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Abstract. 
We establish the necessary condition of optimality for optimal control problem governed by some pseudoparabolic differential equations involving monotone graphs. Some approximating control process and examples are given.


1. Introduction 
We will study the following optimal control problem governed by nonlinear pseudoparabolic variational inequalities of the following form:
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				𝑑
				𝑀
				𝑦
			

			
				
			
			
				𝑑
				𝑡
				+
				𝐴
				𝑦
				+
				𝛽
				(
				𝑦
				)
				∋
				𝐵
				𝑢
				a
				.
				e
				i
				n
				(
				0
				,
				𝑇
				)
				,
				𝑦
				(
				0
				)
				=
				𝑦
			

			

				0
			

			

				,
			

		
	

					with the state constraint 
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				𝐹
				(
				𝑦
				(
				⋅
				)
				)
				⊂
				𝑆
				.
			

		
	

					The pay-off function is given by
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				
				𝐿
				(
				𝑦
				(
				⋅
				)
				,
				𝑢
				(
				⋅
				)
				)
				=
			

			
				𝑇
				0
			

			
				[
				]
				𝑔
				(
				𝑡
				,
				𝑦
				(
				⋅
				)
				)
				+
				ℎ
				(
				𝑢
				(
				⋅
				)
				)
				𝑑
				𝑡
				,
			

		
	

					where 
	
		
			
				𝑄
				=
				Ω
				×
				(
				0
				,
				𝑇
				)
			

		
	
, 
	
		
			
				Ω
				⊂
				ℝ
			

			

				𝑁
			

		
	
 is a bounded domain with smooth boundary.
For the problem (1)–(3), we have the following assumptions.(H1) 
	
		
			

				𝑀
			

		
	
 is a selfadjoint operator in 
	
		
			
				𝐻
				=
				Ł
			

			

				2
			

			
				(
				Ω
				)
			

		
	
 with 
	
		
			
				𝐷
				(
				𝑀
				)
				⊂
				𝐷
				(
				𝐴
				+
				𝛽
				)
			

		
	
 such that for every 
	
		
			
				𝑦
				∈
				𝐷
				(
				𝑀
				)
			

		
	
,
									
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				|
				|
				𝑦
				|
				|
				(
				𝑀
				𝑦
				,
				𝑦
				)
				≥
				𝑎
			

			

				2
			

			
				,
				𝑎
				>
				0
				.
			

		
	
 Throughout in the sequel, we will denote by 
	
		
			
				|
				⋅
				|
			

		
	
 and 
	
		
			
				(
				⋅
				,
				⋅
				)
			

		
	
 the norm and the scalar product of 
	
		
			

				𝐻
			

		
	
, respectively. The norm of the control set 
	
		
			

				𝑈
			

		
	
 will be denoted by 
	
		
			
				|
				⋅
				|
			

			

				𝑈
			

		
	
 and the scalar product 
	
		
			
				⟨
				⋅
				,
				⋅
				⟩
			

		
	
, respectively. 
	
		
			
				𝐷
				(
				𝑀
				)
				,
				𝐷
				(
				𝐴
				+
				𝛽
				)
			

		
	
 denote the domain of operator 
	
		
			
				𝑀
				,
				𝐴
				+
				𝛽
			

		
	
, respectively.(H2) 
	
		
			
				𝑉
				⊂
				𝐻
			

		
	
 is a real Hilbert space such that 
	
		
			

				𝑉
			

		
	
 is dense in 
	
		
			

				𝐻
			

		
	
 and 
	
		
			
				𝑉
				⊂
				𝐻
				⊂
				𝑉
			

			

				′
			

		
	
 algebraically and topologically, where 
	
		
			

				𝑉
			

			

				′
			

		
	
 is the dual of 
	
		
			

				𝑉
			

		
	
. Further, the injection of 
	
		
			

				𝑉
			

		
	
 into 
	
		
			

				𝐻
			

		
	
 is compact. 
	
		
			
				𝐴
				∶
				𝑉
				→
				𝑉
			

			

				′
			

		
	
 is a linear continuous and symmetric operator from 
	
		
			

				𝑉
			

		
	
 to 
	
		
			

				𝑉
			

			

				′
			

		
	
 satisfying the coercivity condition 
									
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			
				(
				𝐴
				𝑦
				,
				𝑦
				)
				≥
				𝑤
				‖
				𝑦
				‖
			

			
				2
				𝑉
			

			
				|
				|
				𝑦
				|
				|
				+
				𝛼
			

			
				2
				𝐻
			

			
				∀
				𝑦
				∈
				𝑉
				,
			

		
	
 where 
	
		
			
				𝑤
				>
				0
			

		
	
 and 
	
		
			
				𝛼
				≥
				0
			

		
	
.(H3) 
	
		
			

				𝛽
			

		
	
 is a maximal monotone graph in 
	
		
			
				ℝ
				×
				ℝ
			

		
	
 with 
	
		
			
				0
				∈
				𝛽
				(
				0
				)
			

		
	
. Let 
	
		
			
				𝜙
				(
				𝑦
				)
				∶
				𝐻
				→
				ℝ
				=
				(
				−
				∞
				,
				+
				∞
				]
			

		
	
 be the lower semicontinuous convex function defined by 
	
		
			
				∫
				𝜙
				(
				𝑦
				)
				=
			

			

				Ω
			

			
				𝑗
				(
				𝑦
				)
				𝑑
				𝑥
			

		
	
, where 
	
		
			
				𝑗
				∶
				ℝ
				→
			

			
				
			
			

				ℝ
			

		
	
 is such that 
	
		
			
				𝜕
				𝑗
				=
				𝛽
			

		
	
. Moreover, 
									
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			
				
				𝐴
				𝑦
				,
				𝛽
			

			

				𝜖
			

			
				
				(
				𝑦
				)
				≥
				0
				∀
				𝑦
				∈
				𝐷
				(
				𝐴
				)
				,
				𝜖
				>
				0
				,
			

		
	
 where 
	
		
			

				𝛽
			

			

				𝜖
			

			
				(
				𝑟
				)
				=
				𝜖
			

			
				−
				1
			

			
				(
				𝑟
				−
				(
				1
				+
				𝜖
				𝛽
				)
			

			
				−
				1
			

			
				𝑟
				)
			

		
	
 for all 
	
		
			
				𝜖
				>
				0
			

		
	
, 
	
		
			
				𝑟
				∈
				ℝ
			

		
	
. For every 
	
		
			
				𝜉
				∈
				𝛽
			

		
	
, there exists a constant 
	
		
			

				𝑐
			

		
	
 such that 
									
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
				𝜉
				(
				𝑠
				)
				≤
				𝑐
				1
				+
				|
				𝑠
				|
			

			
				𝑝
				+
				1
			

			
				
				,
			

		
	
 where 
	
		
			
				0
				≤
				𝑝
				≤
				2
				/
				(
				𝑁
				−
				2
				)
			

		
	
 if 
	
		
			
				𝑁
				>
				2
			

		
	
 and 
	
		
			
				0
				≤
				𝑝
				<
				+
				∞
			

		
	
 if 
	
		
			
				𝑁
				=
				1
				,
				2
			

		
	
. 
	
		
			
				𝜕
				𝑗
			

		
	
 denotes the generalized Clarke subdifferential of the function 
	
		
			

				𝑗
			

		
	
.(H4) 
	
		
			

				𝐵
			

		
	
 is a linear continuous operator from a real Hilbert space 
	
		
			

				𝑈
			

		
	
 to 
	
		
			

				𝐻
			

		
	
.(H5) Let 
	
		
			

				ℤ
			

		
	
 be a Banach space with the dual 
	
		
			

				ℤ
			

			

				∗
			

		
	
 strictly convex. 
	
		
			
				𝑆
				⊂
				ℤ
			

		
	
 is a closed convex subset with finite codimensionality [1–3]. 
	
		
			
				𝐹
				∶
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑉
				)
				→
				ℤ
			

		
	
 is of class 
	
		
			

				𝐶
			

			

				1
			

		
	
.(H6) The functional 
	
		
			
				ℎ
				∶
				𝑈
				→
			

			
				
			
			

				ℝ
			

		
	
 is convex and lower semicontinuous (l. s. c), such that 
									
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				ℎ
				(
				𝑢
				)
				≥
				𝑐
			

			

				1
			

			
				|
				𝑢
				|
			

			
				2
				𝑈
			

			
				+
				𝑐
			

			

				2
			

			

				,
			

		
	
 where 
	
		
			

				𝑐
			

			

				1
			

			
				>
				0
				,
				𝑐
			

			

				2
			

			
				∈
				ℝ
			

		
	
, for all 
	
		
			
				𝑢
				∈
				𝑈
			

		
	
.(H7) 
	
		
			
				𝑔
				∶
				[
				0
				,
				𝑇
				]
				×
				𝐻
				→
				ℝ
			

			

				+
			

		
	
 is measurable in 
	
		
			

				𝑡
			

		
	
, and for every 
	
		
			
				𝛿
				>
				0
			

		
	
, there exists 
	
		
			

				𝐿
			

			

				𝛿
			

			
				>
				0
			

		
	
 independent of 
	
		
			

				𝑡
			

		
	
 such that 
	
		
			
				𝑔
				(
				𝑡
				,
				0
				)
				∈
				𝐿
			

			

				∞
			

			
				(
				0
				,
				𝑇
				)
			

		
	
 and 
									
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				|
				|
				𝑔
				
				𝑡
				,
				𝑦
			

			

				1
			

			
				
				
				−
				𝑔
				𝑡
				,
				𝑦
			

			

				2
			

			
				
				|
				|
				≤
				𝐿
			

			

				𝛿
			

			
				|
				|
				𝑦
			

			

				1
			

			
				−
				𝑦
			

			

				2
			

			
				|
				|
			

			

				𝐻
			

			
				[
				]
				,
				|
				|
				𝑦
				∀
				𝑡
				∈
				0
				,
				𝑇
			

			

				1
			

			
				|
				|
			

			

				𝐻
			

			
				+
				|
				|
				𝑦
			

			

				2
			

			
				|
				|
			

			

				𝐻
			

			
				≤
				𝛿
				.
			

		
	

Remark 1. Note that, by 
	
		
			
				(
				H
				3
				)
			

		
	
, system (1) is equivalent to
							
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				𝑑
				𝑀
				𝑦
			

			
				
			
			
				𝑑
				𝑡
				+
				𝐴
				𝑦
				+
				𝜕
				𝜙
				(
				𝑦
				(
				𝑡
				)
				)
				∋
				𝐵
				𝑢
				a
				.
				e
				𝑡
				∈
				(
				0
				,
				𝑇
				)
				,
				𝑦
				(
				0
				)
				=
				𝑦
			

			

				0
			

			

				.
			

		
	
As we know, by Barbu [4] (see Chapter 4) and Theorem 1.1 of [5], we have the following.
Lemma 2.  Let 
	
		
			
				(
				𝐻
				1
				)
				-
				-
				(
				𝐻
				4
				)
			

		
	
 hold. Then, for any 
	
		
			

				𝑦
			

			

				0
			

			
				∈
				𝐷
				(
				𝑀
				)
				∩
				𝑉
			

		
	
, 
	
		
			
				𝑢
				∈
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑈
				)
			

		
	
, (1) admits a unique solution 
	
		
			
				𝑦
				(
				𝑥
				,
				𝑡
				)
			

		
	
 satisfying 
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				𝑦
				∈
				𝑊
			

			
				1
				,
				2
			

			
				(
				[
				]
				0
				,
				𝑇
				;
				𝐻
				)
				∩
				𝐿
			

			

				2
			

			
				[
				]
				(
				0
				,
				𝑇
				;
				𝐷
				(
				𝑀
				)
				∩
				𝑉
				)
				∩
				𝐶
				(
				0
				,
				𝑇
				;
				𝐻
				)
				.
			

		
	

Now we formulate the optimal control problems as follows.
Let 
	
		
			

				𝐴
			

			
				𝑎
				𝑑
			

			
				=
				{
				(
				𝑦
				,
				𝑢
				)
				∈
				𝑊
			

			
				1
				,
				2
			

			
				(
				[
				0
				,
				𝑇
				]
				;
				𝐻
				)
				∩
				𝐶
				(
				[
				0
				,
				𝑇
				]
				;
				𝐻
				)
				∩
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝐷
				(
				𝑀
				)
				)
				×
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑈
				)
				∣
				𝑦
			

		
	
 is the solution of (10) with (2)}.
We will find
						
	
 		
 			

				(
			
 			

				P
			
 			

				)
			
 		
	

	
		
			
				m
				i
				n
				𝐿
				(
				𝑦
				,
				𝑢
				)
				o
				v
				e
				r
				(
				𝑦
				,
				𝑢
				)
				∈
				𝐴
			

			
				𝑎
				𝑑
			

			

				.
			

		
	

Recently, some optimal control problems governed by pseudoparabolic equations have already been discussed. Linear optimal control problems for pseudoparabolic equations were considered by many authors (cf. [6–12]). However, these problems studied in [7–12] do not involve state constraints and maximal monotone graph. On the other hand, optimal control problems governed by some parabolic variational inequalities (cf. [4, 13–19]) have already been discussed. Li and Yong [1] studied the maximal principle for optimal control governed by some nonlinear parabolic equations with two point boundary (time variable) state constraints. In Cases’ work [20], the state constraint was considered, but the state equation did not involve monotone graph. He [21] studied the optimal control problems involving some special maximal monotone graph (Lipschitz continuous) with state constraint. Wang [2, 3] also discussed the optimal control problem governed by the state equation involving some maximal monotone graph.
The present work in this paper considers the optimal control problem governed by the pseudoparabolic equations which is different from what they discussed in [7–9, 12], with the state constraints which is similar to those in [3, 4, 21].
The plan of this paper is as follows. Section 2 gives an approximating control process. In Section 3, we state and prove the necessary conditions on optimality for the problem 
	
		
			
				(
				P
				)
			

		
	
. In Section 4, some examples are given.
2. The Approximating Control Process
Let 
	
		
			
				(
				𝑦
			

			

				∗
			

			
				,
				𝑢
			

			

				∗
			

			

				)
			

		
	
 be optimal for the problem 
	
		
			
				(
				P
				)
			

		
	
. Then 
						
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				𝑑
				𝑀
				𝑦
			

			

				∗
			

			
				
			
			
				𝑑
				𝑡
				+
				𝐴
				𝑦
			

			

				∗
			

			
				
				𝑦
				+
				𝜕
				𝜙
			

			

				∗
			

			
				(
				
				𝑡
				)
				∋
				𝐵
				𝑢
			

			

				∗
			

			
				𝑦
				a
				.
				e
				𝑡
				∈
				(
				0
				,
				𝑇
				)
				,
			

			

				∗
			

			
				(
				0
				)
				=
				𝑦
			

			

				0
			

			

				,
			

		
	

					with 
						
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				𝐹
				
				𝑦
			

			

				∗
			

			
				
				𝐿
				
				𝑦
				∈
				𝑆
				,
			

			

				∗
			

			
				,
				𝑢
			

			

				∗
			

			
				
				=
				i
				n
				f
				𝐿
				(
				𝑦
				,
				𝑢
				)
				o
				v
				e
				r
				(
				𝑦
				,
				𝑢
				)
				∈
				𝐴
			

			
				𝑎
				𝑑
			

			

				.
			

