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Abstract. 
This paper investigates relatively integral stability in terms of two measures for two differential systems with “maxima” by employing Lyapunov functions, Razumikhin method, and comparison principle. An example is given to illustrate our result.


1. Introduction
Recently, the interest in differential equations with “maxima” has increased exponentially. Such equations adequately model real world problems whose present state depends significantly on its maximum value on a past time interval. For example, many problems in the control theory correspond to the maximal deviation of the regulated quantity. Some qualitative properties of the solutions of ordinary differential equations with “maxima” can be found in [1–4] and references therein.
Integral stability for ordinary differential equations was introduced by Vrkoc [5]. The concept of integral stability occurs in connection with the stability under persistent perturbations when the perturbations are small enough everywhere except on a small interval. Recent developments in this field have been focused on various types of differential equations. In [6, 7], the integral stability and integral 
	
		
			

				𝜙
			

			

				0
			

		
	
-stability properties of ordinary differential equations were discussed, respectively. Later, Hristova [8] discussed the integral stability in terms of two measures for impulsive differential equations with “supremum.” Moreover the same author in [9] discussed the integral stability in terms of two measures for impulsive functional differential equations. However, the integral stability in terms of two measures for two differential systems has not been obtained until now.
In this paper, we discuss the relatively integral stability in terms of two measures for two differential systems with “maxima.” Using Lyapunov functions, Razumikhin method, and comparison principle, sufficient conditions for uniform-relatively integral stability in terms of two measures are obtained.
2. Preliminaries
Firstly, we give the following sets for convenience:
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				
				
				𝑅
				𝒦
				=
				𝑎
				(
				𝑡
				)
				∈
				𝐶
			

			

				+
			

			
				,
				𝑅
			

			

				+
			

			
				
				
				;
				
				
				𝑅
				∣
				𝑎
				(
				𝑡
				)
				i
				s
				s
				t
				r
				i
				c
				t
				l
				y
				i
				n
				c
				r
				e
				a
				s
				i
				n
				g
				,
				𝑎
				(
				0
				)
				=
				0
				𝒞
				𝒦
				=
				𝑎
				(
				𝑡
				)
				∈
				𝐶
			

			
				2
				+
			

			
				,
				𝑅
			

			

				+
			

			
				
				∣
				∀
				𝑡
				∈
				𝑅
			

			

				+
			

			
				
				;
				
				
				𝑅
				,
				𝑎
				(
				𝑡
				,
				𝑢
				)
				∈
				𝒦
				Γ
				=
				ℎ
				∈
				𝐶
			

			

				+
			

			
				×
				𝑅
			

			

				𝑛
			

			
				,
				𝑅
			

			

				+
			

			
				
				∣
				(
				𝑡
				,
				𝑥
				)
				∈
				𝑅
			

			

				+
			

			
				×
				𝑅
			

			

				𝑛
			

			
				,
				
				.
				i
				n
				f
				ℎ
				(
				𝑡
				,
				𝑥
				)
				=
				0
			

		
	

Let 
	
		
			

				𝜌
			

		
	
, 
	
		
			

				𝑡
			

		
	
, and 
	
		
			
				𝑟
				>
				0
			

		
	
 be constants, 
	
		
			

				ℎ
			

			

				0
			

			
				∈
				Γ
			

		
	
. Define the following sets:
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				
				𝑆
				(
				ℎ
				,
				𝜌
				)
				=
				(
				𝑡
				,
				𝑥
				,
				𝑦
				)
				∈
				𝑅
			

			

				+
			

			
				×
				𝑅
			

			

				𝑛
			

			
				×
				𝑅
			

			

				𝑛
			

			
				
				;
				𝑆
				∣
				ℎ
				(
				𝑡
				,
				𝑥
				−
				𝑦
				)
				<
				𝜌
			

			

				𝑐
			

			
				
				(
				ℎ
				,
				𝜌
				)
				=
				(
				𝑡
				,
				𝑥
				,
				𝑦
				)
				∈
				𝑅
			

			

				+
			

			
				×
				𝑅
			

			

				𝑛
			

			
				×
				𝑅
			

			

				𝑛
			

			
				
				;
				∣
				ℎ
				(
				𝑡
				,
				𝑥
				−
				𝑦
				)
				≥
				𝜌
				Ω
				(
				𝑡
				,
				ℎ
				,
				𝜌
				)
				=
				{
				(
				𝑥
				,
				𝑦
				)
				∈
				𝑅
			

			

				𝑛
			

			
				×
				𝑅
			

			

				𝑛
			

			
				ℎ
				[
				]
				∣
				ℎ
				(
				𝑡
				,
				𝑥
				)
				≤
				𝜌
				,
				(
				𝑠
				,
				𝑦
				)
				≤
				𝜌
				,
				𝑠
				∈
				𝑡
				−
				𝑟
				,
				𝑡
				}
				.
			

		
	

We consider the following two differential systems with “maxima”:
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			

				𝑥
			

			

				
			

			
				=
				𝐹
			

			

				1
			

			
				
				𝑡
				,
				𝑥
				(
				𝑡
				)
				,
				m
				a
				x
			

			
				[
				]
				𝑠
				∈
				𝑡
				−
				𝑟
				,
				𝑡
			

			
				
				𝑥
				(
				𝑠
				)
				,
				𝑡
				≥
				𝑡
			

			

				0
			

			
				,
				𝑥
				
				𝑡
				+
				𝑡
			

			

				0
			

			
				
				=
				𝜙
			

			

				1
			

			
				[
				]
				,
				𝑦
				(
				𝑡
				)
				,
				𝑡
				∈
				−
				𝑟
				,
				0
			

			

				
			

			
				=
				𝐹
			

			

				2
			

			
				
				𝑡
				,
				𝑦
				(
				𝑡
				)
				,
				m
				a
				x
			

			
				[
				]
				𝑠
				∈
				𝑡
				−
				𝑟
				,
				𝑡
			

			
				
				𝑦
				(
				𝑠
				)
				,
				𝑡
				≥
				𝑡
			

			

				0
			

			
				,
				𝑦
				
				𝑡
				+
				𝑡
			

			

				0
			

			
				
				=
				𝜙
			

			

				2
			

			
				[
				]
				,
				(
				𝑡
				)
				,
				𝑡
				∈
				−
				𝑟
				,
				0
			

		
	

					and the perturbed systems
						
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			

				𝑥
			

			

				
			

			
				=
				𝐹
			

			

				1
			

			
				
				𝑡
				,
				𝑥
				(
				𝑡
				)
				,
				m
				a
				x
			

			
				[
				]
				𝑠
				∈
				𝑡
				−
				𝑟
				,
				𝑡
			

			
				
				𝑥
				(
				𝑠
				)
				+
				𝐺
			

			

				1
			

			
				
				𝑡
				,
				𝑥
				(
				𝑡
				)
				,
				m
				a
				x
			

			
				[
				]
				𝑠
				∈
				𝑡
				−
				𝑟
				,
				𝑡
			

			
				
				𝑥
				(
				𝑠
				)
				,
				𝑡
				≥
				𝑡
			

			

				0
			

			
				,
				𝑥
				
				𝑡
				+
				𝑡
			

			

				0
			

			
				
				=
				𝜙
			

			

				1
			

			
				[
				]
				,
				𝑦
				(
				𝑡
				)
				,
				𝑡
				∈
				−
				𝑟
				,
				0
			

			

				
			

			
				=
				𝐹
			

			

				2
			

			
				
				𝑡
				,
				𝑦
				(
				𝑡
				)
				,
				m
				a
				x
			

			
				[
				]
				𝑠
				∈
				𝑡
				−
				𝑟
				,
				𝑡
			

			
				
				𝑦
				(
				𝑠
				)
				+
				𝐺
			

			

				2
			

			
				
				𝑡
				,
				𝑦
				(
				𝑡
				)
				,
				m
				a
				x
			

			
				[
				]
				𝑠
				∈
				𝑡
				−
				𝑟
				,
				𝑡
			

			
				
				𝑦
				(
				𝑠
				)
				,
				𝑡
				≥
				𝑡
			

			

				0
			

			
				,
				𝑦
				
				𝑡
				+
				𝑡
			

			

				0
			

			
				
				=
				𝜙
			

			

				2
			

			
				[
				]
				,
				(
				𝑡
				)
				,
				𝑡
				∈
				−
				𝑟
				,
				0
			

		
	

					where 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝑅
			

			

				𝑛
			

		
	
, 
	
		
			

				𝐹
			

			

				1
			

			
				,
				𝐹
			

			

				2
			

			
				,
				𝐺
			

			

				1
			

			
				,
				𝐺
			

			

				2
			

			
				∈
				𝐶
				[
				𝑅
			

			

				+
			

			
				×
				𝑅
			

			

				𝑛
			

			
				×
				𝑅
			

			

				𝑛
			

			
				,
				𝑅
			

			

				𝑛
			

			

				]
			

		
	
, 
	
		
			

				𝐹
			

			

				1
			

			
				(
				𝑡
				,
				0
				,
				0
				)
				=
				𝐹
			

			

				2
			

			
				(
				𝑡
				,
				0
				,
				0
				)
				=
				𝐺
			

			

				1
			

			
				(
				𝑡
				,
				0
				,
				0
				)
				=
				𝐺
			

			

				2
			

			
				(
				𝑡
				,
				0
				,
				0
				)
				≡
				0
			

		
	
 with 
	
		
			

				𝑅
			

			

				+
			

			
				=
				[
				0
				,
				∞
				)
			

		
	
, 
	
		
			
				𝑟
				>
				0
			

		
	
 is a given fixed number, 
	
		
			

				𝑡
			

			

				0
			

			
				∈
				𝑅
			

			

				+
			

		
	
, and 
	
		
			

				𝜙
			

			

				1
			

			
				,
				𝜙
			

			

				2
			

			
				∈
				𝐶
				(
				[
				−
				𝑟
				,
				0
				]
				,
				𝑅
			

			

				𝑛
			

			

				)
			

		
	
; 
	
		
			

				𝑅
			

			

				𝑛
			

		
	
 denote the 
	
		
			

				𝑛
			

		
	
-dimensional Euclidean space with any convenient norm 
	
		
			
				‖
				⋅
				‖
			

		
	
.
We denote by 
	
		
			
				𝑥
				(
				𝑡
				;
				𝑡
			

			

				0
			

			
				,
				𝜙
			

			

				1
			

			

				)
			

		
	
, 
	
		
			
				𝑦
				(
				𝑡
				;
				𝑡
			

			

				0
			

			
				,
				𝜙
			

			

				2
			

			

				)
			

		
	
 the solutions of systems (3) satisfying the initial conditions 
	
		
			
				𝑥
				(
				𝑡
				+
				𝑡
			

			

				0
			

			
				)
				=
				𝜙
			

			

				1
			

			
				(
				𝑡
				)
			

		
	
, 
	
		
			
				𝑦
				(
				𝑡
				+
				𝑡
			

			

				0
			

			
				)
				=
				𝜙
			

			

				2
			

			
				(
				𝑡
				)
			

		
	
. Assume that solutions 
	
		
			
				𝑥
				(
				𝑡
				;
				𝑡
			

			

				0
			

			
				,
				𝜙
			

			

				1
			

			

				)
			

		
	
, 
	
		
			
				𝑦
				(
				𝑡
				;
				𝑡
			

			

				0
			

			
				,
				𝜙
			

			

				2
			

			

				)
			

		
	
 are defined on 
	
		
			
				[
				𝑡
			

			

				0
			

			
				−
				𝑟
				,
				∞
				)
			

		
	
 for any initial functions 
	
		
			

				𝜙
			

			

				1
			

			
				,
				𝜙
			

			

				2
			

			
				∈
				𝐶
				(
				[
				−
				𝑟
				,
				0
				]
				,
				𝑅
			

			

				𝑛
			

			

				)
			

		
	
.
In further investigations, we need the following comparison scalar ordinary differential equations:
						
	
 		
 			
				(
				5
				)
			
 			
				(
				6
				)
			
 		
	

	
		
			

				𝑢
			

			

				
			

			
				𝑢
				=
				𝑓
				(
				𝑡
				,
				𝑢
				)
				,
			

			

				
			

			
				=
				𝑔
				(
				𝑡
				,
				𝑢
				)
				,
			

		
	

					and its perturbed scalar ordinary differential equation
						
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			

				𝜔
			

			

				
			

			
				=
				𝑔
				(
				𝑡
				,
				𝜔
				)
				+
				𝑞
				(
				𝑡
				)
				,
			

		
	

					where 
	
		
			
