

			

				𝜎
			

			
				≤
				1
				𝑔
				(
				𝑥
				(
				𝑡
				−
				𝜎
				(
				𝑡
				)
				)
				)
			

			
				
			
			
				𝛿
				
				1
				−
				𝜇
			

			

				2
			

			
				
				‖
				𝑦
				(
				𝑡
				)
				‖
			

			
				2
				2
			

			
				
				+
				𝛿
				1
				−
				𝜇
			

			

				2
			

			
				
				‖
				𝑉
			

			

				𝜎
			

			

				‖
			

			
				2
				2
			

			
				‖
				𝑔
				(
				𝑥
				(
				𝑡
				−
				𝜎
				(
				𝑡
				)
				)
				)
				‖
			

			
				2
				2
			

			
				,
				−
				2
				𝑦
			

			

				𝑇
			

			
				(
				𝑡
				−
				𝑑
				)
				Σ
			

			

				𝑇
			

			
				𝐵
				𝑦
				(
				𝑡
				)
				≤
				𝑦
			

			

				𝑇
			

			
				(
				𝑡
				−
				𝑑
				)
				Σ
			

			

				𝑇
			

			
				𝑇
				Σ
				𝑦
				(
				𝑡
				−
				𝑑
				)
				+
				𝑦
			

			

				𝑇
			

			
				(
				𝑡
				)
				𝐵
			

			

				𝑇
			

			

				𝑇
			

			
				−
				1
			

			
				𝐵
				𝑦
				(
				𝑡
				)
				≤
				‖
				Σ
				‖
			

			
				2
				2
			

			
				‖
				𝑇
				‖
			

			

				2
			

			
				‖
				𝑦
				(
				𝑡
				−
				𝑑
				)
				‖
			

			
				2
				2
			

			
				+
				‖
				𝐵
				‖
			

			
				2
				2
			

			
				‖
				‖
				𝑇
			

			
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				‖
				𝑦
				(
				𝑡
				)
				‖
			

			
				2
				2
			

			
				,
				2
				𝑦
			

			

				𝑇
			

			
				(
				𝑡
				−
				𝑑
				)
				Σ
			

			

				𝑇
			

			
				𝑉
				𝑔
				(
				𝑥
				(
				𝑡
				)
				)
				≤
				𝑦
			

			

				𝑇
			

			
				(
				𝑡
				−
				𝑑
				)
				Σ
			

			

				𝑇
			

			
				𝑇
				Σ
				𝑦
				(
				𝑡
				−
				𝑑
				)
				+
				𝑔
			

			

				𝑇
			

			
				(
				𝑥
				(
				𝑡
				)
				)
				𝑉
			

			

				𝑇
			

			

				𝑇
			

			
				−
				1
			

			
				𝑉
				𝑔
				(
				𝑥
				(
				𝑡
				)
				)
				≤
				‖
				Σ
				‖
			

			
				2
				2
			

			
				‖
				𝑇
				‖
			

			

				2
			

			
				‖
				𝑦
				(
				𝑡
				−
				𝑑
				)
				‖
			

			
				2
				2
			

			
				+
				‖
				𝑉
				‖
			

			
				2
				2
			

			
				‖
				‖
				𝑇
			

			
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				‖
				𝑔
				(
				𝑥
				(
				𝑡
				)
				)
				‖
			

			
				2
				2
			

			
				,
				2
				𝑦
			

			

				𝑇
			

			
				(
				𝑡
				−
				𝑑
				)
				Σ
			

			

				𝑇
			

			

				𝑉
			

			

				𝜎
			

			
				𝑔
				(
				𝑥
				(
				𝑡
				−
				𝜎
				)
				)
				≤
				𝑦
			

			

				𝑇
			

			
				(
				𝑡
				−
				𝑑
				)
				Σ
			

			

				𝑇
			

			
				𝑇
				Σ
				𝑦
				(
				𝑡
				−
				𝑑
				)
				+
				𝑔
			

			

				𝑇
			

			
				(
				𝑥
				(
				𝑡
				−
				𝜎
				(
				𝑡
				)
				)
				)
				𝑉
			

			
				𝜎
				𝑇
			

			
				×
				𝑇
			

			
				−
				1
			

			
				𝐷
				𝑔
				(
				𝑥
				(
				𝑡
				−
				𝜎
				(
				𝑡
				)
				)
				)
				≤
				‖
				Σ
				‖
			

			
				2
				2
			

			
				‖
				𝑇
				‖
			

			

				2
			

			
				‖
				𝑦
				(
				𝑡
				−
				𝑑
				)
				‖
			

			
				2
				2
			

			
				+
				‖
				𝑉
			

			

				𝜎
			

			

				‖
			

			
				2
				2
			

			
				‖
				‖
				𝑇
			

			
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				‖
				𝑔
				(
				𝑥
				(
				𝑡
				−
				𝜎
				(
				𝑡
				)
				)
				)
				‖
			

			
				2
				2
			

			

				.
			

		
	

          Combining (22)–(31) into (21) and considering 
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			

				𝑥
			

			

				𝑇
			

			
				(
				𝑡
				)
				𝑥
				(
				𝑡
				)
				≥
				𝑔
			

			

				𝑇
			

			
				(
				𝑥
				(
				𝑡
				)
				)
				𝐾
			

			
				−
				2
			

			
				𝑦
				𝑔
				(
				𝑥
				(
				𝑡
				)
				)
				,
			

			

				𝑇
			

			
				(
				𝑡
				)
				𝑦
				(
				𝑡
				)
				≥
				𝑓
			

			

				𝑇
			

			
				(
				𝑦
				(
				𝑡
				)
				)
				𝐿
			

			
				−
				2
			

			
				𝑓
				(
				𝑦
				(
				𝑡
				)
				)
				,
			

		
	

						we have
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			
				̇
				
				‖
				‖
				𝐴
				𝑉
				(
				𝑥
				(
				𝑡
				)
				,
				𝑦
				(
				𝑡
				)
				)
				≤
				−
			

			
				
			
			
				‖
				‖
			

			

				2
			

			
				−
				‖
				‖
				𝐻
			

			

				1
			

			
				‖
				‖
			

			

				2
			

			
				−
				1
			

			
				
			
			
				𝛼
				−
				1
			

			
				
			
			
				𝛽
				
				1
				−
				𝜇
			

			

				1
			

			
				
				−
				‖
				𝐴
				‖
			

			
				2
				2
			

			
				‖
				‖
				𝑅
			

			
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				
				‖
				×
				‖
				𝑥
				(
				𝑡
				)
			

			
				2
				2
			

			
				−
				
				‖
				‖
				𝐻
			

			

				1
			

			
				‖
				‖
			

			

				2
			

			
				−
				3
				‖
				𝐸
				‖
			

			
				2
				2
			

			
				‖
				𝑅
				‖
			

			

				2
			

			
				
				‖
				𝑥
				(
				𝑡
				−
				ℎ
				)
				‖
			

			
				2
				2
			

			
				−
				
				‖
				‖
				𝐴
			

			
				
			
			
				‖
				‖
			

			

				2
			

			
				‖
				‖
				𝐾
			

			
				−
				2
			

			
				‖
				‖
			

			

				2
			

			
				−
				𝜒
				‖
				𝑉
				‖
			

			
				2
				2
			

			
				−
				‖
				𝑉
				‖
			

			
				2
				2
			

			
				‖
				‖
				𝑇
			

			
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				−
				𝛾
			

			

				2
			

			
				−
				𝛽
			

			

				2
			

			
				
				×
				‖
				𝑔
				(
				𝑥
				(
				𝑡
				)
				)
				‖
			

			
				2
				2
			

			
				−
				
				𝛽
			

			

				2
			

			
				
				1
				−
				𝜇
			

			

				2
			

			
				
				+
				𝛾
			

			

				2
			

			
				
				1
				−
				𝜇
			

			

				2
			

			
				
				
				−
				𝛿
				1
				−
				𝜇
			

			

				2
			

			
				
				‖
				𝑉
			

			

				𝜎
			

			

				‖
			

			
				2
				2
			

			
				−
				‖
				𝑉
			

			

				𝜎
			

			

				‖
			

			
				2
				2
			

			
				‖
				‖
				𝑇
			

			
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				
				×
				‖
				𝑔
				(
				𝑥
				(
				𝑡
				−
				𝜎
				(
				𝑡
				)
				)
				)
				‖
			

			
				2
				2
			

			
				−
				
				‖
				‖
				𝐵
			

			
				