		
	

From a perturbation theorem for m-accretive operators ([22], Lemma 5) and 
	
		
			
				(
				H
				2
				)
			

		
	
, 
	
		
			
				(
				H
				3
				)
			

		
	
, we easily know that 
	
		
			
				𝐶
				(
				=
				𝐴
				+
				𝛽
				)
			

		
	
 is m-accretive in 
	
		
			

				𝐻
			

		
	
.
Now consider the following approximating equation: 
						
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				𝑑
				𝑀
				𝑦
			

			
				
			
			
				𝑑
				𝑡
				+
				𝐶
			

			

				𝜖
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			
				𝑦
				=
				𝐵
				𝑢
				a
				.
				e
				i
				n
				(
				0
				,
				𝑇
				)
				,
				𝑦
				(
				0
				)
				=
				𝑦
			

			

				0
			

			

				,
			

		
	

					where 
	
		
			

				𝐶
			

			

				𝜖
			

			
				=
				𝜖
			

			
				−
				1
			

			
				(
				𝐼
				−
				𝐽
			

			
				𝐶
				𝜖
			

			

				)
			

		
	
 and 
	
		
			

				𝐽
			

			
				𝐶
				𝜖
			

			
				=
				(
				𝐼
				+
				𝜖
				𝐶
				)
			

			
				−
				1
			

		
	
. By Lemma 2, for any 
	
		
			

				𝑦
			

			

				0
			

			
				∈
				𝐷
				(
				𝑀
				)
				∩
				𝑉
			

		
	
, 
	
		
			
				𝑢
				∈
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑈
				)
			

		
	
, (14) has a unique solution in 
	
		
			

				𝑊
			

			
				1
				,
				2
			

			
				(
				(
				0
				,
				𝑇
				]
				;
				𝐻
				)
				∩
				𝐶
				(
				[
				0
				,
				𝑇
				]
				;
				𝐻
				)
				∩
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑉
				)
			

		
	
.
Besides, we have the following result on (14).
Lemma 3.  For 
	
		
			
				𝜖
				>
				0
			

		
	
 given, let 
	
		
			

				𝑢
			

			

				𝑛
			

			
				∈
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑈
				)
				,
				𝑢
			

			

				𝑛
			

			

				→
			

			

				∼
			

			

				𝑢
			

		
	
 weakly in 
	
		
			

				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑈
				)
			

		
	
, and 
	
		
			

				∼
			

			
				𝑦
				,
				𝑦
			

			

				𝑛
			

		
	
 the solutions of (14) corresponding to 
	
		
			

				∼
			

			

				𝑢
			

		
	
 and 
	
		
			

				𝑢
			

			

				𝑛
			

		
	
, respectively. Then, there exists some subsequence of 
	
		
			
				{
				𝑦
			

			

				𝑛
			

			

				}
			

		
	
, still denoted by itself, such that 
	
		
			

				𝑦
			

			

				𝑛
			

			

				→
			

			

				∼
			

			

				𝑦
			

		
	
 strongly in 
	
		
			
				𝐶
				(
				[
				0
				,
				𝑇
				]
				;
				𝐻
				)
				∩
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑉
				)
			

		
	
.
Proof. Multiplying (14) by 
	
		
			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑦
			

			

				𝑛
			

			
				(
				𝑡
				)
			

		
	
 and using the self-adjointness of 
	
		
			

				𝑀
			

		
	
, we see the following: 
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			

				𝑑
			

			
				
			
			
				|
				|
				𝑀
				𝑑
				𝑡
			

			
				𝜖
				1
				/
				2
			

			

				𝑦
			

			

				𝑛
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				
				𝐶
				+
				2
			

			

				𝜖
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑦
			

			

				𝑛
			

			
				(
				𝑡
				)
				,
				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑦
			

			

				𝑛
			

			
				
				
				(
				𝑡
				)
				=
				2
				𝐵
				𝑢
			

			

				𝑛
			

			
				,
				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑦
			

			

				𝑛
			

			
				
				.
				(
				𝑡
				)
			

		
	
Then 
	
		
			
				(
				H
				1
				)
				-
				-
				(
				H
				3
				)
			

		
	
 yield 
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			

				𝑑
			

			
				
			
			
				|
				|
				𝑀
				𝑑
				𝑡
			

			
				𝜖
				1
				/
				2
			

			

				𝑦
			

			

				𝑛
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				|
				|
				𝑀
				≤
				𝑐
			

			
				𝜖
				1
				/
				2
			

			

				𝑦
			

			

				𝑛
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				|
				|
				+
				𝑐
				𝐵
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			

				2
			

			

				,
			

		
	

						where 
	
		
			

				𝑀
			

			

				𝜖
			

			
				=
				𝜖
			

			
				−
				1
			

			
				(
				𝐼
				−
				𝐽
			

			
				𝑀
				𝜖
			

			

				)
			

		
	
. Integrating the above inequality from 
	
		
			

				0
			

		
	
 to 
	
		
			
				𝑡
				(
				𝑡
				∈
				(
				0
				,
				𝑇
				]
				)
			

		
	
 and using Gronwall’s inequality, we see the following: 
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				|
				|
				𝑀
			

			
				𝜖
				1
				/
				2
			

			

				𝑦
			

			

				𝑛
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				[
				]
				.
				≤
				𝑐
				∀
				𝑡
				∈
				0
				,
				𝑇
			

		
	
Note that from 
	
		
			
				(
				H
				1
				)
			

		
	
, 
	
		
			

				𝑀
			

		
	
 has a bounded inverse operator on 
	
		
			

				𝐻
			

		
	
 and 
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				𝑎
				|
				|
				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑦
			

			

				𝑛
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				≤
				|
				|
				𝑀
			

			
				1
				/
				2
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑦
			

			

				𝑛
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				≤
				|
				|
				𝑀
			

			
				𝜖
				1
				/
				2
			

			

				𝑦
			

			

				𝑛
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			

				.
			

		
	
Together (17) and (18), we have the following:
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				|
				|
				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑦
			

			

				𝑛
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				[
				]
				.
				≤
				𝑐
				∀
				𝑡
				∈
				0
				,
				𝑇
			

		
	
Since 
	
		
			
				|
				𝑣
				|
			

			

				2
			

			
				=
				𝜖
				(
				𝑀
			

			

				𝜖
			

			
				𝑣
				,
				𝑣
				)
				+
				(
				𝐽
			

			
				𝑀
				𝜖
			

			
				𝑣
				,
				𝑣
				)
			

		
	
 for every 
	
		
			
				𝑣
				∈
				𝐻
			

		
	
, taking into account (17) and (19), we have the following: 
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				|
				|
				𝑦
			

			

				𝑛
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				[
				]
				.
				≤
				𝑐
				∀
				𝑡
				∈
				0
				,
				𝑇
			

		
	
Multiplying (14) by 
	
		
			

				𝑀
			

			

				𝜖
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑦
			

			

				𝑛
			

			
				(
				𝑡
				)
			

		
	
, we see 
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			

				𝑑
			

			
				
			
			
				|
				|
				𝑀
				𝑑
				𝑡
			

			

				𝜖
			

			

				𝑦
			

			

				𝑛
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				
				𝐶
				+
				2
			

			

				𝜖
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑦
			

			

				𝑛
			

			
				(
				𝑡
				)
				,
				𝑀
			

			

				𝜖
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑦
			

			

				𝑛
			

			
				
				
				(
				𝑡
				)
				=
				2
				𝐵
				𝑢
			

			

				𝑛
			

			
				,
				𝑀
			

			

				𝜖
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑦
			

			

				𝑛
			

			
				
				.
				(
				𝑡
				)
			

		
	
Then we get the following: 
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			

				𝑑
			

			
				
			
			
				|
				|
				𝑀
				𝑑
				𝑡
			

			

				𝜖
			

			

				𝑦
			

			

				𝑛
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				|
				|
				𝑀
				≤
				𝑐
			

			

				𝜖
			

			

				𝑦
			

			

				𝑛
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				|
				|
				𝑢
				+
				𝑐
			

			

				𝑛
			

			
				|
				|
			

			
				2
				𝑈
			

			

				.
			

		
	
Applying Gronwall’s inequality to the above inequality and noting that 
	
		
			
				{
				𝑢
			

			

				𝑛
			

			

				}
			

		
	
 is bounded, we have the following:
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				|
				|
				𝑀
			

			

				𝜖
			

			

				𝑦
			

			

				𝑛
			

			
				|
				|
				[
				]
				.
				(
				𝑡
				)
				≤
				𝑐
				∀
				𝑡
				∈
				0
				,
				𝑇
			

		
	
From 
	
		
			
				(
				H
				2
				)
				,
				(
				H
				3
				)
			

		
	
 and (18), we see 
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				|
				|
				𝐶
			

			

				𝜖
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑦
			

			

				𝑛
			

			
				|
				|
				[
				]
				.
				(
				𝑡
				)
				≤
				𝑐
				∀
				𝑡
				∈
				0
				,
				𝑇
			

		
	
Then in view of (14), (24) gives 
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				|
				|
				|
				𝑀
				𝑑
			

			
				
			
			
				𝑦
				𝑑
				𝑡
			

			

				𝑛
			

			
				|
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				|
				|
				𝑢
				≤
				𝑐
				+
				𝑐
			

			

				𝑛
			

			
				|
				|
			

			
				2
				𝑈
			

			

				;
			

		
	

						thus we see 
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				|
				|
				|
				𝑀
				𝑑
			

			
				
			
			
				𝑦
				𝑑
				𝑡
			

			

				𝑛
			

			
				|
				|
				|
				(
				𝑡
				)
			

			

				𝑇
			

			
				≤
				𝑐
				,
			

		
	

						which implies 
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				|
				|
				𝑀
				𝑦
			

			

				𝑛
			

			
				|
				|
				[
				]
				,
				|
				|
				|
				𝑑
				(
				𝑡
				)
				≤
				𝑐
				∀
				𝑡
				∈
				0
				,
				𝑇
			

			
				
			
			
				𝑦
				𝑑
				𝑡
			

			

				𝑛
			

			
				|
				|
				|
				(
				𝑡
				)
			

			

				𝑇
			

			
				≤
				𝑐
				.
			

		
	
Here, 
	
		
			
				|
				⋅
				|
			

			

				𝑇
			

		
	
 is the norm in 
	
		
			

				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝐻
				)
			

		
	
. For every 
	
		
			
				𝑚
				,
				𝑛
				>
				0
			

		
	

	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			

				𝑑
			

			
				
			
			
				|
				|
				𝑀
				𝑑
				𝑡
			

			
				1
				/
				2
			

			
				
				𝑦
			

			

				𝑚
			

			
				−
				𝑦
			

			

				𝑛
			

			
				
				|
				|
			

			

				2
			

			
				
				𝐶
				+
				2
			

			

				𝜖
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			
				
				𝑦
			

			

				𝑚
			

			
				−
				𝑦
			

			

				𝑛
			

			
				
				,
				
				𝑦
			

			

				𝑚
			

			
				−
				𝑦
			

			

				𝑛
			

			
				≤
				|
				|
				𝑢
				
				
			

			

				𝑚
			

			
				−
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			
				2
				𝑈
			

			
				+
				|
				|
				𝑦
			

			

				𝑚
			

			
				−
				𝑦
			

			

				𝑛
			

			
				|
				|
			

			

				2
			

			

				.
			

		
	
By some calculation, we see 
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				|
				|
				𝑀
			

			
				1
				/
				2
			

			
				
				𝑦
			

			

				𝑚
			

			
				−
				𝑦
			

			

				𝑛
			

			
				
				|
				|
			

			

				2
			

			
				|
				|
				𝑢
				≤
				𝑐
			

			

				𝑚
			

			
				−
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			
				2
				𝑇
			

			
				[
				]
				.
				∀
				𝑡
				∈
				0
				,
				𝑇
			

		
	
Hence 
	
		
			
				{
				𝑀
			

			
				1
				/
				2
			

			

				𝑦
			

			

				𝑛
			

			

				}
			

		
	
 and 
	
		
			
				{
				𝑦
			

			

				𝑛
			

			

				}
			

		
	
 are Cauchy sequences in 
	
		
			
				𝐶
				(
				[
				0
				,
				𝑇
				]
				;
				𝐻
				)
			

		
	
. Note that 
	
		
			
				(
				H
				2
				)
			

		
	
; then there exists a function 
	
		
			

				∼
			

			
				𝑦
				∈
				𝐶
				(
				[
				0
				,
				𝑇
				]
				;
				𝐷
				(
				𝑀
			

			
				1
				/
				2
			

			
				)
				)
			

		
	
 such that as 
	
		
			
				𝑛
				→
				∞
			

		
	

	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			

				𝑦
			

			

				𝑛
			

			

				→
			

			

				∼
			

			
				𝑦
				[
				]
				s
				t
				r
				o
				n
				g
				l
				y
				i
				n
				𝐶
				(
				0
				,
				𝑇
				;
				𝐻
				)
				∩
				𝐿
			

			

				2
			

			
				𝑀
				(
				0
				,
				𝑇
				;
				𝑉
				)
				,
			

			
				1
				/
				2
			

			

				𝑦
			

			

				𝑛
			

			
				→
				𝑀
			

			
				∼
				1
				/
				2
			

			
				𝑦
				[
				]
				s
				t
				r
				o
				n
				g
				l
				y
				i
				n
				𝐶
				(
				0
				,
				𝑇
				;
				𝐻
				)
				∩
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑉
				)
				.
			

		
	
This completes the proof.
Next, we define the approximation 
	
		
			

				𝑔
			

			

				𝜖
			

		
	
 of 
	
		
			

				𝑔
			

		
	
 and 
	
		
			

				ℎ
			

			

				𝜖
			

		
	
 of 
	
		
			

				ℎ
			

		
	
 as follows. For the details, we refer to [2–4]. Let 
						
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			

				𝑔
			

			

				𝜖
			

			
				
				(
				𝑡
				,
				𝑦
				)
				=
			

			

				𝑅
			

			

				𝑁
			

			
				𝑔
				
				𝑡
				,
				𝑃
			

			

				𝑁
			

			
				𝑦
				(
				𝑠
				)
				−
				𝜖
				Λ
			

			

				𝑁
			

			
				𝑠
				
				𝜌
				(
				𝑠
				)
				𝑑
				𝑠
				,
				𝜖
				>
				0
				.
			

		
	

Here, 
	
		
			

				𝜌
			

		
	
 is a mollifier in 
	
		
			

				𝑅
			

			

				𝑁
			

		
	
, 
	
		
			
				𝑁
				=
				[
				𝜖
			

			
				−
				1
			

			

				]
			

		
	
. 
	
		
			

				𝑃
			

			

				𝑁
			

			
				∶
				𝐿
			

			

				2
			

			
				→
				𝑋
			

			

				𝑁
			

		
	
 is the projection of 
	
		
			

				𝐿
			

			

				2
			

			
				(
				Ω
				)
			

		
	
 on 
	
		
			

				𝑋
			

			

				𝑁
			

		
	
, which is the finite dimensional space generated by 
	
		
			
				{
				𝑒
			

			

				𝑖
			

			

				}
			

			
				𝑁
				𝑖
				=
				1
			

		
	
, where 
	
		
			
				{
				𝑒
			

			

				𝑖
			

			

				}
			

			
				∞
				𝑖
				=
				1
			

		
	
 is an orthonormal basis in 
	
		
			

				𝐿
			

			

				2
			

			
				(
				Ω
				)
			

		
	
. 
	
