Research Article

New Results and Generalizations for Approximate Fixed Point Property and Their Applications

Wei-Shih Du¹ and Farshid Khojasteh²,³

¹ Department of Mathematics, National Kaohsiung Normal University, Kaohsiung 824, Taiwan
² Department of Mathematics, Arak Branch, Islamic Azad University, Arak, Iran
³ School of Mathematics, Institute for Studies in Theoretical Physics and Mathematics (IPM), P.O. Box 19395-5746, Tehran, Iran

Correspondence should be addressed to Wei-Shih Du; wsdu@nknncc.nknu.edu.tw

Received 1 December 2013; Accepted 3 January 2014; Published 4 March 2014

1. Introduction and Preliminaries

In 1922, Banach established the most famous fundamental fixed point theorem (so-called the Banach contraction principle [1]) which has played an important role in various fields of applied mathematical analysis. It is known that the Banach contraction principle has been extended and generalized in many various different directions by several authors; see [2–40] and references therein. An interesting direction of research is the extension of the Banach contraction principle to multivalued maps, known as Nadler’s fixed point theorem [2], Mizoguchi-Takahashi’s fixed point theorem [3], and Berinde-Berinde’s fixed point theorem [5] and references therein.

Let us recall some basic notations, definitions, and well-known results needed in this paper. Throughout this paper, we denote by \(\mathbb{N} \) and \(\mathbb{R} \) the sets of positive integers and real numbers, respectively. Let \((X, d)\) be a metric space. For each \(x \in X \) and \(A \subseteq X \), let \(d(x, A) = \inf_{y \in A} d(x, y) \). Denote by \(\mathcal{A}(X) \) the class of all nonempty subsets of \(X \), \(\mathcal{B}(X) \) the family of all nonempty closed subsets of \(X \), and \(\mathcal{CB}(X) \) the family of all nonempty closed and bounded subsets of \(X \). A function \(\mathcal{H} : \mathcal{CB}(X) \times \mathcal{CB}(X) \to [0, \infty) \) defined by

\[
\mathcal{H}(A, B) = \max \left\{ \sup_{x \in B} d(x, A), \sup_{x \in A} d(x, B) \right\}
\]

is said to be the Hausdorff metric on \(\mathcal{CB}(X) \) induced by the metric \(d \) on \(X \). A point \(v \) in \(X \) is a fixed point of a map \(T \), if \(v = Tv \) (when \(T : X \to X \) is a single-valued map) or \(v \in Tv \) (when \(T : X \to \mathcal{N}(X) \) is a multivalued map). The set of fixed points of \(T \) is denoted by \(\mathcal{F}(T) \). The map \(T \) is said to have the approximate fixed point property [29–34] on \(X \) provided \(\inf_{x \in X} d(x, Tx) = 0 \). It is obvious that \(\mathcal{F}(T) \neq \emptyset \) implies that \(T \) has the approximate fixed point property, but the converse is not always true.

Definition 1 (see [6, 13]). A function \(\varphi : [0, \infty) \to [0, 1) \) is said to be an \(\mathcal{MT} \)-function (or \(\mathcal{H} \)-function) if \(\lim \sup_{n \to \infty} \varphi(t) < 1 \) for all \(t \in [0, \infty) \).

It is evident that if \(\varphi : [0, \infty) \to [0, 1) \) is a nondecreasing function or a nonincreasing function, then \(\varphi \) is a \(\mathcal{MT} \)-function. So the set of \(\mathcal{MT} \)-functions is a rich class.
Recently, Du [6] first proved the following characterizations of \(\mathcal{MT} \)-functions which are quite useful for proving our main results.

Theorem 2 (see [6]). Let \(\varphi : [0, \infty) \to [0, 1) \) be a function. Then the following statements are equivalent.

(a) \(\varphi \) is an \(\mathcal{MT} \)-function.

(b) For each \(t \in [0, \infty) \), there exist \(r^{(1)}_t \in [0, 1) \) and \(\epsilon^{(1)}_t > 0 \) such that \(\varphi(s) \leq r^{(1)}_t \) for all \(s \in (t, t + \epsilon^{(1)}_t) \).

(c) For each \(t \in [0, \infty) \), there exist \(r^{(2)}_t \in [0, 1) \) and \(\epsilon^{(2)}_t > 0 \) such that \(\varphi(s) \leq r^{(2)}_t \) for all \(s \in [t, t + \epsilon^{(2)}_t] \).

(d) For each \(t \in [0, \infty) \), there exist \(r^{(3)}_t \in [0, 1) \) and \(\epsilon^{(3)}_t > 0 \) such that \(\varphi(s) \leq r^{(3)}_t \) for all \(s \in (t, t + \epsilon^{(3)}_t) \).

(e) For each \(t \in [0, \infty) \), there exist \(r^{(4)}_t \in [0, 1) \) and \(\epsilon^{(4)}_t > 0 \) such that \(\varphi(s) \leq r^{(4)}_t \) for all \(s \in [t, t + \epsilon^{(4)}_t] \).

(f) For any nonincreasing sequence \(\{x_n\}_{n \in \mathbb{N}} \) in \([0, \infty), \) one has \(\lim sup_{n \to \infty} \varphi(x_n) < 1 \).

(g) \(\varphi \) is a function of contractive factor [15]; that is, for any strictly decreasing sequence \(\{x_n\}_{n \in \mathbb{N}} \) in \([0, \infty), \) one has \(\lim sup_{n \to \infty} \varphi(x_n) < 1 \). In 1989, Mizoguchi and Takahashi [3] proved a famous generalization of Nadler’s fixed point theorem which gives a partial answer of Problem 9 in Reich [4].

