Research Article

Ting-jian Xiong¹ and Heng-you Lan¹,²

¹ Department of Mathematics, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China
² Key Laboratory Higher Education of Sichuan Province for Enterprise Informationalization and Internet of Things, Zigong, Sichuan 643000, China

Correspondence should be addressed to Heng-you Lan; hengyoulan@163.com

Received 19 June 2014; Accepted 26 July 2014; Published 14 October 2014

Academic Editor: Jong Kyu Kim

Copyright © 2014 T.-j. Xiong and H.-y. Lan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We introduce and study a new general system of nonlinear variational inclusions involving generalized m-accretive mappings in Banach space. By using the resolvent operator technique associated with generalized m-accretive mappings due to Huang and Fang, we prove the existence theorem of the solution for this variational inclusion system in uniformly smooth Banach space, and discuss convergence and stability of a class of new perturbed iterative algorithms for solving the inclusion system in Banach spaces. Our results presented in this paper may be viewed as a refinement and improvement of the previously known results.

1. Introduction

Let m be a given positive integer, for any i ∈ {1, 2, ... , m}, Xi a real Banach space with dual space X∗ i : Xi → R, all endowed with the norm ∥ · ∥, and ⟨·,·⟩ the dual pair between Xi and X∗ i (as matter of convenience). Let 2X be the family of all the nonempty subsets of X, ηi : Xi × Xi → Xi∗, Ni : X1 × X2 × · · · × Xm → X1 single-valued mappings, and Mj : Xj → 2Xj generalized m-accretive mapping for i = 1, 2, ..., m. In this paper, we consider the following new general system for nonlinear variational inclusion involving generalized m-accretive mappings. Find (x∗ 1, x∗ 2, ..., x∗ m) ∈ X1 × X2 × · · · × Xm such that

\[0 \in N_i (x∗_1, x∗_2, ..., x∗_m) + M_j (x∗_j) \] (1)

for all i = 1, 2, ..., m. Some special cases of the problem (1) had been studied by many authors. See, for example, [1–34] and the reference therein. Here, we mention some of them as follows.

Case 1. The problem (1) with Xi = H (i = 1, 2, ..., m), the Hilbert spaces, was introduced and studied as general system of monotone nonlinear variational inclusions problems by Peng and Zhao [29].

If \(I^−1_q (x^*_1, x^*_2) = x^*_1 - x^*_2 \) and \(M_i = \partial \varphi_i, \varphi_i : X_i \rightarrow (−∞, +∞) \) is proper, convex, and lower semi-continuous functional on Xi, and \(\partial \varphi_i \) denote the subdifferential operators of the \(\varphi_i \) for i = 1, 2, ..., m, then the problem (1) is equivalent to finding \((x^*_1, x^*_2, ..., x^*_m) \in X_1 \times X_2 \times \cdots \times X_m \) such that

\[\langle N_i (x^*_1, x^*_2, ..., x^*_m), j (x_i - x^*_i) \rangle \geq \rho_i (\varphi_i (x^*_i) - \varphi_i (x_i)), \quad \forall x_i \in X_i, \] \((2) \)

When Xi = X, 2-uniformly smooth Banach space with the smooth constant K, C is a nonempty closed convex subset of X, \(N_i (x_1, x_2, ..., x_m) = \rho A_i (x_{i+1}) + x_i - x_{i+1} \), where \(A_i : C \rightarrow X \) and \(\rho_i > 0 \) and \(x_{m+1} = x_1 \) for i = 1, 2, ..., m; the problem (2) reduces to the following system of finding \((x^*_1, x^*_2, ..., x^*_m) \in C \times C \times \cdots \times C \) such that

\[\langle \rho A_i (x^*_i) + x^*_i - x^*_{i+1}, j (x - x^*_i) \rangle \geq \rho_i (\varphi_i (x^*_i) - \varphi_i (x)), \quad \forall x \in X. \] \((3) \)