			
			
				‖
				‖
			

			

				2
			

			
				−
				‖
				‖
				𝐻
			

			

				2
			

			
				‖
				‖
			

			

				2
			

			
				−
				1
			

			
				
			
			
				𝜒
				−
				1
			

			
				
			
			
				𝛿
				
				1
				−
				𝜇
			

			

				2
			

			
				
				−
				‖
				𝐵
				‖
			

			
				2
				2
			

			
				‖
				‖
				𝑇
			

			
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				
				×
				‖
				𝑦
				(
				𝑡
				)
				‖
			

			
				2
				2
			

			
				−
				
				‖
				‖
				𝐻
			

			

				2
			

			
				‖
				‖
			

			

				2
			

			
				−
				3
				‖
				Σ
				‖
			

			
				2
				2
			

			
				‖
				𝑇
				‖
			

			

				2
			

			
				
				‖
				𝑦
				(
				𝑡
				−
				𝑑
				)
				‖
			

			
				2
				2
			

			
				−
				
				‖
				‖
				𝐵
			

			
				
			
			
				‖
				‖
			

			

				2
			

			
				‖
				‖
				𝐿
			

			
				−
				2
			

			
				‖
				‖
			

			

				2
			

			
				−
				𝛼
				‖
				𝑊
				‖
			

			
				2
				2
			

			
				−
				‖
				𝑊
				‖
			

			
				2
				2
			

			
				‖
				‖
				𝑅
			

			
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				−
				𝛾
			

			

				1
			

			
				−
				𝛽
			

			

				1
			

			
				
				×
				‖
				𝑓
				(
				𝑦
				(
				𝑡
				)
				)
				‖
			

			
				2
				2
			

			
				−
				
				𝛽
			

			

				1
			

			
				
				1
				−
				𝜇
			

			

				1
			

			
				
				+
				𝛾
			

			

				1
			

			
				
				1
				−
				𝜇
			

			

				1
			

			
				
				
				−
				𝛽
				1
				−
				𝜇
			

			

				1
			

			
				
				‖
				𝑊
			

			

				𝜏
			

			

				‖
			

			
				2
				2
			

			
				−
				‖
				𝑊
			

			

				𝜏
			

			

				‖
			

			
				2
				2
			

			
				‖
				‖
				𝑅
			

			
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				
				×
				‖
				𝑓
				(
				𝑦
				(
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				)
				‖
			

			
				2
				2
			

			

				.
			

		
	
Let 
	
		
			

				𝛽
			

			

				1
			

			
				=
				𝛽
				‖
				𝑊
			

			

				𝜏
			

			

				‖
			

			
				2
				2
			

		
	
, 
	
		
			

				𝛾
			

			

				1
			

			
				=
				(
				1
				/
				(
				1
				−
				𝜇
			

			

				1
			

			
				)
				)
				‖
				𝑊
			

			

				𝜏
			

			

				‖
			

			
				2
				2
			

			
				‖
				𝑅
			

			
				−
				1
			

			

				‖
			

			

				2
			

		
	
, 
	
		
			

				𝛽
			

			

				2
			

			
				=
				𝛿
				‖
				𝑉
			

			

				𝜎
			

			

				‖
			

			
				2
				2
			

		
	
, and 
	
		
			

				𝛾
			

			

				2
			

			
				=
				(
				1
				/
				(
				1
				−
				𝜇
			

			

				2
			

			
				)
				)
				‖
				𝑉
			

			

				𝜎
			

			

				‖
			

			
				2
				2
			

			
				‖
				𝑇
			

			
				−
				1
			

			

				‖
			

			

				2
			

		
	
, 
	
		
			
				̇
				𝑉
				(
				𝑥
				(
				𝑡
				)
				,
				𝑦
				(
				𝑡
				)
				)
			

		
	
 can be written in the form
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				̇
				
				‖
				‖
				𝐴
				𝑉
				(
				𝑥
				(
				𝑡
				)
				,
				𝑦
				(
				𝑡
				)
				)
				≤
				−
			

			
				
			
			
				‖
				‖
			

			

				2
			

			
				−
				‖
				‖
				𝐻
			

			

				1
			

			
				‖
				‖
			

			

				2
			

			
				−
				1
			

			
				
			
			
				𝛼
				−
				1
			

			
				
			
			
				𝛽
				
				1
				−
				𝜇
			

			

				1
			

			
				
				−
				‖
				𝐴
				‖
			

			
				2
				2
			

			
				‖
				‖
				𝑅
			

			
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				
				‖
				×
				‖
				𝑥
				(
				𝑡
				)
			

			
				2
				2
			

			
				−
				
				‖
				‖
				𝐻
			

			

				1
			

			
				‖
				‖
			

			

				2
			

			
				−
				3
				‖
				𝐸
				‖
			

			
				2
				2
			

			
				‖
				𝑅
				‖
			

			

				2
			

			
				
				‖
				‖
				𝑥
				(
				𝑡
				−
				ℎ
				)
			

			
				2
				2
			

			
				−
				
				‖
				‖
				𝐴
			

			
				
			
			
				‖
				‖
			

			

				2
			

			
				‖
				‖
				𝐾
			

			
				−
				2
			

			
				‖
				‖
			

			

				2
			

			
				−
				𝜒
				‖
				𝑉
				‖
			

			
				2
				2
			

			
				−
				‖
				𝑉
				‖
			

			
				2
				2
			

			
				‖
				‖
				𝑇
			

			
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				−
				1
			

			
				
			
			
				
				1
				−
				𝜇
			

			

				2
			

			
				
				‖
				𝑉
			

			

				𝜎
			

			

				‖
			

			
				2
				2
			

			
				‖
				‖
				𝑇
			

			
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				−
				𝛿
				‖
				𝑉
			

			

				𝜎
			

			

				‖
			

			
				2
				2
			

			
				
				‖
				𝑔
				(
				𝑥
				(
				𝑡
				)
				)
				‖
			

			
				2
				2
			

			
				−
				
				‖
				‖
				𝐵
			

			
				
			
			
				‖
				‖
			

			

				2
			

			
				−
				‖
				‖
				𝐻
			

			

				2
			

			
				‖
				‖
			

			

				2
			

			
				−
				1
			

			
				
			
			
				𝜒
				−
				1
			

			
				
			
			
				𝛿
				
				1
				−
				𝜇
			

			

				2
			

			
				
				−
				‖
				𝐵
				‖
			

			
				2
				2
			

			
				‖
				‖
				𝑇
			

			
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				
				×
				‖
				𝑦
				(
				𝑡
				)
				‖
			

			
				2
				2
			

			
				−
				
				‖
				‖
				𝐻
			

			

				2
			

			
				‖
				‖
			

			

				2
			

			
				−
				3
				‖
				Σ
				‖
			

			
				2
				2
			

			
				‖
				𝑇
				‖
			

			

				2
			

			
				
				‖
				𝑦
				(
				𝑡
				−
				𝑑
				)
				‖
			

			
				2
				2
			

			
				−
				
				‖
				‖
				𝐵
			

			
				
			
			
				‖
				‖
			

			

				2
			

			
				‖
				‖
				𝐿
			

			
				−
				2
			

			
				‖
				‖
			

			

				2
			

			
				−
				𝛼
				‖
				𝑊
				‖
			

			
				2
				2
			

			
				−
				‖
				𝑊
				‖
			

			
				2
				2
			

			
				‖
				‖
				𝑅
			

			
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				−
				1
			

			
				
			
			
				
				1
				−
				𝜇
			

			

				1
			

			
				
				‖
				𝑊
			

			

				𝜏
			

			

				‖
			

			
				2
				2
			

			
				‖
				‖
				𝑅
			

			
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				−
				𝛽
				‖
				𝑊
			

			

				𝜏
			

			

				‖
			

			
				2
				2
			

			
				
				‖
				𝑓
				(
				𝑦
				(
				𝑡
				)
				)
				‖
			

			
				2
				2
			

			

				.
			