Theorem 3 (Mizoguchi and Takahashi [3]). Let \((X, d)\) be a complete metric space, let \(\varphi : [0, \infty) \to [0, 1) \) be an \(\mathcal{MT} \)-function, and let \(T : X \to \mathcal{CB}(X) \) be a multivalued map. Assume that

\[\mathcal{H}(Tx, Ty) \leq \varphi(d(x, y))d(x, y), \]

for all \(x, y \in X \). Then \(\mathcal{F}(T) \neq \emptyset \).

In 2007, M. Berinde and V. Berinde [5] proved the following interesting fixed point theorem which generalizes and extended Mizoguchi-Takahashi’s fixed point theorem.

Theorem 4 (M. Berinde and V. Berinde [5]). Let \((X, d)\) be a complete metric space, let \(\varphi : [0, \infty) \to [0, 1) \) be an \(\mathcal{MT} \)-function, let \(T : X \to \mathcal{CB}(X) \) be a multivalued map, and \(L \geq 0 \). Assume that

\[\mathcal{H}(Tx, Ty) \leq \varphi(d(x, y))d(x, y) + Ld(y, Tx), \]

for all \(x, y \in X \). Then \(\mathcal{F}(T) \neq \emptyset \).

In 2012, Du [6] established the following fixed point theorem which is an extension of Berinde-Berinde’s fixed point theorem and hence Mizoguchi-Takahashi’s fixed point theorem.

Theorem 5 (Du [6]). Let \((X, d)\) be a complete metric space, let \(T : X \to \mathcal{CB}(X) \) be a multivalued map, let \(\varphi : [0, \infty) \to [0, 1) \) be a \(\mathcal{MT} \)-function, and let \(h : X \to [0, \infty) \) be a function. Assume that

\[\mathcal{H}(Tx, Ty) \leq \varphi(d(x, y))d(x, y) + h(y)d(y, Tx) \quad \forall x, y \in X. \]

Then \(T \) has a fixed point in \(X \).

The paper is organized as follows. In Section 2, we first introduce the concept of manageable function and give some examples of it. Section 3 is dedicated to the study of some new existent theorems related to approximate fixed point property for manageable functions and \(\alpha \)-admissible multivalued maps. As applications of our results, some new fixed point theorems which generalize and improve Du’s fixed point theorem, Berinde-Berinde’s fixed point theorem, Mizoguchi-Takahashi’s fixed point theorem, and Nadler’s fixed point theorem and some well-known results in the literature are given in Section 4. Consequently, some of our results in this paper are original in the literature, and we obtain many results in the literature as special cases.

2. Manageable Functions

In this paper, we first introduce the concept of manageable functions.

Definition 6. A function \(\eta : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) is called manageable if the following conditions hold:

\((\eta 1) \) \(\eta(t, s) < s - t \) for all \(s, t > 0 \);

\((\eta 2) \) for any bounded sequence \(\{t_n\} \subset (0, +\infty) \) and any nonincreasing sequence \(\{s_n\} \subset (0, +\infty) \), it holds that

\[\lim sup_{n \to \infty} \frac{t_n + \eta(t_n, s_n)}{s_n} < 1. \]

We denote the set of all manageable functions by \(\text{Man}(\mathbb{R}) \).

Here, we give simple examples of manageable function.

Example A. Let \(\gamma \in [0, 1) \). Then \(\eta_\gamma : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) defined by

\[\eta_\gamma(t, s) = \gamma s - t \]

is a manageable function.

Example B. Let \(f : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) be any function. Then the function \(\eta : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) defined by

\[\eta(t, s) = \begin{cases} \frac{s}{s + 9} \ln(s + 10) - t, & \text{if } (t, s) \in [0, +\infty) \times [0, +\infty), \\ f(t, s), & \text{otherwise}, \end{cases} \]

is a manageable function. Indeed, let

\[g(x) = \frac{\ln(x + 10)}{x + 9} \quad \forall x > -9. \]
Then \(g(s) < 1 \) for all \(s > 0 \), and

\[
\eta(t, s) = \begin{cases}
sg(s) - t, & \text{if } (t, s) \in [0, +\infty) \times [0, +\infty), \\
\int f(t, s), & \text{otherwise.}
\end{cases}
\]

(9)

For any \(s, t > 0 \), we have

\[
\eta(t, s) = sg(s) - t < s - t,
\]

(10)

so (\eta1) holds. Let \(\{t_n\} \subset (0, +\infty) \) be a bounded sequence and let \(\{s_n\} \subset (0, +\infty) \) be a nonincreasing sequence. Then

\[
\lim_{n \to \infty} s_n = \inf_{n \in \mathbb{N}} s_n = a \text{ for some } a \in [0, +\infty).
\]

Since \(g \) is continuous, we get

\[
\lim_{n \to \infty} \frac{t_n + \eta(t_n, s_n)}{s_n} = \lim_{n \to \infty} g(s_n) = g(a) < 1,
\]

(11)

which means that (\eta2) holds. Hence, \(\eta \in \text{Man}(\mathbb{R}) \).