				𝑢
				,
				𝜔
				∈
				𝑅
			

		
	
, 
	
		
			

				𝑓
			

		
	
, 
	
		
			
				𝑔
				∈
				𝑅
			

			

				+
			

			
				×
				𝑅
				→
				𝑅
			

		
	
, and 
	
		
			
				𝑞
				∈
				𝑅
			

			

				+
			

			
				→
				𝑅
			

		
	
.
The following definitions will be needed in the sequel.
Definition 1. Letting 
	
		
			

				ℎ
			

			

				0
			

			
				,
				ℎ
				∈
				Γ
			

		
	
, then (i)
	
		
			

				ℎ
			

			

				0
			

		
	
 is finer than 
	
		
			

				ℎ
			

		
	
 if there exits a 
	
		
			
				𝛿
				>
				0
			

		
	
 and a function 
	
		
			
				𝑎
				∈
				𝒞
				𝒦
			

		
	
 such that 
										
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			

				ℎ
			

			

				0
			

			
				
				(
				𝑡
				,
				𝑥
				)
				<
				𝛿
				i
				m
				p
				l
				i
				e
				s
				ℎ
				(
				𝑡
				,
				𝑥
				)
				≤
				𝑎
				𝑡
				,
				ℎ
			

			

				0
			

			
				
				;
				(
				𝑡
				,
				𝑥
				)
			

		
	
(ii)
	
		
			

				ℎ
			

			

				0
			

		
	
 is uniformly finer than 
	
		
			

				ℎ
			

		
	
 if there exists a 
	
		
			
				𝛿
				>
				0
			

		
	
 and a function 
	
		
			
				𝑎
				∈
				𝒦
			

		
	
 such that 
										
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			

				ℎ
			

			

				0
			

			
				
				ℎ
				(
				𝑡
				,
				𝑥
				)
				<
				𝛿
				i
				m
				p
				l
				i
				e
				s
				ℎ
				(
				𝑡
				,
				𝑥
				)
				≤
				𝑎
			

			

				0
			

			
				
				.
				(
				𝑡
				,
				𝑥
				)
			

		
	

Definition 2. The function 
	
		
			
				𝑉
				(
				𝑡
				,
				𝑥
				,
				𝑦
				)
			

		
	
 belongs to class 
	
		
			

				𝑉
			

			

				0
			

		
	
, if 
	
		
			
				𝑉
				(
				𝑡
				,
				𝑥
				,
				𝑦
				)
				∈
				𝐶
				[
				Ω
				×
				𝑅
			

			

				𝑛
			

			
				×
				𝑅
			

			

				𝑛
			

			
				,
				𝑅
			

			

				+
			

			

				]
			

		
	
, 
	
		
			
				Ω
				⊂
				𝑅
			

			

				+
			

		
	
, and 
	
		
			
				𝑉
				(
				𝑡
				,
				𝑥
				,
				𝑦
				)
			

		
	
 is Lipschitz with respect to 
	
		
			

				𝑥
			

		
	
 and 
	
		
			

				𝑦
			

		
	
.Letting 
	
		
			
				𝑉
				(
				𝑡
				,
				𝑥
				,
				𝑦
				)
				∈
				𝑉
			

			

				0
			

		
	
, we define a derivative of the function 
	
		
			
				𝑉
				(
				𝑡
				,
				𝑥
				,
				𝑦
				)
			

		
	
 along the trajectory of systems (3) as follows:
							
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			

				𝐷
			

			
				(
				3
				)
			

			
				𝑉
				
				𝑡
				,
				𝜙
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝜙
			

			

				2
			

			
				
				(
				𝑡
				)
				=
				l
				i
				m
				s
				u
				p
			

			
				𝜖
				→
				0
			

			

				1
			

			
				
			
			
				𝜖
				
				𝑉
				
				𝑡
				+
				𝜖
				,
				𝜙
			

			

				1
			

			
				(
				𝑡
				)
				+
				𝜖
				𝐹
			

			

				1
			

			
				
				𝑡
				,
				𝜙
			

			

				1
			

			
				(
				𝑡
				)
				,
				m
				a
				x
			

			
				[
				]
				𝑠
				∈
				−
				𝑟
				,
				0
			

			

				𝜙
			

			

				1
			

			
				
				,
				𝜙
				(
				𝑡
				+
				𝑠
				)
			

			

				2
			

			
				(
				𝑡
				)
				+
				𝜖
				𝐹
			

			

				2
			

			
				
				𝑡
				,
				𝜙
			

			

				2
			

			
				(
				𝑡
				)
				,
				m
				a
				x
			

			
				[
				]
				𝑠
				∈
				−
				𝑟
				,
				0
			

			

				𝜙
			

			

				2
			

			
				
				(
				𝑡
				+
				𝑠
				)
				
				
				−
				𝑉
				𝑡
				,
				𝜙
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝜙
			

			

				2
			

			
				
				
				(
				𝑡
				)
			

		
	

						and a derivative of the function 
	
		
			
				𝑉
				(
				𝑡
				,
				𝑥
				,
				𝑦
				)
			

		
	
 along the trajectory of systems (4) as follows:
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			

				𝐷
			

			
				(
				4
				)
			

			
				𝑉
				
				𝑡
				,
				𝜙
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝜙
			

			

				2
			

			
				
				(
				𝑡
				)
				=
				l
				i
				m
				s
				u
				p
			

			
				𝜖
				→
				0
			

			

				1
			

			
				
			
			
				𝜖
				
				𝑉
				
				𝑡
				+
				𝜖
				,
				𝜙
			

			

				1
			

			
				
				𝐹
				(
				𝑡
				)
				+
				𝜖
			

			

				1
			

			
				
				𝑡
				,
				𝜙
			

			

				1
			

			
				(
				𝑡
				)
				,
				m
				a
				x
			

			
				[
				]
				𝑠
				∈
				−
				𝑟
				,
				0
			

			

				𝜙
			

			

				1
			

			
				
				(
				𝑡
				+
				𝑠
				)
				+
				𝐺
			

			

				1
			

			
				
				𝑡
				,
				𝜙
			

			

				1
			

			
				(
				𝑡
				)
				,
				m
				a
				x
			

			
				[
				]
				𝑠
				∈
				𝑡
				−
				𝑟
				,
				𝑡
			

			

				𝜙
			

			

				1
			

			
				,
				𝜙
				(
				𝑡
				+
				𝑠
				)
				
				
			

			

				2
			

			
				
				𝐹
				(
				𝑡
				)
				+
				𝜖
			

			

				2
			

			
				
				𝑡
				,
				𝜙
			

			

				2
			

			
				(
				𝑡
				)
				,
				m
				a
				x
			

			
				[
				]
				𝑠
				∈
				−
				𝑟
				,
				0
			

			

				𝜙
			

			

				2
			

			
				
				(
				𝑡
				+
				𝑠
				)
				+
				𝐺
			

			

				2
			

			
				
				𝑡
				,
				𝜙
			

			

				2
			

			
				(
				𝑡
				)
				,
				m
				a
				x
			

			
				[
				]
				𝑠
				∈
				𝑡
				−
				𝑟
				,
				𝑡
			

			

				𝜙
			

			

				2
			

			
				
				(
				𝑡
				+
				𝑠
				)
				
				
				
				−
				𝑉
				𝑡
				,
				𝜙
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝜙
			

			

				2
			

			
				
				
				.
				(
				𝑡
				)
			

		
	

Definition 3. Letting 
	
		
			
				𝑉
				∈
				𝑉
			

			

				0
			

		
	
 and 
	
		
			

				ℎ
			

			

				0
			

			
				,
				ℎ
				∈
				Γ
			

		
	
, then 
	
		
			

				𝑉
			

		
	
 is said to be(i)relatively 
	
		
			

				ℎ
			

		
	
-positive definite if there exists a 
	
		
			
				𝛾
				>
				0
			

		
	
 and a function 
	
		
			
				𝑎
				∈
				𝒦
			

		
	
 such that 
										
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				ℎ
				(
				𝑡
				,
				𝑥
				−
				𝑦
				)
				<
				𝛿
				i
				m
				p
				l
				i
				e
				s
				𝑎
				(
				ℎ
				(
				𝑡
				,
				𝑥
				−
				𝑦
				)
				)
				≤
				𝑉
				(
				𝑡
				,
				𝑥
				,
				𝑦
				)
				;
			

		
	
(ii)relatively 
	
		
			

				ℎ
			

			

				0
			

		
	
-decrescent if there exists a 
	
		
			
				𝜆
				>
				0
			

		
	
 and a function 
	
		
			
				𝑏
				∈
				𝒦
			

		
	
 such that 
										
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			

				ℎ
			

			

				0
			

			
				
				ℎ
				(
				𝑡
				,
				𝑥
				−
				𝑦
				)
				<
				𝜆
				i
				m
				p
				l
				i
				e
				s
				𝑉
				(
				𝑡
				,
				𝑥
				,
				𝑦
				)
				≤
				𝑏
			

			

				0
			

			
				
				;
				(
				𝑡
				,
				𝑥
				−
				𝑦
				)
			

		
	
(iii)weak-relatively 
	
		
			

				ℎ
			

			

				0
			

		
	
-decrescent if there exists a 
	
		
			
				𝜆
				>
				0
			

		
	
 and a function 
	
		
			
				𝑏
				∈
				𝒞
				𝒦
			

		
	
 such that 
										
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			

				ℎ
			

			

				0
			

			
				
				(
				𝑡
				,
				𝑥
				−
				𝑦
				)
				<
				𝜆
				i
				m
				p
				l
				i
				e
				s
				𝑉
				(
				𝑡
				,
				𝑥
				,
				𝑦
				)
				≤
				𝑏
				𝑡
				,
				ℎ
			

			

				0
			

			
				
				.
				(
				𝑡
				,
				𝑥
				−
				𝑦
				)
			

		
	
One will introduce relatively integral stability in terms of two measures for differential systems (3).
Definition 4. Letting 
	
		
			

				ℎ
			

			

				0
			

			
				,
				ℎ
				∈
				Γ
			

		
	
, differential systems (3) are said to be uniform-relatively integrally stable in terms of measures 
	
		
			
				(
				ℎ
			

			

				0
			

			
				,
				ℎ
				)
			

		
	
, if for 
	
		
			
				𝛼
				>
				0
			

		
	
 and any 
	
		
			

				𝑡
			

			

				0
			

			
				≥
				0
			

		
	
, there exists 
	
		
			
				𝛽
				=
				𝛽
				(
				𝛼
				)
				∈
				𝒦
			

		
	
 such that, for any initial functions 
	
		
			

				𝜙
			

			

				1
			

			
				,
				𝜙
			

			

				2
			

			
				∈
				𝐶
				(
				[
				−
				𝑟
				,
				0
				]
				,
				𝑅
			

			

				𝑛
			

			

				)
			

		
	
 and any perturbations 
	
		
			

				𝐺
			

			

				1
			

			
				,
				𝐺
			

			

				2
			

			
				∈
				𝐶
				(
				𝑅
			

			

				+
			

			
				×
				𝑅
			

			

				𝑛
			

			
				×
				𝑅
			

			

				𝑛
			

			
				,
				𝑅
			

			

				𝑛
			

			

				)
			

		
	
, the inequality 
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				ℎ
				
				𝑡
				,
				𝑥
			

			

				1
			

			
				−
				𝑦
			

			

				2
			

			
				
				<
				𝛽
				,
				𝑡
				≥
				𝑡
			

			

				0
			

		
	

						holds, provided that
							
	
 		
 			
				(
				1
				6
				)
			
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				m
				a
				x
			

			
				[
				]
				𝑠
				∈
				−
				𝑟
				,
				0
			

			

				ℎ
			

			

				0
			

			
				
				𝑡
			

			

				0
			

			
				+
				𝑠
				,
				𝜙
			

			

				1
			

			
				−
				𝜙
			

			

				2
			

			
				
				
				<
				𝛼
				,
			

			

				𝑡
			

			

				0
			

			
				𝑡
				+
				𝑇
			

			

				0
			

			
				s
				u
				p
			

			
				(
				𝑥
				−
				𝑦
				,
				𝑥
			

			

				1
			

			
				−
				𝑦
			

			

				2
			

			
				)
				∈
				Ω
				(
				𝑠
				,
				ℎ
				,
				𝛽
				)
			

			
				‖
				‖
				𝐺
			

			

				1
			

			
				
				𝑠
				,
				𝑥
				,
				𝑥
			

			

				1
			

			
				
