Research Article

Kink-Like Wave and Compacton-Like Wave Solutions for a Two-Component Fornberg-Whitham Equation

Shaoyong Li1 and Ming Song2,3

1 School of Mathematics and Information Sciences, Shaoguan University, Shaoguan, Guangdong 512005, China
2 Department of Mathematics, Shaoxing University, Shaoxing, Zhejiang 312000, China
3 Department of Mathematics, Faculty of Sciences, Yuxi Normal University, Yuxi, Yunnan 653100, China

Correspondence should be addressed to Shaoyong Li; lishaoyongok@sohu.com

Received 28 December 2013; Revised 19 January 2014; Accepted 23 January 2014; Published 16 March 2014

Academic Editor: Massimo Furi

Copyright © 2014 S. Li and M. Song. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Using bifurcation method and numerical simulation approach of dynamical systems, we study a two-component Fornberg-Whitham equation. Two types of bounded traveling wave solutions are found, that is, the kink-like wave and compacton-like wave solutions. The planar graphs of these solutions are simulated by using software Mathematica; meanwhile, two new phenomena are revealed; that is, the periodic wave solution can become the kink-like wave or compacton-like wave solution under some conditions, respectively. Exact implicit or parameter expressions of these solutions are given.

1. Introduction

The Fornberg-Whitham equation

\[u_t - u_{xxt} + u_x + uu_x = uu_{xxx} + 3u_xu_{xx} \] \hspace{1cm} (1)

was used to study the qualitative behaviors of wave breaking [1]. It admits a wave of the greatest height, as a peaked limiting form of the traveling wave solution [2], \(u(x,t) = \hat{A} \exp((1/2)|x - (4/3)t|) \), where \(\hat{A} \) is an arbitrary constant. Recently, Zhou and Tian found that (1) possesses kink-like wave solutions in [3]. They obtained some solitons, peakons, and periodic cusp wave solutions in [4]. Further, they obtained the smooth periodic wave solutions and loop-soliton solutions by using elliptic integral [5]. Feng and Wu [6] considered the classification of single traveling wave solutions to (1). Chen et al. [7] gave some smooth periodic wave, smooth solitary wave, periodic cusp wave, and loop-soliton solutions of (1) and made the numerical simulation.

He et al. [8] studied the following modified Fornberg-Whitham equation:

\[u_t - u_{xxt} + u_x + uu_x = uu_{xxx} + 3u_xu_{xx} \] \hspace{1cm} (2)

In some parametric conditions, some peakons and solitary waves were found and their exact parametric representations in explicit form were obtained.

Jiang and Bi [9] considered the Fornberg-Whitham equation with linear dispersion term given by

\[u_t - u_{xxt} + u_x + uu_x = uu_{xxx} + 3u_xu_{xx} - \gamma u_{xxx} \], \hspace{1cm} (3)

where \(\gamma \) is a real constant. When \(\gamma = 0 \), (3) reduces to (1). They investigated the existence of the smooth and nonsmooth traveling wave solutions and gave some analytic expressions of smooth solitary wave, periodic cusp wave, and peakon solutions for (3).

Fan et al. [10] presented a two-component Fornberg-Whitham equation given by

\[u_t = u_{xxt} - u_x - uu_x + uu_{xxx} + 3u_xu_{xx} + \rho_x, \] \hspace{1cm} (4)

where \(u = u(x,t) \) is the height of the water surface above a horizontal bottom and \(\rho = \rho(x,t) \) is related to the horizontal velocity field. When \(\rho = 0 \), (4) reduces to (1). Parametric conditions to smooth soliton solution,
In order to study conveniently, we choose $\bar{c} = c$, and this only makes a translational movement of the singular line from $\varphi = c - \bar{c}$ to $\varphi = 0$, so there is no essential difference for the results. Thus, substituting the second equation of (7) into the first equation of (7), we obtain

$$\varphi^2 \varphi'' = \frac{1}{2} \varphi^3 + \varphi^2 + \theta \varphi + g - \varphi(\varphi')^2. \quad (8)$$

Letting $y = \varphi'$, we obtain the following planar system:

$$\frac{dy}{dx} = \frac{(1/2) \varphi^3 + \varphi^2 + \theta \varphi + g - \varphi y^2}{\varphi^2}, \quad (9)$$

under the transformation $d\xi = \varphi^2 \, dr$, and system (9) becomes

$$\frac{dy}{dr} = \frac{1}{2} \varphi^3 + \varphi^2 + \theta \varphi + g - \varphi y^2. \quad (10)$$

Obviously, system (9) and system (10) have the same first integral

$$H(\varphi, y) = \varphi^2 y^2 - \left(\frac{1}{4} \varphi^4 + \frac{2}{3} \varphi^3 + \theta \varphi^2 + 2g \varphi \right) = h, \quad (11)$$

where h is an integral constant. Consequently, these two systems have the same topological phase portraits except for the straight line $\varphi = 0$. Thus, we can understand the phase portraits of system (9) from those of system (10).