Example C. Let \(f : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) be any function and let \(\varphi : [0, \infty) \to [0, 1) \) be an \(M\mathcal{T} \)-function. Define \(\eta : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) by

\[
\eta(t, s) = \begin{cases}
\varphi(s) - t, & \text{if } (t, s) \in [0, +\infty) \times [0, +\infty), \\
\int f(t, s), & \text{otherwise.}
\end{cases}
\]

(12)

Then \(\eta \) is a manageable function. Indeed, one can verify easily that (\eta1) holds. Next, we verify that \(\eta \) satisfies (\eta2). Let \(\{t_n\} \subset (0, +\infty) \) be a bounded sequence and let \(\{s_n\} \subset (0, +\infty) \) be a nonincreasing sequence. Then \(\lim_{n \to \infty} s_n = \inf_{n \in \mathbb{N}} s_n = a \) for some \(a \in (0, +\infty) \). Since \(\varphi \) is an \(M\mathcal{T} \)-function, by Theorem 2, there exist \(r_a \in (0, 1) \) and \(e_a > 0 \) such that \(\varphi(s) \leq r_a \) for all \(s \in [a, a + e_a] \). Since \(\lim_{n \to \infty} s_n = \inf_{n \in \mathbb{N}} s_n = a \), there exists \(n_a \in \mathbb{N} \), such that

\[
a \leq s_n < a + e_a \quad \forall n \in \mathbb{N} \text{ with } n \geq n_a.
\]

(13)

Hence, we have

\[
\lim_{n \to \infty} \frac{t_n + \eta(t_n, s_n)}{s_n} = \lim_{n \to \infty} \varphi(s_n) \leq r_a < 1,
\]

(14)

which means that (\eta2) holds. So we prove \(\eta \in \text{Man}(\mathbb{R}) \).

The following result is quite obvious.

Proposition 7. Let \(\zeta : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) be a function. If there exists \(\eta \in \text{Man}(\mathbb{R}) \) such that \(\zeta(t, s) \leq \eta(t, s) \) for all \(s, t > 0 \), then \(\zeta \in \text{Man}(\mathbb{R}) \).

Proposition 8. Let \(\eta_k \mid k \in \mathbb{N} \subset \text{Man}(\mathbb{R}) \). Then the following statements hold.

(a) For each \(k \in \mathbb{N} \), the function \(\eta_{\min} : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \), defined by

\[
\eta_{\min}(t, s) = \min \{ \eta_1(t, s), \eta_2(t, s), \ldots, \eta_k(t, s) \},
\]

(15)

is a manageable function (i.e., \(\eta_{\min} \in \text{Man}(\mathbb{R}) \) for any \(k \in \mathbb{N} \)).

(b) For each \(k \in \mathbb{N} \), the function \(\eta_{\max} : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \), defined by

\[
\eta_{\max}(t, s) = \sup \{ \eta_1(t, s), \eta_2(t, s), \ldots, \eta_k(t, s) \},
\]

(16)

is a manageable function (i.e., \(\eta_{\max} \in \text{Man}(\mathbb{R}) \) for any \(k \in \mathbb{N} \)).

Proof. Since \(\eta_{\min}(t, s) \leq \eta_1(t, s) \) for all \(t, s > 0 \), the conclusion (a) is a direct consequence of Proposition 7. Next, we prove the conclusion (b). Let \(k \in \mathbb{N} \) be given. It is obvious that \(\eta_{\max}(t, s) \leq s - t \) for all \(s, t > 0 \). Let \(\{t_n\} \subset (0, +\infty) \) be a bounded sequence and let \(\{s_n\} \subset (0, +\infty) \) be a nonincreasing sequence. For any \(n \in \mathbb{N} \), we have

\[
\lim_{n \to \infty} \frac{t_n + \eta_{\max}(t_n, s_n)}{s_n} = \lim_{n \to \infty} \frac{t_n + \sum_{k=1}^{k} \eta_k(t_n, s_n)}{s_n}
\]

(17)

Because each \(\eta_k \) satisfies (\eta2), we get

\[
\lim_{n \to \infty} \frac{t_n + \eta_{\max}(t_n, s_n)}{s_n} \leq \lim_{n \to \infty} \frac{\sum_{k=1}^{k} \eta_k(t_n, s_n)}{s_n} < 1.
\]

(18)

Hence, for each \(k \in \mathbb{N} \), the function \(\eta_{\max} \) is a manageable function.

\[\square \]

3. New Existence Results for Manageable Functions and Approximate Fixed Point Property

Recall that a multivalued map \(T : X \to \mathcal{CB}(X) \) is called

(1) a Nadler’s type contraction (or a multivalued \(k \)-contraction [3, 33]), if there exists a number \(0 < k < 1 \) such that

\[
\mathcal{H}(Tx, Ty) \leq kd(x, y) \quad \forall x, y \in X;
\]

(19)

(2) a Mizoguchi-Takahashi’s type contraction [33], if there exists an \(M\mathcal{T} \)-function \(\alpha : [0, \infty) \to [0, 1) \) such that

\[
\mathcal{H}(Tx, Ty) \leq \alpha(d(x, y))d(x, y) \quad \forall x, y \in X;
\]

(20)

(3) A multivalued \(\theta \)-\((\theta, L) \)-almost contraction [28, 29, 33], if there exist two constants \(\theta \in (0, 1) \) and \(L \geq 0 \) such that

\[
\mathcal{H}(Tx, Ty) \leq \theta d(x, y) + Ld(y, Tx) \quad \forall x, y \in X;
\]

(21)
(4) A Berinde-Berinde’s type contraction [33] (or a generalized multivalued almost contraction [28, 29, 33]), if there exists an MT-function $\alpha : [0, \infty) \rightarrow [0,1)$ and $I \geq 0$ such that
\[
H(Tx, Ty) \leq \alpha(d(x, y))d(x, y) + I \cdot d(y, Tx) \quad \forall x, y \in X; \tag{22}
\]

(5) A Du’s strong type contraction, if there exist an MT-function $\alpha : [0, \infty) \rightarrow [0,1)$ and a function $h : X \rightarrow [0, \infty)$ such that
\[
H(Tx, Ty) \leq \alpha(d(x, y))d(x, y) + h(y)d(y, Tx) \quad \forall x, y \in X; \tag{23}
\]

(6) A Du’s weak type contraction, if there exist an MT-function $\alpha : [0, \infty) \rightarrow [0,1)$ and a function $h : X \rightarrow [0, \infty)$ such that
\[
d(y, Ty) \leq \alpha(d(x, y))d(x, y) \quad \forall y \in Tx. \tag{24}
\]

Definition 9 (see [36–39]). Let (X, d) be a metric space and let $T : X \rightarrow MT(X)$ be a multivalued map. One says that T is α-admissible, if there exists a function $\alpha : X \times X \rightarrow [0, +\infty)$ such that for each $x \in X$ and $y \in Tx$ with $\alpha(x, y) \geq 1$, one has $\alpha(y, x) \geq 1$ for all $z \in Ty$.