		
			

				Λ
			

			

				𝑁
			

			
				∶
				𝑅
			

			

				𝑁
			

			
				→
				𝑋
			

			

				𝑁
			

		
	
 is the operator defined by 
	
		
			

				Λ
			

			

				𝑁
			

			
				∑
				(
				𝑠
				)
				=
			

			
				𝑁
				𝑖
				=
				1
			

			

				𝑠
			

			

				𝑖
			

			

				𝑒
			

			

				𝑖
			

			
				,
				𝑠
				=
				(
				𝑠
			

			

				1
			

			
				,
				…
				,
				𝑠
			

			

				𝑁
			

			

				)
			

		
	
.
We define 
	
		
			

				ℎ
			

			

				𝜖
			

			
				∶
				𝑈
				→
				ℝ
			

		
	
: 
						
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			

				ℎ
			

			

				𝜖
			

			
				
				(
				𝑦
				)
				=
				i
				n
				f
				‖
				𝑦
				−
				𝑥
				‖
			

			
				2
				𝑈
			

			
				
			
			
				2
				𝜖
				+
				ℎ
				(
				𝑥
				)
				∶
				𝑥
				∈
				𝐿
			

			

				2
			

			
				
				,
				(
				0
				,
				𝑇
				;
				𝑈
				)
				𝜖
				>
				0
				.
			

		
	

Now we define the penalty 
	
		
			

				𝐿
			

			

				𝜖
			

			
				∶
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑈
				)
				→
				ℝ
			

		
	
 by 
						
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			

				𝐿
			

			

				𝜖
			

			
				
				(
				𝑢
				)
				=
			

			
				𝑇
				0
			

			
				
				𝑔
			

			

				𝜖
			

			
				
				𝑡
				,
				𝑦
			

			

				𝜖
			

			
				
				(
				𝑡
				)
				+
				ℎ
			

			

				𝜖
			

			
				
				1
				(
				𝑢
				)
				𝑑
				𝑡
				+
			

			
				
			
			
				2
				|
				|
				𝑢
				−
				𝑢
			

			

				∗
			

			
				|
				|
			

			
				2
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑈
				)
			

			
				+
				1
			

			
				
			
			
				2
				𝜖
			

			
				1
				/
				2
			

			
				
				𝜖
			

			
				1
				/
				2
			

			
				+
				𝑑
			

			

				𝑆
			

			
				
				𝐹
				
				𝑦
			

			

				𝜖
			

			
				(
				𝑡
				)
				
				
				
			

			

				2
			

			

				,
			

		
	

					where 
	
		
			

				𝑦
			

			

				𝜖
			

		
	
 is the solution of (14). 
	
		
			

				𝑑
			

			

				𝑆
			

			
				(
				𝐹
				(
				𝑦
			

			

				𝜖
			

			
				)
				)
			

		
	
 denotes the distance of 
	
		
			
				𝐹
				(
				𝑦
			

			

				𝜖
			

			

				)
			

		
	
 to 
	
		
			

				𝑆
			

		
	
.
The approximating optimal control problems are as follows:
						
	
 		
 			

				(
			
 			

				P
			
 			

				𝜖
			
 			

				)
			
 		
	

	
		
			
				M
				i
				n
				i
				m
				i
				z
				e
				𝐿
			

			

				𝜖
			

			
				(
				𝑢
				)
				o
				v
				e
				r
				𝑢
				∈
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑈
				)
				.
			

		
	

From Lemma 3, we easily show the following existence of the optimal solutions for 
	
		
			
				(
				P
			

			

				𝜖
			

			

				)
			

		
	
 (see [2, 3]).
Theorem 4.  
	
		
			
				(
				P
			

			

				𝜖
			

			

				)
			

		
	
 has at least one optimal solution.
The following results are useful in discussing the approximating control problems.
Lemma 5.  Let 
	
		
			

				𝑢
			

			

				𝜖
			

			
				→
				𝑢
			

		
	
 weakly in 
	
		
			

				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑈
				)
			

		
	
 as 
	
		
			
				𝜖
				→
				0
			

		
	
. Then there exists a subsequence 
	
		
			
				{
				𝑦
			

			

				𝜖
			

			

				}
			

		
	
, still denoted itself 
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			

				𝑦
			

			

				𝜖
			

			
				[
				]
				→
				𝑦
				𝑠
				𝑡
				𝑟
				𝑜
				𝑛
				𝑔
				𝑙
				𝑦
				𝑖
				𝑛
				𝐶
				(
				0
				,
				𝑇
				;
				𝐻
				)
				∩
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑉
				)
				,
			

		
	

						as 
	
		
			
				𝜖
				→
				0
			

		
	
, where 
	
		
			

				𝑦
			

			

				𝜖
			

		
	
 is the solutions of (14) corresponding to 
	
		
			

				𝑢
			

			

				𝜖
			

		
	
 and 
	
		
			

				𝑦
			

		
	
 is the solutions of (10) corresponding to 
	
		
			

				𝑢
			

		
	
.
Proof. Rewrite (14) as follows: 
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				𝑑
				𝑀
				𝑦
			

			

				𝜖
			

			
				(
				𝑡
				)
			

			
				
			
			
				𝑑
				𝑡
				+
				𝐶
			

			

				𝜖
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑦
			

			

				𝜖
			

			
				(
				𝑡
				)
				=
				𝐵
				𝑢
			

			

				𝜖
			

			
				𝑦
				(
				𝑡
				)
				a
				.
				e
				i
				n
				(
				0
				,
				𝑇
				)
				,
			

			

				𝜖
			

			
				(
				0
				)
				=
				𝑦
			

			

				0
			

			

				.
			

		
	
Multiplying (35) by 
	
		
			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑦
			

			

				𝜖
			

			
				(
				𝑡
				)
			

		
	
, we see 
							
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			

				𝑑
			

			
				
			
			
				|
				|
				𝑀
				𝑑
				𝑡
			

			
				𝜖
				1
				/
				2
			

			

				𝑦
			

			

				𝜖
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				
				𝐶
				+
				2
			

			

				𝜖
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑦
			

			

				𝜖
			

			
				(
				𝑡
				)
				,
				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑦
			

			

				𝜖
			

			
				
				
				(
				𝑡
				)
				=
				2
				𝐵
				𝑢
			

			

				𝜖
			

			
				,
				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑦
			

			

				𝜖
			

			
				
				.
				(
				𝑡
				)
			

		
	
Then, 
	
		
			
				(
				H
				1
				)
				-
				-
				(
				H
				3
				)
			

		
	
 yield 
							
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			

				𝑑
			

			
				
			
			
				|
				|
				𝑀
				𝑑
				𝑡
			

			
				𝜖
				1
				/
				2
			

			

				𝑦
			

			

				𝜖
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				|
				|
				𝑀
				≤
				𝑐
			

			
				𝜖
				1
				/
				2
			

			

				𝑦
			

			

				𝜖
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				|
				|
				+
				𝑐
				𝐵
				𝑢
			

			

				𝜖
			

			
				|
				|
			

			

				2
			

			

				.
			

		
	

						Integrating the above inequality from 
	
		
			

				0
			

		
	
 to 
	
		
			
				𝑡
				(
				𝑡
				∈
				(
				0
				,
				𝑇
				]
				)
			

		
	
 and using Gronwall’s inequality, we have the following: 
							
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			
				|
				|
				𝑀
			

			
				𝜖
				1
				/
				2
			

			

				𝑦
			

			

				𝜖
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				[
				]
				,
				≤
				𝑐
				∀
				𝑡
				∈
				0
				,
				𝑇
			

		
	

						together with (18) implies 
							
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			
				|
				|
				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑦
			

			

				𝜖
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				[
				]
				.
				≤
				𝑐
				∀
				𝑡
				∈
				0
				,
				𝑇
			

		
	
Since 
	
		
			
				|
				𝑣
				|
			

			

				2
			

			
				=
				𝜖
				(
				𝑀
			

			

				𝜖
			

			
				𝑣
				,
				𝑣
				)
				+
				(
				𝐽
			

			
				𝑀
				𝜖
			

			
				𝑣
				,
				𝑣
				)
			

		
	
 for every 
	
		
			
				𝑣
				∈
				𝐻
			

		
	
, taking into account (36) (39), we see 
							
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			
				|
				|
				𝑦
			

			

				𝜖
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				[
				]
				.
				≤
				𝑐
				∀
				𝑡
				∈
				0
				,
				𝑇
			

		
	
Multiplying (35) by 
	
		
			

				𝑀
			

			

				𝜖
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑦
			

			

				𝜖
			

			
				(
				𝑡
				)
			

		
	
, we see 
							
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			

				𝑑
			

			
				
			
			
				|
				|
				𝑀
				𝑑
				𝑡
			

			

				𝜖
			

			

				𝑦
			

			

				𝜖
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				
				𝐶
				+
				2
			

			

				𝜖
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑦
			

			

				𝜖
			

			
				(
				𝑡
				)
				,
				𝑀
			

			

				𝜖
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑦
			

			

				𝜖
			

			
				
				
				(
				𝑡
				)
				=
				2
				𝐵
				𝑢
			

			

				𝜖
			

			
				,
				𝑀
			

			

				𝜖
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑦
			

			

				𝜖
			

			
				
				.
				(
				𝑡
				)
			

		
	
Then we get the following:
							
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			

				𝑑
			

			
				
			
			
				|
				|
				𝑀
				𝑑
				𝑡
			

			

				𝜖
			

			

				𝑦
			

			

				𝜖
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				|
				|
				𝑀
				≤
				𝑐
			

			

				𝜖
			

			

				𝑦
			

			

				𝜖
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				|
				|
				𝑢
				+
				𝑐
			

			

				𝜖
			

			
				|
				|
			

			
				2
				𝑈
			

			

				,
			

		
	

						from which it follows that 
							
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			
				|
				|
				𝑀
			

			

				𝜖
			

			

				𝑦
			

			

				𝜖
			

			
				|
				|
				[
				]
				.
				(
				𝑡
				)
				≤
				𝑐
				∀
				𝑡
				∈
				0
				,
				𝑇
			

		
	
From 
	
		
			
				(
				H
				2
				)
			

		
	
, 
	
		
			
				(
				H
				3
				)
			

		
	
, and (18), we see 
							
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			
				|
				|
				𝐶
			

			

				𝜖
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑦
			

			

				𝜖
			

			
				|
				|
				(
				𝑡
				)
				≤
				𝑐
				.
			

		
	
Then in view of (14) and (24) give 
							
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			
				|
				|
				|
				𝑀
				𝑑
			

			
				
			
			
				𝑦
				𝑑
				𝑡
			

			

				𝜖
			

			
				|
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				|
				|
				𝑢
				≤
				𝑐
				+
				𝑐
			

			

				𝑛
			

			
				|
				|
			

			
				2
				𝑈
			

			

				,
			

		
	
Thus, we see 
							
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			
				|
				|
				|
				𝑀
				𝑑
			

			
				
			
			
				𝑦
				𝑑
				𝑡
			

			

				𝜖
			

			
				|
				|
				|
				(
				𝑡
				)
			

			

				𝑇
			

			
				≤
				𝑐
				,
			

		
	

						which implies 
							
	
 		
 			
				(
				4
				7
				)
			
 			
				(
				4
				8
				)
			
 		
	

	
		
			
				|
				|
				𝑀
				𝑦
			

			

				𝜖
			

			
				|
				|
				[
				]
				,
				|
				|
				|
				𝑑
				(
				𝑡
				)
				≤
				𝑐
				∀
				𝑡
				∈
				0
				,
				𝑇
			

			
				
			
			
				𝑦
				𝑑
				𝑡
			

			

				𝜖
			

			
				|
				|
				|
				(
				𝑡
				)
			

			

				𝑇
			

			
				≤
				𝑐
				.
			

		
	
For every 
	
		
			
				𝑚
				,
				𝑛
				>
				0
			

		
	
,
							
	
 		
 			
				(
				4
				9
				)
			
 		
	

	
		
			

				𝑑
			

			
				
			
			
				|
				|
				𝑀
				𝑑
				𝑡
			

			
				1
				/
				2
			

			
				
				𝑦
			

			

				𝜖
			

			

				𝑚
			

			
				−
				𝑦
			

			

				𝜖
			

			

				𝑛
			

			
				
				|
				|
			

			

				2
			

			
				
				𝐶
				+
				2
			

			

				𝜖
			

			

				𝑚
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑚
			

			

				𝑦
			

			

				𝜖
			

			

				𝑚
			

			
				−
				𝐶
			

			

				𝜖
			

			

				𝑛
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑛
			

			

				𝑦
			

			

				𝜖
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝜖
			

			

				𝑚
			

			
				−
				𝑦
			

			

				𝜖
			

			

				𝑛
			

			
				
				≤
				|
				|
				𝑢
			

			

				𝜖
			

			

				𝑚
			

			
				−
				𝑢
			

			

				𝜖
			

			

				𝑛
			

			
				|
				|
			

			
				2
				𝑈
			

			
				+
				|
				|
				𝑦
			

			

				𝜖
			

			

				𝑚
			

			
				−
				𝑦
			

			

				𝜖
			

			

				𝑛
			

			
				|
				|
			

			

				2
			

			

				,
			

		
	
Using the identities 
	
		
			
				𝑤
				=
				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑚
			

			
				𝑤
				+
				𝜖
			

			

				𝑚
			

			

				𝑀
			

			

				𝜖
			

			

				𝑚
			

			

				𝑤
			

		
	
 for every 
	
		
			
				𝑤
				∈
				𝐻
			

		
	
,  
	
		
			
				a
				n
				d
				s
				o
				f
				o
				r
				t
				h
			

		
	
, we see 
							
	
 		
 			
				(
				5
				0
				)
			
 		
	

	
		
			
				
				𝐶
			

			

				𝜖
			

			

				𝑚
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑚
			

			

				𝑦
			

			

				𝜖
			

			

				𝑚
			

			
				−
				𝐶
			

			

				𝜖
			

			

				𝑛
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑛
			

			

				𝑦
			

			

				𝜖
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝜖
			

			

				𝑚
			

			
				−
				𝑦
			

			

				𝜖
			

			

				𝑛
			

			
				
				=
				
				𝐶
			

			

				𝜖
			

			

				𝑚
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑚
			

			

				𝑦
			

			

				𝜖
			

			

				𝑚
			

			
				−
				𝐶
			

			

				𝜖
			

			

				𝑛
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑛
			

			

				𝑦
			

			

				𝜖
			

			

				𝑛
			

			
				,
				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑚
			

			

				𝑦
			

			

				𝜖
			

			

				𝑚
			

			
				−
				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑛
			

			

				𝑦
			

			

				𝜖
			

			

				𝑛
			

			
				
				+
				
				𝐶
			

			

				𝜖
			

			

				𝑚
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑚
			

			

				𝑦
			

			

				𝜖
			

			

				𝑚
			

			
				−
				𝐶
			

			

				𝜖
			

			

				𝑛
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑛
			

			

				𝑦
			

			

				𝜖
			

			

				𝑛
			

			
				,
				𝜖
			

			

				𝑚
			

			

				𝑀
			

			

				𝜖
			

			

				𝑚
			

			

				𝑦
			

			

				𝜖
			

			

				𝑚
			

			
				−
				𝜖
			

			

				𝑛
			

			

				𝑀
			

			

				𝜖
			

			

				𝑛
			

			

				𝑦
			

			

				𝜖
			

			

				𝑛
			

			
				
				≥
				
				𝐶
			

			

				𝜖
			

			

				𝑚
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑚
			

			

				𝑦
			

			

				𝜖
			

			

				𝑚
			

			
				−
				𝐶
			

			

				𝜖
			

			

				𝑛
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑛
			

			

				𝑦
			

			

				𝜖
			

			

				𝑛
			

			
				,
				𝜖
			

			

				𝑚
			

			

				𝐶
			

			

				𝜖
			

			

				𝑚
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑚
			

			

				𝑦
			

			

				𝜖
			

			

				𝑚
			

			
				−
				𝜖
			

			

				𝑛
			

			

				𝐶
			

			

				𝜖
			

			

				𝑛
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑛
			

			

				𝑦
			

			

				𝜖
			

			

				𝑛
			

			
				
				+
				
				𝐶
			

			

				𝜖
			

			

				𝑚
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑚
			

			

				𝑦
			

			

				𝜖
			

			

				𝑚
			

			
				−
				𝐶
			

			

				𝜖
			

			

				𝑛
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑛
			

			

				𝑦
			

			

				𝜖
			

			

				𝑛
			

			
				,
				𝜖
			

			

				𝑚
			

			

				𝑀
			

			

				𝜖
			

			

				𝑚
			

			

				𝑦
			

			

				𝜖
			

			

				𝑚
			

			
				−
				𝜖
			

			

				𝑛
			

			

				𝑀
			

			

				𝜖
			

			

				𝑛
			

			

				𝑦
			

			

				𝜖
			

			

				𝑛
			

			
				
				
				𝜖
				≥
				−
				𝑐
			

			

				𝑚
			

			
				+
				𝜖
			

			

				𝑛
			

			
				
				.
			