In order to state conveniently, for given constants θ and g, let

$$f_0(\varphi) = \frac{1}{2} \varphi^3 + \varphi^2 + \theta \varphi + g,$$

$$g_1(\theta) = \frac{2}{27} \left(-2 + \sqrt{4 - 6\theta} \right) + 3 \left(3 + \sqrt{4 - 6\theta} \right) \theta, \quad (12)$$

$$g_2(\theta) = \frac{-2}{729} \left(4 + \sqrt{16 - 27\theta} \right) \left(8 + 2 \sqrt{16 - 27\theta} + 27\theta \right),$$

$$g_3(\theta) = \frac{-2}{729} \left(-4 + \sqrt{16 - 27\theta} \right) \left(-8 + 2 \sqrt{16 - 27\theta} + 27\theta \right),$$

$$g_4(\theta) = \frac{-2}{27} \left(4 - 2\sqrt{4 - 6\theta} + 3 \left(3 + \sqrt{4 - 6\theta} \right) \theta \right),$$

$$g_5(\theta) = \frac{2}{27} \left(-4 + 9\theta \right).$$

Assume that φ_1, φ_2, and φ_3 are three roots of equation $f_0(\varphi) = 0$, where

$$\varphi_1 = -\frac{2}{3} + \frac{1}{6} \left(1 + \sqrt{3} i \right) \delta + \frac{1 + \sqrt{3} i}{3\delta} (3\theta - 2),$$

$$\varphi_2 = -\frac{2}{3} - \frac{1}{6} \left(1 + \sqrt{3} i \right) \delta + \frac{1 - \sqrt{3} i}{3\delta} (3\theta - 2),$$

$$\varphi_3 = \frac{1}{3} \left(1 + \sqrt{3} i \right) \delta.$$
Table 1: The singular point and phase portrait for different cases.

<table>
<thead>
<tr>
<th>Case</th>
<th>Root of $f_0(\varphi) = 0$</th>
<th>Center</th>
<th>Saddle</th>
<th>Degenerate saddle</th>
<th>Phase portrait</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>$\varphi_3 > 0$</td>
<td>$-$</td>
<td>$(\varphi_3,0)$</td>
<td>$-$</td>
<td>Figure I(a)</td>
</tr>
<tr>
<td>Case 2</td>
<td>$\varphi_1 = \varphi_2 < 0 < \varphi_3$</td>
<td>$-$</td>
<td>$(\varphi_1,0)$</td>
<td>$(\varphi_2,0)$</td>
<td>Figure I(b)</td>
</tr>
<tr>
<td>Case 3</td>
<td>$\varphi_1 < \varphi_2 < 0 < \varphi_3$</td>
<td>$(\varphi_2,0)$</td>
<td>$(\varphi_1,0)$</td>
<td>$(\varphi_3,0)$</td>
<td>Figure I(c)</td>
</tr>
<tr>
<td>Case 4</td>
<td>$\varphi_1 < \varphi_2 < 0 < \varphi_3$</td>
<td>$(\varphi_2,0)$</td>
<td>$(\varphi_1,0)$</td>
<td>$H(\varphi_2,0) = 0$</td>
<td>Figure I(d)</td>
</tr>
<tr>
<td>Case 5</td>
<td>$\varphi_1 < \varphi_2 < 0 < \varphi_3$</td>
<td>$(\varphi_2,0)$</td>
<td>$(\varphi_1,0)$</td>
<td>$H(\varphi_3,0) = 0$</td>
<td>Figure I(e)</td>
</tr>
<tr>
<td>Case 6</td>
<td>$\varphi_1 < \varphi_2 < 0 < \varphi_3$</td>
<td>$(\varphi_2,0)$</td>
<td>$(\varphi_1,0)$</td>
<td>$H(\varphi_3,0) = 0$</td>
<td>Figure I(f)</td>
</tr>
<tr>
<td>Case 7</td>
<td>$\varphi_1 < \varphi_2 < 0 < \varphi_3$</td>
<td>$(\varphi_2,0)$</td>
<td>$(\varphi_1,0)$</td>
<td>$H(\varphi_3,0) = 0$</td>
<td>Figure I(g)</td>
</tr>
<tr>
<td>Case 8</td>
<td>$\varphi_1 < \varphi_2 < 0 < \varphi_3$</td>
<td>$(\varphi_2,0)$</td>
<td>$(\varphi_1,0)$</td>
<td>$H(\varphi_3,0) = 0$</td>
<td>Figure I(h)</td>
</tr>
<tr>
<td>Case 9</td>
<td>$\varphi_1 < \varphi_2 = \varphi_3$</td>
<td>$-$</td>
<td>$(\varphi_1,0)$</td>
<td>$-$</td>
<td>Figure I(i)</td>
</tr>
<tr>
<td>Case 10</td>
<td>$\varphi_1 < 0$</td>
<td>$-$</td>
<td>$(\varphi_1,0)$</td>
<td>$-$</td>
<td>Figure I(j)</td>
</tr>
<tr>
<td>Case 11</td>
<td>$\varphi_1 < \varphi_2 < \varphi_3$</td>
<td>$(\varphi_2,0)$</td>
<td>$(\varphi_1,0)$</td>
<td>$(\varphi_3,0)$</td>
<td>Figure I(k)</td>
</tr>
<tr>
<td>Case 12</td>
<td>$\varphi_1 < \varphi_2 < \varphi_3$</td>
<td>$(\varphi_2,0)$</td>
<td>$(\varphi_1,0)$</td>
<td>$(\varphi_3,0)$</td>
<td>Figure I(l)</td>
</tr>
<tr>
<td>Case 13</td>
<td>$\varphi_1 < \varphi_2 < \varphi_3$</td>
<td>$(\varphi_2,0)$</td>
<td>$(\varphi_1,0)$</td>
<td>$(\varphi_3,0)$</td>
<td>Figure I(m)</td>
</tr>
<tr>
<td>Case 14</td>
<td>$\varphi_1 < \varphi_2 < \varphi_3$</td>
<td>$(\varphi_2,0)$</td>
<td>$(\varphi_1,0)$</td>
<td>$(\varphi_3,0)$</td>
<td>Figure I(n)</td>
</tr>
<tr>
<td>Case 15</td>
<td>$\varphi_1 < \varphi_2 < \varphi_3$</td>
<td>$(\varphi_2,0)$</td>
<td>$(\varphi_1,0)$</td>
<td>$(\varphi_3,0)$</td>
<td>Figure I(o)</td>
</tr>
<tr>
<td>Case 16</td>
<td>$\varphi_1 < \varphi_2 < \varphi_3$</td>
<td>$(\varphi_2,0)$</td>
<td>$(\varphi_1,0)$</td>
<td>$(\varphi_3,0)$</td>
<td>Figure I(p)</td>
</tr>
</tbody>
</table>