The following existence theorem is one of the main results of this paper.

Theorem 10. Let (X, d) be a metric space, let $T : X \rightarrow MT(X)$ be an α-admissible multivalued map, and $\eta \in Man(\mathbb{R})$. Let
\[
\Omega = \{(\alpha(x, y), d(y, Ty), d(x, y)) \in [0, +\infty) \times [0, +\infty) : x \in X, y \in Tx \}. \tag{25}
\]

If $\eta(t, s) \geq 0$ for all $(t, s) \in \Omega$ and there exist $x_0 \in X$ and $x_1 \in TX_0$ such that $\alpha(x_0, x_1) \geq 1$, then the following statements hold.

(a) There exists a Cauchy sequence $\{w_n\}_{n \in \mathbb{N}}$ in X such that
 (i) $w_{n+1} \in Tw_n$ for all $n \in \mathbb{N}$,
 (ii) $\alpha(w_n, w_{n+1}) \geq 1$ for all $n \in \mathbb{N}$,
 (iii) $\lim_{n \to \infty} d(w_n, w_{n+1}) = \inf_{n \in \mathbb{N}} d(w_n, w_{n+1}) = 0$.

(b) $\inf_{x \in X} d(x, Tx) = 0$; that is, T has the approximate fixed point property on X.

Proof. By our assumption, there exist $x_0 \in X$ and $x_1 \in TX_0$ such that $\alpha(x_0, x_1) \geq 1$. If $x_1 = x_0$, then $x_0 \in TX_0$ and
\[
\inf_{x \in X} d(x, Tx) \leq d(x_0, x_0) = 0, \tag{26}
\]
which implies $\inf_{x \in X} d(x, Tx) = 0$. Let $w_n = x_0$ for all $n \in \mathbb{N}$. Then $\{w_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence in X and
\[
\lim_{n \to \infty} d(w_n, w_{n+1}) = \inf_{n \in \mathbb{N}} d(w_n, w_{n+1}) = d(x_0, x_0) = 0. \tag{27}
\]

Clearly, $\alpha(w_n, w_{n+1}) = \alpha(x_0, x_1) \geq 1$ for all $n \in \mathbb{N}$. Hence, the conclusions (a) and (b) hold in this case. Assume $x_1 \notin x_0$ or $d(x_0, x_1) > 0$. If $x_1 \notin TX_1$, then, following a similar argument as above, we can prove the conclusions (a) and (b) by taking a Cauchy sequence $\{w_n\}_{n \in \mathbb{N}}$ with $w_1 = x_0$ and $w_n = x_1$ for all $n \geq 2$. Suppose $x_1 \notin TX_1$. Thus $d(x_1, TX_1) > 0$. Define $\lambda : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ by
\[
\lambda(t, s) = \begin{cases}
\frac{t + \eta(t, s)}{s}, & \text{if } (t, s) \in \Omega \setminus \{(0, 0)\}, \\
0, & \text{otherwise.}
\end{cases} \tag{28}
\]
By $(\eta 1)$, we know that
\[
0 < \lambda(t, s) < 1 \quad \forall (t, s) \in \Omega \setminus \{(0, 0)\}. \tag{29}
\]
Since $\eta \in Man(\mathbb{R})$ and $\eta(t, s) \geq 0$ for all $(t, s) \in \Omega$, we have
\[
0 < t \leq s\lambda(t, s) \quad \forall (t, s) \in \Omega \setminus \{(0, 0)\}. \tag{30}
\]
Clearly, $(\alpha(x_0, x_1)d(x_1, TX_1), d(x_0, x_1)) \in \Omega \setminus \{(0, 0)\}$. So, by (29), we obtain
\[
0 < \lambda(\alpha(x_0, x_1))d(x_1, TX_1), d(x_0, x_1) < 1. \tag{31}
\]
Let
\[
e_1 = \left(\frac{\alpha(x_0, x_1)}{\sqrt{\lambda(\alpha(x_0, x_1))d(x_1, TX_1), d(x_0, x_1)}} - 1\right)^{\frac{1}{2}} \times d(x_1, TX_1), \tag{32}
\]
Taking into account $\alpha(x_0, x_1) \geq 1$, $d(x_1, TX_1) > 0$, and the last inequality, we get $e_1 > 0$. Since
\[
d(x_1, TX_1) < d(x_1, TX_1) + e_1 = \frac{\alpha(x_0, x_1)}{\sqrt{\lambda(\alpha(x_0, x_1))d(x_1, TX_1), d(x_0, x_1)}} \times d(x_1, TX_1), \tag{33}
\]
there exists $x_2 \in TX_1$ such that $x_2 \neq x_1$ and
\[
d(x_1, x_2) < \frac{\alpha(x_0, x_1)}{\sqrt{\lambda(\alpha(x_0, x_1))d(x_1, TX_1), d(x_0, x_1)}} \times d(x_1, TX_1). \tag{34}
\]
If $x_2 \notin TX_2$, then the proof can be finished by a similar argument as above. Otherwise, we have $d(x_2, TX_2) > 0$. Since T is α-admissible, we obtain $\alpha(x_1, x_2) \geq 1$. By taking
\[
e_2 = \left(\frac{\alpha(x_1, x_2)}{\sqrt{\lambda(\alpha(x_1, x_2))d(x_2, TX_2), d(x_1, x_2)}} - 1\right)^{\frac{1}{2}} \times d(x_2, TX_2), \tag{35}
\]
then there exists $x_3 \in Tx_2$ with $x_3 \neq x_2$ such that
\[d(x_2, x_3) < \frac{\alpha (x_1, x_2)}{\sqrt{\lambda (\alpha (x_1, x_2) d(x_2, Tx_2), d(x_1, x_2))}} \times d(x_2, Tx_2). \] (36)