The problem (1) with Xi = H (i = 1, 2, ..., m), the Hilbert spaces, was introduced and studied as general system of monotone nonlinear variational inclusions problems by Peng and Zhao [29].
Further, in the problem (3), when \(\varphi_i \) is the indicator function of a nonempty closed convex set \(C \), in \(X \) defined by
\[
\varphi_i(y) = \begin{cases}
0, & y \in C, \\
+\infty, & y \notin C,
\end{cases}
\] (4)
then the system (3) reduces to finding \((x_1^*, x_2^*, \ldots, x_m^*) \in C \times C \times \cdots \times C \) such that
\[
\begin{align*}
\langle p_1 A_1 x_1^* + x_1^* - x_2^*, j(x - x_1^*) \rangle & \geq 0, \quad \forall x \in C, \\
\langle p_2 A_2 x_2^* + x_2^* - x_3^*, j(x - x_2^*) \rangle & \geq 0, \quad \forall x \in C, \\
\langle p_3 A_3 x_3^* + x_3^* - x_4^*, j(x - x_3^*) \rangle & \geq 0, \quad \forall x \in C, \\
& \quad \vdots \\
\langle p_m A_m x_m^* + x_m^* - x_1^*, j(x - x_m^*) \rangle & \geq 0, \quad \forall x \in C,
\end{align*}
\] (5)
which was introduced and studied by Zhu et al. [34].

Case 2. If \(m = 3 \), then the system (3) is equivalent to finding \((x_1^*, x_2^*, x_3^*) \in C \times C \times C \) such that
\[
\begin{align*}
\langle p_1 A_1 x_1^* + x_1^* - x_2^*, j(x - x_1^*) \rangle & \geq p_1 (\varphi_1 (x_1^*) - \varphi_1 (x)), \quad \forall x \in C, \\
\langle p_2 A_2 x_2^* + x_2^* - x_3^*, j(x - x_2^*) \rangle & \geq p_2 (\varphi_2 (x_2^*) - \varphi_2 (x)), \quad \forall x \in C, \\
\langle p_3 A_3 x_3^* + x_3^* - x_1^*, j(x - x_3^*) \rangle & \geq p_3 (\varphi_3 (x_3^*) - \varphi_3 (x)), \quad \forall x \in C.
\end{align*}
\] (6)

It is easy to see that the mathematical model studied by Saewan and Kumam [31] is a variant of (6).

Case 3. If \(m = 2 \), then the problem (1) reduces to find \((x^*, y^*) \in X_1 \times X_2 \) such that
\[
0 \in N_1 (x^*, y^*) + M_1 (x^*), \quad 0 \in N_2 (x^*, y^*) + M_2 (y^*),
\] (7)

Problem (7) is called a system of strongly nonlinear quasi-variational inclusion involving generalized \(m \)-accretive mappings, it is considered and studied by Lan [19]. There are many special cases of the problems (7) that can be found in [3, 7, 12–14, 17, 20, 28, 30] and the references cited therein.

Case 4. If \(m = 1 \) and \(X_1 = \mathcal{H} \), then the problem (1) reduces to finding \(x^* \in \mathcal{H} \) such that
\[
0 \in N (x^*) + M (x^*),
\] (8)
which was introduced and studied by Fang and Huang [8]. We remark that for appropriate and suitable choices of positive integer \(m \), the mappings \(\eta_1, \eta_2, \) and \(M_1 \), and the spaces \(X_i \) for \(i = 1, 2, \ldots, m \), one can know that the problem (1) includes a number of general class of variational character known problems, including minimization or maximization (whether constraint or not) of functions and minimax problems et al. as special cases. For more details, see [1–34] and the reference therein.

On the other hand, many authors discussed stability of the iterative sequence generated by the algorithm for solving the problems that they studied. Lan [19] introduced the notion of S-stable or stable with respect to \(S \). Moreover, Agarwal et al. [1, 2], Jin [16], Kazmi and Bhat [18], and Lan and Kim [21] constructed some stability under suitable conditions, respectively.

Motivated and inspired by the above works, the main purpose of this paper is to introduce and study the new general system of nonlinear variational inclusions (1) involving generalized \(m \)-accretive mapping in uniformly smooth Banach spaces. By using the resolvent operator technique for generalized \(m \)-accretive, we prove the existence theorem of the solution for this kind of system of variational inclusions in Banach spaces and discuss the convergence and stability of a new perturbed iterative algorithm for solving this general system of nonlinear variational inclusions in Banach spaces.

