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Abstract. 
A class of neural networks described by nonlinear impulsive neutral nonautonomous differential equations with delays is considered. By means of Lyapunov functionals and differential inequality technique, criteria on global exponential stability of this model are derived. Many adjustable parameters are introduced in criteria to provide flexibility for the design and analysis of the system. The results of this paper are new and they supplement previously known results. An example is given to illustrate the results.


1. Introduction 
Many evolution processes in nature exhibit abrupt changes of states at certain moments. That was the reason for the development of the theory of impulsive differential equations and impulsive delay differential equations; see the monographs [1, 2]. But the theory of impulsive neutral differential equations is not well developed due to some theoretical and technical difficulties. For impulsive neutral differential equations, some existence results and oscillation criteria are obtained in [3–5] and some stability conditions are derived in [6]; for neural networks described by impulsive neutral differential equations with delays, the exponential stability results are obtained in [7–11], but their work focuses on the autonomous system. So in this paper, the exponential stability for neural networks described by nonlinear impulsive neutral nonautonomous differential equations with delays is considered.
The purpose of this paper is to study the stability of the following impulsive neural networks with variable coefficients and several time-varying delays:
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The theory on linear matrix inequality (LMI) or 
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-Matrix provides effective methods for the analysis of exponential stability of autonomous neural networks. See [7, 9, 10] and the reference therein. But for nonautonomous neural networks, it is invalid. Differential inequalities are important tools for investigating the stability of impulsive differential equations. See [7, 8, 12, 13] and the reference therein. The method in this paper is partially motivated by the work in [7].
In this paper, we will investigate the global exponential stability of the nonautonomous neural networks and focus on the effect of impulse on the dynamic behavior of (1a) and (1b). The results do not require the boundedness of 
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				1
			

			

				𝑝
			

			

				𝑗
			

			

				𝐹
			

			
				𝑖
				𝑗
			

			

				𝑎
			

			
				+
				𝑖
				𝑗
			

			
				−
				(
				𝑡
				)
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			
				
				𝑝
			

			

				𝑗
			

			

				𝐺
			

			
				𝑖
				𝑗
			

			

				𝑐
			

			
				+
				𝑖
				𝑗
			

			
				(
				𝑡
				)
				+
				𝑞
			

			

				𝑗
			

			

				𝐻
			

			
				𝑖
				𝑗
			

			

				𝑑
			

			
				+
				𝑖
				𝑗
			

			
				
				𝑞
				(
				𝑡
				)
				≥
				𝜎
				>
				0
				,
			

			

				𝑖
			

			
				−
				𝑝
			

			

				𝑖
			

			

				𝑏
			

			

				𝑖
			

			
				(
				𝑡
				)
				−
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑝
			

			

				𝑗
			

			

				𝐹
			

			
				𝑖
				𝑗
			

			

				𝑎
			

			
				+
				𝑖
				𝑗
			

			
				−
				(
				𝑡
				)
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			
				
				𝑝
			

			

				𝑗
			

			

				𝐺
			

			
				𝑖
				𝑗
			

			

				𝑐
			

			
				+
				𝑖
				𝑗
			

			
				(
				𝑡
				)
				+
				𝑞
			

			

				𝑗
			

			

				𝐻
			

			
				𝑖
				𝑗
			

			

				𝑑
			

			
				+
				𝑖
				𝑗
			

			
				(
				
				𝑡
				)
				≥
				𝜎
				>
				0
				,
			

		
	


				for 
	
		
			
				𝑡
				∈
				[
				0
				,
				∞
				)
				,
				𝑖
				∈
				𝑁
			

		
	
.
We assume that (1a) and (1b) are with the following initial conditions: 
						
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				𝑥
				[
				]
				,
				(
				𝑠
				)
				=
				𝜙
				(
				𝑠
				)
				,
				𝑠
				∈
				−
				𝜏
				,
				0
			

		
	

					where 
	
		
			
				𝜙
				∈
				𝑃
				𝐶
				(
				[
				−
				𝜏
				,
				0
				]
				,
				𝑅
			

			

				𝑛
			

			

				)
			

		
	
. According to [13], the initial value problems (1a), (1b), and (8) have the unique solution 
	
		
			
				𝑥
				(
				𝑡
				,
				𝜙
				)
			

		
	
 under assumptions (H2) and (H3).
Definition 1. A function 
	
		
			
				𝑥
				(
				𝑡
				)
				=
				(
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				,
				…
				,
				𝑥
			

			

				𝑛
			

			
				(
				𝑡
				)
				)
			

			

				𝑇
			

		
	
 is said to be a solution of (1a) and (1b) on 
	
		
			
				[
				−
				𝜏
				,
				∞
				)
			

		
	
 if for 
	
		
			
				𝑖
				∈
				𝑁
			

		
	
,(i)
	
		
			

				𝑥
			

			

				𝑖
			

			
				(
				𝑡
				)
			

		
	
 is absolutely continuous on each interval 
	
		
			
				(
				0
				,
				𝑡
			

			

				1
			

			

				)
			

		
	
 and 
	
		
			
				(
				𝑡
			

			

				𝑘
			

			
				,
				𝑡
			

			
				𝑘
				+
				1
			

			

				)
			

		
	
, 
	
		
			
				𝑘
				∈
				𝑁
			

			

				∗
			

		
	
;(ii)for any 
	
		
			

				𝑡
			

			

				𝑘
			

			
				,
				𝑘
				∈
				𝑁
			

			

				∗
			

		
	
, 
	
		
			

				𝑥
			

			

				𝑖
			

			
				(
				𝑡
			

			
				+
				𝑘
			

			

				)
			

		
	
 and 
	
		
			

				𝑥
			

			

				𝑖
			

			
				(
				𝑡
			

			
				−
				𝑘
			

			

				)
			

		
	
 exist and 
	
		
			

				𝑥
			

			

				𝑖
			

			
				(
				𝑡
			

			
				−
				𝑘
			

			
				)
				=
				𝑥
			

			

				𝑖
			

			
				(
				𝑡
			

			

				𝑘
			

			

				)
			

		
	
;(iii)
	
		
			
				𝑥
				(
				𝑡
				)
			

		
	
 satisfies (1a) for almost everywhere in 
	
		
			
				[
				0
				,
				∞
				)
			

		
	
 and satisfies (1b) for every 
	
		
			
				𝑡
				=
				𝑡
			

			

				𝑘
			

		
	
,  
	
		
			
				𝑘
				∈
				𝑁
			

			

				∗
			

		
	
.Obviously, a solution 
	
		
			
				𝑋
				(
				𝑡
				)
				=
				(
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				,
				…
				,
				𝑥
			

			

				𝑛
			

			
				(
				𝑡
				)
				)
			

			

				𝑇
			

		
	
 of (1a) and (1b) is continuous at 
	
		
			
				𝑡
				≠
				𝑡
			

			

				𝑘
			

		
	
 and discontinuous at 
	
		
			
				𝑡
				=
				𝑡
			

			

				𝑘
			

		
	
. Furthermore, 
	
		
			

				𝑋
			

			

				′
			

			
				(
				𝑡
				)
				=
				(
				𝑥
			

			

				′
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝑥
			

			

				′
			

			

				2
			

			
				(
				𝑡
				)
				,
				…
				,
				𝑥
			

			

				′
			

			

				𝑛
			

			
				(
				𝑡
				)
				)
			

			

				𝑇
			

		
	
 has discontinuities of the first kind at the fixed impulsive moments 
	
		
			

				𝑡
			

			

				𝑘
			

		
	
 and some moments 
	
		
			
				
			