By induction, if $x_{k-1}, x_k, x_{k+1} \in X$ is known satisfying $x_{k-1} \in Tx_k, x_{k+1} \in Tx_{k+2}, d(x_k, Tx_k) > 0, \alpha (x_{k-1}, x_k) \geq 1$, and
\[0 < d(x_k, x_{k+1}) < \frac{\alpha (x_{k-1}, x_k)}{\sqrt{\lambda (\alpha (x_{k-1}, x_k) d(x_k, Tx_k), d(x_{k-1}, x_k))}} \times d(x_k, Tx_k), \quad k \in \mathbb{N}, \] (37)

then, by taking
\[\epsilon_k = \left(\frac{\alpha (x_{k-1}, x_k)}{\sqrt{\lambda (\alpha (x_{k-1}, x_k) d(x_k, Tx_k), d(x_{k-1}, x_k))}} - 1 \right) \times d(x_k, Tx_k), \] (38)

one can obtain $x_{k+2} \in Tx_{k+1}$ with $x_{k+2} \neq x_{k+1}$ such that
\[d(x_{k+1}, x_{k+2}) < \frac{\alpha (x_k, x_{k+1})}{\sqrt{\lambda (\alpha (x_k, x_{k+1}) d(x_{k+1}, Tx_{k+1}), d(x_k, x_{k+1}))}} \times d(x_{k+1}, Tx_{k+1}). \] (39)

Hence, by induction, we can establish sequences $\{x_n\}$ in X satisfying, for each $n \in \mathbb{N}$,
\[x_n \in Tx_{n-1}, \]
\[d(x_{n-1}, x_n) > 0, \]
\[d(x_n, Tx_n) > 0, \]
\[\alpha (x_{n-1}, x_n) \geq 1, \]
\[d(x_n, x_{n+1}) < \frac{\alpha (x_{n-1}, x_n)}{\sqrt{\lambda (\alpha (x_{n-1}, x_n) d(x_n, Tx_n), d(x_{n-1}, x_n))}} \times d(x_n, Tx_n). \] (40)

By (30), we have
\[\alpha (x_{n-1}, x_n) d(x_n, Tx_n) \]
\[\leq d(x_{n-1}, x_n) \lambda (\alpha (x_{n-1}, x_n) d(x_n, Tx_n), d(x_{n-1}, x_n)) \]
for each $n \in \mathbb{N}$. (41)

Hence, for each $n \in \mathbb{N}$, by combining (40) and (41), we get
\[d(x_n, x_{n+1}) < \sqrt{\lambda (\alpha (x_{n-1}, x_n) d(x_n, Tx_n), d(x_{n-1}, x_n))} \times d(x_{n-1}, x_n), \] (42)

which means that the sequence $\{d(x_{n-1}, x_n)\}_{n \in \mathbb{N}}$ is strictly decreasing in $(0, +\infty)$. So
\[y := \limsup_{n \to \infty} d(x_n, x_{n+1}) = \inf_{n \in \mathbb{N}} d(x_n, x_{n+1}) \geq 0 \text{ exists.} \] (43)

By (41), we have
\[\alpha (x_{n-1}, x_n) d(x_n, Tx_n) \leq d(x_{n-1}, x_n) \forall n \in \mathbb{N}, \] (44)

which means that $\{\alpha(x_{n-1}, x_n) d(x_n, Tx_n)\}_{n \in \mathbb{N}}$ is a bounded sequence. By (η2), we have
\[\limsup_{n \to \infty} \lambda (\alpha (x_{n-1}, x_n) d(x_n, Tx_n), d(x_{n-1}, x_n)) < 1. \] (45)

Now, we claim $y = 0$. Suppose $y > 0$. Then, by (45) and taking lim sup in (42), we get
\[y \leq \sqrt{\limsup_{n \to \infty} \lambda (\alpha (x_{n-1}, x_n) d(x_n, Tx_n), d(x_{n-1}, x_n))} y < y, \] (46)

a contradiction. Hence we prove
\[\limsup_{n \to \infty} d(x_n, x_{n+1}) = \inf_{m \in \mathbb{N}} d(x_n, x_{n+1}) = 0. \] (47)

To complete the proof of (a), it suffices to show that $\{x_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence in X. For each $n \in \mathbb{N}$, let
\[\rho_n := \sqrt{\lambda (\alpha (x_{n-1}, x_n) d(x_n, Tx_n), d(x_{n-1}, x_n))}. \] (48)

Then $\rho_n \in (0, 1)$ for all $n \in \mathbb{N}$. By (42), we obtain
\[d(x_n, x_{n+1}) < \rho_n d(x_{n-1}, x_n) \forall n \in \mathbb{N}. \] (49)

