Regularity of Functions on the Reduced Quaternion Field in Clifford Analysis

Ji Eun Kim, Su Jin Lim, and Kwang Ho Shon

Department of Mathematics, Pusan National University, Busan 609-735, Republic of Korea

Correspondence should be addressed to Kwang Ho Shon; khshon@pusan.ac.kr

Received 11 December 2013; Revised 12 February 2014; Accepted 18 February 2014; Published 20 March 2014

Academic Editor: Junesang Choi

Copyright © 2014 Ji Eun Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We define a new hypercomplex structure of \mathbb{R}^3 and a regular function with values in that structure. From the properties of regular functions, we research the exponential function on the reduced quaternion field and represent the corresponding Cauchy-Riemann equations in hypercomplex structures of \mathbb{R}^3.

1. Introduction

We shall denote by \mathbb{C}, \mathbb{R}, and \mathbb{Z}, respectively, the field of complex numbers, the field of real numbers, and the set of all integers. We [15, 16] showed that any complex-valued harmonic function f_1 in a pseudoconvex domain D of $\mathbb{C}^2 \times \mathbb{C}^2$ has a hyperconjugate harmonic function f_2 in D such that the quaternion-valued function $f_1 + f_2 j$ is hyperholomorphic in D and gave a regeneration theorem in quaternion analysis in the view of complex and Clifford analysis. Further, we [17, 18] investigated the existence of the hyperconjugate harmonic functions of the octonion number system and some properties of dual quaternion functions.

In this paper, we introduce the Fueter variables on \mathbb{R}^3 and investigate a hypercomplex structure of \mathbb{R}^3. We define regular functions and obtain the representation of the corresponding Cauchy-Riemann equations for regular functions in the reduced quaternion field.

2. Preliminaries

A three-dimensional, noncommutative, and associative real field, called a ternary number system, is constructed by three base elements e_0, e_1, and e_2 which satisfy

\begin{equation}
\begin{aligned}
e_0^2 &= 1, & e_1^2 &= e_2^2 &= -1, \\
e_1 e_2 &= -e_2 e_1, \\
\bar{e}_r &= e_0, & e_r &= -e_r & (r &= 1, 2).
\end{aligned}
\end{equation}

In addition, let e_0 be the identity of a ternary number system and e_1 identifies the imaginary unit $\sqrt{-1}$ in the complex field, and

\begin{equation}
\mathbb{C}(T) := \{ z = e_1 z_1 + e_2 z_2 \mid z_1, z_2 \in \mathbb{C} \}.
\end{equation}
where \(z_r = x_r - (1/2)e_r x_0 \) (\(r = 1, 2 \)) and \(x_m \) (\(m = 0, 1, 2 \)) are real variables. They satisfy the equations

\[
\overline{z}_r \overline{w}_k = \overline{w}_k z_r \quad (r \neq k),
\]

where \(\overline{z}_r = x_r + (1/2)e_r x_0 \) (\(r = 1, 2 \)), \(\overline{w}_k = y_k - (1/2)e_k y_0 \), \(\overline{w}_k = y_k + (1/2)e_k y_0 \) (\(k = 1, 2 \)), and \(y_m \) (\(m = 0, 1, 2 \)) are real variables.

For any two elements \(z = e_1 z_1 + e_2 z_2 \) and \(w = e_1 w_1 + e_2 w_2 \) of \(\mathbb{C}(\mathbb{T}) \), their product is given by

\[
z w = z \cdot w + z \odot w,
\]

where the corresponding commutative inner product \(\cdot \) satisfies

\[
z \cdot w = \frac{1}{2} (zw + wz) = \sum_{r=1}^{2} z_r w_r + \frac{1}{2} e_1 e_2 \left(\overline{z}_1 w_2 - \overline{w}_2 z_1 + \overline{w}_1 z_2 - \overline{z}_2 w_1 \right)
\]

and the corresponding noncommutative outer product \(\odot \) satisfies

\[
z \odot w = \frac{1}{2} (zw - wz) = \frac{1}{2} e_1 e_2 \left(\overline{z}_1 w_2 + \overline{w}_2 z_1 - \overline{w}_1 z_2 - \overline{z}_2 w_1 \right)
\]

The conjugation \(z^* \), the corresponding norm \(|z| \), and the inverse \(z^{-1} \) of \(z \) in \(\mathbb{C}(\mathbb{T}) \) are given by

\[
z^* = e_1 \overline{z}_1 + e_2 \overline{z}_2, \quad |z|^2 = zz^* = z \cdot z^* = \sum_{r=1}^{2} z_r \overline{z}_r, \quad z^{-1} = \frac{z^*}{|z|^2} \quad (z \neq 0).
\]