2. Preliminaries

In order to get the main results of the paper, we need the following concepts and lemmas. Let \(X \) be a real Banach space with dual space \(X^* \), \(\langle \cdot, \cdot \rangle \) the dual pair between \(X \) and \(X^* \), and \(2^X \) denote the family of all the nonempty subsets of \(X \).

The generalized duality mapping \(J_q : X \to 2^{X^*} \) is defined by
\[
J_q(x) = \{ f^* \in X^*: \langle x, f^* \rangle = \| x \|^q, \| f^* \| = \| x \|^{q-1} \},
\] (9)

where \(q > 1 \) is a constant. In particular, \(J_2 \) is the usual normalized duality mapping. It is known that if \(X^* \) is strictly convex or \(X \) is a uniformly smooth Banach space, then \(J_q \) is single-valued (see [33]), and if \(X = \mathcal{H} \), the Hilbert space, then \(J_q \) becomes the identity mapping on \(\mathcal{H} \). We will denote the single-valued duality mapping by \(J_q^r \).

In order to construct convergence and stability for researching the problem (1), we need to be using the following definition and lemma.

Definition 1. Let \(X_i \) be Banach spaces, and let \(N_i : X_1 \times X_2 \times \cdots \times X_m \to X_1 \) be single mappings for \(i = 1, 2, \ldots, m \). Then \(N_i \) is said to be

(i) \(\sigma_j \)-strongly accretive with respect to \(j \)th argument if for any \((x_1, \ldots, x_{j-1}, x_j^0, x_{j+1}, \ldots, x_m) \),
\((x_1, \ldots, x_{j-1}, x_j^1, x_{j+1}, \ldots, x_m) \in X_1 \times X_2 \times \cdots \times X_m \), there exists \(j_q (x_j^1 - x_j^0) \in J_q (x_j^1 - x_j^0) \), such that
\[
\begin{align*}
\langle N_i (x_1, \ldots, x_{j-1}, x_j^0, x_{j+1}, \ldots, x_m) - N_i (x_1, \ldots, x_{j-1}, x_j^1, x_{j+1}, \ldots, x_m),
& \quad (\sigma_j x_j^0 - \sigma_j x_j^1) \rangle \\
& \quad \geq \sigma_j \| x_j^0 - x_j^1 \|^q,
\end{align*}
\] (10)

where \(q_j > 1 \) is a constant;
Let $\eta_i : X_i \times X_i \to X_i^*$ be strictly monotone mapping, and let $M_i : X_i \to 2^{X_i}$ be generalized m-accretive mapping. Then the resolvent $J_{\rho_i}^{m_i}$ for M_i is defined as follows:

$$J_{\rho_i}^{m_i}(x_i) = (I + \rho_i M_i)^{-1}(x_i), \quad \forall x_i \in X_i,$$

where $\rho_i > 0$ is a constant and I denotes the identity mapping on X_i for $i = 1, 2, \ldots, m$.

Lemma 7 (see [10, 11]). Let $\eta_i : X_i \times X_i \to X_i^*$ be τ_i-Lipschitz continuous and δ_i-strongly monotone, and let $M_i : X_i \to 2^{X_i}$ be generalized m-accretive mapping. Then for any $\rho_i > 0$, the resolvent operator $J_{\rho_i}^{m_i}$ for M_i is τ_i/δ_i-Lipschitz continuous; that is,

$$\|J_{\rho_i}^{m_i}(x_i) - J_{\rho_i}^{m_i}(y_i)\| \leq \frac{\tau_i}{\delta_i} \|x_i - y_i\|, \quad \forall x_i, y_i \in X_i, \quad i = 1, 2, \ldots, m.$$

The modules of smoothness is a measure, it is depicted geometric structure of the underlying Banach space. The modules of smoothness of Banach space X are the function $\rho_X : [0, +\infty) \to [0, +\infty)$ defined by

$$\rho_X(t) = \sup \left\{ \frac{1}{2} \left(\|x + y\| + \|x - y\| \right) - 1 : \|x\| \leq 1, \|y\| \leq t \right\}.$$

A Banach space X is called uniformly smooth if $\lim_{t \to 0} (\rho_X(t)/t) = 0$. X is called q-uniformly smooth if there exists a constant $c > 0$ such that $\rho_X(t) \leq ct^q$, where $q > 1$ is a real number.