From (45), we have $\limsup_{n \to \infty} \rho_n < 1$, so there exist $c \in [0, 1]$ and $n_0 \in \mathbb{N}$, such that
\[\rho_n \leq c \forall n \in \mathbb{N} \text{ with } n \geq n_0. \] (50)
For any \(n \geq n_0 \), since \(\rho_i \in (0, 1) \) for all \(n \in \mathbb{N} \) and \(c \in [0, 1) \), taking into account (49) and (50) concludes that
\[
d(x_n, x_{n+1}) < \rho_n d(x_{n-1}, x_n) \leq \cdots \leq \rho_n \rho_{n-1} \rho_{n-1} \cdots \rho_0 d(x_0, x_1) (51)
\]
\[
\leq c^{-n-n_0+1} d(x_0, x_1).
\]
Put \(\alpha_n = (c^{-n-n_0+1}/(1-c)) d(x_0, x_1), n \in \mathbb{N} \). For \(m, n \in \mathbb{N} \) with \(m > n \geq n_0 \), we have from the last inequality that
\[
d(x_n, x_m) \leq \sum_{j=n}^{m-1} d(x_j, x_{j+1}) < \alpha_n. (52)
\]
Since \(c \in [0, 1) \), \(\lim_{n \to \infty} \alpha_n = 0 \). Hence
\[
\lim_{n \to \infty} \sup \{ d(x_n, x_m) : m > n \} = 0. (53)
\]
So \(\{x_n\} \) is a Cauchy sequence in \(X \). Let \(w_0 = x_{n_0-1} \) for all \(n \in \mathbb{N} \). Then \(\{w_n\}_{n \in \mathbb{N}} \) is the desired Cauchy sequence in (a).

To see (b), since \(x_n \in Tx_{n-1} \) for each \(n \in \mathbb{N} \), we have
\[
\inf_{x \in X} d(x, Tx) \leq d(x_n, Tx_n) \leq d(x_n, x_{n+1}) \quad \forall n \in \mathbb{N}. (54)
\]
Combining (47) and (54) yields
\[
\inf_{x \in X} d(x, Tx) = 0. (55)
\]
The proof is completed. \(\square \)

Applying Theorem 10, we can establish the following new existence theorem related to approximate fixed point property for \(\alpha \)-admissible multivalued maps.

Theorem 11. Let \((X, d) \) be a metric space and let \(T : X \to \mathcal{N}(X) \) be an \(\alpha \)-admissible multivalued map. Suppose that there exists an \(\mathcal{M} \)-function \(\varphi : [0, \infty) \to [0, 1) \) such that
\[
\alpha(x, y) d(y, Ty) \leq \varphi(d(x, y)) d(x, y) \quad \forall x, y \in X. (56)
\]
If there exist \(x_0 \in X \) and \(x_1 \in Tx_0 \) such that \(\alpha(x_0, x_1) \geq 1 \), then the following statements hold.

(a) There exists \(\eta \in \text{Man}(\mathbb{R}) \) such that \(\eta(t, s) \geq 0 \) for all \((t, s) \in \Omega \), where
\[
\Omega = \{ (\alpha(x, y) d(y, Ty), d(x, y)) \in [0, +\infty) \times [0, +\infty) : x \in X, y \in Tx \}. (57)
\]
(b) There exists a Cauchy sequence \(\{w_n\}_{n \in \mathbb{N}} \) in \(X \) such that
(i) \(w_{n+1} \in Tw_n \) for all \(n \in \mathbb{N} \),
(ii) \(\alpha(w_n, w_{n+1}) \geq 1 \) for all \(n \in \mathbb{N} \),
(iii) \(\lim_{n \to \infty} d(w_n, w_{n+1}) = \inf_{n \in \mathbb{N}} d(w_n, w_{n+1}) = 0. (58)
\]
(c) \(\inf_{x \in X} d(x, Tx) = 0 \); that is, \(T \) has the approximate fixed point property on \(X \).

Proof. Define \(\eta : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) by
\[
\eta(t, s) = \begin{cases} \varphi(s) - t, & \text{if } (t, s) \in [0, +\infty) \times [0, +\infty), \\ 0, & \text{otherwise.} \end{cases} (59)
\]
By Example C, we know \(\eta \in \text{Man}(\mathbb{R}) \). By (56), we obtain \(\eta(t, s) \geq 0 \) for all \((t, s) \in \Omega \). Therefore (a) is proved. It is obvious that the desired conclusions (b) and (c) follow from Theorem 10 immediately. \(\square \)

The following interesting results are immediate from Theorem 11.

Corollary 12. Let \((X, d) \) be a metric space and let \(T : X \to \mathcal{R}(X) \) be an \(\alpha \)-admissible multivalued map. Assume that one of the following conditions holds.

(1.1) There exist an \(\mathcal{M} \)-function \(\varphi : [0, \infty) \to [0, 1) \) and a function \(h : X \to [0, \infty) \) such that
\[
\alpha(x, y) H(Tx, Ty) \leq \varphi(d(x, y)) d(x, y) + h(y) d(y, Tx) \quad \forall x, y \in X. (59)
\]
(1.2) There exist an \(\mathcal{M} \)-function \(\varphi : [0, \infty) \to [0, 1) \) and \(L \geq 0 \) such that
\[
\alpha(x, y) H(Tx, Ty) \leq \varphi(d(x, y)) d(x, y) + Ld(y, Tx) \quad \forall x, y \in X. (60)
\]
(1.3) There exist two constants \(\theta \in (0, 1) \) and \(L \geq 0 \) such that
\[
\alpha(x, y) H(Tx, Ty) \leq \theta d(x, y) + Ld(y, Tx) \quad \forall x, y \in X. (61)
\]
(1.4) There exist an \(\mathcal{M} \)-function \(\varphi : [0, \infty) \to [0, 1) \) such that
\[
\alpha(x, y) H(Tx, Ty) \leq \varphi(d(x, y)) d(x, y) \quad \forall x, y \in X. (62)
\]
(1.5) There exists a number \(0 < k < 1 \) such that
\[
\alpha(x, y) H(Tx, Ty) \leq kd(x, y) \quad \forall x, y \in X. (63)
\]
If there exist \(x_0 \in X \) and \(x_1 \in Tx_0 \) such that \(\alpha(x_0, x_1) \geq 1 \), then the following statements hold.