		
	
Because of (43) and (44), we obtain the following:
							
	
 		
 			
				(
				5
				1
				)
			
 		
	

	
		
			
				|
				|
				|
				𝑑
			

			
				
			
			
				𝑀
				𝑑
				𝑡
			

			
				1
				/
				2
			

			
				
				𝑦
			

			

				𝜖
			

			

				𝑚
			

			
				−
				𝑦
			

			

				𝜖
			

			

				𝑛
			

			
				
				|
				|
				|
			

			

				2
			

			
				|
				|
				𝑀
				≤
				𝑐
			

			
				1
				/
				2
			

			
				
				𝑦
			

			

				𝜖
			

			

				𝑚
			

			
				−
				𝑦
			

			

				𝜖
			

			

				𝑛
			

			
				
				|
				|
			

			

				2
			

			
				|
				|
				𝑢
				+
				𝑐
			

			

				𝜖
			

			

				𝑚
			

			
				−
				𝑢
			

			

				𝜖
			

			

				𝑛
			

			
				|
				|
			

			
				2
				𝑈
			

			
				
				𝜖
				+
				𝑐
			

			

				𝑚
			

			
				+
				𝜖
			

			

				𝑛
			

			
				
				,
			

		
	

						where 
	
		
			

				𝑐
			

		
	
 is a constant independent of 
	
		
			

				𝑚
			

		
	
 and 
	
		
			

				𝑛
			

		
	
. Then Gronwall’s inequality yields 
							
	
 		
 			
				(
				5
				2
				)
			
 		
	

	
		
			
				|
				|
				𝑀
			

			
				1
				/
				2
			

			
				
				𝑦
			

			

				𝜖
			

			

				𝑚
			

			
				−
				𝑦
			

			

				𝜖
			

			

				𝑛
			

			
				
				|
				|
			

			

				2
			

			
				
				|
				|
				𝑢
				≤
				𝑐
			

			

				𝜖
			

			

				𝑚
			

			
				−
				𝑢
			

			

				𝜖
			

			

				𝑛
			

			
				|
				|
			

			
				2
				𝑇
			

			
				+
				
				𝜖
			

			

				𝑚
			

			
				+
				𝜖
			

			

				𝑛
			

			
				
				
				[
				]
				.
				∀
				𝑡
				∈
				0
				,
				𝑇
			

		
	
Hence, 
	
		
			
				{
				𝑀
			

			
				1
				/
				2
			

			

				𝑦
			

			

				𝜖
			

			

				𝑛
			

			

				}
			

		
	
 and 
	
		
			
				{
				𝑦
			

			

				𝜖
			

			

				𝑛
			

			

				}
			

		
	
 are Cauchy sequences in 
	
		
			
				𝐶
				(
				[
				0
				,
				𝑇
				]
				;
				𝐻
				)
			

		
	
. Note that 
	
		
			
				(
				H
				2
				)
			

		
	
; then there exists a function 
	
		
			
				𝑦
				∈
				𝐶
				(
				[
				0
				,
				𝑇
				]
				;
				𝐷
				(
				𝑀
			

			
				1
				/
				2
			

			
				)
				)
				∩
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑉
				)
			

		
	
 such that as 
	
		
			
				𝑛
				→
				∞
			

		
	
, 
	
		
			

				𝜖
			

			

				𝑛
			

			
				→
				0
			

		
	
,
							
	
 		
 			
				(
				5
				3
				)
			
 		
	

	
		
			

				𝑦
			

			

				𝜖
			

			

				𝑛
			

			
				[
				]
				→
				𝑦
				s
				t
				r
				o
				n
				g
				l
				y
				i
				n
				𝐶
				(
				0
				,
				𝑇
				;
				𝐻
				)
				∩
				𝐿
			

			

				2
			

			
				𝑀
				(
				0
				,
				𝑇
				;
				𝑉
				)
				,
			

			
				1
				/
				2
			

			

				𝑦
			

			

				𝜖
			

			

				𝑛
			

			
				→
				𝑀
			

			
				1
				/
				2
			

			
				[
				]
				𝑦
				s
				t
				r
				o
				n
				g
				l
				y
				i
				n
				𝐶
				(
				0
				,
				𝑇
				;
				𝐻
				)
				.
			

		
	
Thus, we deduce that as 
	
		
			

				𝜖
			

			

				𝑛
			

			
				→
				0
			

		
	
, 
							
	
 		
 			
				(
				5
				4
				)
			
 		
	

	
		
			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑛
			

			

				𝑦
			

			

				𝜖
			

			

				𝑛
			

			
				[
				]
				→
				𝑦
				s
				t
				r
				o
				n
				g
				l
				y
				i
				n
				𝐶
				(
				0
				,
				𝑇
				;
				𝐻
				)
				,
			

		
	
Note that 
							
	
 		
 			
				(
				5
				5
				)
			
 		
	

	
		
			

				𝑀
			

			
				1
				/
				2
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑛
			

			

				𝑦
			

			

				𝜖
			

			

				𝑛
			

			
				→
				𝑀
			

			
				1
				/
				2
			

			
				[
				]
				𝑦
				s
				t
				r
				o
				n
				g
				l
				y
				i
				n
				𝐶
				(
				0
				,
				𝑇
				;
				𝐻
				)
				.
			

		
	
Indeed, we see 
							
	
 		
 			
				(
				5
				6
				)
			
 		
	

	
		
			
				|
				|
				𝑀
			

			
				1
				/
				2
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑛
			

			

				𝑦
			

			

				𝜖
			

			

				𝑛
			

			
				−
				𝑀
			

			
				1
				/
				2
			

			
				𝑦
				|
				|
			

			

				2
			

			
				|
				|
				𝑀
				≤
				2
			

			
				1
				/
				2
			

			
				
				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑛
			

			

				𝑦
			

			

				𝜖
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝜖
			

			

				𝑛
			

			
				
				|
				|
			

			

				2
			

			
				+
				|
				|
				𝑀
			

			
				1
				/
				2
			

			
				
				𝑦
			

			

				𝜖
			

			

				𝑛
			

			
				
				|
				|
				−
				𝑦
			

			

				2
			

			
				=
				−
				2
				𝜖
			

			

				𝑛
			

			
				
				𝑀
			

			

				𝜖
			

			

				𝑛
			

			

				𝑦
			

			

				𝜖
			

			

				𝑛
			

			
				,
				𝑀
			

			

				𝜖
			

			

				𝑛
			

			

				𝑦
			

			

				𝜖
			

			

				𝑛
			

			
				−
				𝑀
				𝑦
			

			

				𝜖
			

			

				𝑛
			

			
				
				+
				|
				|
				𝑀
			

			
				1
				/
				2
			

			
				
				𝑦
			

			

				𝜖
			

			

				𝑛
			

			
				
				|
				|
				−
				𝑦
			

			

				2
			

			
				≤
				𝑐
				𝜖
			

			

				𝑛
			

			
				+
				|
				|
				𝑀
			

			
				1
				/
				2
			

			
				
				𝑦
			

			

				𝜖
			

			

				𝑛
			

			
				
				|
				|
				−
				𝑦
			

			

				2
			

			
				→
				0
				,
			

		
	

						for all 
	
		
			
				𝑡
				∈
				[
				0
				,
				𝑇
				]
			

		
	
. From (43) and (46), 
	
		
			
				{
				𝑀
			

			

				𝜖
			

			

				𝑛
			

			

				𝑦
			

			

				𝜖
			

			

				𝑛
			

			

				}
			

		
	
 is uniformly bounded and equicontinuous in 
	
		
			
				𝐶
				(
				[
				0
				,
				𝑇
				]
				;
				𝐻
				)
			

		
	
. Hence the Ascoli-Arzela theorem gives that as 
	
		
			

				𝜖
			

			

				𝑛
			

			
				→
				0
			

		
	
, for every 
	
		
			
				𝑣
				∈
				𝐻
				,
				(
				𝑀
			

			

				𝜖
			

			

				𝑛
			

			

				𝑦
			

			

				𝜖
			

			

				𝑛
			

			
				,
				𝑣
				)
				→
				(
				𝑀
				𝑦
				,
				𝑣
				)
			

		
	
 strongly in 
	
		
			
				𝐶
				(
				[
				0
				,
				𝑇
				]
				)
			

		
	
. In virtue of (46) and (48), weak closedness of 
	
		
			
				𝑑
				/
				𝑑
				𝑡
			

		
	
, and 
	
		
			

				𝑀
			

		
	
, it is shown that 
							
	
 		
 			
				(
				5
				7
				)
			
 		
	

	
		
			
				𝑑
				𝑦
			

			

				𝜖
			

			

				𝑛
			

			
				
			
			
				→
				𝑑
				𝑡
				𝑑
				𝑦
			

			
				
			
			
				𝑑
				𝑡
				w
				e
				a
				k
				l
				y
				i
				n
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝐻
				)
				,
				𝑀
				𝑑
				𝑦
			

			

				𝜖
			

			

				𝑛
			

			
				
			
			
				→
				𝑑
				𝑡
				𝑀
				𝑑
				𝑦
			

			
				
			
			
				𝑑
				𝑡
				w
				e
				a
				k
				l
				y
				i
				n
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝐻
				)
				.
			

		
	
Therefore, 
	
		
			
				𝑦
				∈
				𝐴
				𝐶
				(
				[
				0
				,
				𝑇
				]
				;
				𝐷
				(
				𝑀
				)
				)
			

		
	
 and 
	
		
			
				𝑑
				𝑦
				/
				𝑑
				𝑡
				∈
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝐷
				(
				𝑀
				)
				)
			

		
	
. By 
	
		
			
				𝐴
				𝐶
				(
				[
				0
				,
				𝑇
				]
				;
				𝐻
				]
				)
			

		
	
, we denote the space of all 
	
		
			

				𝐻
			

		
	
-valued strongly absolutely continuous functions on 
	
		
			
				[
				0
				,
				𝑇
				]
			

		
	
. We easily get that 
	
		
			
				𝑦
				(
				𝑡
				)
				∈
				𝐷
				(
				𝐶
				)
				a
				.
				e
				.
				𝑡
				∈
				(
				0
				,
				𝑇
				)
			

		
	
 and there exists a function 
	
		
			
				𝜉
				∈
				𝐿
			

			

				∞
			

			
				(
				0
				,
				𝑇
				;
				𝐻
				)
			

		
	
 such that as 
	
		
			

				𝜖
			

			

				𝑛
			

			
				→
				0
			

		
	
,
							
	
 		
 			
				(
				5
				8
				)
			
 		
	

	
		
			

				𝐶
			

			

				𝜖
			

			

				𝑛
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑛
			

			

				𝑦
			

			

				𝜖
			

			

				𝑛
			

			
				→
				𝜉
				w
				e
				a
				k
				l
				y
				s
				t
				a
				r
				i
				n
				𝐿
			

			

				∞
			

			
				(
				0
				,
				𝑇
				;
				𝐻
				)
				,
			

		
	

						and 
	
		
			
				𝜉
				(
				𝑡
				)
				∈
				𝐶
				𝑦
				=
				𝐴
				𝑦
				+
				𝛽
				(
				𝑦
				)
				a
				.
				e
				.
				𝑡
				∈
				(
				0
				,
				𝑇
				)
			

		
	
. Thus, letting 
	
		
			

				𝜖
			

			

				𝑛
			

			
				→
				0
			

		
	
 in (35), we see 
							
	
 		
 			
				(
				5
				9
				)
			
 		
	

	
		
			
				𝑑
				𝑀
				𝑦
				(
				𝑡
				)
			

			
				
			
			
				𝑑
				𝑡
				+
				𝐴
				𝑦
				+
				𝜉
				(
				𝑡
				)
				=
				𝐵
				𝑢
				(
				𝑡
				)
				a
				.
				e
				i
				n
				(
				0
				,
				𝑇
				)
				,
				𝑦
				(
				0
				)
				=
				𝑦
			

			

				0
			

			

				.
			

		
	

Lemma 6.  Let 
	
		
			

				𝑦
			

			

				0
			

			
				∈
				𝐷
				(
				𝑀
				)
				∩
				𝑉
			

		
	
, 
	
		
			
				𝑢
				∈
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑈
				)
			

		
	
; then 
	
		
			

				𝑦
			

			

				𝜖
			

			
				→
				𝑦
			

		
	
 strongly in 
	
		
			
				𝐶
				(
				[
				0
				,
				𝑇
				]
				;
				𝐻
				)
			

		
	
 as 
	
		
			
				𝜖
				→
				0
			

		
	
, where 
	
		
			

				𝑦
			

			

				𝜖
			

		
	
 is the solutions of (14) corresponding to 
	
		
			

				𝑢
			

		
	
 and 
	
		
			

				𝑦
			

		
	
 is the solutions of (1) corresponding to 
	
		
			

				𝑢
			

		
	
 with the initial condition 
	
		
			
				𝑦
				(
				0
				)
				=
				𝑦
			

			

				0
			

		
	
. Furthermore, 
							
	
 		
 			
				(
				6
				0
				)
			
 		
	

	
		
			
				|
				|
				𝑦
			

			

				𝜖
			

			
				|
				|
				−
				𝑦
			

			
				𝐶
				(
				[
				0
				,
				𝑇
				]
				;
				𝐻
				)
			

			
				≤
				𝑐
				𝜖
			

			
				1
				/
				2
			

			

				.
			

		
	

Proof. By the same argument in the proof of Lemma 5, we have the following:
							
	
 		
 			
				(
				6
				1
				)
			
 		
	

	
		
			

				𝑦
			

			

				𝜖
			

			
				[
				]
				→
				𝑦
				s
				t
				r
				o
				n
				g
				l
				y
				i
				n
				𝐶
				(
				0
				,
				𝑇
				;
				𝐻
				)
				∩
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑉
				)
				.
			

		
	
We have for all 
	
		
			

				𝜖
			

		
	
 and 
	
		
			

				𝜆
			

		
	
, 
							
	
 		
 			
				(
				6
				2
				)
			
 		
	

	
		
			
				
				𝑦
				𝑑
				𝑀
			

			

				𝜖
			

			
				(
				𝑡
				)
				−
				𝑦
			

			

				𝜆
			

			
				
				(
				𝑡
				)
			

			
				
			
			
				𝑑
				𝑡
				+
				𝐶
			

			

				𝜖
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑦
			

			

				𝜖
			

			
				(
				𝑡
				)
				−
				𝐶
			

			

				𝜆
			

			

				𝐽
			

			
				𝑀
				𝜆
			

			

				𝑦
			

			

				𝜆
			

			
				𝑦
				(
				𝑡
				)
				=
				0
				a
				.
				e
				i
				n
				(
				0
				,
				𝑇
				)
				,
			

			

				𝜖
			

			
				(
				0
				)
				−
				𝑦
			

			

				𝜆
			

			
				(
				0
				)
				=
				0
				.
			