For any element \(z \) in \(\mathbb{C}(\mathbb{T}) \), we have the corresponding exponential function \(e^z \) denoted by

\[
\exp(z) = \exp(e_1 z_1 + e_2 z_2).
\]

Theorem 1. Let \(z \) be an arbitrary number in \(\mathbb{C}(\mathbb{T}) \). Then the corresponding exponential function \(\exp(z) \) of \(z \) in \(\mathbb{C}(\mathbb{T}) \) is given as

\[
\exp(z) = \begin{cases} (-1)^k \exp(x_0) \exp(e_2 x_2), & \text{if } x_1 = k \pi, \\ (-1)^t \exp(x_0) \exp(e_1 x_1), & \text{if } x_2 = t \pi, \end{cases}
\]

where \(k, t \in \mathbb{Z} \).

Furthermore, as hyperbolic functions, one has

\[
\exp(z) = \begin{cases} (-1)^k \exp(e_2 x_2) (\cosh(x_2) - \sinh(x_0)), & \text{if } x_1 = k \pi, \\ (-1)^t \exp(e_1 x_1) (\cosh(x_0) - \sinh(x_2)), & \text{if } x_2 = t \pi, \end{cases}
\]

where \(k, t \in \mathbb{Z} \).

Proof. For any element \(z = e_1 z_1 + e_2 z_2 \) of \(\mathbb{C}(\mathbb{T}) \),

\[
\exp(z) = \exp(e_1 z_1 + e_2 z_2) = \exp(e_1 z_1) \exp(e_2 z_2).
\]

Since a scalar part of \(e_1 z_1 \) is \((1/2) x_0 \), a vector part of \(e_1 z_1 \) is \(e_1 x_1 \), and \(|e_1| = 1 \), by [19],

\[
\exp(e_1 z_1) = \exp \left(\frac{x_0}{2} \left\{ \cos(|e_1 x_1|) + \frac{e_1 x_1}{|e_1 x_1|} \sin(|e_1 x_1|) \right\} \right)
\]

\[
= \exp \left(\frac{x_0}{2} \{ \cos(x_1) + e_1 \sin(x_1) \} \right)
\]

and, similarly, we have

\[
\exp(e_2 z_2) = \exp \left(\frac{x_0}{2} \{ \cos(x_2) + e_2 \sin(x_2) \} \right)
\]

Then we have

\[
\exp(z) = \exp \left(\frac{x_0}{2} \{ \cos(x_1) + e_1 \sin(x_1) \} \right)
\]

\[
\times \exp \left(\frac{x_0}{2} \{ \cos(x_2) + e_2 \sin(x_2) \} \right)
\]

\[
= \exp(x_0) \{ \cos(x_1) + e_1 \sin(x_1) \}
\]

\[
\times \{ \cos(x_2) + e_2 \cos(x_2) \}
\]

\[
\times \sin(x_2) + e_1 \sin(x_1) \cos(x_2)
\]

\[
+ \exp(x_0) e_1 e_2 \sin(x_1) \sin(x_2).
\]

Also, we obtain

\[
\exp(z) = \exp(e_2 z_2 + e_1 z_1)
\]

\[
= \exp(e_2 z_2) \exp(e_1 z_1)
\]

\[
= \exp(x_0) \{ \cos(x_2) + e_2 \sin(x_2) \}
\]

\[
\times \{ \cos(x_1) + e_1 \sin(x_1) \}
\]

\[
= \exp(x_0) \{ \cos(x_1) \cos(x_2) + e_2 \cos(x_1) \}
\]

\[
\times \sin(x_2) + e_1 \sin(x_1) \cos(x_2)
\]

\[
+ \exp(x_0) e_1 e_2 \sin(x_1) \sin(x_2).
\]

Since (15) has to be equal to (14), \(\sin(x_1) \sin(x_2) = 0 \), that is, \(\sin(x_1) = 0 \) or \(\sin(x_2) = 0 \). Therefore, \(x_1 = k \pi \) or \(x_2 = t \pi \), and then \(\cos(x_1) = (-1)^k \) or \(\cos(x_2) = (-1)^t \), where \(k, t \in \mathbb{Z} \).