		
	
By Fact 1, 
	
		
			
				‖
				𝐴
				‖
			

			

				2
			

			
				≤
				𝜎
				(
				𝐴
				)
			

		
	
, 
	
		
			
				‖
				𝐵
				‖
			

			

				2
			

			
				≤
				𝜎
				(
				𝐵
				)
			

		
	
, 
	
		
			
				‖
				𝑊
				‖
			

			

				2
			

			
				≤
				𝜎
				(
				𝑊
				)
			

		
	
, 
	
		
			
				‖
				𝑊
			

			

				𝜏
			

			

				‖
			

			

				2
			

			
				≤
				𝜎
				(
				𝑊
			

			

				𝜏
			

			

				)
			

		
	
, 
	
		
			
				‖
				𝑉
				‖
			

			

				2
			

			
				≤
				𝜎
				(
				𝑉
				)
			

		
	
, and 
	
		
			
				‖
				𝑉
			

			

				𝜎
			

			

				‖
			

			

				2
			

			
				≤
				𝜎
				(
				𝑉
			

			

				𝜎
			

			

				)
			

		
	
, one can have
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				̇
				
				‖
				‖
				𝐴
				𝑉
				(
				𝑥
				(
				𝑡
				)
				,
				𝑦
				(
				𝑡
				)
				)
				≤
				−
			

			
				
			
			
				‖
				‖
			

			

				2
			

			
				−
				‖
				‖
				𝐻
			

			

				1
			

			
				‖
				‖
			

			

				2
			

			
				−
				1
			

			
				
			
			
				𝛼
				−
				1
			

			
				
			
			
				𝛽
				
				1
				−
				𝜇
			

			

				1
			

			
				
				−
				𝜎
			

			

				2
			

			
				‖
				‖
				𝑅
				(
				𝐴
				)
			

			
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				
				‖
				×
				‖
				𝑥
				(
				𝑡
				)
			

			
				2
				2
			

			
				−
				
				‖
				‖
				𝐻
			

			

				1
			

			
				‖
				‖
			

			

				2
			

			
				−
				3
				𝜎
			

			

				2
			

			
				(
				𝐸
				)
				‖
				𝑅
				‖
			

			

				2
			

			
				
				‖
				‖
				𝑥
				(
				𝑡
				−
				ℎ
				)
			

			
				2
				2
			

			
				−
				
				‖
				‖
				𝐴
			

			
				
			
			
				‖
				‖
			

			

				2
			

			
				‖
				‖
				𝐾
			

			
				−
				2
			

			
				‖
				‖
			

			

				2
			

			
				−
				𝜒
				𝜎
			

			

				2
			

			
				(
				𝑉
				)
				−
				𝜎
			

			

				2
			

			
				‖
				‖
				𝑇
				(
				𝑉
				)
			

			
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				−
				1
			

			
				
			
			
				
				1
				−
				𝜇
			

			

				2
			

			
				
				𝜎
			

			

				2
			

			
				(
				𝑉
			

			

				𝜎
			

			
				)
				‖
				‖
				𝑇
			

			
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				−
				𝛿
				𝜎
			

			

				2
			

			
				(
				𝑉
			

			

				𝜎
			

			
				)
				
				×
				‖
				𝑔
				(
				𝑥
				(
				𝑡
				)
				)
				‖
			

			
				2
				2
			

			
				−
				
				‖
				‖
				𝐵
			

			
				
			
			
				‖
				‖
			

			

				2
			

			
				−
				‖
				‖
				𝐻
			

			

				2
			

			
				‖
				‖
			

			

				2
			

			
				−
				1
			

			
				
			
			
				𝜒
				−
				1
			

			
				
			
			
				𝛿
				
				1
				−
				𝜇
			

			

				2
			

			
				
				−
				𝜎
			

			

				2
			

			
				‖
				‖
				𝑇
				(
				𝐵
				)
			

			
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				
				×
				‖
				𝑦
				(
				𝑡
				)
				‖
			

			
				2
				2
			

			
				−
				
				‖
				‖
				𝐻
			

			

				2
			

			
				‖
				‖
			

			

				2
			

			
				−
				3
				𝜎
			

			

				2
			

			
				(
				Σ
				)
				‖
				𝑇
				‖
			

			

				2
			

			
				
				‖
				𝑦
				(
				𝑡
				−
				𝑑
				)
				‖
			

			
				2
				2
			

			
				−
				
				‖
				‖
				𝐵
			

			
				
			
			
				‖
				‖
			

			

				2
			

			
				‖
				‖
				𝐿
			

			
				−
				2
			

			
				‖
				‖
			

			

				2
			

			
				−
				𝛼
				𝜎
			

			

				2
			

			
				(
				𝑊
				)
				−
				𝜎
			

			

				2
			

			
				‖
				‖
				𝑅
				(
				𝑊
				)
			

			
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				−
				1
			

			
				
			
			
				
				1
				−
				𝜇
			

			

				1
			

			
				
				𝜎
			

			

				2
			

			
				(
				𝑊
			

			

				𝜏
			

			
				)
				‖
				‖
				𝑅
			

			
				−
				1
			

			
				‖
				‖
			

			

				2
			

			
				−
				𝛽
				𝜎
			

			

				2
			

			
				(
				𝑊
			

			

				𝜏
			

			
				)
				
				×
				‖
				𝑓
				(
				𝑦
				(
				𝑡
				)
				)
				‖
			

			
				2
				2
			

			

				,
			

		
	

						or equivalently
							
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			
				̇
				𝑉
				(
				𝑥
				(
				𝑡
				)
				,
				𝑦
				(
				𝑡
				)
				)
				≤
				−
				𝜃
			

			

				1
			

			
				‖
				𝑥
				(
				𝑡
				)
				‖
			

			
				2
				2
			

			
				−
				𝜃
			

			

				2
			

			
				‖
				𝑥
				(
				𝑡
				−
				ℎ
				)
				‖
			

			
				2
				2
			

			
				−
				𝜃
			

			

				3
			

			
				‖
				𝑔
				(
				𝑥
				(
				𝑡
				)
				)
				‖
			

			
				2
				2
			

			
				−
				𝜃
			

			

				4
			

			
				‖
				𝑦
				(
				𝑡
				)
				‖
			

			
				2
				2
			

			
				−
				𝜃
			

			

				5
			

			
				‖
				𝑦
				(
				𝑡
				−
				𝑑
				)
				‖
			

			
				2
				2
			

			
				−
				𝜃
			

			

				6
			

			
				‖
				𝑓
				(
				𝑦
				(
				𝑡
				)
				)
				‖
			

			
				2
				2
			

			

				.
			

		
	
Clearly, 
	
		
			

				𝜃
			

			

				𝑖
			

			
				>
				0
			

		
	
 and 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				6
			

		
	
, imply that 
	
		
			
				̇
				𝑉
				(
				𝑥
				(
				𝑡
				)
				,
				𝑦
				(
				𝑡
				)
				)
				<
				0
			

		
	
. On the other hand, 
	
		
			
				𝑉
				(
				𝑥
				(
				𝑡
				)
				,
				𝑦
				(
				𝑡
				)
				)
				→
				∞
			

		
	
 as 
	
		
			
				𝑥
				(
				𝑡
				)
				→
				∞
			

		
	
, 
	
		
			
				𝑦
				(
				𝑡
				)
				→
				∞
			

		
	
, meaning that the Lyapunov functional used for the stability analysis is radially unbounded. Then, by the standard Lyapunov functional theory, it is concluded that system (8) or equivalently the equilibrium point of system (3) is globally asymptotically stable. This completes the proof of Theorem 6.
Remark 7. The stability results presented [18, 36, 37] considered a pure delayed neural network mode and are expressed in the linear matrix inequality (LMI) forms. The LMI approach to the stability problem of neutral-type neural networks involves some difficulties with determining the constraint conditions on the network parameters as it requires testing positive definiteness of high dimensional matrices. However, Theorem 6 considers hybrid BAM neural networks and establishes various relationships between the network parameters only. Therefore, the results of this paper are applicable to a larger class of neural networks and can be easily verified when compared with the previously reported literature results.
Choosing 
	
		
			

				𝐻
			

			

				1
			

		
	
, 
	
		
			

				𝐻
			

			

				2
			

		
	
, 
	
		
			

				𝑅
			

		
	
, and 
	
		
			

				𝑇
			

		
	
 in the conditions of Theorem 6 as 
	
		
			

				𝐻
			

			

				1
			

			
				=
				ℎ
			

			

				1
			

			

				𝐼
			

		
	
, 
	
		
			

				𝐻
			

			

				2
			

			
				=
				ℎ
			

			

				2
			

			

				𝐼
			

		
	
, 
	
		
			
				𝑅
				=
				𝑟
				𝐼
			

		
	
, and 
	
		
			
				𝑇
				=
				𝑡
				𝐼
			

		
	
, we can express some special cases of Theorem 6 as follows.
Corollary 8.  For given scalars 
	