		
	
Multiplying (62) by 
	
		
			

				𝑦
			

			

				𝜖
			

			
				(
				𝑡
				)
				−
				𝑦
			

			

				𝜆
			

			
				(
				𝑡
				)
			

		
	
, we have
							
	
 		
 			
				(
				6
				3
				)
			
 		
	

	
		
			
				𝑑
				|
				|
				𝑀
			

			
				1
				/
				2
			

			
				
				𝑦
			

			

				𝜖
			

			
				(
				𝑡
				)
				−
				𝑦
			

			

				𝜆
			

			
				
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				
			
			
				
				𝐶
				𝑑
				𝑡
				+
				2
			

			

				𝜖
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑦
			

			

				𝜖
			

			
				(
				𝑡
				)
				−
				𝐶
			

			

				𝜆
			

			

				𝐽
			

			
				𝑀
				𝜆
			

			

				𝑦
			

			

				𝜆
			

			
				(
				𝑡
				)
				,
				𝑦
			

			

				𝜖
			

			
				(
				𝑡
				)
				−
				𝑦
			

			

				𝜆
			

			
				
				(
				𝑡
				)
				=
				0
				.
			

		
	
Using the identities 
	
		
			
				𝑤
				=
				𝐽
			

			
				𝑀
				𝜖
			

			
				𝑤
				+
				𝜖
				𝑀
			

			

				𝜖
			

			

				𝑤
			

		
	
 for every 
	
		
			
				𝑤
				∈
				𝐻
			

		
	
, and  so  forth, we get the following:
							
	
 		
 			
				(
				6
				4
				)
			
 		
	

	
		
			
				
				𝐶
			

			

				𝜖
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑦
			

			

				𝜖
			

			
				−
				𝐶
			

			

				𝜆
			

			

				𝐽
			

			
				𝑀
				𝜆
			

			

				𝑦
			

			

				𝜆
			

			
				,
				𝑦
			

			

				𝜖
			

			
				−
				𝑦
			

			

				𝜆
			

			
				
				=
				
				𝐶
			

			

				𝜖
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑦
			

			

				𝜖
			

			
				−
				𝐶
			

			

				𝜆
			

			

				𝐽
			

			
				𝑀
				𝜆
			

			

				𝑦
			

			

				𝜆
			

			
				,
				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑦
			

			

				𝜖
			

			
				−
				𝐽
			

			
				𝑀
				𝜆
			

			

				𝑦
			

			

				𝜆
			

			
				
				+
				
				𝐶
			

			

				𝜖
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑦
			

			

				𝜖
			

			
				−
				𝐶
			

			

				𝜆
			

			

				𝐽
			

			
				𝑀
				𝜆
			

			

				𝑦
			

			

				𝜆
			

			
				,
				𝜖
				𝑀
			

			

				𝜖
			

			

				𝑦
			

			

				𝜖
			

			
				−
				𝜆
				𝑀
			

			

				𝜆
			

			

				𝑦
			

			

				𝜆
			

			
				
				≥
				−
				𝑐
				(
				𝜖
				+
				𝜆
				)
				.
			

		
	
Thus, we see 
							
	
 		
 			
				(
				6
				5
				)
			
 		
	

	
		
			
				𝑑
				|
				|
				𝑀
			

			
				1
				/
				2
			

			
				
				𝑦
			

			

				𝜖
			

			
				(
				𝑡
				)
				−
				𝑦
			

			

				𝜆
			

			
				
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				
			
			
				𝑑
				𝑡
				≤
				𝑐
				(
				𝜖
				+
				𝜆
				)
				;
			

		
	

						then 
							
	
 		
 			
				(
				6
				6
				)
			
 		
	

	
		
			
				|
				|
				𝑀
			

			
				1
				/
				2
			

			
				
				𝑦
			

			

				𝜖
			

			
				(
				𝑡
				)
				−
				𝑦
			

			

				𝜆
			

			
				
				|
				|
				(
				𝑡
				)
			

			
				2
				𝐶
				(
				[
				0
				,
				𝑇
				]
				;
				𝐻
				)
			

			
				≤
				𝑐
				(
				𝜖
				+
				𝜆
				)
				.
			

		
	
Because of (61), letting 
	
		
			
				𝜆
				→
				0
			

		
	
 in (66), we get (60).
Lemma 7.  Let 
	
		
			

				𝑢
			

			

				𝜖
			

		
	
 be optimal for the problem 
	
		
			
				(
				P
			

			

				𝜖
			

			

				)
			

		
	
 and 
	
		
			

				𝑦
			

			

				𝜖
			

		
	
 be the solution of (14) corresponding to 
	
		
			

				𝑢
			

			

				𝜖
			

		
	
. For 
	
		
			
				𝜖
				→
				0
			

		
	
, then 
							
	
 		
 			
				(
				6
				7
				)
			
 		
	

	
		
			

				𝑦
			

			

				𝜖
			

			
				→
				𝑦
			

			

				∗
			

			
				[
				]
				𝑠
				𝑡
				𝑟
				𝑜
				𝑛
				𝑔
				𝑙
				𝑦
				𝑖
				𝑛
				𝐶
				(
				0
				,
				𝑇
				;
				𝐻
				)
				∩
				𝐿
			

			

				2
			

			
				𝑢
				(
				0
				,
				𝑇
				;
				𝑉
				)
				,
			

			

				𝜖
			

			
				→
				𝑢
			

			

				∗
			

			
				𝑠
				𝑡
				𝑟
				𝑜
				𝑛
				𝑔
				𝑙
				𝑦
				𝑖
				𝑛
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑈
				)
				.
			

		
	

Proof. For any 
	
		
			
				𝜖
				>
				0
			

		
	
, we have the following: 
							
	
 		
 			
				(
				6
				8
				)
			
 		
	

	
		
			

				𝐿
			

			

				𝜖
			

			
				
				𝑢
			

			

				𝜖
			

			
				
				≤
				𝐿
			

			

				𝜖
			

			
				
				𝑢
			

			

				∗
			

			
				
				=
				
			

			
				𝑇
				0
			

			
				
				𝑔
			

			

				𝜖
			

			
				
				𝑡
				,
				𝑦
			

			

				𝜖
			

			
				(
				
				𝑡
				)
				+
				ℎ
			

			

				𝜖
			

			
				
				𝑢
			

			

				∗
			

			
				(
				+
				1
				𝑡
				)
				
				
				𝑑
				𝑡
			

			
				
			
			
				2
				𝜖
			

			
				1
				/
				2
			

			
				
				𝜖
			

			
				1
				/
				2
			

			
				+
				𝑑
			

			

				𝑆
			

			
				
				𝐹
				
				𝑦
			

			

				𝜖
			

			
				(
				𝑡
				)
				
				
				
			

			

				2
			

			

				.
			

		
	
By Lemma 5, we know 
	
		
			

				𝑦
			

			

				𝜖
			

			
				→
				𝑦
			

			

				∗
			

		
	
 strongly in 
	
		
			
				𝐶
				(
				[
				0
				,
				𝑇
				]
				;
				𝐻
				)
			

		
	
. So we have the following: 
							
	
 		
 			
				(
				6
				9
				)
			
 		
	

	
		
			

				𝑔
			

			

				𝜖
			

			
				
				𝑡
				,
				𝑦
			

			

				𝜖
			

			
				
				
				→
				𝑔
				𝑡
				,
				𝑦
			

			

				∗
			

			
				
				[
				]
				,
				ℎ
				∀
				𝑡
				∈
				0
				,
				𝑇
			

			

				𝜖
			

			
				
				𝑢
			

			

				𝜖
			

			
				
				
				𝑢
				→
				ℎ
			

			

				∗
			

			
				
				.
			

		
	
So 
							
	
 		
 			
				(
				7
				0
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝜖
				→
				0
			

			

				
			

			
				𝑇
				0
			

			

				𝑔
			

			

				𝜖
			

			
				
				𝑡
				,
				𝑦
			

			

				𝜖
			

			
				
				
				(
				𝑡
				)
				𝑑
				𝑡
				=
			

			
				𝑇
				0
			

			
				𝑔
				
				𝑡
				,
				𝑦
			

			

				∗
			

			
				
				(
				𝑡
				)
				𝑑
				𝑡
				,
				l
				i
				m
			

			
				𝜖
				→
				0
			

			

				
			

			
				𝑇
				0
			

			

				ℎ
			

			

				𝜖
			

			
				
				𝑢
			

			

				∗
			

			
				
				
				(
				𝑡
				)
				𝑑
				𝑡
				=
			

			
				𝑇
				0
			

			
				ℎ
				
				𝑢
			

			

				∗
			

			
				
				(
				𝑡
				)
				𝑑
				𝑡
				.
			

		
	
Similarly, by (60) and 
	
		
			
				(
				H
				5
				)
			

		
	
, we obtain the following: 
							
	
 		
 			
				(
				7
				1
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				2
				𝜖
			

			
				1
				/
				2
			

			
				
				𝜖
			

			
				1
				/
				2
			

			
				+
				𝑑
			

			

				𝑆
			

			
				
				𝐹
				
				𝑦
			

			

				𝜖
			

			
				
				
				
			

			

				2
			

			
				≤
				1
			

			
				
			
			
				2
				𝜖
			

			
				1
				/
				2
			

			
				
				𝜖
			

			
				1
				/
				2
			

			
				+
				‖
				‖
				𝐹
				
				𝑦
			

			

				𝜖
			

			
				
				
				𝑦
				−
				𝐹
			

			

				∗
			

			
				
				‖
				‖
			

			

				𝑍
			

			

				
			

			

				2
			

			
				≤
				𝑐
				𝜖
				→
				0
				a
				s
				𝜖
				→
				0
				.
			

		
	
Then, we get the following: 
							
	
 		
 			
				(
				7
				2
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝜖
				→
				0
			

			

				𝐿
			

			

				𝜖
			

			
				
				𝑢
			

			

				𝜖
			

			
				
				
				𝑢
				≤
				𝐿
			

			

				∗
			

			
				
				.
			

		
	
On the other hand, since 
	
		
			
				{
				𝑢
			

			

				𝜖
			

			

				}
			

		
	
 is bounded in 
	
		
			

				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑈
				)
			

		
	
, there exists 
	
		
			

				𝑢
			

			

				1
			

			
				∈
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑈
				)
			

		
	
 such that, on some subsequence 
	
		
			

				𝜖
			

		
	
, still denoted by itself, as 
	
		
			
				𝜖
				→
				0
			

		
	
,
							
	
 		
 			
				(
				7
				3
				)
			
 		
	

	
		
			

				𝑢
			

			

				𝜖
			

			
				→
				𝑢
			

			

				1
			

			
				w
				e
				a
				k
				l
				y
				i
				n
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑈
				)
				,
			

		
	

						and so, by Lemma 5, 
							
	
 		
 			
				(
				7
				4
				)
			
 		
	

	
		
			

				𝑦
			

			

				𝜖
			

			
				→
				𝑦
			

			

				1
			

			
				
				𝑢
				=
				𝑦
			

			

				1
			

			
				
				s
				t
				r
				o
				n
				g
				l
				y
				i
				n
				𝐶
				(
				0
				,
				𝑇
				;
				𝐻
				)
				∩
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑉
				)
				.
			

		
	
By (66), one can check easily that 
							
	
 		
 			
				(
				7
				5
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				2
				𝜖
			

			
				1
				/
				2
			

			
				
				𝜖
			

			
				1
				/
				2
			

			
				+
				𝑑
			

			

				𝑆
			

			
				
				𝐹
				
				𝑦
			

			

				𝜖
			

			
				
				
				
			

			

				2
			

			
				≤
				𝑐
				.
			

		
	
Thus, 
	
		
			

				𝑑
			

			

				𝑆
			

			
				(
				𝐹
				(
				𝑦
			

			

				𝜖
			

			
				)
				)
				→
				0
			

		
	
 as 
	
		
			
				𝜖
				→
				0
			

		
	
. Since 
	
		
			

				𝑆
			

		
	
 is closed and convex, 
	
		
			
				𝐹
				(
				𝑦
			

			

				1
			

			
				)
				=
				l
				i
				m
			

			
				𝜖
				→
				0
			

			
				𝐹
				(
				𝑦
			

			

				𝜖
			

			
				)
				∈
				𝑆
			

		
	
. Since the function 
	
		
			
				∫
				𝑢
				→
			

			
				𝑇
				0
			

			
				ℎ
				(
				𝑢
				)
				𝑑
				𝑡
			

		
	
 is weakly lower semicontinuous on 
	
		
			

				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑈
				)
			

		
	
, we see 
							
	
 		
 			
				(
				7
				6
				)
			
 		
	

	
		
			
				l
				i
				m
				i
				n
				f
			

			
				𝜖
				→
				0
			

			

				𝐿
			

			

				𝜖
			

			
				
				𝑢
			

			

				𝜖
			

			
				
				
				𝑢
				≥
				𝐿
			

			

				1
			

			
				
				
				𝑢
				≥
				𝐿
			

			

				∗
			

			
				
				.
			

		
	

						Together with (72), we obtain
							
	
 		
 			
				(
				7
				7
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝜖
				→
				0
			

			

				𝐿
			

			

				𝜖
			

			
				
				𝑢
			

			

				𝜖
			

			
				
				
				𝑢
				=
				𝐿
			

			

				∗
			

			
				
				.
			

		
	
Therefore, 
							
	
 		
 			
				(
				7
				8
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝜖
				→
				0
			

			

				
			

			
				𝑇
				0
			

			
				|
				|
				𝑢
			

			

				𝜖
			

			
				−
				𝑢
			

			

				∗
			

			
				|
				|
			

			
				2
				𝑈
			

			
				𝑑
				𝑡
				=
				0
				.
			