If \(x_1 = k \pi \) (\(k \in \mathbb{Z} \)), then

\[
\exp(z) = \exp(x_0) \left\{ (-1)^k (\cos(x_2) + e_2 \sin(x_2)) \right\}
\]

\[
= (-1)^k \exp(x_0) \exp(e_2 x_2).
\]
Similarly, if \(x_2 = t\pi \ (t \in \mathbb{Z}) \), then
\[
\exp(z) = \exp(x_0) \left\{ (-1)^t (\cos(x_1) + e_1 \sin(x_1)) \right\} = (-1)^t \exp(x_0) \exp(e_1 x_1).
\]

Further, by the Euler formula and the addition rule of trigonometric functions,
\[
\exp(z) = \exp(e_1 z_1 + e_2 z_2) \exp(-e_1 z_1) \exp(e_2 z_2) = (\cos(z_1) + e_1 \sin(z_1)) (\cos(z_2) + e_2 \sin(z_2))
\]
\[
= \left\{ \cos(x_1) \cos(e_1 x_0) + \sin(x_1) \sin(e_1 x_0) \right\}
\]
\[
+ e_1 \left(\sin(x_1) \cos(e_1 x_0) - \cos(x_1) \sin(e_1 x_0) \right) \}
\]
\[
\cdot \left\{ \cos(x_2) \cos(e_2 x_0) + \sin(x_2) \sin(e_2 x_0) \right\}
\]
\[
+ e_2 \left(\sin(x_2) \cos(e_2 x_0) - \cos(x_2) \sin(e_2 x_0) \right) \}
\]
\[
\cdot \left\{ \cos(x_1) \cos(e_2 x_0) + \sin(x_1) \sin(e_2 x_0) \right\}.
\]

Since \(\cos(e_r(x_0/2)) = \cosh(x_0/2) \) and \(\sin(e_r(x_0/2)) = e_r \sinh(x_0/2) \) \((r = 1, 2)\), we have
\[
\exp(z) = \left\{ \cos(x_1) \cosh(x_0/2) + e_1 \sin(x_1) \sinh(x_0/2) \right\}
\]
\[
+ e_1 \left(\sin(x_1) \cosh(x_0/2) - e_1 \cos(x_1) \sinh(x_0/2) \right) \}
\]
\[
\cdot \left\{ \cos(x_2) \cosh(x_0/2) + e_2 \sin(x_2) \sinh(x_0/2) \right\}
\]
\[
+ e_2 \left(\sin(x_2) \cosh(x_0/2) - e_2 \cos(x_2) \sinh(x_0/2) \right) \}
\]
\[
\cdot \left\{ \cos(x_1) \cosh(x_0/2) + e_1 \sin(x_1) \sinh(x_0/2) \right\}.
\]

Since \((22)\) has to be equal to \((21)\), \(\sin(x_1) \sin(z_1) = 0 \), that is, \(\sin(x_1) = 0 \) or \(\sin(z_1) = 0 \). Therefore, \(x_1 = k\pi \) or \(x_2 = t\pi \), and then \(\cos(x_1) = (-1)^k \) or \(\cos(x_2) = (-1)^t \), where \(k, t \in \mathbb{Z} \). If \(x_1 = k\pi \ (k \in \mathbb{Z}) \), then
\[
\exp(z) = (\cos(x_1) + e_1 \sin(x_1)) (\cosh(x_0/2) - \sinh(x_0/2))
\]
\[
\times (-1)^k (\cosh(x_0) - \sinh(x_0)) \]
\[
= (-1)^k \exp(e_2 x_2) (\cosh(x_0) - \sinh(x_0)).
\]

Similarly, if \(x_2 = t\pi \ (t \in \mathbb{Z}) \), then
\[
\exp(z) = (\cos(x_1) + e_1 \sin(x_1)) (\cosh(x_0/2) - \sinh(x_0/2))
\]
\[
\times (-1)^t (\cosh(x_0) - \sinh(x_0)) \]
\[
= (-1)^t \exp(e_1 x_1) (\cosh(x_0) - \sinh(x_0)).
\]

Remark 2. By Theorem 1 and the properties of the Euler formula, if \(x_1 = k\pi \), then we can write
\[
\exp(z) = (-1)^k \exp(e_2 x_2) (\cosh(x_0) - \sinh(x_0))
\]
\[
= (-1)^k \exp(e_2 x_2 - x_0) = (-1)^k \exp(e_2 F_2).
\]
also, if \(x_2 = t \pi \), then
\[
\exp(z) = (-1)^k \exp(e_1 x_1)(\cosh(x_0) - \sinh(x_0)) = (-1)^k \exp(e_1 \bar{F}_1), \tag{26}
\]
where \(k, t \in \mathbb{Z} \) and \(\bar{F}_1 = x_r + e_2 x_0 \) are the conjugate Fueter variables of \(F_r = x_r - e_2 x_0 \) (see [20]).