		
			
				0
				≤
				𝜇
			

			

				1
			

			
				≤
				1
			

		
	
 and 
	
		
			
				0
				≤
				𝜇
			

			

				2
			

			
				≤
				1
			

		
	
, let the activation functions satisfy assumptions (H2) and (H3) and let the network parameters satisfy (4). Then, the origin of neural network model (8) is globally asymptotically stable, if there exist eight positive scalars 
	
		
			

				𝛼
			

		
	
, 
	
		
			

				𝛽
			

		
	
, 
	
		
			

				𝜒
			

		
	
, 
	
		
			

				𝛿
			

		
	
, 
	
		
			

				ℎ
			

			

				1
			

		
	
, 
	
		
			

				ℎ
			

			

				2
			

		
	
, 
	
		
			

				𝑟
			

		
	
,  and 
	
		
			

				𝑡
			

		
	
, such that
							
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			

				𝜃
			

			
				∗
				1
			

			
				=
				‖
				‖
				𝐴
			

			
				
			
			
				‖
				‖
			

			

				2
			

			
				−
				ℎ
			

			

				1
			

			
				−
				1
			

			
				
			
			
				𝛼
				−
				1
			

			
				
			
			
				𝛽
				
				1
				−
				𝜇
			

			

				1
			

			
				
				−
				𝜎
			

			

				2
			

			
				1
				(
				𝐴
				)
			

			
				
			
			
				𝑟
				𝜃
				>
				0
				,
			

			
				∗
				2
			

			
				=
				ℎ
			

			

				1
			

			
				−
				3
				𝜎
			

			

				2
			

			
				𝜃
				(
				𝐸
				)
				𝑟
				>
				0
				,
			

			
				∗
				3
			

			
				=
				‖
				‖
				𝐴
			

			
				
			
			
				‖
				‖
			

			

				2
			

			
				‖
				‖
				𝐾
			

			
				−
				2
			

			
				‖
				‖
			

			

				2
			

			
				−
				𝜒
				𝜎
			

			

				2
			

			
				(
				𝑉
				)
				−
				𝜎
			

			

				2
			

			
				1
				(
				𝑉
				)
			

			
				
			
			
				𝑡
				−
				1
			

			
				
			
			
				
				1
				−
				𝜇
			

			

				2
			

			
				
				𝜎
			

			

				2
			

			
				(
				𝑉
			

			

				𝜎
			

			
				)
				1
			

			
				
			
			
				𝑡
				−
				𝛿
				𝜎
			

			

				2
			

			
				(
				𝑉
			

			

				𝜎
			

			
				𝜃
				)
				>
				0
				,
			

			
				∗
				4
			

			
				=
				‖
				‖
				𝐵
			

			
				
			
			
				‖
				‖
			

			

				2
			

			
				−
				ℎ
			

			

				2
			

			
				−
				1
			

			
				
			
			
				𝜒
				−
				1
			

			
				
			
			
				𝛿
				
				1
				−
				𝜇
			

			

				2
			

			
				
				−
				𝜎
			

			

				2
			

			
				1
				(
				𝐵
				)
			

			
				
			
			
				𝑡
				𝜃
				>
				0
				,
			

			
				∗
				5
			

			
				=
				ℎ
			

			

				2
			

			
				−
				3
				𝜎
			

			

				2
			

			
				𝜃
				(
				Σ
				)
				𝑡
				>
				0
				,
			

			
				∗
				6
			

			
				=
				‖
				‖
				𝐵
			

			
				
			
			
				‖
				‖
			

			

				2
			

			
				‖
				‖
				𝐿
			

			
				−
				2
			

			
				‖
				‖
			

			

				2
			

			
				−
				𝛼
				𝜎
			

			

				2
			

			
				(
				𝑊
				)
				−
				𝜎
			

			

				2
			

			
				1
				(
				𝑊
				)
			

			
				
			
			
				𝑟
				−
				1
			

			
				
			
			
				
				1
				−
				𝜇
			

			

				1
			

			
				
				𝜎
			

			

				2
			

			
				(
				𝑊
			

			

				𝜏
			

			
				)
				1
			

			
				
			
			
				𝑟
				−
				𝛽
				𝜎
			

			

				2
			

			
				(
				𝑊
			

			

				𝜏
			

			
				)
				>
				0
				,
			

		
	

						and the other parameters are defined in Theorem 6.
By setting 
	
		
			

				𝜇
			

			

				1
			

			
				=
				𝜇
			

			

				2
			

			
				=
				0
			

		
	
, the stability criterion for hybrid BAM neural network with constant time delays is established from Theorem 6.
Corollary 9.  Let the activation functions satisfy assumptions (H2) and (H3) and let the network parameters satisfy (4). Then, the origin of neural network model (8) is globally asymptotically stable, if there exists eight positive scalars 
	
		
			

				𝛼
			

		
	
, 
	
		
			

				𝛽
			

		
	
, 
	
		
			

				𝜒
			

		
	
, 
	
		
			

				𝛿
			

		
	
, 
	
		
			

				ℎ
			

			

				1
			

		
	
, 
	
		
			

				ℎ
			

			

				2
			

		
	
, 
	
		
			

				𝑟
			

		
	
, and  
	
		
			

				𝑡
			

		
	
, such that 
							
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			

				𝜃
			

			
				1
				∗
				∗
			

			
				=
				‖
				‖
				𝐴
			

			
				
			
			
				‖
				‖
			

			

				2
			

			
				−
				ℎ
			

			

				1
			

			
				−
				1
			

			
				
			
			
				𝛼
				−
				1
			

			
				
			
			
				𝛽
				−
				𝜎
			

			

				2
			

			
				1
				(
				𝐴
				)
			

			
				
			
			
				𝑟
				𝜃
				>
				0
				,
			

			
				2
				∗
				∗
			

			
				=
				ℎ
			

			

				1
			

			
				−
				3
				𝜎
			

			

				2
			

			
				𝜃
				(
				𝐸
				)
				𝑟
				>
				0
				,
			

			
				3
				∗
				∗
			

			
				=
				‖
				‖
				𝐴
			

			
				
			
			
				‖
				‖
			

			

				2
			

			
				‖
				‖
				𝐾
			

			
				−
				2
			

			
				‖
				‖
			

			

				2
			

			
				−
				𝜒
				𝜎
			

			

				2
			

			
				(
				𝑉
				)
				−
				𝜎
			

			

				2
			

			
				1
				(
				𝑉
				)
			

			
				
			
			
				𝑡
				−
				𝜎
			

			

				2
			

			
				(
				𝑉
			

			

				𝜎
			

			
				)
				1
			

			
				
			
			
				𝑡
				−
				𝛿
				𝜎
			

			

				2
			

			
				(
				𝑉
			

			

				𝜎
			

			
				𝜃
				)
				>
				0
				,
			

			
				4
				∗
				∗
			

			
				=
				‖
				‖
				𝐵
			

			
				
			
			
				‖
				‖
			

			

				2
			

			
				−
				ℎ
			

			

				2
			

			
				−
				1
			

			
				
			
			
				𝜒
				−
				1
			

			
				
			
			
				𝛿
				−
				𝜎
			

			

				2
			

			
				1
				(
				𝐵
				)
			

			
				
			
			
				𝑡
				𝜃
				>
				0
				,
			

			
				5
				∗
				∗
			

			
				=
				ℎ
			

			

				2
			

			
				−
				3
				𝜎
			

			

				2
			

			
				𝜃
				(
				Σ
				)
				𝑡
				>
				0
				,
			

			
				6
				∗
				∗
			

			
				=
				‖
				‖
				𝐵
			

			
				
			
			
				‖
				‖
			

			

				2
			

			
				‖
				‖
				𝐿
			

			
				−
				2
			

			
				‖
				‖
			

			

				2
			

			
				−
				𝛼
				𝜎
			

			

				2
			

			
				(
				𝑊
				)
				−
				𝜎
			

			

				2
			

			
				1
				(
				𝑊
				)
			

			
				
			
			
				𝑟
				−
				1
			

			
				
			
			
				
				1
				−
				𝜇
			

			

				1
			

			
				
				𝜎
			

			

				2
			

			
				(
				𝑊
			

			

				𝜏
			

			
				)
				1
			

			
				
			
			
				𝑟
				−
				𝛽
				𝜎
			

			

				2
			

			
				(
				𝑊
			

			

				𝜏
			

			
				)
				>
				0
				,
			

		
	

						and the other parameters are defined in Theorem 6.
Assume that there are no neutral terms and the system of BAM neural networks is described as
						
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			
				̇
				𝑥
				(
				𝑡
				)
				=
				−
				𝐴
				𝑥
				(
				𝑡
				)
				+
				𝑊
				𝑓
				(
				𝑦
				(
				𝑡
				)
				)
				+
				𝑊
			

			

				𝜏
			

			
				𝑓
				(
				𝑦
				(
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				)
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑛
				,
				̇
				𝑦
				(
				𝑡
				)
				=
				−
				𝐵
				𝑦
				(
				𝑡
				)
				+
				𝑉
				𝑔
				(
				𝑥
				(
				𝑡
				)
				)
				+
				𝑉
			

			

				𝜎
			

			
				𝑔
				(
				𝑥
				(
				𝑡
				−
				𝜎
				(
				𝑡
				)
				)
				)
				,
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑚
				.
			