			
				𝑡
				∈
				(
				𝑡
			

			

				𝑘
			

			
				,
				𝑡
			

			
				𝑘
				+
				1
			

			

				)
			

		
	
,  
	
		
			
				𝑘
				∈
				𝑁
			

			

				∗
			

		
	
. Denote 
	
		
			

				𝑋
			

			

				′
			

			
				(
				𝑡
			

			

				𝑘
			

			
				)
				=
				𝑋
			

			

				′
			

			
				(
				𝑡
			

			
				−
				𝑘
			

			

				)
			

		
	
,  
	
		
			

				𝑋
			

			

				′
			

			

				(
			

			
				
			
			
				𝑡
				)
				=
				𝑋
			

			

				′
			

			

				(
			

			
				
			
			

				𝑡
			

			

				−
			

			

				)
			

		
	
.
Definition 2. Let 
	
		
			
				𝑋
				(
				𝑡
				)
				=
				(
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				,
				…
				,
				𝑥
			

			

				𝑛
			

			
				(
				𝑡
				)
				)
			

			

				𝑇
			

		
	
 and 
	
		
			
				𝑌
				(
				𝑡
				)
				=
				(
				𝑦
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝑦
			

			

				2
			

			
				(
				𝑡
				)
				,
				…
				,
				𝑦
			

			

				𝑛
			

			
				(
				𝑡
				)
				)
			

			

				𝑇
			

		
	
 be two solutions of (1a), (1b), and (8) with 
	
		
			
				𝜙
				=
				𝜑
			

		
	
 and 
	
		
			
				𝜙
				=
				𝜓
			

		
	
, respectively, where 
	
		
			

				𝜑
			

		
	
 and 
	
		
			
				𝜓
				∈
				𝑃
				𝐶
				(
				[
				−
				𝜏
				,
				0
				]
				,
				𝑅
			

			

				𝑛
			

			

				)
			

		
	
. If there exist 
	
		
			
				𝛼
				>
				0
			

		
	
 and 
	
		
			
				𝑀
				>
				1
			

		
	
 such that 
							
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				|
				|
				𝑥
			

			

				𝑖
			

			
				(
				𝑡
				)
				−
				𝑦
			

			

				𝑖
			

			
				|
				|
				(
				𝑡
				)
				≤
				𝑀
				‖
				𝜑
				−
				𝜓
				‖
			

			
				𝑛
				1
				𝜏
			

			

				𝑒
			

			
				−
				𝛼
				𝑡
			

			
				,
				∀
				𝑡
				>
				0
				,
				𝑖
				∈
				𝑁
				,
			

		
	

						then (1a) and (1b) are said to be globally exponentially stable.
2. The Main Result
To study the exponential stability of (1a) and (1b), we need the following lemma.
Lemma 3.  Assume that (H1) and (H4) hold and there exist nonnegative vector functions 
	
		
			
				(
				𝑉
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝑉
			

			

				2
			

			
				(
				𝑡
				)
				,
				…
				,
				𝑉
			

			

				𝑛
			

			
				(
				𝑡
				)
				)
			

			

				𝑇
			

		
	
and 
	
		
			
				(
				𝑊
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝑊
			

			

				2
			

			
				(
				𝑡
				)
				,
				…
				,
				𝑊
			

			

				𝑛
			

			
				(
				𝑡
				)
				)
			

			

				𝑇
			

			
				∈
				𝑃
				𝐶
				(
				[
				−
				𝜏
				,
				0
				]
				,
				𝑅
			

			

				𝑛
			

			

				)
			

		
	
, where 
	
		
			

				𝑉
			

			

				𝑖
			

			
				(
				𝑡
				)
			

		
	
 is continuous at 
	
		
			
				𝑡
				≠
				𝑡
			

			

				𝑘
			

		
	
   (
	
		
			
				𝑘
				∈
				𝑁
			

			

				∗
			

		
	
), such that 
	
 		
 			
				(
				1
				0
				a
				)
			
 			
				(
				1
				0
				b
				)
			
 			
				(
				1
				0
				c
				)
			
 		
	

	
		
			

				𝐷
			

			

				−
			

			

				𝑉
			

			

				𝑖
			

			
				(
				𝑡
			

			

				−
			

			
				)
				≤
				−
				𝑏
			

			

				𝑖
			

			
				(
				𝑡
				)
				𝑉
			

			

				𝑖
			

			
				(
				𝑡
			

			

				−
			

			
				)
				+
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑎
			

			
				+
				𝑖
				𝑗
			

			
				(
				𝑡
				)
				𝐹
			

			
				𝑖
				𝑗
			

			

				𝑉
			

			

				𝑗
			

			
				(
				𝑡
			

			

				−
			

			
				)
				+
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑐
			

			
				+
				𝑖
				𝑗
			

			
				(
				𝑡
				)
				𝐺
			

			
				𝑖
				𝑗
			

			
				‖
				‖
				𝑉
			

			
				𝑗
				𝑡
			

			

				−
			

			
				‖
				‖
			

			

				𝜏
			

			

				+
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑑
			

			
				+
				𝑖
				𝑗
			

			
				(
				𝑡
				)
				𝐻
			

			
				𝑖
				𝑗
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				𝑡
			

			

				−
			

			
				‖
				‖
			

			

				𝜏
			

			
				,
				𝑊
			

			

				𝑖
			

			
				
				𝑡
			

			

				+
			

			
				
				≤
				𝑏
			

			

				𝑖
			

			
				(
				𝑡
				)
				𝑉
			

			

				𝑖
			

			
				
				𝑡
			

			

				+
			

			
				
				+
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑎
			

			
				+
				𝑖
				𝑗
			

			
				(
				𝑡
				)
				𝐹
			

			
				𝑖
				𝑗
			

			

				𝑉
			

			

				𝑗
			

			
				
				𝑡
			

			

				+
			

			
				
				+
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑐
			

			
				+
				𝑖
				𝑗
			

			
				(
				𝑡
				)
				𝐺
			

			
				𝑖
				𝑗
			

			
				‖
				‖
				𝑉
			

			
				𝑗
				𝑡
			

			

				+
			

			
				‖
				‖
			

			

				𝜏
			

			

				+
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑑
			

			
				+
				𝑖
				𝑗
			

			
				(
				𝑡
				)
				𝐻
			

			
				𝑖
				𝑗
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				𝑡
			

			

				+
			

			
				‖
				‖
			

			

				𝜏
			

			
				,
				𝑉
			

			

				𝑖
			

			
				
				𝑡
			

			
				+
				𝑘
			

			
				
				≤
				𝐼
			

			
				∗
				𝑖
				𝑘
			

			

				𝑉
			

			

				𝑖
			

			
				
				𝑡
			

			

				𝑘
			

			
				
				+
				𝐽
			

			
				∗
				𝑖
				𝑘
			

			

				𝑉
			

			

				𝑖
			

			
				
				𝑡
			

			

				𝑘
			

			
				−
				𝜍
			

			

				𝑖
			

			
				
				𝑡
			

			

				𝑘
			

			
				,
				
				
			

		
	
for 
	
		
			
				𝑡
				>
				0
			

		
	
,  
	
		
			
				𝑖
				∈
				𝑁
			

		
	
,  
	
		
			
				𝑘
				∈
				𝑁
			

			

				∗
			

		
	
. Then for all 
	
		
			
				𝑡
				≥
				0
			

		
	
 and 
	
		
			
				𝑖
				∈
				𝑁
			

		
	
, there exists a positive constant 
	
		
			

				𝐿
			

		
	
 such that 
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			

				𝑉
			

			