Let \(\Omega \) be an open subset of \(\mathbb{R}^3 \) and let a function \(f(a) \) be defined by the following form on \(\Omega \) with values in \(C(T) \):
\[
f : \Omega \rightarrow C(T), \tag{27}
\]
satisfying
\[
a = (x_0, x_1, x_2) \in \Omega \mapsto f(a) = e_1 f_1(x_0, x_1, x_2) + e_2 f_2(x_0, x_1, x_2) \in C(T), \tag{28}
\]
where \(f_r = u_r - (1/2) e_r \mu_0, \bar{f}_r = u_r + (1/2) e_r \mu_0 \) (\(r = 1, 2 \)) and \(u_m \) (\(m = 0, 1, 2 \)) are real-valued functions.

From the chain rule, we use the following differential operators:
\[
\frac{\partial}{\partial A} := 2 \frac{\partial}{\partial x_0} - \frac{1}{2} e_1 \frac{\partial}{\partial x_1} - \frac{1}{2} e_2 \frac{\partial}{\partial x_2} = -e_1 \frac{\partial}{\partial z_1} - e_2 \frac{\partial}{\partial z_2},
\]
\[
\frac{\partial}{\partial A^*} = 2 \frac{\partial}{\partial x_0} + \frac{1}{2} e_1 \frac{\partial}{\partial x_1} + \frac{1}{2} e_2 \frac{\partial}{\partial x_2} = e_1 \frac{\partial}{\partial z_1} + e_2 \frac{\partial}{\partial z_2},
\]
\[
\frac{\partial}{\partial \bar{A}} = 2 \frac{\partial}{\partial x_0} - e_1 \frac{\partial}{\partial x_1} - e_2 \frac{\partial}{\partial x_2},
\]
in \(C(T) \). We have the following equations:
\[
f_r \frac{\partial}{\partial z_r} = \frac{\partial f_r}{\partial z_r}, \quad f_r \frac{\partial}{\partial \bar{z}_r} = \frac{\partial f_r}{\partial \bar{z}_r} \quad (r = 1, 2), \tag{31}
\]
and then, the operator \(\partial / \partial A \) operates to \(f \) as follows:
\[
\frac{\partial f}{\partial A} \ = \ \left(-e_1 \frac{\partial}{\partial z_1} - e_2 \frac{\partial}{\partial z_2} \right) (e_1 f_1 + e_2 f_2) = \frac{\partial f_1}{\partial z_1} + \frac{\partial f_2}{\partial z_2} + e_1 e_2 \left(\frac{\partial f_1}{\partial z_2} - \frac{\partial f_2}{\partial z_1} \right),
\]
\[
\frac{\partial f}{\partial A^*} = \left(e_1 \frac{\partial}{\partial z_1} + e_2 \frac{\partial}{\partial z_2} \right) (e_1 f_1 + e_2 f_2) = -\frac{\partial f_1}{\partial z_1} - \frac{\partial f_2}{\partial z_2} + e_1 e_2 \left(\frac{\partial f_2}{\partial z_1} - \frac{\partial f_1}{\partial z_2} \right),
\]
\[
f \frac{\partial}{\partial A} = (e_1 f_1 + e_2 f_2) \left(-e_1 \frac{\partial}{\partial z_1} - e_2 \frac{\partial}{\partial z_2} \right) = f_1 \frac{\partial}{\partial z_1} + f_2 \frac{\partial}{\partial z_2} + e_1 e_2 \left(f_2 \frac{\partial}{\partial z_1} - f_1 \frac{\partial}{\partial z_2} \right) = \frac{\partial f_1}{\partial z_1} + \frac{\partial f_2}{\partial z_2} + e_1 e_2 \left(\frac{\partial f_2}{\partial z_1} - \frac{\partial f_1}{\partial z_2} \right), \tag{32}
\]
Thus, we have a corresponding Laplacian in the reduced quaternion \(C(T) \):
\[
\Delta_n = \frac{\partial^2}{\partial A \partial A^*} = \frac{\partial^2}{\partial A \partial A^*} = 4 \frac{\partial^2}{\partial x_0^2} + 1 \frac{\partial^2}{\partial x_1^2} + 1 \frac{\partial^2}{\partial x_2^2}. \tag{33}
\]