		
	

Define the following positive definite Lyapunov functional:
						
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			
				𝑉
				(
				𝑥
				(
				𝑡
				)
				,
				𝑦
				(
				𝑡
				)
				)
				=
				𝑥
			

			

				𝑇
			

			
				(
				𝑡
				)
				𝑥
				(
				𝑡
				)
				𝑦
				(
				𝑡
				)
			

			

				𝑇
			

			
				𝑦
				(
				𝑡
				)
				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				ℎ
			

			
				1
				𝑖
			

			

				
			

			
				𝑡
				𝑡
				−
				ℎ
			

			

				𝑥
			

			
				2
				𝑖
			

			
				+
				(
				𝑠
				)
				𝑑
				𝑠
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				ℎ
			

			
				2
				𝑗
			

			

				
			

			
				𝑡
				𝑡
				−
				𝑑
			

			

				𝑦
			

			
				2
				𝑗
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				+
				𝛽
			

			
				1
				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				
			

			
				𝑡
				𝑡
				−
				𝜏
				(
				𝑡
				)
			

			

				𝑓
			

			

				𝑗
			

			
				
				𝑦
			

			

				𝑗
			

			
				
				(
				𝜉
				)
				𝑑
				𝜉
				+
				𝛽
			

			
				2
				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				
			

			
				𝑡
				𝑡
				−
				𝜎
				(
				𝑡
				)
			

			

				𝑔
			

			

				𝑖
			

			
				
				𝑥
			

			

				𝑖
			

			
				
				(
				𝜉
				)
				𝑑
				𝜉
				.
			

		
	

Following the similar line of the proof of Theorem 6, Corollary 10 is derived as follows.
Corollary 10.  For given scalars 
	
		
			
				0
				≤
				𝜇
			

			

				1
			

			
				≤
				1
			

		
	
, and  
	
		
			
				0
				≤
				𝜇
			

			

				2
			

			
				≤
				1
			

		
	
, let the activation functions satisfy assumptions (H2) and (H3) and let the network parameters satisfy (4). Then, the origin of neural network model (8) is globally asymptotically stable, if there exist four positive scalars 
	
		
			

				𝛼
			

		
	
, 
	
		
			

				𝛽
			

		
	
, 
	
		
			

				𝜒
			

		
	
, and 
	
		
			

				𝛿
			

		
	
, such that
							
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			

				𝜂
			

			

				1
			

			
				=
				‖
				‖
				𝐴
			

			
				
			
			
				‖
				‖
			

			

				2
			

			
				−
				1
			

			
				
			
			
				𝛼
				−
				1
			

			
				
			
			
				𝛽
				
				1
				−
				𝜇
			

			

				1
			

			
				
				𝜂
				>
				0
				,
			

			

				2
			

			
				=
				‖
				‖
				𝐴
			

			
				
			
			
				‖
				‖
			

			

				2
			

			
				‖
				‖
				𝐾
			

			
				−
				2
			

			
				‖
				‖
			

			

				2
			

			
				−
				𝜒
				𝜎
			

			

				2
			

			
				(
				𝑉
				)
				−
				𝛿
				𝜎
			

			

				2
			

			
				(
				𝑉
			

			

				𝜎
			

			
				𝜂
				)
				>
				0
				,
			

			

				3
			

			
				=
				‖
				‖
				𝐵
			

			
				
			
			
				‖
				‖
			

			

				2
			

			
				−
				1
			

			
				
			
			
				𝜒
				−
				1
			

			
				
			
			
				𝛿
				
				1
				−
				𝜇
			

			

				2
			

			
				
				𝜂
				>
				0
				,
			

			

				4
			

			
				=
				‖
				‖
				𝐵
			

			
				
			
			
				‖
				‖
			

			

				2
			

			
				‖
				‖
				𝐿
			

			
				−
				2
			

			
				‖
				‖
			

			

				2
			

			
				−
				𝛼
				𝜎
			

			

				2
			

			
				(
				𝑊
				)
				−
				𝛽
				𝜎
			

			

				2
			

			
				(
				𝑊
			

			

				𝜏
			

			
				)
				>
				0
				,
			

		
	

						and the other parameters are defined in Theorem 6.
5. Comparative Numerical Examples
We will now give the following examples to demonstrate the applicability and advantages of our results.
Example 1. Assume that the network parameters of neural system (8) are given as follows:
							
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			

				𝑊
			

			
				
			
			
				=
				𝑊
			

			
				
			
			

				𝜏
			

			
				=
				𝑉
			

			
				
			
			
				=
				𝑉
			

			
				
			
			

				𝜎
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
				3
				𝜆
				3
				𝜆
				4
				𝜆
				6
				𝜆
				2
				𝜆
				7
				𝜆
				−
				7
				𝜆
				7
				𝜆
				−
				6
				𝜆
			

			
				
			
			
				𝑊
				=
			

			
				
			
			

				𝑊
			

			

				𝜏
			

			

				=
			

			
				
			
			
				𝑉
				=
			

			
				
			
			

				𝑉
			

			

				𝜎
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
				𝐴
				7
				𝜆
				5
				𝜆
				4
				𝜆
				8
				𝜆
				4
				𝜆
				9
				𝜆
				−
				3
				𝜆
				7
				𝜆
				−
				2
				𝜆
			

			
				
			
			
				=
				𝐴
				=
			

			
				
			
			
				𝐴
				=
				𝐵
			

			
				
			
			
				=
				𝐵
				=
			

			
				
			
			
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
				𝐵
				=
				3
				0
				0
				0
				3
				0
				0
				0
				3
				𝐾
				=
				𝐿
				=
				1
				0
				0
				0
				1
				0
				0
				0
				1
			

		
	

						where 
	
		
			
				𝜆
				=
				0
			

		
	
 is real number. We can conclude that the matrices 
	
		
			

				𝑊
			

			

				∗
			

		
	
, 
	
		
			

				𝑊
			

			

				∗
			

		
	
, 
	
		
			

				𝑊
			

			
				𝜏
				∗
			

		
	
, 
	
		
			

				𝑊
			

			
				𝜏
				∗
			

		
	
, 
	
		
			

				𝑉
			

			

				∗
			

		
	
, 
	
		
			

				𝑉
			

			

				∗
			

		
	
, 
	
		
			

				𝑉
			

			
				𝜎
				∗
			

		
	
, and 
	
		
			

				𝑉
			

			
				𝜎
				∗
			

		
	
 are in the forms
							
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			
				‖
				𝐴
				‖
			

			

				2
			

			
				=
				‖
				𝐵
				‖
			

			

				2
			

			
				𝑊
				=
				3
				,
			

			

				∗
			

			
				=
				𝑊
			

			
				𝜏
				∗
			

			
				=
				𝑉
			

			

				∗
			

			
				=
				𝑉
			

			
				𝜎
				∗
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
				𝑊
				5
				𝜆
				4
				𝜆
				4
				𝜆
				7
				𝜆
				3
				𝜆
				8
				𝜆
				−
				5
				𝜆
				7
				𝜆
				−
				4
				𝜆
			

			

				∗
			

			
				=
				𝑊
			

			
				𝜏
				∗
			

			
				=
				𝑉
			

			

				∗
			

			
				=
				𝑉
			

			
				𝜎
				∗
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
				2
				𝜆
				𝜆
				0
				𝜆
				𝜆
				𝜆
				2
				𝜆
				0
				0
				𝜏
				=
				2
				,
				𝜎
				=
				3
				,
				ℎ
				=
				1
				,
				𝑑
				=
				2
				,
				𝜇
			

			

				1
			

			
				=
				0
				,
				𝜇
			

			

				2
			

			
				=
				0
				.
			