				𝑖
			

			
				(
				𝑡
				)
				≤
				𝐿
			

			

				𝑛
			

			

				
			

			
				𝑙
				=
				1
			

			
				
				‖
				‖
				𝑉
				m
				a
				x
			

			
				𝑙
				0
			

			
				‖
				‖
			

			

				𝜏
			

			
				,
				‖
				‖
				𝑊
			

			
				𝑙
				0
			

			
				‖
				‖
			

			

				𝜏
			

			
				
				𝑒
			

			
				−
				(
				𝜆
			

			

				∗
			

			
				−
				𝜇
				)
				𝑡
			

			

				,
			

		
	

						where 
	
		
			

				𝜆
			

			

				∗
			

		
	
 and 
	
		
			

				𝜇
			

		
	
 are defined, respectively, as 
							
	
 		
 			
				(
				1
				2
				)
			
 			
				(
				1
				3
				)
			
 		
	

	
		
			

				𝜆
			

			

				∗
			

			
				
				𝜆
				=
				m
				i
				n
			

			
				∗
				𝑖
			

			
				,
				̂
				𝜆
			

			
				∗
				𝑖
			

			
				
				,
				𝜆
				∣
				𝑖
				∈
				𝑁
			

			

				∗
			

			
				+
				1
			

			
				
			
			
				𝜏
				l
				n
				m
				a
				x
			

			
				𝑖
				∈
				𝑁
				,
				𝑘
				∈
				𝑁
			

			

				∗
			

			

				𝐽
			

			
				∗
				𝑖
				𝑘
			

			
				
			
			
				1
				−
				m
				a
				x
			

			
				𝑖
				∈
				𝑁
				,
				𝑘
				∈
				𝑁
			

			

				∗
			

			

				𝐼
			

			
				∗
				𝑖
				𝑘
			

			
				≤
				𝜇
				≤
				𝜆
			

			

				∗
			

			
				,
				𝜆
			

			
				∗
				𝑖
			

			
				=
				i
				n
				f
			

			
				𝑡
				≥
				0
			

			
				
				−
				
				𝑏
				𝜆
				(
				𝑡
				)
				>
				0
				,
				𝜆
				(
				𝑡
				)
			

			

				𝑖
			

			
				1
				(
				𝑡
				)
				−
			

			
				
			
			

				𝑝
			

			
				𝑖
				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑝
			

			

				𝑗
			

			

				𝐹
			

			
				𝑖
				𝑗
			

			

				𝑎
			

			
				+
				𝑖
				𝑗
			

			
				
				+
				1
				(
				𝑡
				)
			

			
				
			
			

				𝑝
			

			
				𝑖
				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			
				
				𝑝
			

			

				𝑗
			

			

				𝐺
			

			
				𝑖
				𝑗
			

			

				𝑐
			

			
				+
				𝑖
				𝑗
			

			
				(
				𝑡
				)
				+
				𝑞
			

			

				𝑗
			

			

				𝐻
			

			
				𝑖
				𝑗
			

			

				𝑑
			

			
				+
				𝑖
				𝑗
			

			
				
				(
				𝑡
				)
				×
				𝑒
			

			
				𝜆
				(
				𝑡
				)
				𝜏
			

			
				
				̂
				𝜆
				=
				0
				>
				0
				,
			

			
				∗
				𝑖
			

			
				=
				i
				n
				f
			

			
				𝑡
				≥
				0
			

			
				
				−
				
				𝑝
				𝜆
				(
				𝑡
				)
				>
				0
				,
				1
				−
			

			

				𝑖
			

			
				
			
			

				𝑞
			

			

				𝑖
			

			

				𝑏
			

			

				𝑖
			

			
				1
				(
				𝑡
				)
				−
			

			
				
			
			

				𝑞
			

			
				𝑖
				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑝
			

			

				𝑗
			

			

				𝐹
			

			
				𝑖
				𝑗
			

			

				𝑎
			

			
				+
				𝑖
				𝑗
			

			
				
				+
				1
				(
				𝑡
				)
			

			
				
			
			

				𝑞
			

			
				𝑖
				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			
				
				𝑝
			

			

				𝑗
			

			

				𝐺
			

			
				𝑖
				𝑗
			

			

				𝑐
			

			
				+
				𝑖
				𝑗
			

			
				(
				𝑡
				)
				+
				𝑞
			

			

				𝑗
			

			

				𝐻
			

			
				𝑖
				𝑗
			

			

				𝑑
			

			
				+
				𝑖
				𝑗
			

			
				
				(
				𝑡
				)
				×
				𝑒
			

			
				𝜆
				(
				𝑡
				)
				𝜏
			

			
				
				=
				0
				>
				0
				.
			

		
	

Proof. By the similar analysis in [14, Lemma 4.1], we can deduce that 
	
		
			

				𝜆
			

			
				∗
				𝑖
			

		
	
 and 
	
		
			
				̂
				𝜆
			

			
				∗
				𝑖
			

		
	
 exist uniquely and 
	
		
			

				𝜆
			

			
				∗
				𝑖
			

			
				>
				0
			

		
	
,  
	
		
			
				̂
				𝜆
			

			
				∗
				𝑖
			

			
				>
				0
			

		
	
 under the assumption of (H1) and (H4). Consequently, 
	
		
			

				𝜆
			

			

				∗
			

			
				>
				0
			

		
	
. Choose a positive constant 
	
		
			

				𝜃
			

		
	
 such that 
	
		
			
				m
				i
				n
				{
				𝑝
			

			

				𝑖
			

			
				,
				𝑞
			

			

				𝑖
			

			
				∣
				𝑖
				∈
				𝑁
				}
				𝜃
				>
				1
			

		
	
. Let
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			

				Φ
			

			

				𝑖
			

			
				
				1
				(
				𝑡
				)
				=
				m
				a
				x
			

			
				
			
			

				𝑝
			

			

				𝑖
			

			

				𝑉
			

			

				𝑖
			

			
				1
				(
				𝑡
				)
				,
			

			
				
			
			

				𝑞
			

			

				𝑖
			

			

				𝑊
			

			

				𝑖
			

			
				
				,
				(
				𝑡
				)
				Ψ
				(
				𝑡
				)
				=
				𝜃
			

			

				𝑛
			

			

				
			

			
				𝑙
				=
				1
			

			
				
				‖
				‖
				𝑉
				m
				a
				x
			

			
				𝑙
				0
			

			
				‖
				‖
			

			

				𝜏
			

			
				,
				‖
				‖
				𝑊
			

			
				𝑙
				0
			

			
				‖
				‖
			

			

				𝜏
			

			
				
				𝑒
			

			
				−
				(
				𝜆
			

			

				∗
			

			
				−
				𝜇
				)
				𝑡
			

			
				,
				𝑖
				∈
				𝑁
				.
			

		
	

						Then for all 
	
		
			
				𝑡
				∈
				[
				−
				𝜏
				,
				0
				]
			

		
	
 and 
	
		
			
				𝛾
				>
				1
			

		
	
, we have
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				𝛾
				Ψ
				(
				𝑡
				)
				=
				𝛾
				𝜃
			

			

				𝑛
			

			

				
			

			
				𝑙
				=
				1
			

			
				
				‖
				‖
				𝑉
				m
				a
				x
			

			
				𝑙
				0
			

			
				‖
				‖
			

			

				𝜏
			

			
				,
				‖
				‖
				𝑊
			

			
				𝑙
				0
			

			
				‖
				‖
			

			

				𝜏
			

			
				
				𝑒
			

			
				−
				(
				𝜆
			

			

				∗
			

			
				−
				𝜇
				)
				𝑡
			

			
				>
				Φ
			

			

				𝑖
			

			
				(
				𝑡
				)
				.
			