Remark 3. Let \(\Omega \) be an open set of \(\mathbb{R}^3 \). From the definition of the differential operators in \(C(T) \), we have
\[
\frac{\partial}{\partial A} \cdot f = \frac{1}{2} \left(\frac{\partial f_1}{\partial z_1} + \frac{\partial f_2}{\partial z_2} + f_1 \frac{\partial}{\partial z_1} + f_2 \frac{\partial}{\partial z_2} \right) + \frac{1}{2} e_1 e_2 \left(f_2 \frac{\partial}{\partial z_1} - f_1 \frac{\partial}{\partial z_2} \right) = f_1 \frac{\partial}{\partial z_1} + f_2 \frac{\partial}{\partial z_2} + e_1 e_2 \left(f_2 \frac{\partial}{\partial z_1} - f_1 \frac{\partial}{\partial z_2} \right) \times \left(\frac{\partial f_2}{\partial z_1} - \frac{\partial f_1}{\partial z_2} + \frac{\partial f_1}{\partial z_1} - \frac{\partial f_2}{\partial z_2} \right),
\]
\[
\frac{\partial}{\partial \bar{A}} \circ f = \frac{1}{2} \left(f_1 \frac{\partial}{\partial z_1} + f_2 \frac{\partial}{\partial z_2} - f_1 \frac{\partial}{\partial z_1} - f_2 \frac{\partial}{\partial z_2} \right) + \frac{1}{2} e_1 e_2 \left(f_1 \frac{\partial}{\partial z_1} + f_2 \frac{\partial}{\partial z_2} - f_1 \frac{\partial}{\partial z_1} - f_2 \frac{\partial}{\partial z_2} \right) = \frac{1}{2} e_1 e_2 \left(\frac{\partial f_1}{\partial z_1} + \frac{\partial f_2}{\partial z_2} \right) \times \left(\frac{\partial f_2}{\partial z_1} - \frac{\partial f_1}{\partial z_2} + \frac{\partial f_1}{\partial z_1} - \frac{\partial f_2}{\partial z_2} \right),
\]
Abstract and Applied Analysis

\[
\frac{\partial}{\partial A^*} \circ f = \frac{1}{2} \left(\frac{\partial f_1}{\partial z_1} + \frac{\partial f_2}{\partial z_2} + f_1 \frac{\partial}{\partial z_1} + f_2 \frac{\partial}{\partial z_2} \right) \\
+ \frac{1}{2} e_1 e_2 \left(\frac{\partial f_2}{\partial z_1} - \frac{\partial f_1}{\partial z_1} + f_2 \frac{\partial}{\partial z_2} - \frac{\partial f_2}{\partial z_2} \right) \\
= - \frac{\partial f_1}{\partial z_1} - \frac{\partial f_2}{\partial z_2} + \frac{1}{2} e_1 e_2 \\
\times \left\{ \frac{\partial f_2}{\partial z_1} \left(\frac{\partial f_1}{\partial z_2} + \frac{\partial f_1}{\partial z_1} - \frac{\partial f_1}{\partial z_2} \right) \right\}, \\
\frac{\partial}{\partial A} \circ f = \frac{1}{2} \left(- \frac{\partial f_1}{\partial z_1} - \frac{\partial f_2}{\partial z_2} + f_1 \frac{\partial}{\partial z_1} - f_2 \frac{\partial}{\partial z_2} \right) \\
+ \frac{1}{2} e_1 e_2 \left(\frac{\partial f_2}{\partial z_1} - \frac{\partial f_1}{\partial z_1} + f_2 \frac{\partial}{\partial z_2} - \frac{\partial f_2}{\partial z_2} \right) \\
= \frac{1}{2} e_1 e_2 \left\{ \frac{\partial f_2}{\partial z_1} \left(\frac{\partial f_1}{\partial z_2} + \frac{\partial f_1}{\partial z_1} - \frac{\partial f_1}{\partial z_2} \right) \right\}
\]

and, therefore,

\[
\frac{\partial f}{\partial A} = \frac{\partial}{\partial A^*} \circ f + \frac{\partial}{\partial A^*} \circ f, \quad \frac{\partial f}{\partial A} = \frac{\partial}{\partial A^*} \circ f \circ f.
\]

Similarly, we have

\[
f \circ \frac{\partial}{\partial A} = \frac{1}{2} \left(f_1 \frac{\partial}{\partial z_1} + f_2 \frac{\partial}{\partial z_2} + \frac{\partial}{\partial z_1} + \frac{\partial}{\partial z_2} \right) \\
+ e_1 e_2 \left(f_1 \frac{\partial}{\partial z_2} - f_2 \frac{\partial}{\partial z_1} + \frac{\partial}{\partial z_2} - \frac{\partial}{\partial z_1} \right) \\
= \frac{\partial f_1}{\partial z_1} + \frac{\partial f_2}{\partial z_2} + \frac{1}{2} e_1 e_2 \\
\times \left\{ \frac{\partial f_2}{\partial z_1} \left(\frac{\partial f_1}{\partial z_2} + \frac{\partial f_1}{\partial z_1} - \frac{\partial f_1}{\partial z_2} \right) \right\}, \\
f \circ \frac{\partial}{\partial A^*} = \frac{1}{2} \left(- f_1 \frac{\partial}{\partial z_1} - f_2 \frac{\partial}{\partial z_2} - \frac{\partial}{\partial z_1} - \frac{\partial}{\partial z_2} \right) \\
+ \frac{1}{2} e_1 e_2 \left(f_1 \frac{\partial}{\partial z_2} - f_2 \frac{\partial}{\partial z_1} - \frac{\partial}{\partial z_2} + \frac{\partial}{\partial z_1} \right) \\
= \frac{1}{2} e_1 e_2 \left\{ \frac{\partial f_2}{\partial z_1} \left(\frac{\partial f_1}{\partial z_2} + \frac{\partial f_1}{\partial z_1} - \frac{\partial f_1}{\partial z_2} \right) \right\}, \quad (34)
\]