		
	
Hence, 
	
		
			

				𝑦
			

			

				1
			

			
				=
				𝑦
			

			

				∗
			

		
	
, 
	
		
			

				𝑢
			

			

				1
			

			
				=
				𝑢
			

			

				∗
			

		
	
. This completes the proof.
3. Necessary Condition on Optimality
Let 
	
		
			
				𝜕
				𝑔
			

		
	
 the generalized gradient of 
	
		
			
				𝑦
				→
				𝑔
				(
				𝑡
				,
				𝑦
				)
			

		
	
. Let 
	
		
			

				𝑌
			

			

				∗
			

			
				=
				(
				𝐻
			

			

				𝑠
			

			
				(
				Ω
				)
				)
			

			

				′
			

			
				+
				𝑉
			

			

				′
			

		
	
 which is the dual of 
	
		
			
				𝑌
				=
				𝐻
			

			

				𝑠
			

			
				(
				Ω
				)
				∩
				𝑉
			

		
	
 with 
	
		
			
				𝑠
				>
				𝑁
				/
				2
			

		
	
.
Firstly, we consider the following Cauchy problem: 
						
	
 		
 			
				(
				7
				9
				)
			
 		
	

	
		
			
				𝑑
				𝑀
				𝑝
			

			

				𝜖
			

			
				
			
			
				𝑑
				𝑡
				−
				𝐴
				𝑝
			

			

				𝜖
			

			
				−
				̇
				𝛽
			

			

				𝜖
			

			
				
				𝑦
			

			

				𝜖
			

			
				
				𝑝
			

			

				𝜖
			

			
				−
				
				𝐹
			

			

				′
			

			
				
				𝑦
			

			

				𝜖
			

			
				
				
			

			

				∗
			

			

				𝜉
			

			

				𝜖
			

			
				=
				𝜆
			

			

				𝜖
			

			
				∇
				𝑔
			

			

				𝜖
			

			
				
				𝑡
				,
				𝑦
			

			

				𝜖
			

			
				
				𝑝
				i
				n
				(
				0
				.
				𝑇
				)
				,
			

			

				𝜖
			

			
				(
				𝑇
				)
				=
				0
				,
			

		
	

					where 
	
		
			
				̇
				𝛽
			

			

				𝜖
			

			
				=
				(
				𝛽
			

			

				𝜖
			

			

				)
			

			

				′
			

		
	
, 
	
		
			

				𝛽
			

			

				𝜖
			

			
				=
				𝜖
			

			
				−
				1
			

			
				(
				𝐼
				−
				(
				𝐼
				+
				𝜖
				𝛽
				)
			

			
				−
				1
			

			

				)
			

		
	
, 
	
		
			

				𝛽
			

			

				𝜖
			

			
				=
				∫
			

			
				∞
				−
				∞
			

			
				[
				𝛽
			

			

				𝜖
			

			
				(
				𝑟
				−
				𝜖
			

			

				2
			

			
				𝜃
				)
				−
				𝛽
			

			

				𝜖
			

			
				(
				−
				𝜖
			

			

				2
			

			
				𝜃
				)
				]
				𝜌
				(
				𝜃
				)
				𝑑
				𝜃
				+
				𝛽
			

			

				𝜖
			

			
				(
				0
				)
			

		
	
, and 
	
		
			

				𝜌
			

		
	
 is a 
	
		
			

				𝐶
			

			
				∞
				0
			

		
	
-mollifier on 
	
		
			

				ℝ
			

		
	
.
Lemma 8.  Problem (79) has a unique absolutely continuous function 
	
		
			

				𝑝
			

			

				𝜖
			

			
				∈
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑉
				)
				∩
				𝐶
				(
				[
				0
				,
				𝑇
				]
				;
				𝐻
				)
			

		
	
 with 
	
		
			

				𝑝
			

			

				′
			

			

				𝜖
			

			
				∈
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑉
			

			

				′
			

			

				)
			

		
	
, such that 
							
	
 		
 			
				(
				8
				0
				)
			
 			
				(
				8
				1
				)
			
 		
	

	
		
			
				|
				|
				𝑝
			

			

				𝜖
			

			
				|
				|
				(
				𝑡
				)
			

			
				2
				2
			

			
				+
				
			

			
				𝑇
				0
			

			
				‖
				‖
				𝑝
			

			

				𝜖
			

			
				‖
				‖
				(
				𝑡
				)
			

			
				2
				𝑉
			

			
				[
				]
				,
				
				𝑑
				𝑡
				≤
				𝑐
				∀
				𝜖
				>
				0
				,
				𝑡
				∈
				0
				,
				𝑇
			

			

				𝑄
			

			
				|
				|
				𝑝
			

			

				𝜖
			

			
				̇
				𝛽
			

			

				𝜖
			

			
				
				𝑦
			

			

				𝜖
			

			
				
				|
				|
				𝑑
				𝑥
				𝑑
				𝑡
				≤
				𝑐
				∀
				𝜖
				>
				0
				.
			

		
	

Proof. From 
	
		
			
				(
				H
				1
				)
				-
				-
				(
				H
				3
				)
			

		
	
 and 
	
		
			
				̇
				𝛽
			

			

				𝜖
			

			
				(
				𝑦
			

			

				𝜖
			

			
				)
				≥
				0
			

		
	
, it is seen that 
	
		
			
				𝐶
				=
				𝑀
			

			
				−
				1
			

			
				̇
				𝛽
				(
				𝐴
				+
			

			

				𝜖
			

			
				(
				𝑦
			

			

				𝜖
			

			
				)
				)
				∶
				𝑉
				→
				𝑉
			

			

				′
			

		
	
 is demicontinuous monotone operator that satisfies 
							
	
 		
 			
				(
				8
				2
				)
			
 		
	

	
		
			
				(
				𝐶
				𝜔
				,
				𝜔
				)
				≥
				𝑤
				‖
				𝜔
				‖
			

			

				𝑝
			

			
				+
				𝑐
				∀
				𝜔
				∈
				𝑉
				,
				‖
				𝐶
				𝜔
				‖
			

			

				∗
			

			
				
				≤
				𝑐
				1
				+
				‖
				𝜔
				‖
			

			
				𝑝
				−
				1
			

			
				
				,
			

		
	

						where 
	
		
			
				𝑤
				>
				0
			

		
	
 and 
	
		
			
				𝑝
				≥
				2
			

		
	
. It follows by Theorem 
	
		
			
				1
				.
				9
			

			

				′
			

		
	
 of [4] that (79) has a unique solution 
	
		
			

				𝑝
			

			

				𝜖
			

			
				∈
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑉
				)
				∩
				𝐶
				(
				[
				0
				,
				𝑇
				]
				;
				𝐻
				)
			

		
	
 with 
	
		
			

				𝑝
			

			

				′
			

			

				𝜖
			

			
				∈
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑉
			

			

				′
			

			

				)
			

		
	
. Multiplying (79) by 
	
		
			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑝
			

			

				𝜖
			

			
				(
				𝑡
				)
			

		
	
 and using the self-adjointness of 
	
		
			

				𝑀
			

		
	
 and integrating over 
	
		
			
				[
				𝑡
				,
				𝑇
				]
			

		
	
, we see 
							
	
 		
 			
				(
				8
				3
				)
			
 		
	

	
		
			
				|
				|
				𝑀
			

			
				𝜖
				1
				/
				2
			

			

				𝑝
			

			

				𝜖
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				
				+
				𝑤
			

			
				𝑇
				𝑡
			

			
				‖
				‖
				𝑝
			

			

				𝜖
			

			
				‖
				‖
				(
				𝑠
				)
			

			
				2
				𝑉
			

			
				
				𝑑
				𝑠
				≤
				𝑐
			

			
				𝑇
				𝑡
			

			
				|
				|
				𝑀
			

			
				𝜖
				1
				/
				2
			

			

				𝑝
			

			

				𝜖
			

			
				|
				|
				(
				𝑠
				)
			

			

				2
			

			
				𝑑
				𝑠
				+
				𝑐
				,
			

		
	

						Because of 
	
		
			
				𝑎
				|
				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑝
			

			

				𝜖
			

			
				(
				𝑡
				)
				|
			

			

				2
			

			
				≤
				|
				𝑀
			

			
				1
				/
				2
			

			

				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑝
			

			

				𝜖
			

			
				(
				𝑡
				)
				|
			

			

				2
			

			
				≤
				|
				𝑀
			

			
				𝜖
				1
				/
				2
			

			

				𝑝
			

			

				𝜖
			

			
				(
				𝑡
				)
				|
			

			

				2
			

		
	
, 
	
		
			
				|
				𝜆
			

			

				𝜖
			

			
				∇
				𝑔
			

			

				𝜖
			

			
				(
				𝑡
				,
			

			

				∼
			

			

				𝑦
			

			

				𝑛
			

			
				)
				|
			

			

				𝐿
			

			

				∞
			

			
				(
				0
				,
				𝑇
				;
				𝐻
				)
			

			
				≤
				𝑐
			

		
	
 and 
	
		
			
				|
				[
				𝐹
			

			

				′
			

			
				(
				𝑦
			

			

				𝜖
			

			
				)
				]
			

			

				∗
			

			

				𝜉
			

			

				𝜖
			

			

				|
			

			

				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑉
			

			

				′
			

			

				)
			

			
				≤
				𝑐
			

		
	
. And so by Gronwall’s lemma we obtain the following: 
							
	
 		
 			
				(
				8
				4
				)
			
 		
	

	
		
			
				|
				|
				𝑀
			

			
				𝜖
				1
				/
				2
			

			

				𝑝
			

			

				𝜖
			

			
				|
				|
				(
				𝑡
				)
			

			
				2
				2
			

			
				+
				
			

			
				𝑇
				0
			

			
				‖
				‖
				𝑝
			

			

				𝜖
			

			
				‖
				‖
				(
				𝑠
				)
			

			
				2
				𝑉
			

			
				[
				]
				.
				𝑑
				𝑠
				≤
				𝑐
				∀
				𝑡
				∈
				0
				,
				𝑇
			

		
	
Combining the above equalities, we see 
							
	
 		
 			
				(
				8
				5
				)
			
 		
	

	
		
			
				|
				|
				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑝
			

			

				𝜖
			

			
				|
				|
				(
				𝑡
				)
			

			
				2
				2
			

			
				[
				]
				.
				≤
				𝑐
				∀
				𝑡
				∈
				0
				,
				𝑇
			

		
	
Since 
	
		
			
				𝑤
				=
				𝐽
			

			
				𝑀
				𝜖
			

			

				𝑚
			

			
				𝑤
				+
				𝜖
			

			

				𝑚
			

			
				(
				𝑀
			

			

				𝜖
			

			

				𝑚
			

			
				𝑤
				,
				𝑤
				)
			

		
	
 for every 
	
		
			
				𝑤
				∈
				𝐻
			

		
	
, taking into account the above equalities, we have the following: 
							
	
 		
 			
				(
				8
				6
				)
			
 		
	

	
		
			
				|
				|
				𝑝
			

			

				𝜖
			

			
				|
				|
				(
				𝑡
				)
			

			
				2
				2
			

			
				[
				]
				.
				≤
				𝑐
				∀
				𝑡
				∈
				0
				,
				𝑇
			

		
	
Thus, we obtain (80).Multiplying (79) by 
	
		
			
				𝜁
				(
				𝑝
			

			

				𝜖
			

			

				)
			

		
	
 and integrate on 
	
		
			

				𝑄
			

		
	
, where 
	
		
			

				𝜁
			

		
	
 is a smooth monotonically increasing approximation of the sign function such that 
	
		
			
				𝜁
				(
				0
				)
				=
				0
			

		
	
. For instance 
							
	
 		
 			
				(
				8
				7
				)
			
 		
	

	
		
			
				𝜁
				=
				𝜁
			

			

				𝜆
			

			
				
				(
				𝑟
				)
				=
			

			
				∞
				−
				∞
			

			
				
				𝜁
			

			

				𝜆
			

			
				(
				𝑟
				−
				𝜆
				𝜃
				)
				−
				𝜁
			

			

				𝜆
			

			
				
				(
				−
				𝜆
				𝜃
				)
				𝜌
				(
				𝜃
				)
				𝑑
				𝜃
				,
			

		
	

						where 
	
		
			

				𝜁
			

			

				𝜆
			

			
				(
				𝑟
				)
				=
				𝑟
				|
				𝑟
				|
			

			
				−
				1
			

		
	
 for 
	
		
			
				|
				𝑟
				|
				≥
				𝜆
				,
				𝜁
			

			

				𝜆
			

			
				(
				𝑟
				)
				=
				𝜆
			

			
				−
				1
			

			

				𝑟
			

		
	
 for 
	
		
			
				|
				𝑟
				|
				<
				𝜆
			

		
	
, and 
	
		
			

				𝜌
			

		
	
 is a 
	
		
			

				𝐶
			

			
				∞
				0
			

		
	
-mollifier. Then 
	
		
			
				(
				𝐴
				𝑝
			

			

				𝜖
			

			
				(
				𝑡
				)
				,
				𝜁
				(
				𝑝
			

			

				𝜖
			

			
				(
				𝑡
				)
				)
				)
				≥
				0
			

		
	
; therefore, 
							
	
 		
 			
				(
				8
				8
				)
			
 		
	

	
		
			

				
			

			

				𝑄
			

			
				̇
				𝛽
			

			

				𝜖
			

			
				
				𝑦
			

			

				𝜖
			

			
				
				𝜁
				
				𝑝
			

			

				𝜖
			

			
				
				𝑝
			

			

				𝜖
			

			
				
				𝑑
				𝑥
				𝑑
				𝑡
				≤
			

			

				𝑄
			

			
				|
				|
				∇
			

			

				𝑦
			

			

				𝑔
			

			

				𝜖
			

			
				
				𝑡
				,
				𝑦
			

			

				𝜖
			

			
				
				𝜁
				
				𝑝
			

			

				𝜖
			

			
				
				|
				|
				𝑑
				𝑥
				𝑑
				𝑡
				,
				∀
				𝜖
				>
				0
				.
			

		
	
Then, letting 
	
		
			

				𝜁
			

		
	
 tend to the sign function, we get (81).
We state the main results of the necessary conditions on optimality as follows.
Theorem 9.  Suppose that 
	
		
			
				(
				𝐻
				1
				)
				-
				-
				(
				𝐻
				7
				)
			

		
	
 hold. Let 
	
		
			
				(
				𝑦
			

			

				∗
			

			
				,
				𝑢
			

			

				∗
			

			

				)
			

		
	
 be an optimal pair of problem 
	
		
			
				(
				P
				)
			

		
	
. Then, there exists function 
	
		
			
				𝑝
				∈
				𝐿
			

			

				∞
			

			
				(
				0
				,
				𝑇
				;
				𝐻
				)
				∩
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑉
				)
				∩
				𝐵
				𝑉
				(
				[
				0
				,
				𝑇
				]
				;
				𝑌
			

			

				∗
			

			

				)
			

		
	
, a measure 
	
		
			
				𝜇
				∈
				(
				𝐿
			

			

				∞
			

			
				(
				𝑄
				)
				)
			

			

				′
			

		
	
, 
	
		
			

				𝜆
			

			

				0
			

			
				∈
				ℝ
				,
				𝜉
			

			

				0
			

			
				∈
				ℤ
			

			

				∗
			

		
	
 satisfying 
							
	
 		
 			
				(
				8
				9
				)
			
 		
	

	
		
			

				𝑑
			

			
				
			
			
				
				𝐹
				𝑑
				𝑡
				𝑀
				𝑝
				−
				𝐴
				𝑝
				−
				𝜇
				−
			

			

				′
			

			
				
				𝑦
			

			

				∗
			

			
				
				
			

			

				∗
			

			

				𝜉
			

			

				0
			

			
				∈
				𝐿
			

			

				∞
			

			
				𝑑
				(
				0
				,
				𝑇
				;
				𝐻
				)
				,
			

			
				
			
			
				
				𝐹
				𝑑
				𝑡
				𝑀
				𝑝
				(
				𝑡
				)
				−
				𝐴
				𝑝
				(
				𝑡
				)
				−
				𝜇
				−
			

			

				′
			

			
				
				𝑦
			

			

				∗
			

			
				
				
			

			

				∗
			

			
				×
				𝜉
			

			

				0
			

			
				∈
				𝜆
			

			

				0
			

			
				
				𝜕
				𝑔
				𝑡
				,
				𝑦
			

			

				∗
			

			
				
				𝑝
				
				𝜉
				𝑎
				.
				𝑒
				.
				𝑖
				𝑛
				(
				0
				,
				𝑇
				)
				,
				(
				𝑇
				)
				=
				0
				,
			

			

				0
			

			
				
				𝑦
				,
				𝑤
				−
				𝐹
			

			

				∗
			

			
				𝐵
				
				
				≤
				0
				∀
				𝑤
				∈
				𝑆
				,
			

			

				∗
			

			
				𝑝
				∈
				𝜆
			

			

				0
			

			
				
				𝑢
				𝜕
				ℎ
			

			

				∗
			

			
				
				
				𝜆
				(
				𝑡
				)
				,
				𝑎
				.
				𝑒
				.
				𝑡
				∈
				(
				0
				,
				𝑇
				)
				,
			

			

				0
			

			
				,
				𝜉
			

			

				0
			

			
				
				≠
				0
				.
			