Remark 1. When $X = X^*$ is \mathcal{H}, (i)–(iv) of Definition 3 reduce to the definitions of monotone operators, η-monotone operators, classical maximal monotone operators, and maximal η-monotone operators; if $\langle x, y \rangle = J_i(x - y)$, then (ii) and (iv) of Definition 3 reduce to the definitions of accretive and m-accretive of uniformly smooth Banach spaces (see [10, 11]).

Definition 5. The mapping $\eta : X \times X \to X^*$ is said to be

(i) δ-strongly monotone if there exists a constant $\delta > 0$ such that

$$\langle x^1 - x^2, \eta(x^1, x^2) \rangle \geq \delta \|x^1 - x^2\|^2, \quad \forall x^1, x^2 \in X;$$

(ii) τ-Lipschitz continuous if there exists a constant $\tau > 0$ such that

$$\|\eta(x^1, x^2)\| \leq \tau \|x^1 - x^2\|, \quad \forall x^1, x^2 \in X.$$

In [10], Huang and Fang show that for any $\rho_i > 0$, inverse mapping $(I + \rho_i M_i)^{-1}$ is single-valued, if $J_i : X_i \times X_i \to X_i^*$ is strict monotone and $M_i : X_i \to 2^{X_i}$ is generalized m-accretive mapping, where I is the identity mapping. Based on this fact, Huang and Fang [10] gave the following definition.

Definition 6. Let $\eta_i : X_i \times X_i \to X_i^*$ be strictly monotone mapping, and let $M_i : X_i \to 2^{X_i}$ be generalized m-accretive mapping. Then the resolvent $J_{\rho_i}^{m_i}$ for M_i is defined as follows:

$$J_{\rho_i}^{m_i}(x_i) = (I + \rho_i M_i)^{-1}(x_i), \quad \forall x_i \in X_i,$$
3. Existence Theorem

In this section, we will give the existence theorem of the problem (1). The solvability of the problem (1) depends on the equivalence between (i) and the problem of finding the fixed point of the associated generalized resolvent operator. It follows from the definition of generalized resolvent operator $r^0_{M_i}$ $(i = 1, 2, \ldots, m)$ that we can obtain the following conclusion.

Lemma 11. Let $\eta_i : X_i \times X_i \to X_i^*$, $N_i : X_i \times X_i \times \cdots \times X_m \to X_i$, single-valued mappings, and $M_i : X_i \to 2^{X_i}$, generalized m-accretive mapping for $(i = 1, 2, \ldots, m)$. Then the following statements are mutually equivalent.

(i) An element $(x_1^*, x_2^*, \ldots, x_m^*) \in X_1 \times X_2 \times \cdots \times X_m$ is a solution to the problem (1).

(ii) There is an $(x_1^*, x_2^*, \ldots, x_m^*) \in X_1 \times X_2 \times \cdots \times X_m$ such that

$$x_i^* = r^0_{M_i} \left[x_i^* - \rho_i N_i \left(x_i^*, x_{i-1}^*, x_i^*, x_{i+1}^*, \ldots, x_m^* \right) \right] \tag{21},$$

where $r^0_{M_i} = (I + \rho_i M_i)^{-1}$, and $\rho_i > 0$ is constants for all $i = 1, 2, \ldots, m$.

(iii) For any given constants $\rho_i > 0$, the map $F : X_1 \times X_2 \times \cdots \times X_m \to X_1 \times X_2 \times \cdots \times X_m$ is defined by

$$F (u_1, u_2, \ldots, u_m) = \left(P_{\rho_1} (u_1, u_2, \ldots, u_m), \ldots, P_{\rho_m} (u_1, u_2, \ldots, u_m) \right) \tag{22}$$

for all $u_i \in X_i$ and $i = 1, 2, \ldots, m$, has a fixed point $(x_1^*, x_2^*, \ldots, x_m^*) \in X_1 \times X_2 \times \cdots \times X_m$, where maps $P_{\rho_i} : X_1 \times X_2 \times \cdots \times X_m \to X_i$ are defined by

$$P_{\rho_i} (u_1, u_2, \ldots, u_m) = r^0_{M_i} \left[u_i - \rho_i N_i \left(u_1, u_{i-1}, u_i, u_{i+1}, \ldots, u_m \right) \right] \tag{23}$$

for $u_i \in X_i$ and $i = 1, 2, \ldots, m$.