Definition 4. Let \(\Omega \) be an open set in \(\mathbb{R}^3 \) and for any element \(a \) in \(\Omega \). A function \(f(a) \) is said to be \(L(R) \)-regular on \(\Omega \) if the following conditions are satisfied:

(i) \(f(r = 1, 2) \) are continuously differential functions on \(\Omega \), and
(ii) \(df(a)/\partial A^* = 0 \) (\(f(a)(\partial/\partial A^*) = 0 \)) on \(\Omega \).

In particular, the equation \(df/\partial A^* = 0 \) of Definition 4 is equivalent to

\[
\frac{\partial}{\partial A^*} \circ f = - \frac{\partial}{\partial A^*} \circ f. \quad (38)
\]

Moreover, (38) is equivalent to the following system:

\[
\frac{\partial f_1}{\partial z_1} = - \frac{\partial f_2}{\partial z_2}. \quad (39)
\]

The above system is a corresponding Cauchy-Riemann system in \(C(T) \).

Remark 5. From the multiplications of \(C(T) \), the equation \(f(\partial/\partial A^*) = 0 \) of Definition 4 is equivalent to

\[
\frac{\partial}{\partial A^*} \circ f = \frac{\partial}{\partial A^*} \circ f. \quad (40)
\]

Also, the above equation (40) is equivalent to the following system:

\[
\frac{\partial f_1}{\partial z_1} = - \frac{\partial f_2}{\partial z_2}. \quad (41)
\]

Further, the above system (41) is also a corresponding Cauchy-Riemann system in \(C(T) \). Since the system (39) is equivalent to the system (41), we say that \(f(a) \) of Definition 4 is a regular function on \(\Omega \subset \mathbb{R}^3 \). When the function \(f(a) \) is either an \(L \)-regular function or an \(R \)-regular function on \(\Omega \subset \mathbb{R}^3 \), we simply say that \(f(a) \) is a regular function on \(\Omega \subset \mathbb{R}^3 \).
3. Properties of Regular Functions with Values in $\mathbb{C}(\mathbb{T})$

We define the derivative $f'(a)$ of $f(a)$ by the following:

$$f'(a) := \frac{\partial f}{\partial A}(a).$$ \ (42)

Proposition 6. Let Ω be an open set in \mathbb{R}^3 and let a function $f(a)$ be a regular function defined on Ω. Then

$$f'(a) = -2e_r\left(\frac{\partial f}{\partial z_r} - \frac{\partial f}{\partial x_r}\right) = 4\frac{\partial f}{\partial x_0}$$

$$= -e_1\frac{\partial f}{\partial x_1} - e_2\frac{\partial f}{\partial x_2} \quad (r = 1, 2).$$ \ (43)

Proof. From the definition of a regular function $\vdots (\partial f/\partial A^*) = 0$, we have

$$\frac{\partial f}{\partial A} = \frac{\partial f}{\partial A^*} = \frac{\partial f}{\partial z_r} - \frac{\partial f}{\partial x_r}.$$ \ (44)

Therefore,

$$\frac{\partial}{\partial z} \cdot f = \frac{\partial f}{\partial z_1} + 2e_1\frac{\partial u_1}{\partial x_0} + 2e_2\frac{\partial u_2}{\partial x_0} + \frac{\partial f}{\partial z_2} + 2e_1\frac{\partial u_1}{\partial x_0} + 2e_2\frac{\partial u_2}{\partial x_0} + \frac{\partial f}{\partial z_1} + 2e_1\frac{\partial u_1}{\partial x_0} + 2e_2\frac{\partial u_2}{\partial x_0}$$

$$+ \frac{1}{2}e_1e_2\left(\frac{\partial f}{\partial z_1} + e_1\frac{\partial u_1}{\partial x_0} + e_2\frac{\partial u_2}{\partial x_0} - \frac{\partial f}{\partial z_2}\right)$$

$$= 4\frac{\partial f}{\partial x_0} + \frac{1}{2}e_1e_2\left(\frac{\partial f}{\partial z_1} - \frac{1}{2}e_1e_2\left(\frac{\partial f}{\partial z_2}\right), \right.$$ \ (45)