$$
\varphi_3 = -\frac{2}{3} + \frac{4 - 6\theta}{3\delta} + \frac{\delta}{3},
$$

$$
\delta = \left(-8 - 27g + 18\theta + 3\sqrt{3}\sqrt{3(16 + 27g) - 36g\theta - 4\theta^2 + 8g^3}\right)^{1/3}.
$$

(13)

Meanwhile, we give conditions as follows.

Case 1. $\theta < (2/3)$, $g < g_1(\theta)$ or $\theta \geq (2/3)$, $g < 0$.

Case 2. $\theta < (2/3)(\theta \neq (1/2))$ and $g = g_1(\theta)$.

Case 3. $\theta < (1/2)$ and $g_1(\theta) < g < g_2(\theta)$.

Case 4. $\theta < (1/2)$ and $g = g_2(\theta)$.

Case 5. $\theta < (1/2)$ and $g_2(\theta) < g < 0$.

Case 6. $\theta \geq 0$ and $0 < g < g_3(\theta)$.

Case 7. $\theta \leq 0$ and $g = g_3(\theta)$.

Case 8. $\theta \leq 0$ and $g_3(\theta) < g < g_4(\theta)$.

Case 9. $\theta \leq 0$ and $g = g_4(\theta)$.

Case 10. $\theta < (2/3)$, $g > g_4(\theta)$ or $\theta \geq (2/3)$, $g > 0$.

Case 11. $0 < \theta < (1/2)$, $0 < g < g_4(\theta)$ or $(1/2) \leq \theta < (2/3)$, $g_3(\theta) < g < g_4(\theta)$.

Case 12. $0 < \theta < (2/3)$ and $g = g_4(\theta)$.

Case 13. $\theta = (1/2)$ and $0 < g < g_3(\theta)$.

Case 14. $(1/2) \leq \theta < (2/3)$ and $g = g_3(\theta)$.

Case 15. $(1/2) < \theta < (2/3)$ and $g = g_1(\theta)$.

Case 16. $(1/2) < \theta < (2/3)$ and $g_1(\theta) < g < g_3(\theta)$.

According to the qualitative theory of differential equations and the above conditions, we have the results as Table 1.

3. Numerical Simulation for Bounded Integral Curves

In this section, we make the numerical simulation for bounded integral curves. For convenience, throughout the following work we only discuss the solution $\varphi(\xi)$ with respect to the first component $u = \varphi(\xi) + c$ and omit the second component $\rho = \psi(\xi) = -g/\rho$ of (4).

From the derivation in Section 2 we see that the bounded traveling waves of (4) correspond to the bounded integral curves of (8) and the bounded integral curves of (8) correspond to the orbits of system (9) in which $\varphi = \varphi(\xi)$ is bounded. Therefore we can simulate the bounded integral curves of (8) by using the information of the phase portraits of system (9).

It follows from [14–18] that the open orbits K_i ($i = 1–5$) of system (9) correspond to the compacton-like waves of (4), the heteroclinic orbits L_i ($i = 1,2$) of system (9) correspond to the kink-like waves of (4), and the periodic orbits surrounding the center point $(\varphi_0,0)$ correspond to the periodic waves of (4). Here we only make the numerical simulation for Cases 4 and 5 as Examples 1 and 2. The other cases are similar to Examples 1 and 2, so we omit them.

Example 1. For Case 4, taking $\theta = -1 < 1/2$, then $g = g_1(\theta) = -1.39361, \varphi_1 = -2.3461, \varphi_2 = -0.930567$, and $\varphi_3 = 1.27666$.

(1) From (11), the two heteroclinic orbits J_1^\pm (see Figure 1(d)) passing through the saddle point $(\varphi_3, 0)$ have expressions, respectively,
\[y = \pm \frac{(1/4) \varphi^4 + (2/3) \varphi^3 + \theta \varphi^2 + 2g \varphi + h(\varphi)}{\varphi^2}, \quad (14) \]
where $h(\varphi_i) = H(\varphi_i, 0)$ and $0 < \varphi < \varphi_i$. We assume that $\varphi(0)$ and $\varphi'(0)$ are the initial values for the orbit of system (9). For any given $\varphi_i (0 < \varphi_i < \varphi_3)$, then from the first equation of system (9) we have $\varphi = y(\varphi_i^*)$ at $\varphi = \varphi_i$. For example, setting $\varphi_i^* = 1$, we have $y(\varphi_i^*) = \pm 0.316082678990144$. Thus taking $\varphi(0) = 1$ and $\varphi'(0) = \pm 0.316082678990144$ as initial values, respectively, we simulate the integral curves of (8) as (a) and (b) in Figure 2.