Proof. We first prove that (i) \Leftrightarrow (ii). Let $(x_1^*, x_2^*, \ldots, x_m^*) \in X_1 \times X_2 \times \cdots \times X_m$ satisfy the relation in (ii). Then, the definition of resolvent operator $r^0_{M_i}$ implies that this equality holds if and only if

$$x_i^* - \rho_i N_i \left(x_1^*, x_{i-1}^*, x_i^*, x_{i+1}^*, \ldots, x_m^* \right) \in (I + \rho_i M_i) (x_i^*) \tag{24}$$

for $i = 1, 2, \ldots, m$; that is

$$0 \in N_i \left(x_1^*, x_{i-1}^*, x_i^*, x_{i+1}^*, \ldots, x_m^* \right) + M_i (x_i^*) \tag{25}$$

where $i = 1, 2, \ldots, m$. Thus $(x_1^*, x_2^*, \ldots, x_m^*) \in X_1 \times X_2 \times \cdots \times X_m$ is the solution of the problem (1).

Next, we show (ii) \Rightarrow (iii). If $(x_1^*, x_2^*, \ldots, x_m^*) \in X_1 \times X_2 \times \cdots \times X_m$ satisfy following relation:

$$x_i^* = r^0_{M_i} \left[x_i^* - \rho_i N_i \left(x_1^*, x_{i-1}^*, x_i^*, x_{i+1}^*, \ldots, x_m^* \right) \right], \tag{26}$$

then, for any $i = 1, 2, \ldots, m$, it follows from

$$P_{\rho_i} (x_1^*, x_2^*, \ldots, x_m^*) = r^0_{M_i} \left[x_i^* - \rho_i N_i \left(x_1^*, x_{i-1}^*, x_i^*, x_{i+1}^*, \ldots, x_m^* \right) \right] \tag{27}$$

that

$$P_{\rho_i} (x_1^*, x_2^*, \ldots, x_m^*) = x_i^*. \tag{28}$$

Hence, $(x_1^*, x_2^*, \ldots, x_m^*) \in X_1 \times X_2 \times \cdots \times X_m$ is a fixed point of the mapping

$$F (u_1, u_2, \ldots, u_m) = \left(P_{\rho_1} (u_1, u_2, \ldots, u_m), \ldots, P_{\rho_m} (u_1, u_2, \ldots, u_m) \right). \tag{29}$$

Conversely, if $(x_1^*, x_2^*, \ldots, x_m^*) \in X_1 \times X_2 \times \cdots \times X_m$ is a fixed point of the mapping $F : X_1 \times X_2 \times \cdots \times X_m \to X_1 \times X_2 \times \cdots \times X_m$, then

$$P_{\rho_i} (x_1^*, x_2^*, \ldots, x_m^*) = x_i^* \tag{30}$$

for $i = 1, 2, \ldots, m$. Hence, from

$$P_{\rho_i} (x_1^*, x_2^*, \ldots, x_m^*) = r^0_{M_i} \left[x_i^* - \rho_i N_i \left(x_1^*, x_{i-1}^*, x_i^*, x_{i+1}^*, \ldots, x_m^* \right) \right], \tag{31}$$

we have

$$x_i^* = r^0_{M_i} \left[x_i^* - \rho_i N_i \left(x_1^*, x_{i-1}^*, x_i^*, x_{i+1}^*, \ldots, x_m^* \right) \right] \tag{32}$$

for $i = 1, 2, \ldots, m$. Therefore $(x_1^*, x_2^*, \ldots, x_m^*) \in X_1 \times X_2 \times \cdots \times X_m$ satisfy the relation of (ii).