		
	

						Then 
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			

				Φ
			

			

				𝑖
			

			
				[
				(
				𝑡
				)
				<
				𝛾
				Ψ
				(
				𝑡
				)
				,
				∀
				𝑡
				∈
				0
				,
				∞
				)
				,
				𝑖
				∈
				𝑁
				.
			

		
	

						For the sake of contradiction, assume that there exist 
	
		
			
				𝑖
				∈
				𝑁
			

		
	
 and 
	
		
			
				
			
			
				𝑡
				>
				0
			

		
	
 such that 
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			

				Φ
			

			

				𝑖
			

			

				
			

			
				
			
			

				𝑡
			

			

				+
			

			
				
				
				≥
				𝛾
				Ψ
			

			
				
			
			
				𝑡
				
				,
				Φ
			

			

				𝑗
			

			
				
				(
				𝑡
				)
				<
				𝛾
				Ψ
				(
				𝑡
				)
				,
				f
				o
				r
				𝑡
				∈
				0
				,
			

			
				
			
			
				𝑡
				
				,
				𝑗
				∈
				𝑁
				.
			

		
	

						From (17), we have 
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				‖
				‖
				𝑉
			

			

				𝑗
			

			
				
			
			

				𝑡
			

			
				‖
				‖
			

			

				𝜏
			

			
				=
				𝑝
			

			

				𝑗
			

			
				s
				u
				p
			

			
				−
				𝜏
				≤
				𝜃
				≤
				0
			

			

				1
			

			
				
			
			

				𝑝
			

			

				𝑗
			

			

				𝑉
			

			

				𝑗
			

			

				
			

			
				
			
			
				
				𝑡
				+
				𝜃
				≤
				𝑝
			

			

				𝑗
			

			
				s
				u
				p
			

			
				−
				𝜏
				≤
				𝜃
				≤
				0
			

			
				
				𝛾
				Ψ
			

			
				
			
			
				
				𝑡
				+
				𝜃
				≤
				𝛾
				𝑝
			

			

				𝑗
			

			
				Ψ
				
			

			
				
			
			
				
				;
				𝑡
				−
				𝜏
			

		
	

						similarly, 
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				‖
				‖
				𝑊
			

			

				𝑗
			

			
				
			
			

				𝑡
			

			
				‖
				‖
			

			

				𝜏
			

			
				≤
				𝛾
				𝑞
			

			

				𝑗
			

			
				Ψ
				
			

			
				
			
			
				
				.
				𝑡
				−
				𝜏
			

		
	
Then we have the following cases.(I)
	
		
			
				(
				1
				/
				𝑝
			

			

				𝑖
			

			
				)
				𝑉
			

			

				𝑖
			

			

				(
			

			
				
			
			

				𝑡
			

			

				+
			

			
				)
				≥
				𝛾
				Ψ
				(
			

			
				
			
			
				𝑡
				)
			

		
	
; then we have the following subcases.(i)
	
		
			
				
			
			
				𝑡
				≠
				𝑡
			

			

				𝑘
			

		
	
, 
	
		
			
				𝑘
				∈
				𝑁
			

			

				∗
			

		
	
. So 
	
		
			

				𝑉
			

			

				𝑖
			

			
				(
				𝑡
				)
			

		
	
 is continuous at 
	
		
			
				
			
			

				𝑡
			

		
	
. By (17), we have 
										
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				𝑝
			

			

				𝑖
			

			

				𝑉
			

			

				𝑖
			

			

				
			

			
				
			
			
				𝑡
				
				
				=
				𝛾
				Ψ
			

			
				
			
			
				𝑡
				
				,
				1
			

			
				
			
			

				𝑝
			

			

				𝑖
			

			

				𝐷
			

			

				−
			

			

				𝑉
			

			

				𝑖
			

			

				
			

			
				
			
			
				𝑡
				
				>
				𝛾
				Ψ
			

			

				′
			

			

				
			

			
				
			
			
				𝑡
				
				.
			

		
	
 From 
	
		
			
				(
				𝐻
			

			

				4
			

			

				)
			

		
	
, (17)–(19), and the definition of 
	
		
			

				𝜆
			

			

				∗
			

		
	
, we have
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				𝑝
			

			

				𝑖
			

			

				𝐷
			

			

				−
			

			

				𝑉
			

			

				𝑖
			

			

				
			

			
				
			
			
				𝑡
				
				−
				𝛾
				Ψ
			

			

				′
			

			

				
			

			
				
			
			
				𝑡
				
				≤
				−
				𝛾
				𝑏
			

			

				𝑖
			

			

				
			

			
				
			
			
				𝑡
				
				Ψ
				
			

			
				
			
			
				𝑡
				
				+
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑝
			

			

				𝑗
			

			
				
			
			

				𝑝
			

			

				𝑖
			

			
				𝛾
				𝑎
			

			
				+
				𝑖
				𝑗
			

			

				
			

			
				
			
			
				𝑡
				
				𝐹
			

			
				𝑖
				𝑗
			

			
				Ψ
				
			

			
				
			
			
				𝑡
				
				+
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			
				𝛾
				
				𝑝
			

			

				𝑗
			

			
				
			
			

				𝑝
			

			

				𝑖
			

			

				𝑐
			

			
				+
				𝑖
				𝑗
			

			

				
			

			
				
			
			
				𝑡
				
				𝐺
			

			
				𝑖
				𝑗
			

			
				+
				𝑞
			

			

				𝑗
			

			
				
			
			

				𝑝
			

			

				𝑖
			

			

				𝑑
			

			
				+
				𝑖
				𝑗
			

			

				
			

			
				
			
			
				𝑡
				
				𝐻
			

			
				𝑖
				𝑗
			

			
				
				
				×
				Ψ
			

			
				
			
			
				
				𝑡
				−
				𝜏
				+
				𝛾
				𝜆
			

			

				∗
			

			
				Ψ
				
			

			
				
			
			
				𝑡
				
				<
				0
				,
			

		
	

						which is a contradiction with (20). (ii)There exists a 
	
		
			

				𝑘
			

			

				0
			

			
				∈
				𝑁
			

			

				∗
			

		
	
 such that 
	
		
			
				
			
			
				𝑡
				=
				𝑡
			

			

				𝑘
			

			

				0
			

		
	
. By (17), we have
										
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				𝑝
			

			

				𝑖
			

			

				𝑉
			

			

				𝑖
			

			

				
			

			
				
			
			
				𝑡
				
				
				≤
				𝛾
				Ψ
			

			
				
			
			
				𝑡
				
				≤
				1
			

			
				
			
			

				𝑝
			

			

				𝑖
			

			

				𝑉
			

			

				𝑖
			

			

				
			

			
				
			
			

				𝑡
			

			

				+
			

			
				
				.
			