				−
				𝐺
			

			

				2
			

			
				
				𝑠
				,
				𝑦
				,
				𝑦
			

			

				2
			

			
				
				‖
				‖
				𝑑
				𝑠
				≤
				𝛼
				,
				𝑇
				>
				0
				,
			

		
	

						where 
	
		
			

				𝑥
			

			

				1
			

			
				(
				𝑡
				;
				𝑡
			

			

				0
			

			
				,
				𝜙
			

			

				1
			

			

				)
			

		
	
, 
	
		
			

				𝑦
			

			

				2
			

			
				(
				𝑡
				;
				𝑡
			

			

				0
			

			
				,
				𝜙
			

			

				2
			

			

				)
			

		
	
 are the solutions of the initial value problem for perturbed differential systems with “maxima” (4).
3. Main Results
In further investigations, we need the following comparison result.
Lemma 5.  Let the following conditions hold: 
	
		
			
				(
				H
			

			

				1
			

			

				)
			

		
	

	
		
			

				𝐹
			

			

				1
			

			
				,
				𝐹
			

			

				2
			

			
				∈
				𝐶
				(
				[
				𝑡
			

			

				0
			

			
				,
				𝑇
				]
				×
				𝑅
			

			

				𝑛
			

			
				×
				𝑅
			

			

				𝑛
			

			
				,
				𝑅
			

			

				𝑛
			

			

				)
			

		
	
, where 
	
		
			

				𝑡
			

			

				0
			

			
				,
				𝑇
				∈
				𝑅
			

			

				+
			

		
	
, 
	
		
			

				𝑡
			

			

				0
			

			
				<
				𝑇
			

		
	
;
	
		
			
				(
				H
			

			

				2
			

			

				)
			

		
	

	
		
			
				𝑉
				∶
				[
				𝑡
			

			

				0
			

			
				,
				𝑇
				]
				×
				𝑅
			

			

				𝑛
			

			
				×
				𝑅
			

			

				𝑛
			

			
				→
				𝑅
			

			

				+
			

		
	
, 
	
		
			
				𝑉
				∈
				𝑉
			

			

				0
			

		
	
 and
	
		
			
				(
				i
				)
			

		
	
for any number 
	
		
			
				𝑡
				∈
				[
				𝑡
			

			

				0
			

			
				,
				𝑇
				]
			

		
	
 and any function 
	
		
			

				𝜓
			

			

				1
			

			
				,
				𝜓
			

			

				2
			

			
				∈
				𝐶
				(
				[
				𝑡
				−
				𝑟
				,
				𝑡
				]
				,
				𝑅
			

			

				𝑛
			

			

				)
			

		
	
 such that 
	
		
			
				𝑉
				(
				𝑡
				,
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝜓
			

			

				2
			

			
				(
				𝑡
				)
				)
				>
				𝑉
				(
				𝑡
				+
				𝑠
				,
				𝜓
			

			

				1
			

			
				(
				𝑡
				+
				𝑠
				)
				,
				𝜓
			

			

				2
			

			
				(
				𝑡
				+
				𝑠
				)
				)
			

		
	
 for 
	
		
			
				𝑠
				∈
				[
				−
				𝑟
				,
				0
				)
			

		
	
 the inequality 
													
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			

				𝐷
			

			
				(
				3
				)
			

			
				𝑉
				
				𝑡
				,
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝜓
			

			

				2
			

			
				
				
				
				(
				𝑡
				)
				≤
				𝑔
				𝑡
				,
				𝑉
				𝑡
				,
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝜓
			

			

				2
			

			
				(
				𝑡
				)
				
				
			

		
	
 holds, where 
	
		
			
				𝑔
				∈
				𝐶
				(
				[
				𝑡
			

			

				0
			

			
				,
				𝑇
				]
				×
				𝑅
			

			

				+
			

			
				,
				𝑅
			

			

				+
			

			
				)
				,
				𝑔
				(
				𝑡
				,
				0
				)
				≡
				0
			

		
	
;
	
		
			
				(
				H
			

			

				3
			

			

				)
			

		
	

	
		
			
				𝑥
				(
				𝑡
				;
				𝑡
			

			

				0
			

			
				,
				𝜙
			

			

				1
			

			

				)
			

		
	
, 
	
		
			
				𝑦
				(
				𝑡
				;
				𝑡
			

			

				0
			

			
				,
				𝜙
			

			

				2
			

			

				)
			

		
	
 are the solutions of the initial value problem for differential systems with “maxima” (3);
	
		
			
				(
				H
			

			

				4
			

			

				)
			

		
	

	
		
			

				𝑢
			

			

				∗
			

			
				(
				𝑡
				)
				=
				𝑢
			

			

				∗
			

			
				(
				𝑡
				;
				𝑡
			

			

				0
			

			
				,
				𝑢
			

			

				0
			

			

				)
			

		
	
 is the maximal solution of (6) with initial condition 
	
		
			

				𝑢
			

			

				∗
			

			
				(
				𝑡
			

			

				0
			

			
				)
				=
				𝑢
			

			

				0
			

		
	
, which is defined for 
	
		
			
				𝑡
				∈
				[
				𝑡
			

			

				0
			

			
				,
				𝑇
				]
			

		
	
. 
          Then the inequality 
	
		
			
				m
				a
				x
			

			
				𝑠
				∈
				[
				−
				𝑟
				,
				0
				]
			

			
				𝑉
				(
				𝑡
			

			

				0
			

			
				+
				𝑠
				,
				𝜙
			

			

				1
			

			
				(
				𝑠
				)
				,
				𝜙
			

			

				2
			

			
				(
				𝑠
				)
				)
				≤
				𝑢
			

			

				0
			

		
	
 implies the validity of the inequality 
	
		
			
				𝑉
				(
				𝑡
				,
				𝑥
				(
				𝑡
				;
				𝑡
			

			

				0
			

			
				,
				𝜙
			

			

				1
			

			
				)
				,
				𝑦
				(
				𝑡
				;
				𝑡
			

			

				0
			

			
				,
				𝜙
			

			

				2
			

			
				)
				)
				≤
				𝑢
			

			

				∗
			

			
				(
				𝑡
				)
			

		
	
, 
	
		
			
				𝑡
				∈
				[
				𝑡
			

			

				0
			

			
				,
				𝑇
				]
			

		
	
.
Proof. Let 
	
		
			

				𝑢
			

			

				0
			

			
				∈
				𝑅
			

			

				+
			

		
	
 and 
	
		
			

				𝜙
			

			

				1
			

			
				,
				𝜙
			

			

				2
			

			
				∈
				𝐶
				(
				[
				−
				𝑟
				,
				0
				]
				,
				𝑅
			

			

				𝑛
			

			

				)
			

		
	
 be such that 
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				m
				a
				x
			

			
				𝑠
				∈
				[
				−
				𝑟
				,
				0
				]
			

			
				𝑉
				
				𝑡
			

			

				0
			

			
				+
				𝑠
				,
				𝜙
			

			

				1
			

			
				(
				𝑠
				)
				,
				𝜙
			

			

				2
			

			
				
				(
				𝑠
				)
				≤
				𝑢
			

			

				0
			

			

				.
			

		
	

						Let 
	
		
			

				𝜐
			

			

				𝑛
			

			
				(
				𝑡
				)
			

		
	
 be the maximal solution of the initial value problem 
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			

				𝑢
			

			

				
			

			
				1
				=
				𝑔
				(
				𝑡
				,
				𝑢
				)
				+
			

			
				
			
			
				𝑛
				
				𝑡
				,
				𝑢
			

			

				0
			

			
				
				=
				𝑢
			

			

				0
			

			
				+
				1
			

			
				
			
			
				𝑛
				.
			

		
	

						Let 
	
		
			
				𝑚
				(
				𝑡
				)
				∈
				𝐶
				(
				[
				𝑡
			

			

				0
			

			
				−
				𝑟
				,
				𝑇
				]
				,
				𝑅
			

			

				+
			

			
				)
				∶
				𝑚
				(
				𝑡
				)
				=
				𝑉
				(
				𝑡
				,
				𝑥
				(
				𝑡
				;
				𝑡
			

			

				0
			

			
				,
				𝜙
			

			

				1
			

			
				)
				,
				𝑦
				(
				𝑡
				;
				𝑡
			

			

				0
			

			
				,
				𝜙
			

			

				2
			

			
				)
				)
			

		
	
.Because of the fact that 
	
		
			

				𝑢
			

			

				∗
			

			
				(
				𝑡
				;
				𝑡
			

			

				0
			

			
				,
				𝑢
			

			

				0
			

			
				)
				=
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝜐
			

			

				𝑛
			

			
				(
				𝑡
				)
			

		
	
, it is enough to prove that for any 
	
		
			

				𝑛
			

		
	
 the inequality
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				𝑚
				(
				𝑡
				)
				≤
				𝜐
			

			

				𝑛
			

			
				
				𝑡
				(
				𝑡
				)
				,
				𝑡
				∈
			

			

				0
			

			
				
				,
				𝑇
			

		
	

						holds. Then the inequality 
	
		
			
				𝑚
				(
				𝑡
			

			

				0
			

			
				)
				<
				𝜐
			

			

				𝑛
			

			
				(
				𝑡
			

			

				0
			

			

				)
			

		
	
 holds.Assume that inequality (21) is not true; then there exists a point 
	
		
			
				𝜂
				∈
				(
				𝑡
			

			

				0
			

			
				,
				𝑇
				]
				∶
				𝑚
				(
				𝜂
				)
				>
				𝜐
			

			

				𝑛
			

			
				(
				𝜂
				)
			

		
	
. Let 
	
		
			

				𝑡
			

			

				∗
			

			
				=
				s
				u
				p
				{
				𝑡
				∈
				[
				𝑡
			

			

				0
			

			
				,
				𝑇
				]
				∶
				𝑚
				(
				𝑠
				)
				<
				𝜐
			

			

				𝑛
			

			
				(
				𝑠
				)
				,
				𝑠
				∈
				[
				𝑡
			

			

				0
			

			
				,
				𝑡
				)
				}
			

		
	
. According to the assumption 
	
		
			

				𝑡
			

			

				∗
			

			
				<
				𝑇
			

		
	
, we have
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				𝑚
				
				𝑡
			

			

				∗
			

			
				
				=
				𝜐
			

			

				𝑛
			

			
				
				𝑡
			

			

				∗
			

			
				
				,
				𝑚
				(
				𝑡
				)
				<
				𝜐
			

			

				𝑛
			

			
				
				𝑡
				(
				𝑡
				)
				,
				𝑡
				∈
			

			

				0
			

			
				,
				𝑡
			

			

				∗
			

			
				
				,
				𝑚
				(
				𝑡
				)
				≥
				𝜐
			

			

				𝑛
			

			
				
				𝑡
				(
				𝑡
				)
				,
				𝑡
				∈
			

			

				∗
			

			
				,
				𝑡
			

			

				∗
			

			
				
				,
				+
				𝛿
			

		
	

						where 
	
		
			
				𝛿
				>
				0
			

		
	
 is a small enough number. From inequality (22) it follows that
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			

				𝑚
			

			

				
			

			
				(
				𝑡
				)
				≥
				𝜐
			

			
				
				𝑛
			

			
				
				𝑡
				(
				𝑡
				)
				=
				𝑔
			

			

				∗
			

			
				,
				𝜐
			

			

				𝑛
			

			
				
				𝑡
			

			

				∗
			

			
				+
				1
				
				
			

			
				
			
			
				𝑛
				
				𝑡
				=
				𝑔
			

			

				∗
			

			
				
				𝑡
				,
				𝑚
			

			

				∗
			

			
				+
				1
				
				
			

			
				
			
			
				𝑛
				.
			