		
	

          Then we obtain 
							
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			

				𝜎
			

			

				1
			

			
				(
				𝑉
			

			

				𝜎
			

			
				)
				=
				𝜎
			

			

				1
			

			
				(
				𝑊
			

			

				𝜏
			

			
				)
				=
				𝜎
			

			

				1
			

			
				(
				𝑉
				)
				=
				𝜎
			

			

				1
			

			
				=
				
				(
				𝑊
				)
			

			
				
			
			
				‖
				‖
				|
				|
				𝑊
			

			
				∗
				𝑇
			

			

				𝑊
			

			

				∗
			

			
				|
				|
				|
				|
				𝑊
				+
				2
			

			
				∗
				𝑇
			

			
				|
				|
				𝑊
			

			

				∗
			

			
				+
				𝑊
			

			
				𝑇
				∗
			

			

				𝑊
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				=
				√
			

			
				
			
			
				2
				7
				2
				.
				7
				8
				8
				2
				𝜆
			

			

				2
			

			
				𝜎
				=
				1
				6
				.
				5
				1
				6
				3
				𝜆
				,
			

			

				2
			

			
				(
				𝑉
			

			

				𝜎
			

			
				)
				=
				𝜎
			

			

				2
			

			
				(
				𝑊
			

			

				𝜏
			

			
				)
				=
				𝜎
			

			

				2
			

			
				(
				𝑉
				)
				=
				𝜎
			

			

				2
			

			
				(
				𝑊
				)
				=
				‖
				𝑊
			

			

				∗
			

			

				‖
			

			

				2
			

			
				+
				‖
				‖
				𝑊
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				𝜎
				=
				1
				7
				.
				5
				9
				4
				2
				𝜆
				.
			

			

				3
			

			
				(
				𝑉
			

			

				𝜎
			

			
				)
				=
				𝜎
			

			

				3
			

			
				(
				𝑊
			

			

				𝜏
			

			
				)
				=
				𝜎
			

			

				3
			

			
				(
				𝑉
				)
				=
				𝜎
			

			

				3
			

			
				=
				
				(
				𝑊
				)
			

			
				
			
			
				‖
				𝑊
			

			

				∗
			

			

				‖
			

			
				2
				2
			

			
				+
				‖
				‖
				𝑊
			

			

				∗
			

			
				‖
				‖
			

			
				2
				2
			

			
				‖
				‖
				𝑊
				+
				2
			

			
				𝑇
				∗
			

			
				|
				|
				𝑊
			

			

				∗
			

			
				|
				|
				‖
				‖
			

			

				2
			

			
				=
				√
			

			
				
			
			
				3
				0
				8
				.
				2
				9
				0
				3
				𝜆
			

			

				2
			

			
				𝜎
				=
				1
				7
				.
				5
				5
				8
				2
				𝜆
				.
			

			

				4
			

			
				(
				𝑉
			

			

				𝜎
			

			
				)
				=
				𝜎
			

			

				4
			

			
				(
				𝑊
			

			

				𝜏
			

			
				)
				=
				𝜎
			

			

				4
			

			
				(
				𝑉
				)
				=
				𝜎
			

			

				4
			

			
				‖
				‖
				
				𝑊
				‖
				‖
				(
				𝑊
				)
				=
			

			

				2
			

			
				=
				1
				9
				.
				2
				8
				6
				1
				𝜆
				.
			

		
	

          Since 
	
		
			
				m
				i
				n
				{
				𝜎
			

			

				1
			

			
				(
				𝑊
				)
				,
				𝜎
			

			

				2
			

			
				(
				𝑊
				)
				,
				𝜎
			

			

				3
			

			
				(
				𝑊
				)
				,
				𝜎
			

			

				4
			

			
				(
				𝑊
				)
				}
				=
				1
				6
				.
				5
				1
				6
				3
				𝜆
			

		
	
, we obtain 
	
		
			
				𝜎
				(
				𝑉
				)
				=
				𝜎
				(
				𝑊
				)
				=
				𝜎
				(
				𝑉
			

			

				𝜎
			

			
				)
				=
				𝜎
				(
				𝑊
			

			

				𝜏
			

			
				)
				=
				1
				6
				.
				5
				1
				6
				3
				𝜆
			

		
	
.
For the sufficiently small values of 
	
		
			
				‖
				𝐸
				‖
			

			

				2
			

		
	
, 
	
		
			
				‖
				Σ
				‖
			

			

				2
			

		
	
, 
	
		
			

				ℎ
			

			

				1
			

		
	
, and 
	
		
			

				ℎ
			

			

				2
			

		
	
 and sufficiently large value of 
	
		
			

				𝑟
			

		
	
, 
	
		
			

				𝑡
			

		
	
, and 
	
		
			
				𝛼
				=
				𝛽
			

		
	
, 
	
		
			
				𝜒
				=
				𝛿
			

		
	
, the conditions of Corollary 9 can be approximately stated as follows: 
	
		
			

				𝜃
			

			
				6
				∗
				∗
			

			
				=
				3
				−
				2
				𝛼
				×
				2
				7
				2
				.
				7
				8
				8
				2
				𝜆
			

			

				2
			

			
				>
				0
			

		
	
, 
	
		
			

				𝜃
			

			
				6
				∗
				∗
			

			
				≅
				3
				−
				2
				𝛼
				×
				2
				7
				2
				.
				7
				8
				8
				2
				𝜆
			

			

				2
			

			
				>
				0
			

		
	
, and
						
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			

				𝜃
			

			
				1
				∗
				∗
			

			
				2
				≅
				3
				−
			

			
				
			
			
				𝛼
				𝜃
				>
				0
				,
			

			
				2
				∗
				∗
			

			
				≅
				ℎ
			

			

				1
			

			
				−
				3
				𝜎
			

			

				2
			

			
				𝜃
				(
				𝐸
				)
				𝑟
				>
				0
				,
			

			
				3
				∗
				∗
			

			
				≅
				3
				−
				2
				𝜒
				×
				2
				7
				2
				.
				7
				8
				8
				2
				𝜆
			

			

				2
			

			
				𝜃
				>
				0
				,
			

			
				4
				∗
				∗
			

			
				2
				≅
				3
				−
			

			
				
			
			
				𝜒
				𝜃
				>
				0
				,
			

			
				5
				∗
				∗
			

			
				≅
				ℎ
			

			

				2
			

			
				−
				3
				𝜎
			

			

				2
			

			
				𝜃
				(
				𝐹
				)
				𝑡
				>
				0
				,
			

			
				6
				∗
				∗
			

			
				≅
				3
				−
				2
				𝛼
				×
				2
				7
				2
				.
				7
				8
				8
				2
				𝜆
			

			

				2
			

			
				>
				0
				.
			

		
	


        The four required conditions for stability are 
	
		
			
				𝛼
				>
				2
				/
				3
			

		
	
, 
	
		
			
				𝜒
				>
				2
				/
				3
			

		
	
 and 
	
		
			

				𝜆
			

			

				2
			

			
				<
				3
				/
				(
				2
				𝜒
				×
				2
				7
				2
				.
				7
				8
				8
				2
				)
			

		
	
, 
	
		
			

				𝜆
			

			

				2
			

			
				<
				3
				/
				(
				2
				𝛼
				×
				2
				7
				2
				.
				7
				8
				8
				2
				)
			

		
	
, implying that 
	
		
			
				𝜆
				<
				0
				.
				0
				9
				0
				8
			

		
	
. Hence, if 
	
		
			
				𝜆
				<
				0
				.
				0
				9
				0
				8
			

		
	
 holds, then the conditions of Corollary 9 are satisfied which indicates that the BAM neural network is global asymptotic robust stable.
In what follows, we consider a special model in this example and give simulation results for the sake of verification of our proposed results. We choose 
	
		
			
				𝜆
				=
				0
				.
				0
				6
			

		
	
 that satisfies the condition 
	
		
			
				𝜆
				<
				0
				.
				0
				9
				0
				8
			

		
	
. For this example, the Matlab simulation results are presented in Figure 1.