(a) There exists \(\eta \in \text{Man}(\mathbb{R}) \) such that \(\eta(t, s) \geq 0 \) for all \((t, s) \in \Omega \), where
\[
\Omega = \{ (\alpha(x, y) d(y, Ty), d(x, y)) \in [0, +\infty) \times [0, +\infty) : x \in X, y \in Tx \}. (64)
\]
(b) There exists a Cauchy sequence \(\{w_n\}_{n \in \mathbb{N}} \) in \(X \) such that
(i) \(w_{n+1} \in Tw_n \) for all \(n \in \mathbb{N} \),
(ii) \(\alpha(w_n, w_{n+1}) \geq 1 \) for all \(n \in \mathbb{N} \),
(iii) \(\lim_{n \to \infty} d(w_n, w_{n+1}) = \inf_{n \in \mathbb{N}} d(w_n, w_{n+1}) = 0. (65)\)
(c) \(\inf_{x \in X} d(x, Tx) = 0 \); that is, \(T \) has the approximate fixed point property on \(X \).

Proof. It suffices to verify the conclusion under (L1). Note first that, for each \(x \in X \), \(d(y, Ty) = 0 \) for all \(y \in Ty \). So, for each \(x \in X \), by (L1), we obtain

\[
\alpha (x, y) d(y, Ty) \leq \varphi (d(x, y)) d(x, y) \quad \forall y \in Ty, \tag{65}
\]

which means (56) holds. Therefore, the conclusion follows from Theorem 11.

In Corollary 12, if we take \(\alpha : X \times X \to [0, +\infty) \) by \(\alpha(x, y) = 1 \) for all \(x, y \in X \), then we obtain the following existence theorem.

Corollary 13. Let \((X, d) \) be a metric space and let \(T : X \to \mathcal{CB}(X) \) be a multivalued map. Assume that one of the following conditions holds.

1. \(T \) is a Du's weak type contraction;
2. \(T \) is a Du's strong type contraction;
3. \(T \) is a Berinde-Berinde's type contraction;
4. \(T \) is a multivalued \((\theta, L)\)-almost contraction;
5. \(T \) is a Mizoguchi-Takahashi's type contraction;
6. \(T \) is a Nadler's type contraction.

Then the following statements hold.

(a) There exists \(\eta \in \text{Man}(\mathbb{R}) \) such that \(\eta(t, s) \geq 0 \) for all \((t, s) \in \mathcal{D} \), where

\[
\mathcal{D} = \{(d(y, Ty), d(x, y)) \in [0, +\infty) \times [0, +\infty) : x \in X, y \in Ty\}. \tag{66}
\]

(b) There exists a Cauchy sequence \(\{w_n\}_{n \in \mathbb{N}} \) in \(X \) such that

(i) \(w_{n+1} \in Tw_n \) for all \(n \in \mathbb{N} \),
(ii) \(\lim_{n \to \infty} d(w_n, w_{n+1}) = \inf_{n \in \mathbb{N}} d(w_n, w_{n+1}) = 0 \).

(c) \(\inf_{x \in X} d(x, Tx) = 0 \); that is, \(T \) has the approximate fixed point property on \(X \).

4. Some Applications to Fixed Point Theory

Definition 14 (see [36–39]). Let \((X, d) \) be a metric space and let \(\alpha : X \times X \to [0, +\infty) \) be a function. \(\alpha \) is said to have the property (B) if any sequence \(\{x_n\} \) in \(X \) with \(\alpha(x_n, x_{n+1}) \geq 1 \) for all \(n \in \mathbb{N} \) and \(\lim_{n \to \infty} x_n = x \), we have \(\alpha(x_n, y) \geq 1 \) for all \(n \in \mathbb{N} \).

Theorem 15. Let \((X, d) \) be a complete metric space and let \(T : X \to \mathcal{CB}(X) \) be an \(\alpha \)-admissible multivalued map. Suppose that there exists an \(\mathcal{MT} \)-function \(\varphi : [0, +\infty) \to [0, 1) \) such that

\[
\alpha (x, y) d(y, Ty) \leq \varphi (d(x, y)) d(x, y) \quad \forall y \in Ty. \tag{67}
\]

If there exist \(x_0 \in X \) and \(x_1 \in Tx_0 \) such that \(\alpha(x_0, x_1) \geq 1 \), and one of the following conditions is satisfied:

(H1) \(T \) is \(\mathcal{H} \)-continuous (i.e., \(x_n \to v \) implies \(\mathcal{H}(Tx_n, Tv) \to 0 \) as \(n \to \infty \));
(H2) \(T \) is closed (i.e., \(\text{Gr} T = \{(x, y) \in X \times X : y \in Tx\} \); the graph of \(T \) is a closed subset of \(X \times X \);
(H3) the map \(g : X \to [0, \infty) \) defined by \(g(x) = d(x, Tx) \) is l.s.c.;
(H4) for any sequence \(\{z_n\} \) in \(X \) with \(\alpha(z_n, z_{n+1}) \geq 1 \), \(z_{n+1} \in Tz_n \), \(n \in \mathbb{N} \), and \(\lim_{n \to \infty} z_n = c \), one has \(\lim_{n \to \infty} d(z_n, Tc) = 0 \),

then \(T \) admits a fixed point in \(X \).