		
	

						From 
	
		
			
				𝑔
				(
				𝑡
				,
				𝑢
				)
				+
				1
				/
				𝑛
				>
				0
			

		
	
 on 
	
		
			
				[
				𝑡
			

			

				∗
			

			
				−
				𝑟
				,
				𝑡
			

			

				∗
			

			
				]
				∩
				[
				𝑡
			

			

				0
			

			
				,
				𝑇
				]
			

		
	
, it follows that the function 
	
		
			

				𝜐
			

			

				𝑛
			

			
				(
				𝑡
				)
			

		
	
 is nondecreasing on 
	
		
			
				[
				𝑡
			

			

				∗
			

			
				−
				𝑟
				,
				𝑡
			

			

				∗
			

			
				]
				∩
				[
				𝑡
			

			

				0
			

			
				,
				𝑇
				]
			

		
	
.Therefore 
	
		
			
				𝑚
				(
				𝑡
			

			

				∗
			

			
				)
				>
				𝑚
				(
				𝑠
				)
			

		
	
 for 
	
		
			
				𝑠
				∈
				[
				𝑡
			

			

				∗
			

			
				−
				𝑟
				,
				𝑡
			

			

				∗
			

			

				)
			

		
	
.According to condition (i) of Lemma 5 and definition of function 
	
		
			
				𝑚
				(
				𝑡
				)
			

		
	
, we get 
	
		
			

				𝑚
			

			

				
			

			
				(
				𝑡
			

			

				∗
			

			
				)
				≤
				𝑔
				(
				𝑡
			

			

				∗
			

			
				,
				𝑚
				(
				𝑡
			

			

				∗
			

			
				)
				)
				<
				𝑔
				(
				𝑡
			

			

				∗
			

			
				,
				𝑚
				(
				𝑡
			

			

				∗
			

			
				)
				)
				+
				1
				/
				𝑛
			

		
	
 that contradicts (23).Therefore inequality (21) holds and the conclusion of Lemma 5 follows.
In the following results, we will obtain sufficient conditions for uniform-relatively integral stability in terms of two measures.
Theorem 6.  Let the following conditions hold: 
	
		
			
				(
				A
			

			

				1
			

			

				)
			

		
	

	
		
			

				ℎ
			

			

				0
			

			
				,
				ℎ
				∈
				Γ
			

		
	
, 
	
		
			

				ℎ
			

			

				0
			

		
	
 is uniformly finer than 
	
		
			

				ℎ
			

		
	
;
	
		
			
				(
				A
			

			

				2
			

			

				)
			

		
	
there exists 
	
		
			

				𝑉
			

			

				1
			

			
				∈
				𝑉
			

			

				0
			

		
	
, it is relatively 
	
		
			

				ℎ
			

			

				0
			

		
	
-decrescent and(i)for any number 
	
		
			
				𝑡
				≥
				0
			

		
	
 and functions 
	
		
			

				𝜓
			

			

				1
			

			
				,
				𝜓
			

			

				2
			

			
				∈
				𝐶
				(
				[
				𝑡
				−
				𝑟
				,
				𝑡
				]
				,
				𝑅
			

			

				𝑛
			

			

				)
			

		
	
 such that 
	
		
			

				𝑉
			

			

				1
			

			
				(
				𝑡
				,
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝜓
			

			

				2
			

			
				(
				𝑡
				)
				)
				>
				𝑉
			

			

				1
			

			
				(
				𝑡
				+
				𝑠
				,
				𝜓
			

			

				1
			

			
				(
				𝑡
				+
				𝑠
				)
				,
				𝜓
			

			

				2
			

			
				(
				𝑡
				+
				𝑠
				)
				)
			

		
	
 for 
	
		
			
				𝑠
				∈
				[
				−
				𝑟
				,
				0
				)
			

		
	
 and 
	
		
			
				(
				𝑡
				,
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝜓
			

			

				2
			

			
				(
				𝑡
				)
				)
				∈
				𝑆
				(
				ℎ
				,
				𝜌
				)
			

		
	
, the inequality
													
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			

				𝐷
			

			
				(
				4
				)
			

			

				𝑉
			

			

				1
			

			
				
				𝑡
				,
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝜓
			

			

				2
			

			
				
				
				(
				𝑡
				)
				≤
				𝑓
				𝑡
				,
				𝑉
			

			

				1
			

			
				
				𝑡
				,
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝜓
			

			

				2
			

			
				(
				𝑡
				)
				
				
			

		
	
 holds, where 
	
		
			
				𝑓
				∈
				𝐶
				(
				𝑅
			

			

				+
			

			
				×
				𝑅
				,
				𝑅
				)
			

		
	
, 
	
		
			
				𝜌
				>
				0
			

		
	
 is a constant;
	
		
			
				(
				A
			

			

				3
			

			

				)
			

		
	
for any number 
	
		
			
				𝜇
				>
				0
			

		
	
, there exists 
	
		
			

				𝑉
			

			
				2
				(
				𝜇
				)
			

			
				∈
				𝑉
			

			

				0
			

		
	
 such that(ii)
	
		
			
				𝑏
				(
				ℎ
				(
				𝑡
				,
				𝑥
				−
				𝑦
				)
				)
				≤
				𝑉
			

			
				2
				(
				𝜇
				)
			

			
				(
				𝑡
				,
				𝑥
				,
				𝑦
				)
				≤
				𝑎
				(
				ℎ
			

			

				0
			

			
				(
				𝑡
				,
				𝑥
				−
				𝑦
				)
				)
			

		
	
, where 
	
		
			
				𝑎
				,
				𝑏
				∈
				𝒦
			

		
	
 and 
	
		
			
				l
				i
				m
			

			
				𝑢
				→
				∞
			

			
				𝑏
				(
				𝑢
				)
				=
				∞
			

		
	
;(iii)for any number 
	
		
			
				𝑡
				≥
				0
			

		
	
 and functions 
	
		
			

				𝜓
			

			

				1
			

			
				,
				𝜓
			

			

				2
			

			
				∈
				𝐶
				(
				[
				−
				𝑟
				,
				0
				]
				,
				𝑅
			

			

				𝑛
			

			

				)
			

		
	
 such that 
	
		
			
				(
				𝑡
				,
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝜓
			

			

				2
			

			
				(
				𝑡
				)
				)
				∈
				𝑆
				(
				ℎ
				,
				𝜌
				)
				∩
				𝑆
			

			

				𝐶
			

			
				(
				ℎ
			

			

				0
			

			
				,
				𝜇
				)
			

		
	
 and
													
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			

				𝑉
			

			

				1
			

			
				
				𝑡
				,
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝜓
			

			

				2
			

			
				
				(
				𝑡
				)
				+
				𝑉
			

			
				2
				(
				𝜇
				)
			

			
				
				𝑡
				,
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝜓
			

			

				2
			

			
				
				(
				𝑡
				)
				>
				𝑉
			

			

				1
			

			
				
				𝑡
				+
				𝑠
				,
				𝜓
			

			

				1
			

			
				(
				𝑡
				+
				𝑠
				)
				,
				𝜓
			

			

				2
			

			
				
				(
				𝑡
				+
				𝑠
				)
				+
				𝑉
			

			
				2
				(
				𝜇
				)
			

			
				
				𝑡
				+
				𝑠
				,
				𝜓
			

			

				1
			

			
				(
				𝑡
				+
				𝑠
				)
				,
				𝜓
			

			

				2
			

			
				
				(
				𝑡
				+
				𝑠
				)
			

		
	
 for 
	
		
			
				𝑠
				∈
				[
				−
				𝑟
				,
				0
				)
			

		
	
, the inequality
													
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			

				𝐷
			

			
				(
				3
				)
			

			

				𝑉
			

			

				1
			

			
				
				𝑡
				,
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝜓
			

			

				2
			

			
				
				(
				𝑡
				)
				+
				𝐷
			

			
				(
				3
				)
			

			

				𝑉
			

			
				2
				(
				𝜇
				)
			

			
				
				𝑡
				,
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝜓
			

			

				2
			

			
				
				
				(
				𝑡
				)
				≤
				𝑔
				𝑡
				,
				𝑉
			

			

				1
			

			
				
				𝑡
				,
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝜓
			

			

				2
			

			
				
				(
				𝑡
				)
				+
				𝑉
			

			
				2
				(
				𝜇
				)
			

			
				
				𝑡
				,
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝜓
			

			

				2
			

			
				
				
				(
				𝑡
				)
			

		
	
 holds, where 
	
		
			
				𝑔
				∈
				𝐶
				(
				𝑅
			

			

				+
			

			
				×
				𝑅
				,
				𝑅
				)
			

		
	
, 
	
		
			
				𝑔
				(
				𝑡
				,
				0
				)
				≡
				0
			

		
	
;
	
		
			
				(
				A
			

			

				4
			

			

				)
			

		
	
the zero solution of differential equation (5) is equistable;
	
		
			
				(
				A
			

			

				5
			

			

				)
			

		
	
the zero solution of differential equation (6) is uniform-integrally stable. 
          Then differential systems with “maxima” (3) are uniform-relatively integrally stable in terms of measures 
	
		
			
				(
				ℎ
			

			

				0
			

			
				,
				ℎ
				)
			

		
	
.
Proof. Since 
	
		
			

				𝑉
			

			

				1
			

			
				(
				𝑡
				,
				𝑥
				,
				𝑦
				)
			

		
	
 is relatively 
	
		
			

				ℎ
			

			

				0
			

		
	
-decrescent, there exist 
	
		
			

				𝜌
			

			

				1
			

			
				∈
				(
				0
				,
				𝜌
				)
			

		
	
 and 
	
		
			

				𝜓
			

			

				3
			

			
				∈
				𝒦
			

		
	
 such that 
	
		
			

				ℎ
			

			

				0
			

			
				(
				𝑡
				,
				𝑥
				−
				𝑦
				)
				<
				𝜌
			

			

				1
			

		
	
, the inequality
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			

				𝑉
			

			

				1
			

			
				(
				𝑡
				,
				𝑥
				,
				𝑦
				)
				≤
				𝜓
			

			

				3
			

			
				
				ℎ
			

			

				0
			

			
				
				(
				𝑡
				,
				𝑥
				−
				𝑦
				)
			

		
	

						holds.Since 
	
		
			

				ℎ
			

			

				0
			

		
	
 is uniformly finer than 
	
		
			

				ℎ
			

		
	
, there exist 
	
		
			

				𝜌
			

			

				0
			

			
				∈
				(
				0
				,
				𝜌
			

			

				1
			

			

				)
			

		
	
 and 
	
		
			

				𝜓
			

			

				4
			

			
				∈
				𝒦
				∶
				𝜓
			

			

				4
			

			
				(
				𝜌
			

			

				0
			

			
				)
				<
				𝜌
			

			

				1
			

		
	
 such that 
	
		
			

				ℎ
			

			

				0
			

			
				(
				𝑡
				,
				𝑥
				−
				𝑦
				)
				<
				𝜌
			

			

				0
			

		
	
 implies
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			
				ℎ
				(
				𝑡
				,
				𝑥
				−
				𝑦
				)
				≤
				𝜓
			

			

				4
			

			
				
				ℎ
			

			

				0
			

			
				
				.
				(
				𝑡
				,
				𝑥
				−
				𝑦
				)
			

		
	
Let 
	
		
			
				𝛼
				>
				0
			

		
	
 be a number such that 
	
		
			
				𝛼
				<
				𝜌
			

			

				0
			

		
	
. According to condition 
	
		
			
				(
				A
			

			

				3
			

			

				)
			

		
	
, there exist 
	
		
			

				𝑉
			

			
				2
				(
				𝛼
				)
			

			
				(
				𝑡
				,
				𝑥
				,
				𝑦
				)
			

		
	
 with Lipschitz constant 
	
		
			

				𝑀
			

			

				2
			

		
	
. Let 
	
		
			

				𝑀
			

			

				1
			

		
	
 be Lipschitz constant of the function 
	
		
			

				𝑉
			

			

				1
			

			
				(
				𝑡
				,
				𝑥
				,
				𝑦
				)
			

		
	
.Denote 
	
		
			
				(
				𝑀
			

			

				1
			

			
				+
				𝑀
			

			

				2
			

			
				)
				𝛼
				=
				𝛼
			

			

				1
			

		
	
. Without loss of generality, we assume 
	
		
			

				𝛼
			

			

				1
			

			
				<
				𝑏
				(
				𝜌
				)
			

		
	
.From condition 
	
		
			
				(
				A
			

			

				4
			

			

				)
			

		
	
, it follows that there exists a 
	
		
			

				𝛿
			

			

				1
			

			
				=
				𝛿
			

			

				1
			

			
				(
				𝑡
			

			

				0
			

			
				,
				𝛼
			

			

				1
			

			
				)
				>
				0
			

		
	
 such that the inequality 
	
		
			
				|
				𝑢
			

			

				0
			

			
				|
				<
				𝛿
			

			

				1
			

		
	
 implies that
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				|
				|
				𝑢
				|
				|
				<
				𝛼
				(
				𝑡
				)
			

			

				1
			

			
				
			
			
				2
				,
				𝑡
				≥
				𝑡
			

			

				0
			

			

				,
			

		
	

						where 
	
		
			
				𝑢
				(
				𝑡
				)
			

		
	
 is a solution of (5) with the initial condition 
	
		
			
				𝑢
				(
				𝑡
			

			