	



	



	



	



	



	
	












	
	
	





















	
	
	





	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	


	
		
	
	
		
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	


	


	


	


	


	
	





	
		
	


	
		
	
	
		
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
		
			
		
		
			
			
		
		
			
			
		
		
			
			
		
		
			
		
		
			
			
			
			
		
		
			
			
		
		
			
			
		
		
			
			
			
		
		
			
		
		
			
			
		
		
			
			
		
		
			
			
		
		
			
		
		
			
			
			
			
		
		
			
			
		
		
			
			
		
		
			
			
		
	



Figure 1: Trajectories of 
	
		
			
				𝑥
				(
				𝑡
				)
			

		
	
 and 
	
		
			
				𝑦
				(
				𝑡
				)
			

		
	
 of system (8) for the initial states 
	
		
			
				
				
				𝑥
				(
				0
				)
				=
				0
				.
				6
				−
				0
				.
				2
				0
				.
				2
			

		
	
 and 
	
		
			
				
				
				𝑦
				(
				0
				)
				=
				0
				.
				5
				−
				0
				.
				4
				−
				0
				.
				1
			

		
	
.


Example 2. Assume that the network parameters of neural system (8) are given as follows:
							
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			

				𝐴
			

			
				
			
			
				=
				𝐴
				=
			

			
				
			
			
				𝐴
				=
				𝐵
			

			
				
			
			
				=
				𝐵
				=
			

			
				
			
			
				𝑊
				𝐵
				=
				𝐼
				,
			

			
				
			
			
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				,
				0
				.
				2
				0
				.
				1
				−
				0
				.
				1
				0
				.
				2
			

			
				
			
			
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				,
				𝑊
				𝑊
				=
				0
				.
				4
				0
				.
				1
				0
				.
				1
				0
				.
				4
			

			
				
			
			

				𝜏
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				,
				0
				.
				1
				0
				.
				2
				0
				.
				2
				0
				.
				2
			

			
				
			
			

				𝑊
			

			

				𝜏
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				,
				𝑉
				0
				.
				3
				0
				.
				4
				0
				.
				3
				0
				.
				2
			

			
				
			
			
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				,
				0
				.
				1
				0
				.
				1
				−
				0
				.
				3
				0
				.
				1
			

			
				
			
			
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				,
				𝑉
				𝑉
				=
				0
				.
				3
				0
				.
				3
				0
				.
				1
				0
				.
				3
			

			
				
			
			

				𝜎
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				0
				.
				1
				𝜆
				0
				.
				1
				𝜆
				0
				.
				1
				𝜆
				0
				.
				2
				𝜆
				,
				𝑉
			

			
				
			
			

				𝜎
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				,
				𝐸
				0
				.
				3
				𝜆
				0
				.
				3
				𝜆
				0
				.
				3
				𝜆
				0
				.
				4
				𝜆
			

			
				
			
			
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				,
				0
				.
				0
				1
				0
				.
				0
				1
				0
				.
				0
				1
				0
				.
				0
				1
			

			
				
			
			
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				,
				Σ
				𝐸
				=
				0
				.
				0
				5
				0
				.
				0
				5
				0
				.
				0
				5
				0
				.
				0
				5
			

			
				
			
			
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				,
				0
				.
				0
				1
				0
				.
				0
				1
				0
				.
				0
				1
				0
				.
				0
				1
			

			
				
			
			
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				,
				Σ
				=
				0
				.
				0
				5
				0
				.
				0
				5
				0
				.
				0
				5
				0
				.
				0
				5
				𝐾
				=
				Σ
				=
				0
				.
				5
				𝐼
				,
				𝜏
				(
				𝑡
				)
				=
				0
				.
				5
				s
				i
				n
				𝑡
				+
				0
				.
				1
				,
				𝜎
				(
				𝑡
				)
				=
				0
				.
				5
				s
				i
				n
				𝑡
				+
				0
				.
				2
				,
				𝜇
			

			

				1
			

			
				=
				𝜇
			

			

				2
			

			
				=
				0
				.
				5
				,
			

		
	

						where 
	
		
			
				𝜆
				>
				0
			

		
	
 is real number. We can obtain
							
	
 		
 			
				(
				4
				7
				)
			
 		
	

	
		
			
				‖
				𝐴
				‖
			

			

				2
			

			
				=
				‖
				𝐵
				‖
			

			

				2
			

			
				𝑊
				=
				1
				,
				𝜎
				(
				𝐴
				)
				=
				𝜎
				(
				𝐵
				)
				=
				1
				,
			

			

				∗
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				0
				.
				3
				0
				.
				1
				0
				0
				.
				3
				,
				𝑊
			

			

				∗
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				,
				𝑊
				0
				.
				1
				0
				0
				.
				1
				0
				.
				1
			

			
				𝜏
				∗
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				0
				.
				2
				0
				.
				3
				0
				.
				2
				5
				0
				.
				2
				,
				𝑊
			

			
				𝜎
				∗
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				,
				𝑉
				0
				.
				1
				0
				.
				1
				0
				.
				0
				5
				0
				.
				2
			

			

				∗
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				0
				.
				3
				0
				.
				1
				0
				0
				.
				3
				,
				𝑉
			

			

				∗
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				,
				𝑉
				0
				.
				1
				0
				0
				.
				1
				0
				.
				1
			

			
				𝜎
				∗
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				0
				.
				4
				𝜆
				0
				.
				3
				𝜆
				0
				.
				2
				5
				𝜆
				0
				.
				2
				𝜆
				,
				𝑉
			

			
				𝜎
				∗
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				,
				𝐸
				0
				.
				3
				𝜆
				0
				.
				1
				𝜆
				0
				.
				0
				5
				𝜆
				0
				.
				2
				𝜆
			

			

				∗
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				0
				.
				0
				3
				0
				.
				0
				3
				0
				.
				0
				3
				0
				.
				0
				3
				,
				𝐸
			

			

				∗
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				,
				Σ
				0
				.
				0
				2
				0
				.
				0
				2
				0
				.
				0
				2
				0
				.
				0
				2
			

			

				∗
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				0
				.
				0
				3
				0
				.
				0
				3
				0
				.
				0
				3
				0
				.
				0
				3
				,
				Σ
			

			

				∗
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎦
				.
				0
				.
				0
				2
				0
				.
				0
				2
				0
				.
				0
				2
				0
				.
				0
				2
			

		
	

          By Lemmas 1–4, we can calculate 
							
	
 		
 			
				(
				4
				8
				)
			
 		
	

	
		
			

				𝜎
			

			

				1
			

			
				
				(
				𝑊
				)
				=
			

			
				
			
			
				‖
				‖
				|
				|
				𝑊
			

			
				∗
				𝑇
			

			

				𝑊
			

			

				∗
			

			
				|
				|
				|
				|
				𝑊
				+
				2
			

			
				∗
				𝑇
			

			
				|
				|
				𝑊
			

			

				∗
			

			
				+
				𝑊
			

			
				𝑇
				∗
			

			

				𝑊
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				=
				√
			

			
				
			
			
				0
				.
				2
				5
				4
				6
				,
				𝜎
			

			

				2
			

			
				(
				𝑊
				)
				=
				‖
				𝑊
			

			

				∗
			

			

				‖
			

			

				2
			

			
				+
				‖
				‖
				𝑊
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				𝜎
				=
				0
				.
				5
				1
				5
				9
				,
			

			

				3
			

			
				
				(
				𝑊
				)
				=
			

			
				
			
			
				‖
				𝑊
			

			

				∗
			

			

				‖
			

			
				2
				2
			

			
				+
				‖
				‖
				𝑊
			

			

				∗
			

			
				‖
				‖
			

			
				2
				2
			

			
				‖
				‖
				𝑊
				+
				2
			

			
				𝑇
				∗
			

			
				|
				|
				𝑊
			

			

				∗
			

			
				|
				|
				‖
				‖
			

			

				2
			

			
				𝜎
				=
				0
				.
				5
				,
			

			

				4
			

			
				(
				‖
				‖
				
				𝑊
				‖
				‖
				𝑊
				)
				=
			

			

				2
			

			
				=
				0
				.
				2
				6
				5
				6
				.
			