(2) From (11), the two heteroclinic orbits J_2^\pm (see Figure 1(d)) passing through the saddle point $(\varphi_1, 0)$ have expressions, respectively,
\[y = \pm \frac{(1/4) \varphi^4 + (2/3) \varphi^3 + \theta \varphi^2 + 2g \varphi + h(\varphi)}{\varphi^2}, \quad (15) \]
where $h(\varphi_1) = H(\varphi_1, 0) = H(0, 0) = 0$ and $\varphi_1 < \varphi < 0$. For any given $\varphi_1^* (0 < \varphi_i^* < \varphi_1^*)$, then from the first equation of system (9) we have $\varphi = y(\varphi_i^*)$ at $\varphi = \varphi_i^*$. For example, setting $\varphi_i^* = -1$, we have $y(\varphi_i^*) = \pm 1.1707040231039854$. Thus taking $\varphi(0) = -1$ and $\varphi'(0) = \pm 1.1707040231039854$ as initial values, respectively, we simulate the integral curves of (8) as (c) and (d) in Figure 2.

(3) From (11), the orbit K_1 (see Figure 1(d)) passing through $(\varphi_0, 0)$ has expression
\[y = \pm \frac{(1/4) \varphi^4 + (2/3) \varphi^3 + \theta \varphi^2 + 2g \varphi + h(\varphi)}{\varphi^2}, \quad (16) \]
where $h(\varphi_0) = H(\varphi_0, 0), 0 < \varphi_0 < \varphi_1, 0 < \varphi_1 < \varphi_2$. Choosing $\varphi_0 = 1 \in (0, \varphi_1)$ and taking $\varphi(0) = \varphi_0$ and $\varphi'(0) = 0$ as initial values, respectively, we simulate the integral curve of (8) as (e) in Figure 2.

Example 2. For Case 5, taking $\theta = -1 < (1/2)$, then $g = (1/2)g(\varphi) = -0.696804 \in (\varphi(\varphi_1, 0), 0), \varphi_1 = -2.56755, \varphi_2 = -0.50572, \varphi_3 = 1.07327$. From (11), the orbit K_3 (see Figure 1(e)) passing through $(\varphi_3, 0)$ has expression
\[y = \pm \frac{(1/4) \varphi^4 + (2/3) \varphi^3 + \theta \varphi^2 + 2g \varphi + h(\varphi)}{\varphi^2}, \quad (17) \]
where $h(\varphi_3) = H(\varphi_3, 0), 0 < \varphi < \varphi_3$, and $\varphi_3' = -1.624378546433569$. Taking $\varphi(0) = \varphi_3$, and $\varphi'(0) = 0$ as initial values, respectively, we simulate the integral curve of (8) as (f) in Figure 2.

Remark 3. The kink-like waves in Figures 2(a) and 2(b) are defined on $(-\infty, -\xi_3)$ and $(-\xi_3, +\infty)$, respectively. The kink-like waves in Figures 2(c) and 2(d) are defined on $(-\xi_2, +\infty)$ and $(-\infty, -\xi_2)$, respectively. The compacton-like wave in Figure 2(e) has peak form on $(-\xi_3, \xi_3)$, where ξ_4, ξ_5 and ξ_6 satisfy
\[\xi_1 = \int_{0}^{\xi_1} \frac{s ds}{\sqrt{(1/4) s^4 + (2/3) s^3 + \theta s^2 + 2gs + h(\varphi)}} \quad \text{for } 0 < \varphi_1 < \varphi_3, \]
\[\xi_2 = \int_{0}^{\xi_2} \frac{-s ds}{\sqrt{(1/4) s^4 + (2/3) s^3 + \theta s^2 + 2gs + h(\varphi)}} \quad \text{for } \varphi_1 < \varphi_2 < 0, \]
\[\xi_3 = \int_{\varphi_0}^{\varphi_0} \frac{s ds}{\sqrt{(1/4) s^4 + (2/3) s^3 + \theta s^2 + 2gs + h(\varphi)}} \quad \text{for } 0 < \varphi_0 < \varphi_3, \]
where $h(\varphi_0) = H(\varphi_0, 0), h(\varphi_1) = H(\varphi_1, 0)$, and $h(\varphi_3) = H(\varphi_3, 0)$. Take the data of Example 1, that is, $\theta = -1, g = -1.39361, \varphi_i^* = 1, \varphi_i^* = -1, \varphi_3 = 1.27666, \varphi_1 = -2.3461$, and $\varphi_0 = 1$, then from (18) we obtain $\xi_1 = 0.54746, \xi_2 = 0.480057$, and $\xi_3 = 0.915546$ which are identical with the simulations (see Figures 2(a)–2(e)).