				0
			

			
				)
				=
				𝑢
			

			

				0
			

		
	
.Since 
	
		
			

				𝜓
			

			

				3
			

			
				∈
				𝒦
			

		
	
, there exists a 
	
		
			

				𝛿
			

			

				2
			

			
				=
				𝛿
			

			

				2
			

			
				(
				𝛿
			

			

				1
			

			
				)
				>
				0
			

		
	
, 
	
		
			

				𝛿
			

			

				2
			

			
				<
				𝜌
			

			

				1
			

		
	
 such that, for 
	
		
			
				|
				𝑢
				|
				<
				𝛿
			

			

				2
			

		
	
, the inequality
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			

				𝜓
			

			

				3
			

			
				(
				𝑢
				)
				<
				𝛿
			

			

				1
			

		
	

						holds.From condition 
	
		
			
				(
				A
			

			

				5
			

			

				)
			

		
	
, it follows that there exist 
	
		
			

				𝛽
			

			

				1
			

			
				=
				𝛽
			

			

				1
			

			
				(
				𝛼
			

			

				1
			

			
				)
				∈
				𝒦
			

		
	
 and 
	
		
			
				𝑏
				(
				𝜌
				)
				>
				𝛽
			

			

				1
			

			
				≥
				𝛼
			

			

				1
			

		
	
 such that, for every solution 
	
		
			
				𝜔
				(
				𝑡
				)
			

		
	
 of perturbed equation (7) with the initial condition 
	
		
			
				𝜔
				(
				𝑡
			

			

				0
			

			
				)
				=
				𝜔
			

			

				0
			

		
	
, the inequality
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				𝜔
				(
				𝑡
				)
				<
				𝛽
			

			

				1
			

			
				,
				𝑡
				≥
				𝑡
			

			

				0
			

			

				,
			

		
	

						holds, provided that 
	
		
			
				|
				𝜔
			

			

				0
			

			
				|
				<
				𝛼
			

			

				1
			

		
	
 and for every 
	
		
			
				∫
				𝑇
				>
				0
				∶
			

			

				𝑡
			

			

				0
			

			
				𝑡
				+
				𝑇
			

			

				0
			

			
				|
				𝑞
				(
				𝑠
				)
				|
				𝑑
				𝑠
				<
				𝛼
			

			

				1
			

		
	
.Since 
	
		
			
				𝑏
				∈
				𝒦
			

		
	
, 
	
		
			
				l
				i
				m
			

			
				𝑠
				→
				∞
			

			
				𝑏
				(
				𝑠
				)
				=
				∞
			

		
	
, and 
	
		
			

				𝜓
			

			

				4
			

			
				(
				𝛼
				)
				<
				𝜓
			

			

				4
			

			
				(
				𝜌
			

			

				0
			

			
				)
				<
				𝜌
			

			

				1
			

			
				<
				𝜌
			

		
	
, we choose 
	
		
			
				𝛽
				=
				𝛽
				(
				𝛽
			

			

				1
			

			
				)
				>
				0
			

		
	
, 
	
		
			
				𝜌
				>
				𝛽
				>
				𝛼
			

		
	
, 
	
		
			
				𝛽
				>
				𝜓
			

			

				4
			

			
				(
				𝛼
				)
			

		
	
 such that
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			
				𝑏
				(
				𝛽
				)
				≥
				𝛽
			

			

				1
			

			

				.
			

		
	
Since 
	
		
			
				𝑎
				,
				𝜓
			

			

				4
			

			
				∈
				𝒦
			

		
	
 and 
	
		
			
				𝛽
				>
				𝜓
			

			

				4
			

			
				(
				𝛼
				)
			

		
	
, we can find 
	
		
			

				𝛿
			

			

				3
			

			
				=
				𝛿
			

			

				3
			

			
				(
				𝛼
			

			

				1
			

			
				,
				𝛽
				)
				>
				0
				,
				𝛼
				<
				𝛿
			

			

				3
			

			
				<
				m
				i
				n
				(
				𝛿
			

			

				2
			

			
				,
				𝜌
			

			

				0
			

			

				)
			

		
	
 such that the inequalities
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			
				𝑎
				
				𝛿
			

			

				3
			

			
				
				<
				𝛼
			

			

				1
			

			
				
			
			
				2
				,
				𝜓
			

			

				4
			

			
				
				𝛿
			

			

				3
			

			
				
				<
				𝛽
			

		
	

						hold.Now let the initial function 
	
		
			

				𝜙
			

			

				1
			

			
				,
				𝜙
			

			

				2
			

			
				∈
				𝐶
				(
				[
				−
				𝑟
				,
				0
				]
				,
				𝑅
			

			

				𝑛
			

			

				)
			

		
	
 and perturbation 
	
		
			

				𝐺
			

			

				1
			

			
				(
				𝑡
				,
				𝑥
				,
				𝑦
				)
			

		
	
, 
	
		
			

				𝐺
			

			

				2
			

			
				(
				𝑡
				,
				𝑥
				,
				𝑦
				)
			

		
	
 of the right-hand side of differential systems (4) be such that 
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				m
				a
				x
			

			
				[
				]
				𝑠
				∈
				−
				𝑟
				,
				0
			

			

				ℎ
			

			

				0
			

			
				
				𝑡
			

			

				0
			

			
				+
				𝑠
				,
				𝜙
			

			

				1
			

			
				(
				𝑠
				)
				−
				𝜙
			

			

				2
			

			
				
				(
				𝑠
				)
				<
				𝛼
				,
			

		
	

						and for every 
	
		
			
				𝑇
				>
				0
			

		
	

	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			

				
			

			

				𝑡
			

			

				0
			

			
				𝑡
				+
				𝑇
			

			

				0
			

			
				s
				u
				p
			

			
				(
				𝑥
				−
				𝑦
				,
				𝑥
			

			

				1
			

			
				−
				𝑦
			

			

				2
			

			
				)
				∈
				Ω
				(
				𝑠
				,
				ℎ
				,
				𝛽
				)
			

			
				‖
				‖
				𝐺
			

			

				1
			

			
				
				𝑠
				,
				𝑥
				,
				𝑥
			

			

				1
			

			
				
				−
				𝐺
			

			

				2
			

			
				
				𝑠
				,
				𝑦
				,
				𝑦
			

			

				2
			

			
				
				‖
				‖
				𝑑
				𝑠
				<
				𝛼
				.
			

		
	
We will prove that
							
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			
				ℎ
				
				𝑡
				,
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				−
				𝑦
			

			

				2
			

			
				
				(
				𝑡
				)
				<
				𝛽
				,
				𝑡
				≥
				𝑡
			

			

				0
			

			

				.
			

		
	
From (28) and the choice of 
	
		
			

				𝛽
			

		
	
, it follows that 
	
		
			

				ℎ
			

			

				0
			

			
				(
				𝑡
			

			

				0
			

			
				+
				𝑠
				,
				𝜙
			

			

				1
			

			
				(
				𝑠
				)
				−
				𝜙
			

			

				2
			

			
				(
				𝑠
				)
				)
				<
				𝛼
				<
				𝜌
			

			

				0
			

		
	
 implies that 
	
		
			
				ℎ
				(
				𝑡
			

			

				0
			

			
				+
				𝑠
				,
				𝜙
			

			

				1
			

			
				(
				𝑠
				)
				−
				𝜙
			

			

				2
			

			
				(
				𝑠
				)
				)
				≤
				𝜓
			

			

				4
			

			
				(
				ℎ
			

			

				0
			

			
				(
				𝑡
			

			

				0
			

			
				+
				𝑠
				,
				𝜙
			

			

				1
			

			
				(
				𝑠
				)
				−
				𝜙
			

			

				2
			

			
				(
				𝑠
				)
				)
				)
				<
				𝜓
			

			

				4
			

			
				(
				𝛼
				)
				<
				𝛽
			

		
	
; that is, 
							
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			
				ℎ
				
				𝑡
			

			

				0
			

			
				+
				𝑠
				,
				𝜙
			

			

				1
			

			
				(
				𝑠
				)
				−
				𝜙
			

			

				2
			

			
				
				[
				]
				.
				(
				𝑠
				)
				<
				𝛽
				,
				𝑠
				∈
				−
				𝑟
				,
				0
			

		
	
Suppose inequality (37) is not true. Therefore, there exists a point 
	
		
			

				𝑡
			

			

				∗
			

			
				>
				𝑡
			

			

				0
			

		
	
 such that
							
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			
				ℎ
				
				𝑡
			

			

				∗
			

			
				,
				𝑥
			

			

				1
			

			
				
				𝑡
			

			

				∗
			

			
				
				−
				𝑦
			

			

				2
			

			
				
				𝑡
			

			

				∗
			

			
				ℎ
				
				
				
				=
				𝛽
				,
				𝑡
				,
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				−
				𝑦
			

			

				2
			

			
				
				
				𝑡
				(
				𝑡
				)
				<
				𝛽
				,
				𝑡
				∈
			

			

				0
			

			
				−
				𝑟
				,
				𝑡
			

			

				∗
			

			
				
				.
			

		
	
From inequality (38) and 
	
		
			
				𝛽
				<
				𝜌
			

		
	
, it follows the validity of the inclusions
							
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			
				
				𝑡
				,
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝑦
			

			

				2
			

			
				
				
				𝑥
				(
				𝑡
				)
				∈
				𝑆
				(
				ℎ
				,
				𝜌
				)
				,
			

			

				1
			

			
				(
				𝑡
				)
				−
				𝑦
			

			

				2
			

			
				(
				𝑡
				)
				,
				m
				a
				x
			

			
				[
				]
				𝑠
				∈
				𝑡
				−
				𝑟
				,
				𝑡
			

			
				
				𝑥
			

			

				1
			

			
				(
				𝑠
				)
				−
				𝑦
			

			

				2
			

			
				
				
				(
				𝑠
				)
				∈
				Ω
				(
				𝑡
				,
				ℎ
				,
				𝛽
				)
				,
			

		
	

						where 
	
		
			
				𝑡
				∈
				[
				𝑡
			

			

				0
			

			
				,
				𝑡
			

			

				∗
			

			

				]
			

		
	
.Assume that 
	
		
			

				ℎ
			

			

				0
			

			
				(
				𝑡
			

			

				∗
			

			
				,
				𝑥
			

			

				1
			

			
				(
				𝑡
			

			

				∗
			

			
				)
				−
				𝑦
			

			

				2
			

			
				(
				𝑡
			

			

				∗
			

			
				)
				)
				<
				𝛿
			

			

				3
			

		
	
; then from the choice of 
	
		
			

				𝛿
			

			

				3
			

		
	
 and inequality (28) it follows 
	
		
			
				ℎ
				(
				𝑡
			

			

				∗
			

			
				,
				𝑥
			

			

				1
			

			
				(
				𝑡
			

			

				∗
			

			
				)
				−
				𝑦
			

			

				2
			

			
				(
				𝑡
			

			

				∗
			

			
				)
				)
				≤
				𝜓
			

			

				4
			

			
				(
				ℎ
			

			

				0
			

			
				(
				𝑡
			

			

				∗
			

			
				,
				𝑥
			

			

				1
			

			
				(
				𝑡
			

			

				∗
			

			
				)
				−
				𝑦
			

			

				2
			

			
				(
				𝑡
			

			

				∗
			

			
				)
				)
				)
				≤
				𝜓
			

			

				4
			

			
				(
				𝛿
			

			

				3
			

			
				)
				<
				𝛽
			

		
	
, which contradicts (38). Therefore
							
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			

				ℎ
			

			

				0
			

			
				
				𝑡
			

			

				∗
			

			
				,
				𝑥
			

			

				1
			

			
				
				𝑡
			

			

				∗
			

			
				
				−
				𝑦
			

			

				2
			

			
				
				𝑡
			

			

				∗
			

			
				
				
				>
				𝛿
			

			

				3
			

			
				,
				ℎ
			

			

				0
			

			
				
				𝑡
			

			

				0
			

			
				+
				𝑠
				,
				𝜙
			

			

				1
			

			
				(
				𝑠
				)
				−
				𝜙
			

			

				2
			

			
				
				(
				𝑠
				)
				<
				𝛼
				<
				𝛿
			

			

				3
			

			
				[
				]
				,
				,
				𝑠
				∈
				−
				𝑟
				,
				0
			

		
	

						and there exists a point 
	
		
			

				𝑡
			

			
				∗
				0
			

			
				∈
				(
				𝑡
			

			

				0
			

			
				,
				𝑡
			

			

				∗
			

			

				)
			

		
	
 such that 
	
		
			

				𝛿
			

			

				3
			

			
				=
				ℎ
			

			

				0
			

			
				(
				𝑡
			

			
				∗
				0
			

			
				,
				𝑥
			

			

				1
			

			
				(
				𝑡
			

			
				∗
				0
			

			
				)
				−
				𝑦
			

			

				2
			

			
				(
				𝑡
			

			
				∗
				0
			

			
				)
				)
			

		
	
 and 
	
		
			
				(
				𝑡
				,
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝑦
			

			

				2
			

			
				(
				𝑡
				)
				)
				∈
				𝑆
				(
				ℎ
				,
				𝛽
				)
				∩
				𝑆
			

			

				𝑐
			

			
				(
				ℎ
			

			

				0
			

			
				,
				𝛿
			

			

				3
			

			

				)
			

		
	
 for 
	
		
			
				𝑡
				∈
				[
				𝑡
			

			
				∗
				0
			

			
				,
				𝑡
			

			

				∗
			

			

				)
			

		
	
. Since 
	
		
			
				𝛽
				<
				𝜌
			

		
	
 and 
	
		
			

				𝛿
			

			

				3
			

			
				>
				𝛼
			

		
	
, it follows that
							
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			
				
				𝑡
				,
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝑦
			

			

				2
			

			
				
				(
				𝑡
				)
				∈
				𝑆
				(
				ℎ
				,
				𝛽
				)
				∩
				𝑆
			

			

				𝑐
			

			
				
				ℎ
			

			

				0
			

			
				
				
				𝑡
				,
				𝛼
				,
				𝑡
				∈
			

			
				∗
				0
			

			
				,
				𝑡
			

			

				∗
			

			
				
				.
			