		
	
Noting 
	
		
			
				(
				1
				/
				𝑝
			

			

				𝑖
			

			
				)
				𝑉
			

			

				𝑖
			

			

				(
			

			
				
			
			

				𝑡
			

			

				+
			

			
				)
				≠
				(
				1
				/
				𝑝
			

			

				𝑖
			

			
				)
				𝑉
			

			

				𝑖
			

			

				(
			

			
				
			
			

				𝑡
			

			

				−
			

			

				)
			

		
	
, we have 
	
		
			
				(
				1
				/
				𝑝
			

			

				𝑖
			

			
				)
				𝑉
			

			

				𝑖
			

			

				(
			

			
				
			
			

				𝑡
			

			

				−
			

			
				)
				<
				𝛾
				Ψ
				(
			

			
				
			
			
				𝑡
				)
			

		
	
 or 
	
		
			
				𝛾
				Ψ
				(
			

			
				
			
			
				𝑡
				)
				<
				(
				1
				/
				𝑝
			

			

				𝑖
			

			
				)
				𝑉
			

			

				𝑖
			

			

				(
			

			
				
			
			

				𝑡
			

			

				+
			

			

				)
			

		
	
. Without loss of generality, we assume that 
	
		
			
				𝛾
				Ψ
				(
			

			
				
			
			
				𝑡
				)
				<
				(
				1
				/
				𝑝
			

			

				𝑖
			

			
				)
				𝑉
			

			

				𝑖
			

			

				(
			

			
				
			
			

				𝑡
			

			

				+
			

			

				)
			

		
	
. From (10c) and (22), we get that
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				
				𝛾
				Ψ
			

			
				
			
			
				𝑡
				
				<
				1
			

			
				
			
			

				𝑝
			

			

				𝑖
			

			

				𝑉
			

			

				𝑖
			

			

				
			

			
				
			
			

				𝑡
			

			

				+
			

			
				
				
				𝐼
				≤
				𝛾
			

			
				∗
				𝑖
				𝑘
			

			

				0
			

			
				+
				𝐽
			

			
				∗
				𝑖
				𝑘
			

			

				0
			

			

				𝑒
			

			
				(
				𝜆
			

			

				∗
			

			
				−
				𝜇
				)
				𝜏
			

			
				
				Ψ
				
			

			
				
			
			
				𝑡
				
				.
			

		
	

						Simplifying (23), we obtain 
	
		
			
				𝜇
				<
				𝜆
			

			

				∗
			

			
				+
				(
				1
				/
				𝜏
				)
				l
				n
				(
				𝐽
			

			
				∗
				𝑖
				𝑘
			

			

				0
			

			
				/
				(
				1
				−
				𝐼
			

			
				∗
				𝑖
				𝑘
			

			

				0
			

			
				)
				)
			

		
	
, which contradict (12).If (I) does not hold, then(II) 
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				𝑞
			

			

				𝑖
			

			

				𝑊
			

			

				𝑖
			

			

				
			

			
				
			
			

				𝑡
			

			

				+
			

			
				
				
				≥
				𝛾
				Ψ
			

			
				
			
			
				𝑡
				
				,
				1
			

			
				
			
			

				𝑞
			

			

				𝑗
			

			

				𝑊
			

			

				𝑗
			

			
				1
				(
				𝑡
				)
				<
				𝛾
				Ψ
				(
				𝑡
				)
				,
			

			
				
			
			

				𝑝
			

			

				𝑗
			

			

				𝑉
			

			

				𝑗
			

			
				
				(
				𝑡
				)
				<
				𝛾
				Ψ
				(
				𝑡
				)
				f
				o
				r
				𝑡
				∈
				0
				,
			

			
				
			
			
				𝑡
				
				,
				𝑗
				∈
				𝑁
				.
			

		
	

						Then from (10b) and (17)–(19), we have 
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				0
				≤
				−
				𝑊
			

			

				𝑖
			

			

				
			

			
				
			
			

				𝑡
			

			

				+
			

			
				
				+
				𝑏
			

			

				𝑖
			

			

				
			

			
				
			
			
				𝑡
				
				𝑉
			

			

				𝑖
			

			

				
			

			
				
			
			

				𝑡
			

			

				+
			

			
				
				+
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑎
			

			
				+
				𝑖
				𝑗
			

			

				
			

			
				
			
			
				𝑡
				
				𝐹
			

			
				𝑖
				𝑗
			

			

				𝑉
			

			

				𝑗
			

			

				
			

			
				
			
			

				𝑡
			

			

				+
			

			
				
				+
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑐
			

			
				+
				𝑖
				𝑗
			

			

				
			

			
				
			
			
				𝑡
				
				𝐺
			

			
				𝑖
				𝑗
			

			
				‖
				‖
				𝑉
			

			

				𝑗
			

			
				
			
			

				𝑡
			

			

				+
			

			
				‖
				‖
			

			

				𝜏
			

			

				+
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑑
			

			
				+
				𝑖
				𝑗
			

			

				
			

			
				
			
			
				𝑡
				
				𝐻
			

			
				𝑖
				𝑗
			

			
				‖
				‖
				𝑊
			

			

				𝑗
			

			
				
			
			

				𝑡
			

			

				+
			

			
				‖
				‖
			

			

				𝜏
			

			
				,
				
				≤
				𝛾
				Ψ
			

			
				
			
			
				𝑡
				
				
				−
				𝑞
			

			

				𝑖
			

			
				+
				𝑝
			

			

				𝑖
			

			

				𝑏
			

			

				𝑖
			

			

				
			

			
				
			
			
				𝑡
				
				+
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑝
			

			

				𝑗
			

			

				𝑎
			

			
				+
				𝑖
				𝑗
			

			

				
			

			
				
			
			
				𝑡
				
				𝐹
			

			
				𝑖
				𝑗
			

			

				+
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			
				
				𝑝
			

			

				𝑗
			

			

				𝑐
			

			
				+
				𝑖
				𝑗
			

			

				
			

			
				
			
			
				𝑡
				
				𝐺
			

			
				𝑖
				𝑗
			

			
				+
				𝑞
			

			

				𝑗
			

			

				𝑑
			

			
				+
				𝑖
				𝑗
			

			

				
			

			
				
			
			
				𝑡
				
				𝐻
			

			
				𝑖
				𝑗
			

			
				
				𝑒
			

			

				𝜆
			

			

				∗
			

			

				𝜏
			

			
				
				<
				0
				,
			

		
	

						which is a contradiction.From (I) and (II), (16) holds. Letting 
	
		
			
				𝛾
				→
				1
			

			

				+
			

		
	
 in (16), we have 
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			

				Φ
			

			

				𝑖
			

			
				[
				(
				𝑡
				)
				≤
				Ψ
				(
				𝑡
				)
				,
				∀
				𝑡
				∈
				0
				,
				∞
				)
				,
				𝑖
				∈
				𝑁
				.
			

		
	

						So 
	
		
			
				(
				1
				/
				𝑝
			

			

				𝑖
			

			
				)
				𝑉
			

			

				𝑖
			

			
				(
				𝑡
				)
				≤
				Ψ
				(
				𝑡
				)
			

		
	
 for all 
	
		
			
				𝑡
				∈
				[
				0
				,
				∞
				)
			

		
	
,  
	
		
			
				𝑖
				∈
				𝑁
			

		
	
. Let 
	
		
			
				𝐿
				=
				m
				a
				x
			

			
				𝑖
				∈
				𝑁
			

			
				{
				𝜃
				𝑝
			

			

				𝑖
			

			

				}
			

		
	
; then for 
	
		
			
				𝑡
				≥
				0
			

		
	
 and 
	
		
			
				𝑖
				∈
				𝑁
			

		
	
, we have 
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			

				𝑉
			

			

				𝑖
			

			
				(
				𝑡
				)
				≤
				𝐿
			

			

				𝑛
			

			

				
			

			
				𝑙
				=
				1
			

			
				
				‖
				‖
				𝑉
				m
				a
				x
			

			
				𝑙
				0
			

			
				‖
				‖
			

			

				𝜏
			

			
				,
				‖
				‖
				𝑊
			

			
				𝑙
				0
			

			
				‖
				‖
			

			

				𝜏
			

			
				
				𝑒
			

			
				−
				(
				𝜆
			

			

				∗
			

			
				−
				𝜇
				)
				𝑡
			

			

				.
			