		
	

Proof. Since 
	
		
			
				(
				𝑦
			

			

				𝜖
			

			
				,
				𝑢
			

			

				𝜖
			

			

				)
			

		
	
 is optimal for problem 
	
		
			
				(
				P
			

			

				𝜖
			

			

				)
			

		
	
, we see 
							
	
 		
 			
				(
				9
				0
				)
			
 		
	

	
		
			

				𝐿
			

			

				𝜖
			

			
				
				𝑢
			

			
				𝜌
				𝜖
			

			
				
				≥
				𝐿
			

			

				𝜖
			

			
				
				𝑢
			

			

				𝜖
			

			
				
				f
				o
				r
				a
				n
				y
				𝜌
				>
				0
				,
				𝑣
				∈
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑉
				)
				.
			

		
	
Here 
	
		
			

				𝑢
			

			
				𝜌
				𝜖
			

			
				=
				𝑢
			

			

				𝜖
			

			
				+
				𝜌
				𝑣
			

		
	
. Thus, 
							
	
 		
 			
				(
				9
				1
				)
			
 		
	

	
		
			

				𝐿
			

			

				𝜖
			

			
				
				𝑢
			

			
				𝜌
				𝜖
			

			
				
				−
				𝐿
			

			

				𝜖
			

			
				
				𝑢
			

			

				𝜖
			

			

				
			

			
				
			
			
				𝜌
				≥
				0
				.
			

		
	
By some calculation, we have the following: 
							
	
 		
 			
				(
				9
				2
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝜌
				→
				0
			

			

				
			

			
				𝑇
				0
			

			

				𝑔
			

			

				𝜖
			

			
				
				𝑡
				,
				𝑦
			

			
				𝜌
				𝜖
			

			
				
				(
				𝑡
				)
				−
				𝑔
			

			

				𝜖
			

			
				
				𝑡
				,
				𝑦
			

			

				𝜖
			

			
				
				(
				𝑡
				)
			

			
				
			
			
				𝜌
				=
				
			

			
				𝑇
				0
			

			
				
				∇
				𝑔
			

			

				𝜖
			

			
				
				𝑡
				,
				𝑦
			

			

				𝜖
			

			
				
				(
				𝑡
				)
				,
				𝑧
			

			

				𝜖
			

			
				
				𝑑
				𝑡
				,
			

		
	

						where 
	
		
			

				𝑧
			

			

				𝜖
			

			
				∈
				𝐶
				(
				[
				0
				,
				𝑇
				]
				;
				𝐻
				)
				∩
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑉
				)
				∩
				𝑊
			

			
				1
				,
				2
			

			
				(
				[
				0
				,
				𝑇
				]
				;
				𝐻
				)
			

		
	
 is the following solution to the linear equation 
							
	
 		
 			
				(
				9
				3
				)
			
 		
	

	
		
			
				𝑑
				𝑀
				𝑧
			

			
				
			
			
				̇
				𝛽
				𝑑
				𝑡
				+
				𝐴
				𝑧
				+
			

			

				𝜖
			

			
				
				𝑦
			

			

				𝜖
			

			
				
				𝑧
				=
				𝐵
				𝑣
				i
				n
				(
				0
				,
				𝑇
				)
				,
				𝑧
				(
				0
				)
				=
				0
				.
			

		
	
Hence, we also have the following:
							
	
 		
 			
				(
				9
				4
				)
			
 		
	

	
		
			

				𝜆
			

			

				𝜖
			

			
				
				
			

			
				𝑇
				0
			

			
				
				∇
				𝑔
			

			

				𝜖
			

			
				
				𝑡
				,
				𝑦
			

			

				𝜖
			

			
				
				,
				𝑧
			

			

				𝜖
			

			
				
				
				𝑑
				𝑡
				+
			

			
				𝑇
				0
			

			
				
				∇
				ℎ
			

			

				𝜖
			

			
				
				𝑢
			

			

				𝜖
			

			
				
				
				
				,
				𝑣
				𝑑
				𝑡
				+
				⟨
				𝜉
			

			

				𝜖
			

			
				,
				𝐹
			

			

				′
			

			
				
				𝑦
			

			

				𝜖
			

			
				
				𝑧
			

			

				𝜖
			

			
				
				⟩
				≥
			

			
				𝑇
				0
			

			
				⟨
				𝑢
			

			

				∗
			

			
				−
				𝑢
			

			

				𝜖
			

			
				,
				𝑣
				⟩
				𝑑
				𝑡
				,
			

		
	

						where 
							
	
 		
 			
				(
				9
				5
				)
			
 		
	

	
		
			

				𝜆
			

			

				𝜖
			

			
				=
				𝜖
			

			
				1
				/
				2
			

			
				
			
			

				𝑑
			

			

				𝑆
			

			
				
				𝐹
				
				𝑦
			

			

				𝜖
			

			
				
				
				+
				𝜖
			

			
				1
				/
				2
			

			
				,
				𝜉
			

			

				𝜖
			

			
				=
				
				∇
				𝑑
			

			

				𝑆
			

			
				(
				𝐹
				(
				𝑦
			

			

				𝜖
			

			
				)
				)
				,
				i
				f
				𝐹
				(
				𝑦
			

			

				𝜖
			

			
				)
				∉
				𝑆
				,
				0
				o
				t
				h
				e
				r
				w
				i
				s
				e
				,
			

		
	

						and 
	
		
			

				𝜉
			

			

				𝜖
			

			
				∈
				𝜕
				𝑑
			

			

				𝑆
			

			
				(
				𝐹
				(
				𝑦
			

			

				𝜖
			

			
				)
				)
			

		
	
. Since 
	
		
			

				𝑆
			

		
	
 is convex and closed, we see 
							
	
 		
 			
				(
				9
				6
				)
			
 		
	

	
		
			
				‖
				‖
				𝜉
			

			

				𝜖
			

			
				‖
				‖
			

			

				𝑍
			

			

				∗
			

			
				=
				
				1
				,
				i
				f
				𝐹
				(
				𝑦
			

			

				𝜖
			

			
				)
				∉
				𝑆
				,
				0
				o
				t
				h
				e
				r
				w
				i
				s
				e
				,
				1
				≤
				𝜑
			

			
				2
				𝜖
			

			
				+
				‖
				‖
				𝜉
			

			

				𝜖
			

			
				‖
				‖
			

			
				2
				𝑍
			

			

				∗
			

			
				≤
				2
				.
			

		
	
So, we see 
							
	
 		
 			
				(
				9
				7
				)
			
 		
	

	
		
			

				𝜆
			

			

				𝜖
			

			
				→
				𝜆
			

			

				0
			

			
				,
				𝜉
			

			

				𝜖
			

			
				→
				𝜉
			

			

				0
			

			
				w
				e
				a
				k
				l
				y
				i
				n
				𝑍
			

			

				∗
			

			

				.
			

		
	

						It follows from Lemma 7 that 
	
		
			

				𝑦
			

			

				𝜖
			

			
				→
				𝑦
			

			

				∗
			

		
	
 strongly in 
	
		
			
				𝐶
				(
				[
				0
				,
				𝑇
				]
				;
				𝐻
				)
				∩
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑉
				)
			

		
	
. By the same arguments as those in [2–4], there exists 
	
		
			
				𝑝
				∈
				𝐶
				(
				[
				0
				,
				𝑇
				]
				;
				𝐻
				)
				∩
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑉
				)
				∩
				𝐵
				𝑉
				(
				[
				0
				,
				𝑇
				]
				;
				𝑌
			

			

				∗
			

			

				)
			

		
	
 and 
	
		
			
				𝜇
				∈
				(
				𝐿
			

			

				∞
			

			
				(
				𝑄
				)
				)
			

			

				∗
			

		
	
 such that, on some subsequence 
	
		
			

				𝜖
			

		
	
, still denoted itself 
							
	
 		
 			
				(
				9
				8
				)
			
 		
	

	
		
			

				𝑝
			

			

				𝜖
			

			
				(
				𝑡
				)
				→
				𝑝
				s
				t
				r
				o
				n
				g
				l
				y
				i
				n
				𝑌
			

			

				∗
			

			
				[
				]
				,
				,
				∀
				𝑡
				∈
				0
				,
				𝑇
			

		
	

						where 
	
		
			
				𝐵
				𝑉
				(
				[
				0
				,
				𝑇
				]
				;
				𝑌
			

			

				∗
			

			

				)
			

		
	
 is the space of all 
	
		
			

				𝑌
			

			

				∗
			

		
	
-valued functions 
	
		
			
				𝑝
				∶
				[
				0
				,
				𝑇
				]
				→
				𝑌
			

			

				∗
			

		
	
 with bounded variation on 
	
		
			
				[
				0
				,
				𝑇
				]
			

		
	
. On the other hand, by (80), we see 
							
	
 		
 			
				(
				9
				9
				)
			
 		
	

	
		
			

				𝑝
			

			

				𝜖
			

			
				→
				𝑝
				w
				e
				a
				k
				l
				y
				s
				t
				a
				r
				i
				n
				𝐿
			

			

				∞
			

			
				(
				0
				,
				𝑇
				;
				𝐻
				)
				,
				w
				e
				a
				k
				l
				y
				i
				n
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑉
				)
				.
			

		
	
Note that 
	
		
			
				𝑉
				↪
				𝐻
			

		
	
 is compact, for every 
	
		
			
				𝜆
				>
				0
			

		
	
, there is 
	
		
			
				𝛿
				(
				𝜆
				)
				>
				0
			

		
	
 such that 
							
	
 		
 			
				(
				1
				0
				0
				)
			
 		
	

	
		
			
				|
				|
				𝑝
			

			

				𝜖
			

			
				|
				|
				(
				𝑡
				)
				−
				𝑝
				(
				𝑡
				)
			

			

				2
			

			
				≤
				‖
				‖
				𝑝
			

			

				𝜖
			

			
				‖
				‖
				(
				𝑡
				)
				−
				𝑝
				(
				𝑡
				)
			

			

				𝑉
			

			
				‖
				‖
				𝑝
				+
				𝛿
				(
				𝜆
				)
			

			

				𝜖
			

			
				‖
				‖
				(
				𝑡
				)
				−
				𝑝
				(
				𝑡
				)
			

			

				𝑌
			

			

				∗
			

			
				[
				]
				.
				∀
				𝑡
				∈
				0
				,
				𝑇
			

		
	
This yields 
							
	
 		
 			
				(
				1
				0
				1
				)
			
 		
	

	
		
			

				𝑝
			

			

				𝜖
			

			
				→
				𝑝
				s
				t
				r
				o
				n
				g
				l
				y
				i
				n
				𝐿
			

			

				2
			

			
				𝑝
				(
				0
				,
				𝑇
				;
				𝐻
				)
				,
			

			

				𝜖
			

			
				[
				]
				.
				(
				𝑡
				)
				→
				𝑝
				(
				𝑡
				)
				w
				e
				a
				k
				l
				y
				i
				n
				𝐻
				∀
				𝑡
				∈
				0
				,
				𝑇
			

		
	
Moreover, by (81) we infer that there is 
	
		
			
				𝜇
				∈
				(
				𝐿
			

			

				∞
			

			
				(
				𝑄
				)
				)
			

			

				∗
			

		
	
 such that, on some generalized subsequence 
	
		
			

				𝜖
			

		
	
, 
							
	
 		
 			
				(
				1
				0
				2
				)
			
 		
	

	
		
			
				̇
				𝛽
			

			

				𝜖
			

			
				
				𝑦
			

			

				𝜖
			

			
				
				𝑝
			

			

				𝜖
			

			
				→
				𝜇
				w
				e
				a
				k
				l
				y
				s
				t
				a
				r
				i
				n
				(
				𝐿
			

			

				∞
			

			
				(
				𝑄
				)
				)
			

			

				∗
			

			
				,
				∇
				𝑔
			

			

				𝜖
			

			
				
				𝑡
				,
				𝑦
			

			

				𝜖
			

			
				
				→
				𝜂
				w
				e
				a
				k
				l
				y
				s
				t
				a
				r
				i
				n
				𝐿
			

			

				∞
			

			
				(
				0
				,
				𝑇
				;
				𝐻
				)
				)
			

			

				∗
			

			
				,
				
				𝜂
				(
				𝑡
				)
				∈
				𝜕
				𝑔
				𝑡
				,
				𝑦
			

			

				∗
			

			
				
				a
				.
				e
				.
				𝑡
				∈
				(
				0
				,
				𝑇
				)
				.
			

		
	
Since 
	
		
			

				𝐹
			

		
	
 is continuously differentiable from 
	
		
			

				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑉
				)
			

		
	
 to 
	
		
			

				𝑍
			

		
	
, 
							
	
 		
 			
				(
				1
				0
				3
				)
			
 		
	

	
		
			
				
				𝐹
			

			

				′
			

			
				
				𝑦
			

			

				𝜖
			

			
				
				
			

			

				∗
			

			

				𝜉
			

			

				𝜖
			

			
				→
				
				𝐹
			

			

				′
			

			
				
				𝑦
			

			

				∗
			

			
				
				
			

			

				∗
			

			

				𝜉
			

			

				0
			

			
				w
				e
				a
				k
				l
				y
				𝐿
			

			

				2
			

			
				
				0
				,
				𝑇
				;
				𝑉
			

			

				′
			

			
				
				.
			

		
	
Now letting 
	
		
			
				𝜖
				→
				0
			

		
	
 in (79), it follows that 
							
	
 		
 			
				(
				1
				0
				4
				)
			
 			
				(
				1
				0
				5
				)
			
 		
	

	
		
			

				𝑑
			

			
				
			
			
				
				𝐹
				𝑑
				𝑡
				𝑀
				𝑝
				−
				𝐴
				𝑝
				−
				𝜇
				−
			

			

				′
			

			
				
				𝑦
			

			

				∗
			

			
				
				
			

			

				∗
			

			

				𝜉
			

			

				0
			

			
				∈
				𝐿
			

			

				∞
			

			
				𝑑
				(
				0
				,
				𝑇
				;
				𝐻
				)
				,
			

			
				
			
			
				
				𝐹
				𝑑
				𝑡
				𝑀
				𝑝
				(
				𝑡
				)
				−
				𝐴
				𝑝
				(
				𝑡
				)
				−
				𝜇
				−
			

			

				′
			

			
				
				𝑦
			

			

				∗
			

			
				
				
			

			

				∗
			

			
				×
				𝜉
			

			

				0
			

			
				∈
				𝜆
			

			

				0
			

			
				
				𝜕
				𝑔
				𝑡
				,
				𝑦
			

			

				∗
			

			
				
				𝑝
				a
				.
				e
				.
				i
				n
				(
				0
				,
				𝑇
				)
				,
				(
				𝑇
				)
				=
				0
				.
			

		
	
It follows from (93), (94), and (79) that 
							
	
 		
 			
				(
				1
				0
				6
				)
			
 		
	

	
		
			
				−
				
			

			
				𝑇
				0
			

			
				⟨
				𝐵
			

			

				∗
			

			

				𝑝
			

			

				𝜖
			

			
				,
				𝑣
				⟩
				𝑑
				𝑡
				+
				𝜆
			

			

				𝜖
			

			

				
			

			
				𝑇
				0
			

			
				⟨
				∇
				ℎ
			

			

				𝜖
			

			
				
				𝑢
			

			

				𝜖
			

			
				
				≥
				
				,
				𝑣
				⟩
				𝑑
				𝑡
			

			
				𝑇
				0
			

			
				⟨
				𝑢
			

			

				∗
			

			
				−
				𝑢
			

			

				𝜖
			

			
				,
				𝑣
				⟩
				𝑑
				𝑡
				,
				∀
				𝑣
				∈
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑉
				)
				.
			