Remark 4. The compacton-like wave in Figure 2(f) is defined on $(-\xi_4, \xi_5)$, where ξ_4 satisfies
\[\xi_4 = \int_{\varphi_0}^{\varphi_0} \frac{-s ds}{\sqrt{(1/4) s^4 + (2/3) s^3 + \theta s^2 + 2gs + h(\varphi)}} \quad (19) \]
where $h(\varphi_0) = H(\varphi_0, 0), h(\varphi_1) = H(\varphi_1, 0)$, and $h(\varphi_3) = H(\varphi_3, 0)$. Take the data of Example 2; that is, $\theta = -1, g = -0.696804, \varphi_3 = 1.07327$, and $\varphi_3' = -1.624378546433569$, and then from (19) we obtain $\xi_4 = 1.73392$ which is identical with the simulation (see Figure 2(f)).

Remark 5. For Cases 4 and 5, there are a family of periodic orbits surrounding the center point $(\varphi_0, 0)$, but the boundaries of the periodic orbits are different. For Case 4, the boundaries of the periodic orbits are the two heteroclinic orbits J_2^\pm (see Figure 3(a)), while for Case 5, the boundary of the periodic orbits is the open orbit K_4 (see Figure 3(b)). Taking the data of Example 1 and a set of initial values $(\varphi(0), \varphi'(0))$, that is, $\theta = -1, g = -1.39361$ and $(\varphi(0), \varphi'(0)) = (-1, 0.7), (-1, 1.1), (-1, 1.17), (-1, 1.170704)$, we simulate the periodic orbits of (8) as Figure 4. Similarly, taking the data of Example 2 and a set of initial values $(\varphi(0), \varphi'(0))$, that is, $\theta = -1, g = -0.696804$, and $(\varphi(0), \varphi'(0)) = (-0.7, 0), (-0.9, 0), (-0.98, 0), (-0.9854465, 0)$, we simulate the periodic orbits of (8) as Figure 5. The simulations in Figure 4 imply that the periodic waves tend to two kink-like waves when the periodic orbits tend to the heteroclinic orbits J_2^\pm. The simulations in Figure 5 imply that the periodic waves tend to the periodic compacton-like wave when the periodic orbits tend to the open orbit K_4.

Abstract and Applied Analysis
4. The Expressions of Kink-Like and Compacton-Like Waves

In this section we derive the exact expressions of the kink-like and compacton-like waves in different cases \(i = 1-16 \). Assuming that \((\varphi(0), \varphi'(0))\) is the initial point of an orbit of system (9). Let

\[
F(\varphi) = \frac{1}{4} \varphi^4 + \frac{2}{3} \varphi^3 + \theta \varphi^2 + 2 \varphi + h_0, \tag{20}
\]

where \(h_0 = H(\varphi(0), \varphi'(0)) \), then form \(H(\varphi, y) = h_0 \), the following equation:

\[
\varphi^2 y^2 = F(\varphi), \tag{21}
\]

determines the orbit passing through \((\varphi(0), \varphi'(0))\).

4.1. Solutions of Kink-Like Wave. (1) In Cases \(i = 1-4 \) corresponding to phase portraits in Figures 1(a)–1(d), (20) becomes

\[
F(\varphi) = \frac{1}{4} (\varphi_3 - \varphi)^2 (\varphi^2 + m_1 \varphi + n_1), \tag{22}
\]

where \(m_1 = \frac{8}{3} + 2 \varphi_3, n_1 = 4 \theta + \frac{1}{3} \varphi_3 (16 + 9 \varphi_3) \). Thus the orbits \(J_1^* \) passing through saddle point \((\varphi_3, 0)\) have expressions

\[
y = \pm \frac{(\varphi_3 - \varphi) \sqrt{\varphi^2 + m_1 \varphi + n_1}}{2 \varphi}, \tag{23}
\]

where \(0 < \varphi < \varphi_3 \). Substituting (23) into \(\frac{d \varphi}{d \xi} = y \) and integrating along \(J_1^* \) and \(J_1^- \) for initial value \(\varphi(0) = \varphi_1^* \), where \(0 < \varphi_1^* < \varphi_3 \), we obtain two kink-like wave solutions of implicit expression as follows:

\[
f_1(\varphi) = f_1(\varphi_1^*) e^{(1/2)\xi_1}, \quad -\xi_1 < \xi < \infty, \tag{24}
\]

where

\[
\xi_1 = 2 \ln \frac{f_1(\varphi_1^*)}{f_1(0)}, \quad f_1(\varphi) = \frac{(2\sqrt{\alpha_1} \sqrt{\varphi^2 + m_1 \varphi + n_1 + b_1 (\varphi_3 - s) + 2 a_1})^{\mu_1} \left(2 \sqrt{s^2 + m_1 s + n_1 + 2 s + m_1}\right)^{\mu_3}}{(\varphi_3 - s)^{\mu_1} \sqrt{\varphi_3 - \varphi}}, \tag{25}
\]

\[
\mu_1 = \frac{\varphi_3}{\sqrt{\alpha_1}}, \quad a_1 = \varphi_3^2 + m_1 \varphi_3 + n_1, \quad b_1 = -m_1 - 2 \varphi_3.
\]

The derivations of other kink-like wave solutions are similar to the above case, so we omit the details and only list the results.