		
	
Let 
	
		
			

				𝑟
			

			

				1
			

			
				(
				𝑡
				)
			

		
	
 be the maximal solution of differential equation (5) with the initial condition 
	
		
			

				𝑟
			

			

				1
			

			
				(
				𝑡
			

			

				0
			

			
				)
				=
				𝑢
			

			

				0
			

		
	
, where 
	
		
			

				𝑢
			

			

				0
			

			
				=
				m
				a
				x
			

			
				𝑠
				∈
				[
				−
				𝑟
				,
				0
				]
			

			

				𝑉
			

			

				1
			

			
				(
				𝑡
			

			

				0
			

			
				+
				𝑠
				,
				𝜙
			

			

				1
			

			
				(
				𝑡
			

			

				0
			

			
				+
				𝑠
				)
				,
				𝜙
			

			

				2
			

			
				(
				𝑡
			

			

				0
			

			
				+
				𝑠
				)
				)
			

		
	
. From condition 
	
		
			
				(
				i
				)
			

		
	
 of Theorem 6 and according to Lemma 5, we obtain
							
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			

				𝑉
			

			

				1
			

			
				
				𝑡
				,
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝑦
			

			

				2
			

			
				
				(
				𝑡
				)
				≤
				𝑟
			

			

				1
			

			
				
				𝑡
				(
				𝑡
				)
				,
				𝑡
				∈
			

			

				0
			

			
				,
				𝑡
			

			

				∗
			

			
				
				.
			

		
	
From inequality (30), we obtain
							
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			

				𝑢
			

			

				0
			

			
				=
				𝑉
			

			

				1
			

			
				
				𝜉
				,
				𝜙
			

			

				1
			

			
				(
				𝜉
				)
				,
				𝜙
			

			

				2
			

			
				
				(
				𝜉
				)
				≤
				𝜓
			

			

				3
			

			
				
				ℎ
			

			

				0
			

			
				
				𝜉
				,
				𝜙
			

			

				1
			

			
				(
				𝜉
				)
				−
				𝜙
			

			

				2
			

			
				(
				𝜉
				)
				
				
				<
				𝜓
			

			

				3
			

			
				(
				𝛼
				)
				<
				𝜓
			

			

				3
			

			
				
				𝛿
			

			

				2
			

			
				
				<
				𝛿
			

			

				1
			

			

				,
			

		
	

						where 
	
		
			
				𝜉
				∈
				[
				𝑡
			

			

				0
			

			
				−
				𝑟
				,
				𝑡
			

			

				0
			

			

				]
			

		
	
.From inequalities (29), (42), and (43), we have 
							
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			

				𝑉
			

			

				1
			

			
				
				𝑡
				,
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝑦
			

			

				2
			

			
				
				(
				𝑡
				)
				≤
				𝑟
			

			

				1
			

			
				𝛼
				(
				𝑡
				)
				<
			

			

				1
			

			
				
			
			
				2
				
				𝑡
				,
				𝑡
				∈
			

			

				0
			

			
				,
				𝑡
			

			

				∗
			

			

				
			

		
	

						or
							
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			
				m
				a
				x
			

			
				[
				]
				𝑠
				∈
				−
				𝑟
				,
				0
			

			

				𝑉
			

			

				1
			

			
				
				𝑡
			

			
				∗
				0
			

			
				+
				𝑠
				,
				𝑥
			

			

				1
			

			
				
				𝑡
			

			
				∗
				0
			

			
				
				+
				𝑠
				,
				𝑦
			

			

				2
			

			
				
				𝑡
			

			
				∗
				0
			

			
				<
				𝛼
				+
				𝑠
				
				
			

			

				1
			

			
				
			
			
				2
				.
			

		
	
From inequality (33) and condition 
	
		
			
				(
				i
				i
				)
			

		
	
 of Theorem 6, it follows that
							
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			

				𝑉
			

			
				2
				(
				𝛼
				)
			

			
				
				𝑡
			

			
				∗
				0
			

			
				+
				𝑠
				,
				𝑥
			

			

				1
			

			
				
				𝑡
			

			
				∗
				0
			

			
				
				+
				𝑠
				,
				𝑦
			

			

				2
			

			
				
				𝑡
			

			
				∗
				0
			

			
				
				ℎ
				+
				𝑠
				
				
				≤
				𝑎
			

			

				0
			

			
				
				𝑡
			

			
				∗
				0
			

			
				+
				𝑠
				,
				𝑥
			

			

				1
			

			
				
				𝑡
			

			
				∗
				0
			

			
				
				+
				𝑠
				−
				𝑦
			

			

				2
			

			
				
				𝑡
			

			
				∗
				0
			

			
				<
				𝛼
				+
				𝑠
				
				
				
			

			

				1
			

			
				
			
			
				2
				.
			

		
	
Consider 
	
		
			
				𝑉
				∈
				𝑉
			

			

				0
			

		
	
 defined by
							
	
 		
 			
				(
				4
				7
				)
			
 		
	

	
		
			
				𝑉
				(
				𝑡
				,
				𝑥
				,
				𝑦
				)
				=
				𝑉
			

			

				1
			

			
				(
				𝑡
				,
				𝑥
				,
				𝑦
				)
				+
				𝑉
			

			
				2
				(
				𝛼
				)
			

			
				(
				𝑡
				,
				𝑥
				,
				𝑦
				)
				.
			

		
	
From inequalities (45) and (46) it follows that
							
	
 		
 			
				(
				4
				8
				)
			
 		
	

	
		
			
				m
				a
				x
			

			
				[
				]
				𝑠
				∈
				−
				𝑟
				,
				0
			

			

				𝑉
			

			

				1
			

			
				
				𝑡
			

			
				∗
				0
			

			
				+
				𝑠
				,
				𝑥
			

			

				1
			

			
				
				𝑡
			

			
				∗
				0
			

			
				
				+
				𝑠
				,
				𝑦
			

			

				2
			

			
				
				𝑡
			

			
				∗
				0
			

			
				+
				𝑠
				
				
				<
				𝛼
			

			

				1
			

			

				.
			

		
	
Let 
	
		
			
				𝑡
				∈
				[
				𝑡
			

			
				∗
				0
			

			
				,
				𝑡
			

			

				∗
			

			

				]
			

		
	
 and 
	
		
			

				𝜓
			

			

				1
			

			
				,
				𝜓
			

			

				2
			

			
				∈
				𝐶
				(
				[
				−
				𝑟
				,
				0
				]
				,
				𝑅
			

			

				𝑛
			

			

				)
			

		
	
 be such that 
							
	
 		
 			
				(
				4
				9
				)
			
 		
	

	
		
			
				
				𝑡
				,
				𝜓
			

			

				1
			

			
				(
				0
				)
				,
				𝜓
			

			

				2
			

			
				
				(
				0
				)
				∈
				𝑆
				(
				ℎ
				,
				𝛽
				)
				∩
				𝑆
			

			

				𝑐
			

			
				
				ℎ
			

			

				0
			

			
				
				,
				
				𝜓
				,
				𝛼
			

			

				1
			

			
				(
				0
				)
				−
				𝜓
			

			

				2
			

			
				(
				0
				)
				,
				m
				a
				x
			

			
				[
				]
				𝑠
				∈
				−
				𝑟
				,
				0
			

			
				
				𝜓
			

			

				1
			

			
				(
				𝑠
				)
				−
				𝜓
			

			

				2
			

			
				
				
				(
				𝑠
				)
				∈
				Ω
				(
				𝑡
				,
				ℎ
				,
				𝛽
				)
				,
			

		
	

						and 
	
		
			
				𝑉
				(
				𝑡
				,
				𝜓
			

			

				1
			

			
				(
				0
				)
				,
				𝜓
			

			

				2
			

			
				(
				0
				)
				)
				>
				𝑉
				(
				𝑡
				+
				𝑠
				,
				𝜓
			

			

				1
			

			
				(
				𝑠
				)
				,
				𝜓
			

			

				2
			

			
				(
				𝑠
				)
				)
			

		
	
, 
	
		
			
				𝑠
				∈
				[
				−
				𝑟
				,
				0
				)
			

		
	
.Using Lipschitz conditions for 
	
		
			

				𝑉
			

			

				1
			

		
	
, 
	
		
			

				𝑉
			

			
				2
				(
				𝛼
				)
			

		
	
 and condition 
	
		
			
				(
				i
				i
				i
				)
			

		
	
 of Theorem 6, we obtain
							
	
 		
 			
				(
				5
				0
				)
			
 		
	

	
		
			

				𝐷
			

			
				(
				4
				)
			

			
				𝑉
				
				𝑡
				,
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝜓
			

			

				2
			

			
				
				(
				𝑡
				)
				=
				𝐷
			

			
				(
				4
				)
			

			

				𝑉
			

			

				1
			

			
				
				𝑡
				,
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝜓
			

			

				2
			

			
				
				(
				𝑡
				)
				+
				𝐷
			

			
				(
				4
				)
			

			

				𝑉
			

			
				2
				(
				𝛼
				)
			

			
				
				𝑡
				,
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝜓
			

			

				2
			

			
				
				
				
				(
				𝑡
				)
				≤
				𝑔
				𝑡
				,
				𝑉
				𝑡
				,
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝜓
			

			

				2
			

			
				+
				
				𝑀
				(
				𝑡
				)
				
				
			

			

				1
			

			
				+
				𝑀
			

			

				2
			

			
				
				×
				s
				u
				p
			

			
				(
				𝑥
				−
				𝑦
				,
				𝑥
			

			

				1
			

			
				−
				𝑦
			

			

				2
			

			
				)
				∈
				Ω
				(
				𝑡
				,
				ℎ
				,
				𝛽
				)
			

			
				‖
				‖
				𝐺
			

			

				1
			

			
				
				𝑡
				,
				𝑥
				,
				𝑥
			

			

				1
			

			
				
				−
				𝐺
			

			

				2
			

			
				
				𝑡
				,
				𝑦
				,
				𝑦
			

			

				2
			

			
				
				‖
				‖
				
				
				=
				𝑔
				𝑡
				,
				𝑉
				𝑡
				,
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝜓
			

			

				2
			

			
				(
				𝑡
				)
				
				
				+
				𝑞
				(
				𝑡
				)
				.
			

		
	
Consider differential equation (7) where the perturbation on the right-hand side is given by 
							
	
 		
 			
				(
				5
				1
				)
			
 		
	

	
		
			
				
				𝑀
				𝑞
				(
				𝑡
				)
				=
			

			

				1
			

			
				+
				𝑀
			

			

				2
			

			
				
				×
				s
				u
				p
			

			
				(
				𝑥
				−
				𝑦
				,
				𝑥
			

			

				1
			

			
				−
				𝑦
			

			

				2
			

			
				)
				∈
				Ω
				(
				𝑡
				,
				ℎ
				,
				𝛽
				)
			

			
				‖
				‖
				𝐺
			

			

				1
			

			
				
				𝑡
				,
				𝑥
				,
				𝑥
			

			

				1
			

			
				
				−
				𝐺
			

			

				2
			

			
				
				𝑡
				,
				𝑦
				,
				𝑦
			

			

				2
			

			
				
				‖
				‖
				,
				
				𝑡
				𝑡
				∈
			

			
				∗
				0
			

			
				,
				𝑡
			

			

				∗
			

			
				
				.
			