		
	
By Lemma 7, 
	
		
			

				𝑢
			

			

				𝜖
			

			
				→
				𝑢
			

			

				∗
			

		
	
 strongly in 
	
		
			

				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑈
				)
			

		
	
, it follows 
							
	
 		
 			
				(
				1
				0
				7
				)
			
 		
	

	
		
			

				
			

			
				𝑇
				0
			

			
				
				∇
				ℎ
			

			

				𝜖
			

			
				
				𝑢
			

			

				𝜖
			

			
				
				
				
				,
				𝑣
				𝑑
				𝑡
				→
			

			
				𝑇
				0
			

			
				
				𝑢
				⟨
				∇
				𝜁
				(
				𝑡
				)
				,
				𝑣
				⟩
				𝑑
				𝑡
				,
				𝜁
				(
				𝑡
				)
				∈
				𝜕
				ℎ
			

			

				∗
			

			
				
				a
				.
				e
				.
				i
				n
				(
				0
				,
				𝑇
				)
				,
				∀
				𝑣
				∈
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑉
				)
				.
			

		
	
Thus, 
							
	
 		
 			
				(
				1
				0
				8
				)
			
 		
	

	
		
			
				−
				
			

			
				𝑇
				0
			

			
				⟨
				𝐵
			

			

				∗
			

			
				𝑝
				,
				𝑣
				⟩
				𝑑
				𝑡
				+
				𝜆
			

			

				0
			

			

				
			

			
				𝑇
				0
			

			
				⟨
				𝜁
				(
				𝑡
				)
				,
				𝑣
				⟩
				𝑑
				𝑡
				≥
				0
				,
				∀
				𝑣
				∈
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑉
				)
				.
			

		
	
Since 
	
		
			

				𝜉
			

			

				𝜖
			

			
				∈
				𝑑
			

			

				𝑆
			

			
				(
				𝐹
				(
				𝑦
			

			

				𝜖
			

			
				)
				)
			

		
	
, we get 
	
		
			
				⟨
				𝜉
			

			

				𝜖
			

			
				,
				𝑤
				−
				𝐹
				(
				𝑦
			

			

				𝜖
			

			
				)
				⟩
				≤
				0
			

		
	
 for all 
	
		
			
				𝑤
				∈
				𝑆
			

		
	
. Now we claim that 
	
		
			
				(
				𝜆
			

			

				0
			

			
				,
				𝜉
			

			

				0
			

			
				)
				≠
				0
			

		
	
. Indeed, if 
	
		
			

				𝜆
			

			

				0
			

			
				=
				0
			

		
	
, we have that 
	
		
			
				{
				𝜉
			

			

				𝜖
			

			

				}
			

		
	
 is bounded in 
	
		
			

				𝑍
			

			

				∗
			

		
	
. By (H3), 
	
		
			

				𝑆
			

		
	
 has finite codimentionality, so dose 
	
		
			
				𝑆
				−
				𝐹
				(
				𝑦
			

			

				∗
			

			

				)
			

		
	
. Thus, it follows that 
	
		
			

				𝜉
			

			

				𝜖
			

			
				→
				𝜉
			

			

				0
			

		
	
 weakly in 
	
		
			

				𝑍
			

			

				∗
			

		
	
 and 
							
	
 		
 			
				(
				1
				0
				9
				)
			
 		
	

	
		
			
				
				𝜉
			

			

				0
			

			
				
				𝑦
				,
				𝑤
				−
				𝐹
			

			

				∗
			

			
				
				
				≤
				0
				∀
				𝑤
				∈
				𝑆
				.
			

		
	
Finally, if 
	
		
			
				(
				𝜆
			

			

				0
			

			
				,
				𝑝
				)
				=
				0
			

		
	
, it follows from (105) that 
	
		
			
				𝜇
				+
				[
				𝐹
			

			

				′
			

			
				(
				𝑦
			

			

				∗
			

			
				)
				]
			

			

				∗
			

			

				𝜉
			

			

				0
			

			
				=
				0
			

		
	
. So in the case that 
	
		
			
				𝜇
				∉
				𝑅
				(
				[
				𝐹
			

			

				′
			

			
				(
				𝑦
			

			

				∗
			

			
				)
				]
			

			

				∗
			

			

				)
			

		
	
, we must have 
	
		
			
				(
				𝜆
			

			

				0
			

			
				,
				𝑝
				)
				≠
				0
			

		
	
. Together with (104), (105), and (109), we completes the proof.
4. Some Examples
In this section, we present two examples.
Example 1. Consider the initial value controlled system 
							
	
 		
 			
				(
				1
				1
				0
				)
			
 		
	

	
		
			

				𝑦
			

			

				𝑡
			

			
				−
				𝑦
			

			
				𝑥
				𝑥
				𝑡
			

			
				+
				𝑦
				𝑦
			

			

				𝑥
			

			
				[
				]
				,
				[
				]
				,
				+
				𝛽
				(
				𝑦
				)
				∋
				𝐵
				𝑢
				i
				n
				(
				0
				,
				1
				)
				×
				0
				,
				𝑇
				𝑦
				(
				0
				,
				𝑡
				)
				=
				𝑦
				(
				1
				,
				𝑡
				)
				=
				0
				𝑡
				∈
				0
				,
				𝑇
				𝑦
				(
				𝑥
				,
				0
				)
				=
				𝑦
			

			

				0
			

			
				i
				n
				(
				0
				,
				1
				)
				,
			

		
	

						where 1 
	
		
			
				𝑦
				=
				𝑦
				(
				𝑥
				,
				𝑡
				)
			

		
	
 is a function on 
	
		
			
				ℝ
				×
				[
				0
				,
				𝑇
				]
			

		
	
 and 
	
		
			
				𝛽
				(
				⋅
				)
			

		
	
 is a multivalued function on 
	
		
			

				ℝ
			

		
	
.If 
	
		
			
				𝛽
				(
				𝑦
				)
				=
				0
			

		
	
, rewrite (110) in the form 
							
	
 		
 			
				(
				1
				1
				1
				)
			
 		
	

	
		
			

				𝑦
			

			

				𝑡
			

			
				−
				𝑦
			

			
				𝑥
				𝑥
				𝑡
			

			
				+
				𝑦
				𝑦
			

			

				𝑥
			

			
				[
				]
				,
				[
				]
				,
				=
				𝐵
				𝑢
				i
				n
				(
				0
				,
				1
				)
				×
				0
				,
				𝑇
				𝑦
				(
				0
				,
				𝑡
				)
				=
				𝑦
				(
				1
				,
				𝑡
				)
				=
				0
				𝑡
				∈
				0
				,
				𝑇
				𝑦
				(
				𝑥
				,
				0
				)
				=
				𝑦
			

			

				0
			

			
				i
				n
				(
				0
				,
				1
				)
				.
			

		
	

						(111) was introduced by Benjamin et al. [23] as an approximate equation of the propagation of one-dimensional waves of small amplitude in water. If 
	
		
			

				𝑦
			

			

				𝑥
			

			
				≥
				0
			

		
	
, 
	
		
			
				𝛽
				(
				⋅
				)
			

		
	
 satisfies 
	
		
			
				(
				H
				3
				)
				.
				𝑦
			

			

				0
			

			
				∈
				𝐻
			

			

				2
			

			
				(
				(
				0
				,
				1
				)
				)
				∩
				𝐻
			

			
				1
				0
			

			
				(
				(
				0
				,
				1
				)
				)
			

		
	
. Since 
	
		
			

				𝛽
			

			

				𝜖
			

		
	
 is a Lipschitz continuous and monotone increasing function, integration by parts yields
							
	
 		
 			
				(
				1
				1
				2
				)
			
 		
	

	
		
			

				
			

			

				ℝ
			

			

				𝛽
			

			

				𝜖
			

			
				
				𝑑
				(
				𝑦
				)
				𝐼
				−
			

			

				2
			

			
				
			
			
				𝑑
				𝑥
			

			

				2
			

			
				
				𝑦
				𝑑
				𝑥
				≥
				0
				f
				o
				r
				e
				v
				e
				r
				y
				𝑦
				∈
				𝐻
			

			

				2
			

			
				(
				ℝ
				)
				.
			

		
	
Thus, 
	
		
			
				𝐶
				(
				=
				𝐴
				+
				𝛽
				)
			

		
	
 is m-accretive in 
	
		
			

				𝐻
			

		
	
. We easily proof the following result.
Theorem 10.  Suppose that 
	
		
			
				(
				𝐻
				1
				)
				-
				-
				(
				𝐻
				7
				)
			

		
	
 hold. Let 
	
		
			
				(
				𝑦
			

			

				∗
			

			
				,
				𝑢
			

			

				∗
			

			

				)
			

		
	
 be an optimal pair of problem 
	
		
			
				(
				P
				)
			

		
	
. Then there exists function 
	
		
			
				𝑝
				∈
				𝐿
			

			

				∞
			

			
				(
				0
				,
				𝑇
				;
				𝐻
				)
				∩
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑉
				)
				∩
				𝐵
				𝑉
				(
				[
				0
				,
				𝑇
				]
				;
				𝑌
			

			

				∗
			

			

				)
			

		
	
, a measure 
	
		
			
				𝜇
				∈
				(
				𝐿
			

			

				∞
			

			
				(
				𝑄
				)
				)
			

			

				′
			

		
	
 and 
	
		
			

				𝑅
			

		
	
 with 
	
		
			

				𝜆
			

			

				0
			

			
				,
				𝜉
			

			

				0
			

		
	
 satisfying
							
	
 		
 			
				(
				1
				1
				3
				)
			
 		
	

	
		
			
				
				𝑑
				𝐼
				−
			

			

				2
			

			
				
			
			
				𝑑
				𝑥
			

			

				2
			

			
				
				𝑑
			

			
				
			
			
				𝑑
				𝑡
				𝑝
				−
				𝑦
				𝑝
			

			

				𝑥
			

			
				
				𝐹
				−
				𝜇
				−
			

			

				′
			

			
				
				𝑦
			

			

				∗
			

			
				
				
			

			

				∗
			

			
				×
				𝜉
			

			

				0
			

			
				∈
				𝐿
			

			

				∞
			

			
				
				𝑑
				(
				0
				,
				𝑇
				;
				𝐻
				)
				,
				𝐼
				−
			

			

				2
			

			
				
			
			
				𝑑
				𝑥
			

			

				2
			

			
				
				𝑑
			

			
				
			
			
				𝑑
				𝑡
				𝑝
				−
				𝑦
				𝑝
			

			

				𝑥
			

			
				
				𝐹
				−
				𝜇
				−
			

			

				′
			

			
				
				𝑦
			

			

				∗
			

			
				
				
			

			

				∗
			

			
				×
				𝜉
			

			

				0
			

			
				∈
				𝜆
			

			

				0
			

			
				
				𝜕
				𝑔
				𝑡
				,
				𝑦
			

			

				∗
			

			
				
				[
				]
				,
				[
				]
				,
				
				𝜉
				𝑎
				.
				𝑒
				.
				𝑖
				𝑛
				(
				0
				,
				1
				)
				×
				0
				,
				𝑇
				𝑝
				(
				0
				,
				𝑡
				)
				=
				𝑝
				(
				1
				,
				𝑡
				)
				=
				0
				𝑖
				𝑛
				0
				,
				𝑇
				𝑝
				(
				𝑥
				,
				𝑇
				)
				=
				0
				𝑖
				𝑛
				(
				0
				,
				1
				)
				.
			

			

				0
			

			
				
				𝑦
				,
				𝑤
				−
				𝐹
			

			

				∗
			

			
				𝐵
				
				
				≤
				0
				∀
				𝑤
				∈
				𝑆
				,
			

			

				∗
			

			
				𝑝
				∈
				𝜆
			

			

				0
			

			
				
				𝑢
				𝜕
				ℎ
			

			

				∗
			

			
				
				
				𝜆
				(
				𝑡
				)
				,
				𝑎
				.
				𝑒
				.
				𝑡
				∈
				(
				0
				,
				𝑇
				)
				,
			

			

				0
			

			
				,
				𝜉
			

			

				0
			

			
				
				≠
				0
				.
			

		
	

Example 2. Consider the initial boundary value controlled system
							
	
 		
 			
				(
				1
				1
				4
				)
			
 		
	

	
		
			
				(
				𝐼
				−
				Δ
				)
				𝑑
				𝑦
				(
				𝑥
				,
				𝑡
				)
			

			
				
			
			
				[
				]
				,
				[
				]
				,
				𝑑
				𝑡
				−
				Δ
				𝑦
				(
				𝑥
				,
				𝑡
				)
				+
				𝛽
				(
				𝑦
				(
				𝑥
				,
				𝑡
				)
				)
				∋
				𝐵
				𝑢
				(
				𝑥
				,
				𝑡
				)
				i
				n
				Ω
				×
				0
				,
				𝑇
				𝑦
				(
				𝑥
				,
				𝑡
				)
				=
				0
				o
				n
				𝜕
				Ω
				×
				0
				,
				𝑇
				𝑦
				(
				𝑥
				,
				0
				)
				=
				𝑦
			

			

				0
			

			
				i
				n
				Ω
				,
			

		
	

						where 
	
		
			
				Ω
				⊂
				ℝ
			

			

				𝑁
			

		
	
 is a bounded domain with smooth boundary. 
	
		
			

				𝑦
			

			

				0
			

			
				∈
				𝐻
			

			
				1
				0
			

			
				(
				Ω
				)
				∩
				𝐻
			

			

				2
			

			
				(
				Ω
				)
			

		
	
, 
	
		
			
				𝛽
				(
				⋅
				)
			

		
	
 satisfies 
	
		
			
				(
				H
				3
				)
				.
				𝑀
				𝑦
				=
				(
				𝐼
				−
				Δ
				)
				𝑦
			

		
	
 with 
	
		
			
				𝐷
				(
				𝑀
				)
				=
				𝐻
			

			
				1
				0
			

			
				(
				Ω
				)
				∩
				𝐻
			

			

				2
			

			
				(
				Ω
				)
			

		
	
, 
	
		
			
				𝐴
				𝑦
				=
				−
				Δ
				𝑦
			

		
	
. Since 
	
		
			

				𝛽
			

			

				𝜖
			

		
	
 is a monotone function,
							
	
 		
 			
				(
				1
				1
				5
				)
			
 		
	

	
		
			

				
			

			

				Ω
			

			

				𝛽
			

			

				𝜖
			

			
				(
				𝑦
				)
				(
				−
				Δ
				𝑦
				)
				𝑑
				𝑥
				≥
				0
				,
				f
				o
				r
				e
				v
				e
				r
				y
				𝑦
				∈
				𝐻
			

			
				2
				0
			

			
				(
				Ω
				)
				∩
				𝐻
			

			

				2
			

			
				(
				Ω
				)
				.
			

		
	
Then, 
	
		
			
				𝐶
				(
				=
				𝐴
				+
				𝛽
				)
			

		
	
 is m-accretive in 
	
		
			

				𝐻
			

		
	
. We easily obtain similar necessary condition of optimality of problem 
	
		
			
				(
				P
				)
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