(2) In Cases \(i = 5, 6 \) corresponding to phase portraits in Figures 1(e) and 1(f), we obtain two kink-like wave solutions of implicit expression as follows:

\[
f_2(\varphi) = \begin{cases} f_2(\varphi_1^*) e^{(1/2)\xi_2}, & -\xi_2 < \xi < \infty, \\ f_2(\varphi) = f_2(\varphi_1^*) e^{-(1/2)\xi_2}, & -\infty < \xi < \xi_2, \end{cases} \tag{26}
\]

where

\[
\xi_2 = 2 \ln \frac{f_2(\varphi_1^*)}{f_2(0)}.
\]

(3) In Case 7 corresponding to phase portrait in Figure 1(g), we obtain two kink-like wave solutions of implicit expression as follows:

\[
f_3(\varphi) = f_3(\varphi_1^*) e^{(1/2)\xi_3}, \quad -\xi_3 < \xi < \infty, \tag{28}
\]

\[
f_3(\varphi) = f_3(\varphi_1^*) e^{-(1/2)\xi_3}, \quad -\infty < \xi < \xi_3,
\]

where

\[
\xi_3 = 2 \ln \frac{f_3(\varphi_1^*)}{f_3(0)}, \quad f_3(\varphi) = \frac{\left(2 \sqrt{\alpha_1} \sqrt{s^2 + m_1 s + n_1 + b_1 (\varphi_3 - s) + 2 a_1}\right)^{\mu_3} \left(2 \sqrt{s^2 + m_1 s + n_1 + 2 s + m_1}\right)^{\mu_3}}{(\varphi_3 - s)^{\mu_1} \sqrt{\varphi_3 - \varphi}}, \tag{29}
\]

\[
\mu_3 = \frac{s}{\sqrt{\alpha_1}}, \quad \varphi_3 = -\frac{8}{3} - 2 \varphi_3.
\]

(4) In Case 11 corresponding to phase portraits in Figure 1(k), we obtain two kink-like wave solutions of implicit expression as follows:

\[
f_4(\varphi) = f_4(\varphi_1^*) e^{(1/2)\xi_4}, \quad -\xi_4 < \xi < \infty, \tag{30}
\]

\[
f_4(\varphi) = f_4(\varphi_1^*) e^{-(1/2)\xi_4}, \quad -\infty < \xi < \xi_4,
\]
Figure 1: Continued.
Abstract and Applied Analysis

Figure 1: The phase portraits of system (10) in different cases $i (i = 1–16)$.

where

$$
\xi_4 = 2 \ln \frac{f_4 (0)}{f_4 (\varphi^*_1)},
$$

$$
f_4 (s) = \frac{2 \sqrt{\Delta_2} \sqrt{(s - \varphi_3) (s - \varphi_3') - b_2 (s - \varphi_3) + 2 \alpha_2}^{\mu_2}}{(s - \varphi_3)^{\mu_2} \left(2 \sqrt{(s - \varphi_3) (s - \varphi_3') + 2 s - \varphi_3 - \varphi_3'}\right)},
$$

(31)

(5) In Case 12 corresponding to phase portraits in Figure 1(l), we obtain two kink-like wave solutions of implicit expression as follows:

$$
f_5 (\varphi) = f_5 (\varphi^*_1) + \frac{1}{2} \xi, \quad -\infty < \xi < \xi_5,
$$

$$
f_5 (\varphi) = f_5 (\varphi^*_1) - \frac{1}{2} \xi, \quad -\xi_5 < \xi < \infty,
$$

(32)

where

$$
\xi_5 = 2 (f_5 (0) - f_5 (\varphi^*_1)),
$$

$$
f_5 (s) = \frac{2 \varphi_3}{\varphi_3 - \varphi_{32}} \left(\frac{s - \varphi_{32}}{s - \varphi_3}\right)^{\gamma} - \ln \left(\frac{2 \sqrt{(s - \varphi_3) (s - \varphi_{32}) + 2 s - \varphi_3 - \varphi_{32}}}{2 \sqrt{(s - \varphi_3) (s - \varphi_{32}) + 2 s - \varphi_3 - \varphi_{32}} + 2 s - \varphi_3 - \varphi_{32}}\right),
$$

$$
\varphi_3 = \frac{1}{3} (-2 + \sqrt{4 - 6 \theta}), \quad \varphi_{32} = \frac{8}{3} - 3 \varphi_3.
$$

(33)

(6) In Cases $i (i = 13, 15, 16)$ corresponding to phase portraits in Figures 1(m), 1(o), and 1(p), we obtain two kink-like wave solutions of implicit expression as follows:

$$
f_6 (\varphi) = f_6 (\varphi^*_1) e^{(1/2) \xi}, \quad -\infty < \xi < \xi_6,
$$

$$
f_6 (\varphi) = f_6 (\varphi^*_1) e^{- (1/2) \xi}, \quad -\xi_6 < \xi < \infty,
$$

(34)
where
\[\xi_6 = 2 \ln \frac{f_6(0)}{f_6(\varphi_1^*)}, \]
\[f_6(s) = \frac{\left(2\sqrt{\alpha_1} \sqrt{s^2 + m_1 s + n_1 - b_1 (s - \varphi_3) + 2a_1}\right)^{\mu_1}}{(s - \varphi_3)^{\mu_1} \left(2\sqrt{s^2 + m_1 s + n_1 + 2s + m_1}\right)}. \]