		
	

						The proof of Lemma 3 is complete.
Theorem 4.  Assume that (H1)–(H4) hold. Then systems (1a) and (1b) are globally exponentially stable.
Proof. Let 
	
		
			
				𝑋
				(
				𝑡
				)
				=
				(
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				,
				…
				,
				𝑥
			

			

				𝑛
			

			
				(
				𝑡
				)
				)
			

			

				𝑇
			

		
	
 and 
	
		
			
				𝑌
				(
				𝑡
				)
				=
				(
				𝑦
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝑦
			

			

				2
			

			
				(
				𝑡
				)
				,
				…
				,
				𝑦
			

			

				𝑛
			

			
				(
				𝑡
				)
				)
			

			

				𝑇
			

		
	
 be solutions of (1a), (1b), and (8) with 
	
		
			
				𝜙
				=
				𝜑
			

		
	
 and 
	
		
			
				𝜙
				=
				𝜓
			

		
	
, respectively. Let 
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			

				𝑉
			

			

				𝑖
			

			
				(
				|
				|
				𝑥
				𝑡
				)
				=
			

			

				𝑖
			

			
				(
				𝑡
				)
				−
				𝑦
			

			

				𝑖
			

			
				(
				|
				|
				𝑡
				)
				,
				𝑊
			

			

				𝑖
			

			
				(
				|
				|
				|
				𝑥
				𝑡
				)
				=
			

			

				′
			

			

				𝑖
			

			
				(
				𝑡
				)
				−
				𝑦
			

			

				′
			

			

				𝑖
			

			
				|
				|
				|
				,
				(
				𝑡
				)
				𝑡
				∈
				𝑅
			

			

				+
			

			
				,
				𝑖
				∈
				𝑁
				.
			

		
	

						By (1a) and (1b), for 
	
		
			
				𝑖
				∈
				𝑁
			

		
	
, we have 
							
	
 		
 			
				(
				2
				9
				)
			
 			
				(
				3
				0
				)
			
 		
	

	
		
			

				𝐷
			

			

				−
			

			

				𝑉
			

			

				𝑖
			

			
				(
				𝑡
			

			

				−
			

			
				)
				≤
				−
				𝑏
			

			

				𝑖
			

			
				(
				𝑡
				)
				𝑉
			

			

				𝑖
			

			
				(
				𝑡
			

			

				−
			

			
				)
				+
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑎
			

			
				+
				𝑖
				𝑗
			

			
				(
				𝑡
				)
				𝐹
			

			
				𝑖
				𝑗
			

			

				𝑉
			

			

				𝑗
			

			
				(
				𝑡
			

			

				−
			

			
				)
				+
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑐
			

			
				+
				𝑖
				𝑗
			

			
				(
				𝑡
				)
				𝐺
			

			
				𝑖
				𝑗
			

			
				‖
				‖
				𝑉
			

			
				𝑗
				𝑡
			

			

				−
			

			
				‖
				‖
			

			

				𝜏
			

			

				+
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑑
			

			
				+
				𝑖
				𝑗
			

			
				(
				𝑡
				)
				𝐻
			

			
				𝑖
				𝑗
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				𝑡
			

			

				−
			

			
				‖
				‖
			

			

				𝜏
			

			
				𝑊
				,
				𝑡
				>
				0
				,
			

			

				𝑖
			

			
				
				𝑡
			

			

				+
			

			
				
				≤
				𝑏
			

			

				𝑖
			

			
				(
				𝑡
				)
				𝑉
			

			

				𝑖
			

			
				
				𝑡
			

			

				+
			

			
				
				+
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑎
			

			
				+
				𝑖
				𝑗
			

			
				(
				𝑡
				)
				𝐹
			

			
				𝑖
				𝑗
			

			

				𝑉
			

			

				𝑗
			

			
				
				𝑡
			

			

				+
			

			
				
				+
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑐
			

			
				+
				𝑖
				𝑗
			

			
				(
				𝑡
				)
				𝐺
			

			
				𝑖
				𝑗
			

			
				‖
				‖
				𝑉
			

			
				𝑗
				𝑡
			

			

				+
			

			
				‖
				‖
			

			

				𝜏
			

			

				+
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑑
			

			
				+
				𝑖
				𝑗
			

			
				(
				𝑡
				)
				𝐻
			

			
				𝑖
				𝑗
			

			
				‖
				‖
				𝑊
			

			
				𝑗
				𝑡
			

			

				+
			

			
				‖
				‖
			

			

				𝜏
			

			
				,
				𝑡
				>
				0
				.
			

		
	

						By (1b) and (H3), we have 
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			

				𝑉
			

			

				𝑖
			

			
				
				𝑡
			

			
				+
				𝑘
			

			
				
				=
				|
				|
				𝑥
			

			

				𝑖
			

			
				
				𝑡
			

			
				+
				𝑘
			

			
				
				−
				𝑦
			

			

				𝑖
			

			
				
				𝑡
			

			
				+
				𝑘
			

			
				
				|
				|
				≤
				𝐼
			

			
				∗
				𝑖
				𝑘
			

			

				𝑉
			

			

				𝑖
			

			
				
				𝑡
			

			

				𝑘
			

			
				
				+
				𝐽
			

			
				∗
				𝑖
				𝑘
			

			

				𝑉
			

			

				𝑖
			

			
				
				𝑡
			

			

				𝑘
			

			
				−
				𝜍
			

			

				𝑖
			

			
				
				𝑡
			

			

				𝑘
			

			
				.
				
				
			

		
	
By (29)–(31) and Lemma 3, there exists a positive constant 
	
		
			

				𝑀
			

		
	
 such that 
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			

				𝑉
			

			

				𝑖
			

			
				(
				𝑡
				)
				≤
				𝑀
			

			

				𝑛
			

			

				
			

			
				𝑙
				=
				1
			

			
				
				‖
				‖
				𝑉
				m
				a
				x
			

			
				𝑙
				0
			

			
				‖
				‖
			

			

				𝜏
			

			
				,
				‖
				‖
				𝑊
			

			
				𝑙
				0
			

			
				‖
				‖
			

			

				𝜏
			

			
				
				𝑒
			

			
				−
				(
				𝜆
			

			

				∗
			

			
				−
				𝜇
				)
				𝑡
			

			
				≤
				𝑀
				𝑛
				‖
				𝜙
				−
				𝜓
				‖
			

			
				𝑛
				1
				𝜏
			

			

				𝑒
			

			
				−
				(
				𝜆
			

			

				∗
			

			
				−
				𝜇
				)
				𝑡
			

			

				,
			

		
	

						where 
	
		
			

				𝜆
			

			

				∗
			

		
	
 and 
	
		
			

				𝜇
			

		
	
 are defined in (12).
Remark 5. For autonomous system, the exponential stability of the zero solution of (1a) with 
	
		
			

				𝑥
			

			

				𝑖
			

			
				(
				𝑡
			

			
				+
				𝑘
			

			
				)
				=
				𝐼
			

			
				𝑖
				𝑘
			

			
				(
				𝑥
			

			

				1
			

			
				(
				𝑡
			

			

				𝑘
			

			
				)
				,
				…
				,
				𝑥
			

			

				𝑛
			

			
				(
				𝑡
			

			

				𝑘
			

			
				)
				)
				,
				𝑘
				∈
				𝑁
			

			

				∗
			

		
	
, is considered in [7]. But the results require that 
	
		
			
				{
				𝑡
			

			