Proof. Applying Theorem 11, there exists a Cauchy sequence \(\{w_n\}_{n \in \mathbb{N}} \) in \(X \) such that

\[
w_{n+1} \in Tw_n, \quad \alpha (w_n, w_{n+1}) \geq 1 \quad \forall n \in \mathbb{N}. \tag{68}
\]

By the completeness of \(X \), there exists \(v \in X \) such that \(w_n \to v \) as \(n \to \infty \).

Now, we verify \(v \in \mathcal{F}(T) \). If (H1) holds, since \(T \) is \(\mathcal{H} \)-continuous on \(X \), \(w_{n+1} \in Tw_n \) for each \(n \in \mathbb{N} \), and \(w_n \to v \) as \(n \to \infty \), we get

\[
d (v, Tv) = \lim_{n \to \infty} d (w_{n+1}, Tv) \leq \lim_{n \to \infty} \mathcal{H} (Tw_n, Tv) = 0, \tag{69}
\]

which implies \(d(v, Tv) = 0 \). By the closeness of \(Tv \), we have \(v \in Tv \). If (H2) holds, since \(T \) is closed, \(w_{n+1} \in Tw_n \) for each \(n \in \mathbb{N} \), and \(w_n \to v \) as \(n \to \infty \), we have \(v \in \mathcal{F}(T) \). Suppose that (H3) holds. Since \(\{w_n\}_{n \in \mathbb{N}} \) is convergent in \(X \), we have

\[
\lim_{n \to \infty} d (w_n, w_{n+1}) = 0. \tag{70}
\]

Since

\[
d (v, Tv) = g (v) \leq \lim_{n \to \infty} g (w_n) \leq \lim_{n \to \infty} d (w_n, w_{n+1}) = 0, \tag{71}
\]

we obtain \(d(v, Tv) = 0 \), and hence \(v \in \mathcal{F}(T) \). Finally, assume (H4) holds. Then we obtain

\[
d (v, Tv) = \lim_{n \to \infty} d (w_n, Tv) = 0. \tag{72}
\]

Hence \(v \in Tv \). Therefore, in any case, we prove \(v \in \mathcal{F}(T) \). This completes the proof.

Theorem 16. Let \((X, d) \) be a complete metric space and let \(T : X \to \mathcal{CB}(X) \) be an \(\alpha \)-admissible multivalued map. Suppose that there exist an \(\mathcal{MT} \)-function \(\varphi : [0, \infty) \to [0, 1) \) and a function \(h : X \to [0, \infty) \) such that

\[
\alpha (x, y) \mathcal{H} (Tx, Ty) \leq \varphi (d(x, y)) d(x, y) + h(y) d(y, Tx) \quad \forall x, y \in X. \tag{73}
\]

If there exist \(x_0 \in X \) and \(x_1 \in Tx_0 \) such that \(\alpha(x_0, x_1) \geq 1 \), and one of the following conditions is satisfied:

(S1) \(T \) is \(\mathcal{H} \)-continuous;
(S2) T is closed;
(S3) the map $g : X \to [0, \infty)$ defined by $g(x) = d(x, Tx)$ is l.s.c.;
(S4) the function α has the property (B), then T admits a fixed point in X.

Proof. It is obvious that (73) implies (67). If one of the conditions (S1), (S2), and (S3) is satisfied, then the desired conclusion follows from Theorem 15 immediately. Suppose that (S4) holds. We claim that (H4) as in Theorem 15 is satisfied. Let $\{z_n\}$ be in X with $\alpha(z_n, z_{n+1}) \geq 1, z_{n+1} \in Tz_n, n \in \mathbb{N}$, and $\lim_{n \to \infty} z_n = c$. Since α has the property (B), $\alpha(z_n, c) \geq 1$ for all $n \in \mathbb{N}$. So, it follows from (73) that

$$
\lim_{n \to \infty} d(z_{n+1}, Tc) \leq \lim_{n \to \infty} \mathcal{H}(Tz_n, Tc) \leq \lim_{n \to \infty} \alpha(z_n, c) \mathcal{H}(Tz_n, Tc) \leq \lim_{n \to \infty} \{\varphi(d(z_n, c))d(z_n, c) + h(c)d(c, z_{n+1})\} = 0,
$$

which implies $\lim_{n \to \infty} d(z_n, Tc) = 0$. Hence (H4) holds. By Theorem 15, we also prove $\mathcal{F}(T) \neq \emptyset$. The proof is completed.

Applying Theorem 16, we can give a short proof of Du's fixed point theorem.

Corollary 17 (Du [16]). Let (X, d) be a complete metric space, let $T : X \to CB(X)$ be a multivalued map, let $\varphi : [0, \infty) \to [0, 1)$ be a \mathcal{H}-function, and let $h : X \to [0, \infty)$ be a function. Assume that

$$
\mathcal{H}(Tx, Ty) \leq \varphi(d(x, y))d(x, y) + h(y)d(y, Tx) \forall x, y \in X.
$$

Then $\mathcal{F}(T) \neq \emptyset$.

Proof. Take $\alpha : X \times X \to [0, +\infty)$ by $\alpha(x, y) = 1$ for all $x, y \in X$. Then (75) implies (73). Moreover, T is an α-admissible multivalued map and the function α has the property (B). Therefore the conclusion follows from Theorem 16.

Remark 18. Theorems 15 and 16 and Corollary 17 all generalize and improve Berinde-Berinde’s fixed point theorem, Mizoguchi-Takahashi’s fixed point theorem, Nadler’s fixed point theorem, and Banach contraction principle.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

The first author was supported by grant no. NSC 102-2115-M-017-001 of the National Science Council of the Republic of China. The second author would like to express his sincere thanks to the Arak branch of Islamic Azad University for supporting this work.

References