		
	
Let 
	
		
			

				𝑟
			

			

				∗
			

			
				(
				𝑡
				)
			

		
	
 be the maximal solution of (7) with the initial condition 
	
		
			

				𝑟
			

			

				∗
			

			
				(
				𝑡
			

			
				∗
				0
			

			
				)
				=
				𝜔
			

			
				∗
				0
			

		
	
, where 
	
		
			

				𝜔
			

			
				∗
				0
			

			
				=
				m
				a
				x
			

			
				𝑠
				∈
				[
				−
				𝑟
				,
				0
				]
			

			
				𝑉
				(
				𝑡
			

			
				∗
				0
			

			
				+
				𝑠
				,
				𝑥
			

			

				1
			

			
				(
				𝑡
			

			
				∗
				0
			

			
				+
				𝑠
				)
				,
				𝑦
			

			

				2
			

			
				(
				𝑡
			

			
				∗
				0
			

			
				+
				𝑠
				)
				)
			

		
	
. According to Lemma 5, the inequality
							
	
 		
 			
				(
				5
				2
				)
			
 		
	

	
		
			
				𝑉
				
				𝑡
				,
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝑦
			

			

				2
			

			
				
				(
				𝑡
				)
				≤
				𝑟
			

			

				∗
			

			
				
				𝑡
				(
				𝑡
				)
				,
				𝑡
				∈
				Ξ
				∩
			

			
				∗
				0
			

			
				,
				𝑡
			

			

				∗
			

			

				
			

		
	

						holds, where 
	
		
			
				Ξ
				⊆
				[
				𝑡
			

			
				∗
				0
			

			
				,
				∞
				)
			

		
	
 is the interval of existence of 
	
		
			

				𝑟
			

			

				∗
			

			
				(
				𝑡
				)
			

		
	
.Choose a point 
	
		
			

				𝑇
			

			

				∗
			

			
				>
				𝑡
			

			

				∗
			

		
	
 such that 
							
	
 		
 			
				(
				5
				3
				)
			
 		
	

	
		
			

				
			

			

				𝑡
			

			

				∗
			

			

				𝑡
			

			
				∗
				0
			

			
				1
				𝑞
				(
				𝑠
				)
				𝑑
				𝑠
				+
			

			
				
			
			
				2
				
				𝑇
			

			

				∗
			

			
				−
				𝑡
			

			

				∗
			

			
				
				𝑞
				
				𝑡
			

			

				∗
			

			
				
				<
				𝛼
			

			

				1
			

			

				.
			

		
	
Now define the continuous function 
	
		
			

				𝑞
			

			

				∗
			

			
				(
				𝑡
				)
				∶
				[
				𝑡
			

			
				∗
				0
			

			
				,
				∞
				)
				→
				𝑅
			

		
	
 by
							
	
 		
 			
				(
				5
				4
				)
			
 		
	

	
		
			

				𝑞
			

			

				∗
			

			
				⎧
				⎪
				⎪
				⎨
				⎪
				⎪
				⎩
				
				𝑡
				(
				𝑡
				)
				=
				𝑞
				(
				𝑡
				)
				,
				𝑡
				∈
			

			
				∗
				0
			

			
				,
				𝑡
			

			

				∗
			

			
				
				,
				𝑞
				
				𝑡
			

			

				∗
			

			

				
			

			
				
			
			

				𝑡
			

			

				∗
			

			
				−
				𝑇
			

			

				∗
			

			
				
				𝑡
				,
				𝑡
				∈
			

			

				∗
			

			
				,
				𝑇
			

			

				∗
			

			
				
				,
				0
				,
				𝑡
				≥
				𝑇
			

			

				∗
			

			

				.
			

		
	
From the choice of the perturbation 
	
		
			

				𝐺
			

			

				1
			

			
				(
				𝑡
				,
				𝑥
				,
				𝑦
				)
			

		
	
, 
	
		
			

				𝐺
			

			

				2
			

			
				(
				𝑡
				,
				𝑥
				,
				𝑦
				)
			

		
	
 it follows that for every 
	
		
			
				𝑇
				>
				0
			

		
	
 the inequality 
							
	
 		
 			
				(
				5
				5
				)
			
 		
	

	
		
			

				
			

			

				𝑡
			

			
				∗
				0
			

			
				𝑡
				+
				𝑇
			

			
				∗
				0
			

			

				𝑞
			

			

				∗
			

			
				
				𝑀
				(
				𝑠
				)
				𝑑
				𝑠
				≤
			

			

				1
			

			
				+
				𝑀
			

			

				2
			

			
				
				,
				
			

			

				𝑡
			

			

				0
			

			
				𝑡
				+
				𝑇
			

			

				0
			

			
				s
				u
				p
			

			
				(
				𝑥
				−
				𝑦
				,
				𝑥
			

			

				1
			

			
				−
				𝑦
			

			

				2
			

			
				)
				∈
				Ω
				(
				𝑠
				,
				ℎ
				,
				𝛽
				)
			

			
				‖
				‖
				𝐺
			

			

				1
			

			
				
				𝑠
				,
				𝑥
				,
				𝑥
			

			

				1
			

			
				
				−
				𝐺
			

			

				2
			

			
				
				𝑠
				,
				𝑦
				,
				𝑦
			

			

				2
			

			
				
				‖
				‖
				𝑑
				𝑠
				<
				𝛼
			

			

				1
			

		
	

						holds.Let 
	
		
			

				𝑟
			

			

				1
			

			
				(
				𝑡
				)
			

		
	
 be the maximal solution of (7) with the initial condition 
	
		
			

				𝑟
			

			

				1
			

			
				(
				𝑡
			

			
				∗
				0
			

			
				)
				=
				𝜔
			

			
				∗
				0
			

		
	
, where the perturbation of the right-hand side is defined above function 
	
		
			

				𝑞
			

			

				∗
			

			
				(
				𝑡
				)
			

		
	
. Note that 
	
		
			

				𝑟
			

			

				1
			

			
				(
				𝑡
				)
				=
				𝑟
			

			

				∗
			

			
				(
				𝑡
				,
				𝑡
			

			
				∗
				0
			

			
				,
				𝜔
			

			
				∗
				0
			

			

				)
			

		
	
, 
	
		
			
				𝑡
				∈
				[
				𝑡
			

			
				∗
				0
			

			
				,
				𝑡
			

			

				∗
			

			

				)
			

		
	
.From inequality (48) it follows that 
	
		
			
				|
				𝜔
			

			
				∗
				0
			

			
				|
				<
				𝛼
			

			

				1
			

		
	
 and therefore inequality (31) holds; that is,
							
	
 		
 			
				(
				5
				6
				)
			
 		
	

	
		
			

				𝑟
			

			

				1
			

			
				(
				𝑡
				)
				<
				𝛽
			

			

				1
			

			
				,
				𝑡
				≥
				𝑡
			

			
				∗
				0
			

			

				.
			

		
	
From inequalities (52) and (56), the choice of the point 
	
		
			

				𝑡
			

			

				∗
			

		
	
, and condition 
	
		
			
				(
				i
				i
				i
				)
			

		
	
, we obtain 
							
	
 		
 			
				(
				5
				7
				)
			
 		
	

	
		
			
				𝑏
				(
				𝛽
				)
				≥
				𝛽
			

			

				1
			

			
				>
				𝑟
			

			

				1
			

			
				
				𝑡
			

			

				∗
			

			
				
				=
				𝑟
			

			

				∗
			

			
				
				𝑡
			

			

				∗
			

			
				
				
				𝑡
				≥
				𝑉
			

			

				∗
			

			
				,
				𝑥
			

			

				1
			

			
				
				𝑡
			

			

				∗
			

			
				
				,
				𝑦
			

			

				2
			

			
				
				𝑡
			

			

				∗
			

			
				
				
				≥
				𝑉
			

			
				2
				(
				𝛼
				)
			

			
				
				𝑡
			

			

				∗
			

			
				,
				𝑥
			

			

				1
			

			
				
				𝑡
			

			

				∗
			

			
				
				,
				𝑦
			

			

				2
			

			
				
				𝑡
			

			

				∗
			

			
				
				ℎ
				
				𝑡
				
				
				≥
				𝑏
			

			

				∗
			

			
				,
				𝑥
			

			

				1
			

			
				
				𝑡
			

			

				∗
			

			
				
				−
				𝑦
			

			

				2
			

			
				
				𝑡
			

			

				∗
			

			
				
				
				
				=
				𝑏
				(
				𝛽
				)
				.
			

		
	
The obtained contradiction proves the validity of inequality (37) for 
	
		
			
				𝑡
				≥
				𝑡
			

			

				0
			

		
	
.Inequality (37) proves uniform-relatively integral stability in terms of measures 
	
		
			
				(
				ℎ
			

			

				0
			

			
				,
				ℎ
				)
			

		
	
 of the considered differential systems with “maxima.”
The following example is an application of Theorem 6.
Example 1. Consider the two differential systems with “maxima”
							
	
 		
 			
				(
				5
				8
				)
			
 		
	

	
		
			

				𝑥
			

			

				
			

			
				=
				−
				𝑥
				−
				𝑥
				𝑒
			

			
				𝑡
				−
				𝑡
			

			

				0
			

			
				+
				1
			

			
				
			
			
				2
				m
				a
				x
			

			
				𝑠
				∈
				[
				𝑡
				−
				𝑟
				,
				𝑡
				]
			

			
				𝑥
				(
				𝑠
				)
				,
				𝑡
				≥
				𝑡
			

			

				0
			

			
				,
				𝑥
				
				𝑡
				+
				𝑡
			

			

				0
			

			
				
				=
				𝜙
			

			

				1
			

			
				[
				]
				,
				𝑦
				(
				𝑡
				)
				,
				𝑡
				∈
				−
				𝑟
				,
				0
			

			

				
			

			
				=
				−
				𝑦
				𝑒
			

			
				𝑡
				−
				𝑡
			

			

				0
			

			
				+
				1
			

			
				
			
			
				2
				m
				a
				x
			

			
				𝑠
				∈
				[
				𝑡
				−
				𝑟
				,
				𝑡
				]
			

			
				𝑦
				(
				𝑠
				)
				,
				𝑡
				≥
				𝑡
			

			

				0
			

			
				𝑦
				
				𝑡
				+
				𝑡
			

			

				0
			

			
				
				=
				𝜙
			

			

				2
			

			
				[
				]
				(
				𝑡
				)
				,
				𝑡
				∈
				−
				𝑟
				,
				0
			

		
	

						and the perturbed systems
							
	
 		
 			
				(
				5
				9
				)
			
 		
	

	
		
			

				𝑥
			

			

				
			

			
				=
				−
				𝑥
				−
				𝑥
				𝑒
			

			
				𝑡
				−
				𝑡
			

			

				0
			

			
				+
				1
			

			
				
			
			
				2
				m
				a
				x
			

			
				𝑠
				∈
				[
				𝑡
				−
				𝑟
				,
				𝑡
				]
			

			
				+
				1
				𝑥
				(
				𝑠
				)
			

			
				
			
			
				2
				m
				a
				x
			

			
				𝑠
				∈
				[
				𝑡
				−
				𝑟
				,
				𝑡
				]
			

			
				𝑥
				(
				𝑠
				)
				𝑒
			

			
				−
				𝑡
			

			
				,
				𝑡
				≥
				𝑡
			

			

				0
			

			
				,
				𝑥
				
				𝑡
				+
				𝑡
			

			

				0
			

			
				
				=
				𝜙
			

			

				1
			

			
				[
				]
				,
				𝑦
				(
				𝑡
				)
				,
				𝑡
				∈
				−
				𝑟
				,
				0
			

			

				
			

			
				=
				−
				𝑦
				𝑒
			

			
				𝑡
				−
				𝑡
			

			

				0
			

			
				+
				1
			

			
				
			
			
				2
				m
				a
				x
			

			
				𝑠
				∈
				[
				𝑡
				−
				𝑟
				,
				𝑡
				]
			

			
				+
				1
				𝑦
				(
				𝑠
				)
			

			
				
			
			