(7) In Case 4 corresponding to phase portrait in Figure 1(d), we obtain two kink-like wave solutions of implicit expression as follows:
\[f_7(\varphi) = f_7(\varphi_1^*) + \frac{1}{2} \xi, \quad -\infty < \xi < \xi_7, \]
\[f_7(\varphi) = f_7(\varphi_1^*) - \frac{1}{2} \xi, \quad -\xi_7 < \xi < \infty, \]

where
\[\xi_7 = 2 \ln \frac{f_7(0)}{f_7(\varphi_1^*)}, \]
\[f_7(s) = \frac{1}{\varphi_3 - \varphi_1} \ln \frac{(s - \varphi_1)^{\mu_1}}{(s - \varphi_3)^{\mu_1}}. \]

(8) In Case 4 corresponding to phase portrait in Figure 1(d), we obtain two kink-like wave solutions of implicit expression as follows:
\[f_8(\varphi) = f_8(\varphi_2^*) e^{(1/2)\xi}, \quad -\infty < \xi < \xi_8, \]
\[f_8(\varphi) = f_8(\varphi_2^*) e^{-(1/2)\xi}, \quad -\xi_8 < \xi < \infty, \]

where \(\varphi_1 < \varphi_2^* < 0 \) and
\[\xi_8 = 2 \ln \frac{f_8(0)}{f_8(\varphi_2^*)}, \]
\[f_8(s) = \frac{\left(\sqrt{\varphi_2^* - s + \sqrt{s}}\right) \left(\sqrt{\varphi_2^* (s - \varphi_2^*)} - \sqrt{(\varphi_1 - \varphi_2^*) s}\right)^{\mu_4}}{\left(\sqrt{\varphi_2^* - s - \sqrt{s}}\right) \left(\sqrt{\varphi_2^* (s - \varphi_2^*)} + \sqrt{(\varphi_1 - \varphi_2^*) s}\right)^{\mu_4}}, \]
\[\mu_4 = \frac{\varphi_1}{\varphi_1 - \varphi_2^*}, \quad \varphi_2^* = -\frac{8}{3} - 2\varphi_1. \]

(9) In Cases i (i = 5–12) corresponding to phase portraits in Figures 1(e)–1(I), we obtain two kink-like wave solutions of implicit expression as follows:
\[f_9(\varphi) = f_9(\varphi_2^*) e^{(1/2)\xi}, \quad -\infty < \xi < \xi_9, \]
\[f_9(\varphi) = f_9(\varphi_2^*) e^{-(1/2)\xi}, \quad -\xi_9 < \xi < \infty, \]

where
\[\xi_9 = 2 \ln \frac{f_9(0)}{f_9(\varphi_2^*)}, \]
\[f_9(s) = \frac{\left(2\sqrt{\alpha_3} \sqrt{s^2 + m_2 s + n_2 + b_3 (s - \varphi_1) + 2a_3}\right)^{\mu_5}}{(s - \varphi_1)^{\mu_5} \left(2\sqrt{s^2 + m_2 s + n_2 + 2s + m_2}\right)}, \]
\[\mu_5 = \frac{\varphi_1}{\sqrt{\alpha_3}}, \]
\[a_3 = \varphi_2^2 + m_2 \varphi_1 + n_2, \quad b_3 = 2\varphi_1 + m_2, \]
\[m_2 = \frac{8}{3} + 2\varphi_1, \quad n_2 = 4\varphi_1 + \frac{1}{3} \varphi_1 (16 + 9\varphi_1). \]

4.2. Solutions of Compacton-Like Wave. (1) In Cases i (i = 1–4) corresponding to phase portraits in Figures 1(a)–1(d) and \(\varphi(0) = \varphi_0, \) (20) becomes
\[F(\varphi) = \frac{1}{4} (\varphi_0 - \varphi) (\varphi_0 - 1) (\varphi - \varphi_0) (\varphi - \varphi_{02}), \]

where \(\varphi_0 \) and \(\varphi_{02} \) are real roots and \(\varphi_0 \) and \(\varphi_{02} \) are conjugate complex roots of \(F(\varphi) = 0 \) and \(0 < \varphi_0 < \varphi_3 < \varphi_{02} \). Thus the orbit \(K_1 \) has expressions:
\[y = \pm \sqrt{(\varphi_0 - \varphi) (\varphi_0 - \varphi) (\varphi - \varphi_{02}) (\varphi - \varphi_{02})}, \]

where \(0 < \varphi \leq \varphi_0 \). By applying transformation \(d\xi = 2\varphi \, d\nu \) to \(d\varphi/d\xi = y \), we have
\[\frac{d\varphi}{d\nu} = 2\varphi y. \]