				𝑘
			

			
				−
				𝑡
			

			
				𝑘
				−
				1
			

			

				}
			

		
	
 is bounded.When there is no impulse in systems (1a) and (1b), (1a) and (1b) reduce to the following model which has been studied in [9, 10]: 
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			
				̇
				𝑥
			

			

				𝑖
			

			
				(
				𝑡
				)
				=
				−
				𝑏
			

			

				𝑖
			

			
				(
				𝑡
				)
				𝑥
			

			

				i
			

			
				(
				𝑡
				)
				+
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑎
			

			
				𝑖
				𝑗
			

			
				(
				𝑡
				)
				𝑓
			

			
				𝑖
				𝑗
			

			
				
				𝑥
			

			

				𝑗
			

			
				
				+
				(
				𝑡
				)
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑐
			

			
				𝑖
				𝑗
			

			
				(
				𝑡
				)
				𝑔
			

			
				𝑖
				𝑗
			

			
				
				𝑥
			

			

				𝑗
			

			
				
				𝑡
				−
				𝜏
			

			
				𝑖
				𝑗
			

			
				+
				(
				𝑡
				)
				
				
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑑
			

			
				𝑖
				𝑗
			

			
				(
				𝑡
				)
				ℎ
			

			
				𝑖
				𝑗
			

			
				
				𝑥
			

			

				′
			

			

				𝑗
			

			
				
				𝑡
				−
				̂
				𝜏
			

			
				𝑖
				𝑗
			

			
				
				
				(
				𝑡
				)
				+
				𝑘
			

			

				𝑖
			

			
				(
				𝑡
				)
				,
				𝑡
				>
				0
				,
				𝑖
				∈
				𝑁
				.
			

		
	

Corollary 6.  Assume that 
	
		
			
				(
				𝐻
			

			

				1
			

			

				)
			

		
	
, 
	
		
			
				(
				𝐻
			

			

				2
			

			

				)
			

		
	
, and 
	
		
			
				(
				𝐻
			

			

				4
			

			

				)
			

		
	
 hold. (33) is globally exponentially stable.
Remark 7. For autonomous system, the stability of (33) with 
	
		
			

				ℎ
			

			
				𝑖
				𝑗
			

			
				(
				𝑥
				)
				=
				𝑥
			

		
	
, 
	
		
			

				𝑓
			

			
				𝑖
				𝑗
			

			
				=
				𝑔
			

			
				𝑖
				𝑗
			

		
	
, is considered in [10]. However, the authors assume that 
	
		
			

				𝑓
			

			
				𝑖
				𝑗
			

			
				,
				𝑖
				,
				𝑗
				=
				1
				,
				2
				,
				⋯
				,
				𝑛
			

		
	
, are monotonic, bounded and 
	
		
			

				𝜏
			

			
				i
				j
			

			
				,
				𝑖
				,
				𝑗
				=
				1
				,
				2
				,
				⋯
				,
				𝑛
			

		
	
,are constants.
Remark 8. The stability results about the zero solution of 
	
		
			

				𝑥
			

			

				′
			

			
				(
				𝑡
				)
				=
				−
				𝑏
				(
				𝑡
				)
				𝑥
				(
				𝑡
				)
				+
				𝑐
				(
				𝑡
				)
				𝑥
				(
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				+
				𝑑
				(
				𝑡
				)
				𝑥
			

			

				′
			

			
				(
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
			

		
	
 are obtained by the fixed-point theory in [15]. But the differentiability of 
	
		
			

				𝜏
			

		
	
 is needed.
3. An Illustrative Example
To show the effectiveness of Theorem 4, consider the following nonautonomous neural networks with impulse:
	
 		
 			
				(
				3
				4
				a
				)
			
 			
				(
				3
				4
				b
				)
			
 		
	

	
		
			
				̇
				𝑥
			

			

				𝑖
			

			
				(
				𝑡
				)
				=
				−
				𝑏
			

			

				𝑖
			

			
				(
				𝑡
				)
				𝑥
			

			

				𝑖
			

			
				(
				𝑡
				)
				+
			

			

				2
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑎
			

			
				𝑖
				𝑗
			

			
				(
				𝑡
				)
				𝑓
			

			
				𝑖
				𝑗
			

			
				
				𝑥
			

			

				𝑗
			

			
				
				+
				(
				𝑡
				)
			

			

				2
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑐
			

			
				𝑖
				𝑗
			

			
				(
				𝑡
				)
				𝑔
			

			
				𝑖
				𝑗
			

			
				
				𝑥
			

			

				𝑗
			

			
				
				𝑡
				−
				𝜏
			

			
				𝑖
				𝑗
			

			
				+
				(
				𝑡
				)
				
				
			

			

				2
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑑
			

			
				𝑖
				𝑗
			

			
				(
				𝑡
				)
				ℎ
			

			
				𝑖
				𝑗
			

			
				
				𝑥
			

			

				′
			

			

				𝑗
			

			
				
				𝑡
				−
				̂
				𝜏
			

			
				𝑖
				𝑗
			

			
				
				
				(
				𝑡
				)
				+
				𝑘
			

			

				𝑖
			

			
				𝑥
				(
				𝑡
				)
				,
				a
				.
				e
				.
				𝑡
				>
				0
				,
			

			

				𝑖
			

			
				
				𝑡
			

			
				+
				𝑘
			

			
				
				=
				𝑔
			

			

				𝑖
			

			

				𝑥
			

			

				𝑖
			

			
				
				𝑡
			

			

				𝑘
			

			
				
				+
				𝐼
			

			

				𝑖
			

			
				,
				𝑡
			

			

				𝑘
			

			
				=
				5
				𝑘
				,
				𝑖
				=
				1
				,
				2
				;
				𝑘
				=
				1
				,
				2
				,
				…
				,
			

		
	
where 
						
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑏
			

			

				1
			

			
				𝑏
				(
				𝑡
				)
			

			

				2
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				=
				⎛
				⎜
				⎜
				⎜
				⎝
				⎞
				⎟
				⎟
				⎟
				⎠
				,
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑘
				(
				𝑡
				)
				7
				+
				s
				i
				n
				𝑡
				5
				−
				c
				o
				s
				𝑡
			

			

				1
			

			
				𝑘
				(
				𝑡
				)
			

			

				2
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				=
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑒
				(
				𝑡
				)
			

			
				−
				𝑡
			

			

				𝑒
			

			
				−
				2
				𝑡
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				,
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑔
			

			

				1
			

			

				𝑔
			

			

				2
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				=
				⎛
				⎜
				⎜
				⎜
				⎝
				⎞
				⎟
				⎟
				⎟
				⎠
				,
				⎛
				⎜
				⎜
				⎜
				⎝
				𝐼
				0
				.
				6
				0
				.
				3
			

			

				1
			

			

				𝐼
			

			

				2
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				=
				⎛
				⎜
				⎜
				⎜
				⎝
				⎞
				⎟
				⎟
				⎟
				⎠
				,
				
				𝑎
				0
				.
				3
				−
				0
				.
				1
			

			
				𝑖
				𝑗
			

			
				
				(
				𝑡
				)
			

			
				2
				×
				2
			

			
				=
				⎛
				⎜
				⎜
				⎜
				⎝
				1
				0
				,
			

			
				
			
			
				3
				c
				o
				s
				3
				𝑡
				c
				o
				s
				2
				𝑡
			

			
				
			
			
				2
				⎞
				⎟
				⎟
				⎟
				⎠
				,
				
				𝑐
				,
				0
			

			
				𝑖
				𝑗
			

			
				
				(
				𝑡
				)
			