				2
				m
				a
				x
			

			
				𝑠
				∈
				[
				𝑡
				−
				𝑟
				,
				𝑡
				]
			

			
				𝑦
				(
				𝑠
				)
				𝑒
			

			
				−
				𝑡
			

			
				,
				𝑡
				≥
				𝑡
			

			

				0
			

			
				,
				𝑦
				
				𝑡
				+
				𝑡
			

			

				0
			

			
				
				=
				𝜙
			

			

				2
			

			
				[
				]
				.
				(
				𝑡
				)
				,
				𝑡
				∈
				−
				𝑟
				,
				0
			

		
	
Let 
	
		
			

				𝑉
			

			

				1
			

			
				(
				𝑡
				,
				𝑥
				,
				𝑦
				)
				=
				𝑥
			

			

				2
			

			
				+
				𝑦
			

			

				2
			

		
	
, 
	
		
			

				𝑉
			

			
				2
				(
				𝜇
				)
			

			
				(
				𝑡
				,
				𝑥
				,
				𝑦
				)
				=
				𝑥
			

			

				2
			

			
				+
				2
				𝑦
			

			

				2
			

		
	
, and 
	
		
			

				ℎ
			

			

				0
			

			
				√
				(
				𝑡
				,
				𝑥
				−
				𝑦
				)
				=
			

			
				
			
			
				2
				(
				‖
				𝑥
				‖
				+
				‖
				𝑦
				‖
				)
			

		
	
, 
	
		
			
				ℎ
				(
				𝑡
				,
				𝑥
				−
				𝑦
				)
				=
				√
			

			
				
			
			
				2
				(
				𝑥
			

			

				2
			

			
				+
				𝑦
			

			

				2
			

			

				)
			

		
	
. Using the inequality 
	
		
			

				√
			

			
				
			
			

				𝑥
			

			

				2
			

			
				+
				𝑦
			

			

				2
			

			
				≤
				‖
				𝑥
				‖
				+
				‖
				𝑦
				‖
			

		
	
, it is easy to check the validity of the conditions 
	
		
			
				(
				A
			

			

				1
			

			

				)
			

		
	
 and (ii) of Theorem 6 for 
	
		
			
				𝑎
				(
				𝑢
				)
				=
				𝑢
			

			

				2
			

		
	
, 
	
		
			
				𝑏
				(
				𝑢
				)
				=
				(
				1
				/
				2
				)
				𝑢
			

			

				2
			

		
	
.Letting 
	
		
			

				𝜓
			

			

				1
			

			
				,
				𝜓
			

			

				2
			

			
				∈
				𝐶
				(
				[
				𝑡
				−
				𝑟
				,
				𝑡
				]
				,
				𝑅
			

			

				𝑛
			

			

				)
			

		
	
 be such that 
	
		
			

				𝜓
			

			
				2
				1
			

			
				(
				𝑡
				)
				>
				𝜓
			

			
				2
				1
			

			
				(
				𝑡
				+
				𝑠
				)
			

		
	
, 
	
		
			

				𝜓
			

			
				2
				2
			

			
				(
				𝑡
				)
				>
				𝜓
			

			
				2
				2
			

			
				(
				𝑡
				+
				𝑠
				)
			

		
	
, 
	
		
			
				𝑠
				∈
				[
				−
				𝑟
				,
				0
				)
			

		
	
, 
	
		
			
				𝑡
				≥
				𝑡
			

			

				0
			

		
	
, then 
	
		
			

				𝑉
			

			

				1
			

			
				(
				𝑡
				,
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝜓
			

			

				2
			

			
				(
				𝑡
				)
				)
				>
				𝑉
			

			

				1
			

			
				(
				𝑡
				+
				𝑠
				,
				𝜓
			

			

				1
			

			
				(
				𝑡
				+
				𝑠
				)
				,
				𝜓
			

			

				2
			

			
				(
				𝑡
				+
				𝑠
				)
				)
			

		
	
 and 
							
	
 		
 			
				(
				6
				0
				)
			
 		
	

	
		
			

				𝐷
			

			
				(
				5
				9
				)
			

			

				𝑉
			

			

				1
			

			
				
				𝑡
				,
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝜓
			

			

				2
			

			
				
				(
				𝑡
				)
				=
				2
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
			

			

				
			

			
				+
				2
				𝜓
			

			

				2
			

			
				(
				𝑡
				)
				𝜓
			

			

				2
			

			
				(
				𝑡
				)
			

			

				
			

			
				=
				2
				𝜓
			

			

				1
			

			
				
				(
				𝑡
				)
				−
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				−
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				𝑒
			

			
				𝑡
				−
				𝑡
			

			

				0
			

			
				+
				1
			

			
				
			
			
				2
				m
				a
				x
			

			
				𝑠
				∈
				[
				𝑡
				−
				𝑟
				,
				𝑡
				]
			

			

				𝜓
			

			

				1
			

			
				+
				1
				(
				𝑠
				)
			

			
				
			
			
				2
				m
				a
				x
			

			
				𝑠
				∈
				[
				𝑡
				−
				𝑟
				,
				𝑡
				]
			

			

				𝜓
			

			

				1
			

			
				(
				𝑠
				)
				𝑒
			

			
				−
				𝑡
			

			
				
				+
				2
				𝜓
			

			

				2
			

			
				
				(
				𝑡
				)
				−
				𝜓
			

			

				2
			

			
				(
				𝑡
				)
				𝑒
			

			
				𝑡
				−
				𝑡
			

			

				0
			

			
				+
				1
			

			
				
			
			
				2
				m
				a
				x
			

			
				𝑠
				∈
				[
				𝑡
				−
				𝑟
				,
				𝑡
				]
			

			

				𝜓
			

			

				2
			

			
				+
				1
				(
				𝑠
				)
			

			
				
			
			
				2
				m
				a
				x
			

			
				𝑠
				∈
				[
				𝑡
				−
				𝑟
				,
				𝑡
				]
			

			

				𝜓
			

			

				2
			

			
				(
				𝑠
				)
				𝑒
			

			
				−
				𝑡
			

			
				
				≤
				
				−
				2
				𝑒
			

			
				𝑡
				−
				𝑡
			

			

				0
			

			
				+
				1
				+
				𝑒
			

			
				−
				𝑡
			

			
				𝜓
				
				
			

			
				2
				1
			

			
				(
				𝑡
				)
				+
				𝜓
			

			
				2
				2
			

			
				
				(
				𝑡
				)
				≤
				𝑒
			

			
				−
				𝑡
			

			
				
				𝜓
			

			
				2
				1
			

			
				(
				𝑡
				)
				+
				𝜓
			

			
				2
				2
			

			
				
				.
				(
				𝑡
				)
			

		
	
Letting 
	
		
			
				𝑓
				(
				𝑡
				,
				𝑢
				)
				=
				𝑒
			

			
				−
				𝑡
			

			

				𝑢
			

		
	
, then 
	
		
			

				𝐷
			

			
				(
				5
				7
				)
			

			

				𝑉
			

			

				1
			

			
				(
				𝑡
				,
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝜓
			

			

				2
			

			
				(
				𝑡
				)
				)
				≤
				𝑓
				(
				𝑡
				,
				𝑉
			

			

				1
			

			
				(
				𝑡
				,
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝜓
			

			

				2
			

			
				(
				𝑡
				)
				)
				)
			

		
	
.Considering the comparison scalar differential system
							
	
 		
 			
				(
				6
				1
				)
			
 		
	

	
		
			

				𝑢
			

			

				
			

			
				=
				𝑒
			

			
				−
				𝑡
			

			
				𝑢
				,
				𝑢
			

			

				0
			

			
				
				𝑡
				=
				𝑢
			

			

				0
			

			
				
				,
			

		
	

						the solution is 
	
		
			
				𝑢
				=
				𝑢
			

			

				0
			

			

				𝑒
			

			

				𝑒
			

			
				0
				−
				𝑡
			

			

				𝑒
			

			
				−
				𝑒
			

			
				−
				𝑡
			

		
	
, 
	
		
			
				𝑡
				≥
				𝑡
			

			

				0
			

		
	
, and we can prove that the solution is equistable; that is, the conditions 
	
		
			
				(
				A
			

			

				2
			

			

				)
			

		
	
 and 
	
		
			
				(
				A
			

			

				4
			

			

				)
			

		
	
 of Theorem 6 hold.For 
	
		
			
				𝑠
				∈
				[
				−
				𝑟
				,
				0
				)
			

		
	
, 
	
		
			
				𝑡
				≥
				𝑡
			

			

				0
			

		
	
, the inequality
							
	
 		
 			
				(
				6
				2
				)
			
 		
	

	
		
			

				𝐷
			

			
				(
				5
				8
				)
			

			

				𝑉
			

			

				1
			

			
				
				𝑡
				,
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝜓
			

			

				2
			

			
				
				(
				𝑡
				)
				+
				𝐷
			

			
				(
				5
				8
				)
			

			

				𝑉
			

			
				2
				(
				𝜇
				)
			

			
				
				𝑡
				,
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝜓
			

			

				2
			

			
				
				(
				𝑡
				)
				=
				4
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
			

			

				
			

			
				+
				6
				𝜓
			

			

				2
			

			
				(
				𝑡
				)
				𝜓
			

			

				2
			

			
				(
				𝑡
				)
			

			

				
			

			
				=
				4
				𝜓
			

			

				1
			

			
				
				(
				𝑡
				)
				−
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				−
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				𝑒
			

			
				𝑡
				−
				𝑡
			

			

				0
			

			
				+
				1
			

			
				
			
			
				2
				m
				a
				x
			

			
				[
				]
				𝑠
				∈
				𝑡
				−
				𝑟
				,
				𝑡
			

			

				𝜓
			

			

				1
			

			
				
				(
				𝑠
				)
				+
				6
				𝜓
			

			

				2
			

			
				
				(
				𝑡
				)
				−
				𝜓
			

			

				2
			

			
				(
				𝑡
				)
				𝑒
			

			
				𝑡
				−
				𝑡
			

			

				0
			

			
				+
				1
			

			
				
			
			
				2
				m
				a
				x
			

			
				[
				]
				𝑠
				∈
				𝑡
				−
				𝑟
				,
				𝑡
			

			

				𝜓
			

			

				2
			

			
				
				≤
				
				(
				𝑠
				)
				−
				2
				𝑒
			

			
				𝑡
				−
				𝑡
			

			

				0
			

			
				+
				1
				
				
				2
				𝜓
			

			
				2
				1
			

			
				(
				𝑡
				)
				+
				3
				𝜓
			

			
				2
				2
			

			
				
				(
				𝑡
				)
				≤
				0
			

		
	

						holds. From (62), the inequality
							
	
 		
 			
				(
				6
				3
				)
			
 		
	

	
		
			

				𝐷
			

			
				(
				5
				8
				)
			

			

				𝑉
			

			

				1
			

			
				
				𝑡
				,
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝜓
			

			

				2
			

			
				
				(
				𝑡
				)
				+
				𝐷
			

			
				(
				5
				8
				)
			

			

				𝑉
			

			
				2
				(
				𝜇
				)
			

			
				
				𝑡
				,
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝜓
			

			

				2
			

			
				
				
				(
				𝑡
				)
				≤
				𝑔
				𝑡
				,
				𝑉
			

			

				1
			

			
				
				𝑡
				,
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝜓
			

			

				2
			

			
				
				(
				𝑡
				)
				+
				𝑉
			

			
				2
				(
				𝜇
				)
			

			
				
				𝑡
				,
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝜓
			

			

				2
			

			
				
				
				(
				𝑡
				)
			

		
	

						holds, where 
	
		
			

				𝑢
			

			

				
			

			
				=
				𝑔
				(
				𝑡
				,
				𝑢
				)
				≡
				0
			

		
	
 and its perturbed differential equation 
	
		
			

				𝜔
			

			

				
			

			
				=
				0
				+
				𝜔
			

			

				0
			

			

				𝑒
			

			
				−
				𝑡
			

		
	
. We can prove that the differential equation 
	
		
			
				𝑔
				(
				𝑡
				,
				𝑢
				)
				=
				0
			

		
	
 is uniform-integrally stable. So the conditions 
	
		
			
				(
				A
			

			

				3
			

			

				)
			

		
	
 and 
	
		
			
				(
				A
			

			

				5
			

			

				)
			

		
	
 of Theorem 6 hold.According to Theorem 6, differential systems with “maxima” (58) are uniform-relatively integrally stable in terms of two measures 
	
		
			
				(
				ℎ
			

			

				0
			

			
				,
				ℎ
				)
			

		
	
.
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