Substituting (43) into (44) and integrating along \(K_1 \), we get
\[\varphi = \frac{p\varphi_{01} - q\varphi_0 - (p\varphi_0 + q\varphi_{02}) \text{cn}(w, k_1)}{p - q - (p + q) \text{cn}(w, k_1)}, \quad |w| \leq w_1, \]

where
\[k_1 = \sqrt{\left(p + q\right)^2 - \left(\varphi_{01} - \varphi_{02}\right)^2}, \]
\[p = \sqrt{(A - \varphi_{01})^2 + B^2}, \quad q = \sqrt{(A - \varphi_{02})^2 + B^2}, \]
\[A = \frac{\varphi_{02} - \varphi_{02}}{2}, \quad B = \frac{(\varphi_{02} - \varphi_{02})^2}{4}, \]
\[w = \sqrt{pq}, \quad w_1 = \text{cn}^{-1}\left(\frac{p\varphi_{01} - q\varphi_0}{p\varphi_0 + q\varphi_{02}, k_1}\right). \]
Substituting (45) into $d\xi = 2\varphi dv$ and integrating once, we get

$$
\xi = \frac{2}{\sqrt{pq}} \left(\frac{p\varphi_0 + q\varphi_0 w}{p + q} + \frac{(p - q)(\varphi_0 - \varphi_0)}{2(p + q)} \right)
\times \left(\Pi \left(\sin^{-1}(\text{sn}(w, k_1)), \frac{\alpha_2^2 - 1}{\alpha_2^2 - \alpha_1^2}, k_1 \right) - \alpha_1 \beta \right),
$$

where

$$
\alpha_1 = \frac{p + q}{q - p}, \quad \beta = \frac{\alpha_1^2 - 1}{k_2^2 + (k_1' \alpha_1)^2}
$$
Figure 3: The periodic orbits surrounding the center point \((\varphi_2, 0)\) and their boundaries, where (a) for Case 4 and (b) for Case 5.

Figure 4: The simulations of periodic integral curves of (8) for Case 4, where the initial values \((\varphi(0), \varphi'(0)) = (-1, 0.7), (-1, 1.1), (-1, 1.17), (-1, 1.170704)\).
The derivations of other compacton-like solutions are similar to the above case, so we omit the details and only list the results.

(2) In Cases i ($i = 7–10$) corresponding to phase portraits in Figures 1(g)–1(j), we obtain a compacton-like wave solution of parametric expression as follows:

$$
\varphi = \frac{p \varphi_0 - q \varphi_0 - \frac{p \varphi_0 + q \varphi_0}{2}}{p - q + \frac{p q}{p q} + \frac{p q}{p q}} \frac{\sin^{-1} \left(\frac{\sin (w, k_1)}{\alpha_1^2 - 1}, k_1 \right)}{\alpha_1^2 - 1, k_1},
$$

$$
\xi = \frac{2}{\sqrt{pq}} \left(\frac{p \varphi_0 + q \varphi_0}{p + q} w - \frac{(p - q)}{2} \frac{(q_0 - q_0)}{2} \right)
\times \left(\Pi \left(\sin^{-1} \left(\frac{\sin (w, k_1)}{\alpha_1^2 - 1}, k_1 \right), \alpha_1^2 - 1, k_1 \right) + \alpha_1 \beta \right),
$$

where w is a parameter variable, $-w_2 \leq w \leq w_2$, and $w_2 = \frac{p q}{p q} \left(\frac{(p q_0 - q q_0)}{(p q_0 + q q_0)} \right) k_1$, $\varphi_0 \leq \varphi < 0$.

(3) In Cases i ($i = 5, 6$) corresponding to phase portraits in Figures 1(e) and 1(f), we obtain a compacton-like wave solution of implicit expression as follows:

$$
f_2(\varphi) = f_2(\varphi_0) e^{-(1/2)|\xi|}, \quad |\xi| \leq \xi_{10},
$$
where
\[\xi_{10} = 2 \ln \frac{f_2(\psi_3)}{f_2(0)}. \]

(4) In Case 5 corresponding to phase portraits in Figure 1(e), we obtain a compacton-like wave solution of implicit expression as follows:
\[
4 \sqrt{-\frac{\psi_W}{\psi_{0r} - \psi_0}} \left(\sin^{-1} \left(\frac{\psi_W (\psi - \psi_0)}{\psi_{0r} (\psi - \psi_0)} k_2 \right) - \frac{\psi_W - \psi_0^*}{\psi_0} \right)
\times \Pi \left(\sin^{-1} \left(\frac{\psi_W (\psi - \psi_0^*)}{\psi_{0r} (\psi - \psi_0^*)} \alpha_2^2, k_2 \right) \right)
= |\xi|, \quad |\xi| \leq \xi_{11},
\]

(5) In Case 6 corresponding to phase portraits in Figure 1(f), we obtain a compacton-like wave solution of implicit expression as follows:
\[
4 \sqrt{-\frac{\psi_{0r}}{\psi_0 - \psi_0^*}} \left(\sin^{-1} \left(\frac{\psi_{0r} (\psi - \psi_0)}{\psi_0 (\psi - \psi_0^*)} k_3 \right) + \frac{\psi_0 - \psi_{0r}}{\psi_{0r}} \right)
\times \Pi \left(\sin^{-1} \left(\frac{\psi_{0r} (\psi - \psi_0^*)}{\psi_0 (\psi - \psi_0^*)} \alpha_3^2, k_3 \right) \right)
= |\xi|, \quad |\xi| \leq \xi_{12},
\]

(6) In Case 16 corresponding to phase portraits in Figure 1(g), we obtain a compacton-like wave solution of implicit expression as follows:
\[
f_{10}(\psi) = f_{10}(\psi_{1r}) e^{(1/2)|\xi|}, \quad |\xi| \leq \xi_{13},
\]

where
\[\xi_{13} = 2 \ln \frac{f_{10}(0)}{f_{10}(\psi_{1r})}, \]

(58)
Abstract and Applied Analysis