			
				2
				×
				2
			

			
				=
				⎛
				⎜
				⎜
				⎜
				⎝
				s
				i
				n
				2
				𝑡
				,
				0
				0
				,
				c
				o
				s
				𝑡
			

			
				
			
			
				2
				⎞
				⎟
				⎟
				⎟
				⎠
				,
				
				𝑑
			

			
				𝑖
				𝑗
			

			
				
				(
				𝑡
				)
			

			
				2
				×
				2
			

			
				=
				⎛
				⎜
				⎜
				⎜
				⎝
				1
			

			
				
			
			
				6
				1
				s
				i
				n
				3
				𝑡
				,
			

			
				
			
			
				8
				1
				s
				i
				n
				𝑡
			

			
				
			
			
				9
				1
				c
				o
				s
				𝑡
				,
			

			
				
			
			
				⎞
				⎟
				⎟
				⎟
				⎠
				,
				
				𝑓
				1
				0
				c
				o
				s
				2
				𝑡
			

			
				𝑖
				𝑗
			

			
				
				(
				𝑥
				)
			

			
				2
				×
				2
			

			
				=
				⎛
				⎜
				⎜
				⎜
				⎝
				|
				|
				|
				|
				−
				|
				|
				|
				|
				0
				,
				𝑥
				+
				1
				𝑥
				−
				1
			

			
				
			
			
				2
				|
				|
				|
				|
				+
				|
				|
				|
				|
				𝑥
				+
				1
				𝑥
				−
				1
			

			
				
			
			
				2
				⎞
				⎟
				⎟
				⎟
				⎠
				,
				
				𝑔
				,
				0
			

			
				𝑖
				𝑗
			

			
				
				(
				𝑥
				)
			

			
				2
				×
				2
			

			
				=
				⎛
				⎜
				⎜
				⎜
				⎝
				|
				|
				|
				|
				+
				|
				|
				|
				|
				𝑥
				+
				1
				𝑥
				−
				1
			

			
				
			
			
				3
				|
				|
				|
				|
				−
				|
				|
				|
				|
				,
				0
				0
				,
				𝑥
				+
				1
				𝑥
				−
				1
			

			
				
			
			
				3
				⎞
				⎟
				⎟
				⎟
				⎠
				,
				
				ℎ
			

			
				𝑖
				𝑗
			

			
				
				(
				𝑥
				)
			

			
				2
				×
				2
			

			
				=
				⎛
				⎜
				⎜
				⎜
				⎝
				⎞
				⎟
				⎟
				⎟
				⎠
				,
				
				𝜏
				s
				i
				n
				𝑥
				,
				c
				o
				s
				𝑥
				c
				o
				s
				𝑥
				,
				s
				i
				n
				𝑥
			

			
				𝑖
				𝑗
			

			
				
				(
				𝑡
				)
			

			
				2
				×
				2
			

			
				=
				⎛
				⎜
				⎜
				⎜
				⎝
				2
				s
				i
				n
			

			

				2
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				,
				
				𝑡
				,
				0
				0
				,
				2
				|
				c
				o
				s
				𝑡
				|
				̂
				𝜏
			

			
				𝑖
				𝑗
			

			
				
				(
				𝑡
				)
			

			
				2
				×
				2
			

			
				=
				⎛
				⎜
				⎜
				⎜
				⎝
				0
				,
				1
				−
				s
				i
				n
				𝑡
			

			
				
			
			
				2
				1
				+
				c
				o
				s
				𝑡
			

			
				
			
			
				2
				⎞
				⎟
				⎟
				⎟
				⎠
				.
				,
				0
			

		
	

					Obviously, 
	
		
			
				(
				𝐹
			

			
				𝑖
				𝑗
			

			

				)
			

			
				2
				×
				2
			

			
				=
				
			

			
				0
				,
				1
				1
				,
				0
			

			

				
			

		
	
,  
	
		
			
				(
				𝐺
			

			
				𝑖
				𝑗
			

			

				)
			

			
				2
				×
				2
			

			
				=
				
			

			
				2
				/
				3
				,
				0
				0
				,
				2
				/
				3
			

			

				
			

		
	
, and 
	
		
			
				(
				𝐻
			

			
				𝑖
				𝑗
			

			

				)
			

			
				2
				×
				2
			

			
				=
				
			

			
				1
				,
				1
				1
				,
				1
			

			

				
			

		
	
.
Let 
	
		
			

				𝑝
			

			

				1
			

			
				=
				𝑝
			

			

				2
			

			
				=
				1
			

		
	
 and 
	
		
			

				𝑞
			

			

				1
			

			
				=
				1
				8
			

		
	
,  
	
		
			

				𝑞
			

			

				2
			

			
				=
				1
				0
			

		
	
. From the above assumption, the conditions of Theorem 4 are satisfied. Therefore, (34a) and (34b) are globally exponentially stable. 
	
		
			
				(
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				)
			

			

				𝑇
			

		
	
 and 
	
		
			
				(
				𝑢
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝑢
			

			

				2
			

			
				(
				𝑡
				)
				)
			

			

				𝑇
			

		
	
 are the solutions of (34a) and (34b) with 
	
		
			

				𝑥
			

			

				1
			

			
				(
				0
				)
				=
				0
				.
				5
			

		
	
,  
	
		
			

				𝑥
			

			

				2
			

			
				(
				0
				)
				=
				−
				0
				.
				8
			

		
	
 and 
	
		
			

				𝑢
			

			

				1
			

			
				(
				0
				)
				=
				−
				0
				.
				5
			

		
	
,  
	
		
			

				𝑢
			

			

				2
			

			
				(
				0
				)
				=
				0
				.
				8
			

		
	
, respectively. Figures 1(a) and 1(b) depict time response of state variables 
	
		
			

				𝑥
			

			

				1
			

		
	
,  
	
		
			

				𝑢
			

			

				1
			

		
	
 without and with impulse effects; Figures 2(a) and 2(b) depict time response of state variables 
	
		
			

				𝑥
			

			

				2
			

		
	
,  
	
		
			

				𝑢
			

			

				2
			

		
	
 without and with impulse effects; Figures 3(a) and 3(b) depict the phase plot in the space 
	
		
			
				(
				𝑡
				,
				𝑥
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			

				)
			

		
	
,  
	
		
			
				(
				𝑡
				,
				𝑢
			

			

				1
			

			
				,
				𝑢
			

			

				2
			

			

				)
			

		
	
 without and with impulse effects.
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(b)
Figure 1: (a) Time response of state variables 
	
		
			

				𝑥
			

			

				1
			

		
	
, 
	
		
			

				𝑢
			

			

				1
			

		
	
 without impulsive effects. (b) Time response of state variables 
	
		
			

				𝑥
			

			

				1
			

		
	
,
	
		
			

				𝑢
			

			

				1
			

		
	
 with impulsive effects.




	
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
	
		
	
		
	
	
	
	
	
	
	
		
	
	
	
	
	
	


	
		
	


	
		
	


	
		
		
	


	
		
		
	


	
		
		
	


	
		
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	













(a)










































	








	








	
		
	


	
		
	


	
		
		
	


	
		
		
	


	
		
		
	


	
		
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	













(b)
Figure 2: (a) Time response of state variables 
	
		
			

				𝑥
			

			

				2
			

		
	
, 
	
		
			

				𝑢
			

			

				2
			

		
	
 without impulsive effects. (b) Time response of state variables 
	
		
			

				𝑥
			

			

				2
			

		
	
, 
	
		
			

				𝑢
			

			

				2
			

		
	
 with impulsive effects.
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(b)
Figure 3: (a) Phase plot in space 
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