		
	

          Since 
	
		
			
				𝜎
				(
				𝑊
				)
				=
				m
				i
				n
				{
				𝜎
			

			

				1
			

			
				(
				𝑊
				)
				,
				𝜎
			

			

				2
			

			
				(
				𝑊
				)
				,
				𝜎
			

			

				3
			

			
				(
				𝑊
				)
				,
				𝜎
			

			

				4
			

			
				(
				𝑊
				)
				}
			

		
	
, we obtain 
	
		
			
				𝜎
				(
				𝑊
				)
				=
				0
				.
				5
			

		
	
, Similarly, we obtain 
							
	
 		
 			
				(
				4
				9
				)
			
 		
	

	
		
			

				𝜎
			

			

				1
			

			
				(
				𝑊
			

			

				𝜏
			

			
				√
				)
				=
			

			
				
			
			
				0
				.
				5
				0
				1
				8
				,
				𝜎
			

			

				2
			

			
				(
				𝑊
			

			

				𝜏
			

			
				𝜎
				)
				=
				0
				.
				7
				1
				8
				8
				,
			

			

				3
			

			
				(
				𝑊
			

			

				𝜏
			

			
				√
				)
				=
			

			
				
			
			
				0
				.
				4
				9
				6
				7
				,
				𝜎
			

			

				4
			

			
				(
				𝑊
			

			

				𝜏
			

			
				𝜎
				)
				=
				0
				.
				6
				0
				8
				5
				,
			

			

				1
			

			
				√
				(
				𝑉
				)
				=
			

			
				
			
			
				0
				.
				3
				2
				2
				5
				,
				𝜎
			

			

				2
			

			
				𝜎
				(
				𝑉
				)
				=
				0
				.
				5
				6
				1
				8
				,
			

			

				3
			

			
				√
				(
				𝑉
				)
				=
			

			
				
			
			
				0
				.
				3
				4
				4
				0
				,
				𝜎
			

			

				4
			

			
				𝜎
				(
				𝑉
				)
				=
				0
				.
				6
				,
			

			

				1
			

			
				(
				𝑉
			

			

				𝜎
			

			
				√
				)
				=
			

			
				
			
			
				0
				.
				4
				2
				8
				1
				𝜆
				,
				𝜎
			

			

				2
			

			
				(
				𝑉
			

			

				𝜎
			

			
				𝜎
				)
				=
				0
				.
				6
				5
				6
				2
				𝜆
				,
			

			

				3
			

			
				(
				𝑉
			

			

				𝜎
			

			
				√
				)
				=
			

			
				
			
			
				0
				.
				4
				2
				9
				2
				𝜆
				,
				𝜎
			

			

				4
			

			
				(
				𝑉
			

			

				𝜎
			

			
				𝜎
				)
				=
				0
				.
				6
				5
				4
				1
				𝜆
				,
			

			

				1
			

			
				(
				𝐸
				)
				=
				𝜎
			

			

				1
			

			
				(
				Σ
				)
				=
				𝜎
			

			

				2
			

			
				(
				𝐸
				)
				=
				𝜎
			

			

				2
			

			
				(
				Σ
				)
				=
				𝜎
			

			

				3
			

			
				(
				𝐸
				)
				=
				𝜎
			

			

				3
			

			
				(
				Σ
				)
				=
				𝜎
			

			

				4
			

			
				(
				𝐸
				)
				=
				𝜎
			

			

				4
			

			
				(
				Σ
				)
				=
				0
				.
				1
				.
			

		
	

          Thus we have 
	
		
			
				𝜎
				(
				𝑊
			

			

				𝜏
			

			
				)
				=
				0
				.
				6
				0
				8
				5
			

		
	
, 
	
		
			
				𝜎
				(
				𝑉
				)
				=
				0
				.
				5
				6
				1
				8
			

		
	
, 
	
		
			
				𝜎
				(
				𝑉
			

			

				𝜎
			

			
				)
				=
				0
				.
				6
				5
				4
				1
				𝜆
			

		
	
,  and  
	
		
			
				𝜎
				(
				𝐸
				)
				=
				𝜎
				(
				Σ
				)
				=
				0
				.
				1
			

		
	
.Let 
	
		
			
				𝛼
				=
				𝛽
				=
				6
			

		
	
, 
	
		
			
				𝜒
				=
				𝛿
				=
				6
			

		
	
, and 
	
		
			
				𝑟
				=
				𝑡
				=
				6
			

		
	
; the conditions of Corollary 8 can be stated as follows:
							
	
 		
 			
				(
				5
				0
				)
			
 		
	

	
		
			

				𝜃
			

			
				∗
				1
			

			
				=
				1
				−
				ℎ
			

			

				1
			

			
				−
				1
			

			
				
			
			
				6
				−
				1
			

			
				
			
			
				−
				1
				6
				(
				1
				−
				0
				.
				5
				)
			

			
				
			
			
				6
				𝜃
				>
				0
				,
			

			
				∗
				2
			

			
				=
				ℎ
			

			

				1
			

			
				𝜃
				−
				3
				×
				0
				.
				0
				1
				×
				6
				>
				0
				,
			

			
				∗
				3
			

			
				=
				4
				−
				6
				×
				0
				.
				3
				1
				5
				6
				−
				0
				.
				3
				1
				5
				6
			

			
				
			
			
				6
				−
				1
			

			
				
			
			
				(
				1
				−
				0
				.
				5
				)
				0
				.
				6
				5
				4
				1
			

			

				2
			

			

				𝜆
			

			

				2
			

			
				×
				1
			

			
				
			
			
				6
				−
				6
				×
				0
				.
				6
				5
				4
				1
			

			

				2
			

			

				𝜆
			

			

				2
			

			
				𝜃
				>
				0
				,
			

			
				∗
				4
			

			
				=
				1
				−
				ℎ
			

			

				2
			

			
				−
				1
			

			
				
			
			
				4
				−
				1
			

			
				
			
			
				−
				1
				4
				(
				1
				−
				0
				.
				5
				)
			

			
				
			
			
				6
				𝜃
				>
				0
				,
			

			
				∗
				5
			

			
				=
				ℎ
			

			

				2
			

			
				𝜃
				−
				3
				×
				0
				.
				0
				1
				×
				6
				>
				0
				,
			

			
				∗
				6
			

			
				1
				=
				4
				−
				6
				×
				0
				.
				2
				5
				−
				0
				.
				2
				5
				×
			

			
				
			
			
				6
				−
				1
			

			
				
			
			
				1
				(
				1
				−
				0
				.
				5
				)
				×
				0
				.
				3
				7
				0
				3
				×
			

			
				
			
			
				6
				−
				6
				×
				0
				.
				3
				7
				0
				3
				=
				0
				.
				1
				1
				3
				1
				>
				0
				,
			

		
	

						in which 
	
		
			
				𝜆
				<
				0
				.
				8
				7
				0
				6
			

		
	
 implies that the conditions of Corollary 8 are satisfied which indicates that the network is global asymptotic robust stable.
For the neural network parameters given in Example 2, we choose 
	
		
			
				𝜆
				=
				0
				.
				6
			

		
	
 that satisfies the condition 
	
		
			
				𝜆
				<
				0
				.
				8
				7
				0
				6
			

		
	
. For this example, the Matlab simulation results are presented in Figure 2.








	



	



	
	



	
	



	
	












	
	


















	
	


	


	


	
	


	
	


	
	




	
		
	
	
		
	


	
		
	
	
		
	




	
		
	
	
		
	


	
		
	
	
		
	


	
		
	


	
		
	


	
	
	


	
	
	


	
	
	


	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
	
	
		
	


	
	
	


	
	
	


	
	
	


	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
	
	
		
	


	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
		
			
		
		
			
			
		
		
			
			
		
		
			
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
			
			
		
		
		
			
			
		
		
			
			
		
		
			
			
			
		
		
			
		
		
			
			
		
		
			
			
		
		
			
			
		
		
			
		
		
			
		
		
			
		
		
		
			
			
			
			
		
		
			
			
		
		
			
			
		
		
			
			
		
	



Figure 2: Trajectories of 
	
		
			
				𝑥
				(
				𝑡
				)
			

		
	
 and 
	
		
			
				𝑦
				(
				𝑡
				)
			

		
	
 of system (8) for the initial states 
	
		
			
				
				
				𝑥
				(
				0
				)
				=
				−
				0
				.
				5
				0
				.
				3
			

		
	
 and 
	
		
			
				
				
				𝑦
				(
				0
				)
				=
				−
				0
				.
				4
				0
				.
				2
			

		
	
.


6. Conclusions
In this paper, we have obtained new sufficient conditions for the global asymptotic robust stability of the equilibrium point for the class of neutral-type hybrid bidirectional associative memory neural networks with time-varying delays and parameters uncertainties. Some new delay-derivative-dependent stability criteria are derived to ascertain the global asymptotic stability of the BAM neural networks. To obtain less conservative stability criterion, some new upper bound norms for the interconnection matrices of the neural networks are used. The obtained results can be easily verified as they can be expressed in terms of the network parameters only. Two illustrative examples are given to show the effectiveness of the proposed results.
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