$$\frac{\partial}{\partial z} \circ f = \frac{1}{2}e_1e_2$$

$$\times \left(\frac{\partial}{\partial z_1} + 2e_1\frac{\partial f}{\partial x_0} + \frac{\partial f}{\partial x_0} - 2e_2\frac{\partial f}{\partial x_0} - \frac{\partial f}{\partial z_1} + 2e_1\frac{\partial f}{\partial x_0} - 2e_2\frac{\partial f}{\partial x_0} - \frac{\partial f}{\partial z_1}\right)$$

$$= 2e_1e_2\left(e_1\frac{\partial f}{\partial x_0} - e_1\frac{\partial f}{\partial x_0} - e_2\frac{\partial f}{\partial x_0} + e_2\frac{\partial f}{\partial x_0}\right)$$

$$= -\frac{1}{2}e_1e_2\left(\frac{\partial f}{\partial z_1} + \frac{1}{2}e_1e_2\frac{\partial f}{\partial z_2} = 0. \right.$$ \ (46)

Similarly, by calculating the derivative $f'(z)$ of $f(z)$,

$$\frac{\partial}{\partial z} \cdot f = \frac{\partial f}{\partial x_1} + \frac{\partial f}{\partial x_2}$$

$$+ \frac{1}{2}e_1e_2\left(\frac{\partial f}{\partial x_1} - \frac{\partial f}{\partial x_2} - \frac{\partial f}{\partial x_1} - \frac{\partial f}{\partial x_2}\right),$$

$$\frac{\partial}{\partial z} \circ f = \left(e_1\frac{\partial f}{\partial x_1} - e_1\frac{\partial f}{\partial x_2} - e_2\frac{\partial f}{\partial x_2} + e_2\frac{\partial f}{\partial x_2}\right)$$

$$- \frac{1}{2}e_1e_2\left(\frac{\partial f}{\partial x_1} - \frac{1}{2}e_1e_2\frac{\partial f}{\partial x_2}.\right.$$ \ (47)

Therefore, we have the equation

$$\frac{\partial f}{\partial z} = \frac{\partial}{\partial z} \cdot f + \frac{\partial}{\partial z} \circ f = -e_1\left(e_1\frac{\partial f}{\partial x_1} + e_2\frac{\partial f}{\partial x_2}\right)$$

$$- e_2\left(e_2\frac{\partial f}{\partial x_2} + e_1\frac{\partial f}{\partial x_1}\right) = -e_1\frac{\partial f}{\partial x_1} - e_2\frac{\partial f}{\partial x_2}. \quad \square \right.$$ \ (48)

Proposition 7. Let Ω be an open set in \mathbb{R}^3. If $f(a)$ is a regular function on Ω, then we have

$$\frac{\partial^n f}{\partial A^n} = 4^n \frac{\partial^n f}{\partial x_0^n},$$

where n is a positive integer.

Proof. Since f is a regular function on Ω with values in $\mathbb{C}(\mathbb{T})$, by Definition 4,

$$\frac{\partial}{\partial A^*} \left(4 \frac{\partial f}{\partial x_0}\right) = 4 \frac{\partial f}{\partial A} \left(\frac{\partial f}{\partial A^*}\right) = 0.$$ \ (51)

Hence, $\partial f/\partial x_0$ is a regular function with values in $\mathbb{C}(\mathbb{T})$. From Proposition 6, we have

$$\frac{\partial^2 f}{\partial A^2} = \frac{\partial}{\partial A} \left(4 \frac{\partial f}{\partial x_0}\right) = 4^2 \frac{\partial^2 f}{\partial x_0^2}. \quad \square \right.$$ \ (52)

By repeating the above process, we can obtain the equation

$$\frac{\partial^n f}{\partial A^n} = 4^n \frac{\partial^n f}{\partial x_0^n}. \quad \square \right.$$ \ (53)

We let

$$\square_a = \sum_{r=1}^2 \frac{\partial^2}{\partial z_r \partial z_r} = 2 \frac{\partial^2}{\partial x_0^2} + \frac{1}{4}e_1 \frac{\partial^2}{\partial x_1^2} + \frac{1}{4}e_2 \frac{\partial^2}{\partial x_2^2} \right.$$ \ (54)

on an open set Ω in \mathbb{R}^3.
Theorem 8. Let Ω be an open set in \mathbb{R}^3. If f is a regular function on Ω, then the following equation holds true:

$$\Box_\omega f(a) = -\frac{1}{8} \frac{\partial^2 f(a)}{\partial A^2}. \quad (55)$$

Proof. Since f is a regular function on Ω, we have the following system:

$$\begin{align*}
4 \frac{\partial u_0}{\partial x_0} &= \frac{\partial u_1}{\partial x_1} + \frac{\partial u_2}{\partial x_2} = \frac{\partial u_1}{\partial x_2} - \frac{\partial u_2}{\partial x_1}, \\
4 \frac{\partial u_0}{\partial x_0} &= -\frac{\partial u_0}{\partial x_r} \quad (r = 1, 2). \quad (56)
\end{align*}$$

By the definition of \Box_ω, we have

$$\Box_\omega f = \left(\frac{\partial^2}{\partial x_0^2} + \frac{1}{4} e_1 \frac{\partial^2}{\partial x_1^2} + \frac{1}{4} e_2 \frac{\partial^2}{\partial x_2^2} \right) (u_0 + e_1 u_1 + e_2 u_2)$$

$$= 2 \frac{\partial^2 u_0}{\partial x_0^2} + 2e_1 \frac{\partial^2 u_1}{\partial x_0^2} + 2e_2 \frac{\partial^2 u_2}{\partial x_0^2} - \frac{\partial^2 u_1}{\partial x_0 \partial x_1}$$

$$+ e_1 \frac{\partial^2 u_0}{\partial x_0 \partial x_1} - \frac{\partial^2 u_2}{\partial x_0 \partial x_2} + e_2 \frac{\partial^2 u_0}{\partial x_0 \partial x_2}$$

$$= -2 \frac{\partial^2 u_0}{\partial x_0^2} - 2e_1 \frac{\partial^2 u_1}{\partial x_0^2} - 2e_2 \frac{\partial^2 u_2}{\partial x_0^2} = -\frac{\partial^2 f}{\partial A^2}. \quad (57)$$

From Proposition 7, we have $\partial^3 f / \partial A^2 = 4^2 (\partial^2 f / \partial x_0^2)$. Hence, by calculating and comparing the above polynomials, we obtain that $\Box_\omega f$ is equal to $-(1/8) (\partial^3 f / \partial A^2) f$. \qed

Next, we consider a differential form

$$\omega = 4 dx_1 \wedge dx_2 - e_1 dx_0 \wedge dx_2 + e_2 dx_0 \wedge dx_1. \quad (58)$$

Theorem 9. Let Ω be an open set in \mathbb{R}^3 and let U be any domain on Ω with a smooth distinguished boundary bU such that $U \subset \Omega$. If f is a regular function on Ω, then one has

$$\int_{bU} \omega f = 0, \quad (59)$$

where ωf is the reduced quaternionic product of the form ω on the function $f(a)$. \hspace{1cm} \Box

Proof. Since $\omega f = 4 dx_1 \wedge dx_2 - e_1 dx_0 \wedge dx_2 + e_2 dx_0 \wedge dx_1$, we have

$$d (\omega f) = 4 \frac{\partial f}{\partial x_0} dx_0 \wedge dx_1 \wedge dx_2 + e_1 \frac{\partial f}{\partial x_1} dx_0 \wedge dx_1 \wedge dx_2$$

$$+ e_2 \frac{\partial f}{\partial x_2} dx_0 \wedge dx_1 \wedge dx_2$$

$$= 4 \frac{\partial (e_1 f_1 + e_2 f_2)}{\partial x_0} dI + e_1 \frac{\partial (e_1 f_1 + e_2 f_2)}{\partial x_1} dI$$

$$+ e_2 \frac{\partial (e_1 f_1 + e_2 f_2)}{\partial x_2} dI$$

$$= \left\{ \left(\frac{4 \partial u_0}{\partial x_0} - \frac{\partial u_0}{\partial x_1} - \frac{\partial u_0}{\partial x_2} \right) + e_1 \left(\frac{4 \partial u_1}{\partial x_0} + \frac{\partial u_1}{\partial x_1} \right) \right. \right.$$}

$$+ e_2 \left(\frac{4 \partial u_2}{\partial x_0} + \frac{\partial u_2}{\partial x_1} \right) + e_1 e_2 \left(\frac{\partial u_1}{\partial x_1} - \frac{\partial u_1}{\partial x_2} \right) \right\} dI, \quad (60)$$

where $dI = dx_0 \wedge dx_1 \wedge dx_2$ in U. From the corresponding Cauchy-Riemann system (39) for $f(a)$ in $C(T)$, we have the system (56). Hence, $d(\omega f) = 0$ and, therefore, by Stokes theorem, we obtain the following result:

$$\int_{bU} \omega f = \int_U d (\omega f) = 0. \quad (61) \ Box$$

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

The third author was supported by a 2-Year Research Grant of Pusan National University.

References