Theorem 12. Let X_i be a real q_i-uniformly smooth Banach space with $q_i > 1$ and let $\eta_i : X_i \times X_i \to X_i^*$ be τ_i-Lipschitz continuous and δ_i-strongly monotone for any $i = 1, 2, \ldots, m$. Suppose that $M_i : X_i \to 2^{X_i}$ is generalized m-accretive mapping, and $N_i : X_i \times X_i \times \cdots \times X_m \to X_i$ is σ_i-strongly accretive in the ith argument and $(\xi_{ij}, \zeta_{ij}, \epsilon_{ij})$-Lipschitz continuous for $i = 1, 2, \ldots, m$. If

$$\frac{\tau_i}{\delta_i} \sqrt{1 - q_i \rho_i \varepsilon_i + c_{ij} \rho_i \delta_i} \left(\sum_{j=1}^{m} \frac{\zeta_{ij} \rho_j \delta_j}{\delta_i} \right)^{1/2} < 1, \tag{33}$$

where c_{ij} is the constants as in Lemma 8 for $j = 1, 2, \ldots, m$, then problem (1) has a unique solution $(x_1^*, x_2^*, \ldots, x_m^*) \in X_1 \times X_2 \times \cdots \times X_m$.

Abstract and Applied Analysis
Proof. For any given \(\rho_i > 0 \) and \(i = 1, 2, \ldots, m \), we first define \(P_{\rho_i}: X_1 \times X_2 \times \cdots \times X_m \to X_1 \) as follows:

\[
P_{\rho_i}(u_1, u_2, \ldots, u_m) = f_{\rho_i}^1\left[u_i - \rho_iN_i\right](u_1, u_2, \ldots, u_m),
\]

(34) for all \(u_i \in X_i \). Now define \(\| \cdot \|_* \) on \(X_1 \times X_2 \times \cdots \times X_m \) by

\[
\| (u_1, u_2, \ldots, u_m) \|_* = \sum_{i=1}^m \| u_i \|,
\]

(35)

\[\forall (u_1, u_2, \ldots, u_m) \in X_1 \times X_2 \times \cdots \times X_m.\]

It is easy to see that \((X_1 \times X_2 \times \cdots \times X_m, \| \cdot \|_*) \) is a Banach space. In fact

(i) \(\| (u_1, u_2, \ldots, u_m) \|_* = \sum_{i=1}^m \| u_i \| \geq 0 \), the negative being satisfied;

(ii) for all real number \(\alpha \),

\[
\| \alpha (u_1, u_2, \ldots, u_m) \|_* = \| (\alpha u_1, \alpha u_2, \ldots, \alpha u_m) \|_* = \sum_{i=1}^m \| \alpha u_i \| = |\alpha| \sum_{i=1}^m \| u_i \| = \| (u_1, u_2, \ldots, u_m) \|_*
\]

(36)

homogeneity being satisfied;

(iii) for all \((u_1, u_2, \ldots, u_m), (v_1, v_2, \ldots, v_m) \in X_1 \times X_2 \times \cdots \times X_m \),

\[
\| (u_1, u_2, \ldots, u_m) + (v_1, v_2, \ldots, v_m) \|_* = \sum_{i=1}^m \| u_i + v_i \| = \sum_{i=1}^m \left(\| u_i \| + \| v_i \| \right)
\]

(37)

the triangle inequality being satisfied;

(iv) let \(\| (u_1, u_2, \ldots, u_m) \|_* = 0 \); that is, \(\sum_{i=1}^m \| u_i \| = 0 \); this implies that \(\| u_i \| = 0 \) \((i = 1, 2, \ldots, m)\); thus \(u_i = 0 \) \((i = 1, 2, \ldots, m)\); we get \(\| \cdot \|_* \) is a norm on the \(X_1 \times X_2 \times \cdots \times X_m \);

(v) let \((u_1^n, u_2^n, \ldots, u_m^n) \in X_1 \times X_2 \times \cdots \times X_m \) is Cauchy sequence; that is, for \(\forall \epsilon > 0 \), there exists a positive integer \(N \); let \(n > N \); we have

\[
\| (u_1^{n+1}, u_2^{n+1}, \ldots, u_m^{n+1}) - (u_1^n, u_2^n, \ldots, u_m^n) \|_* = \sum_{i=1}^m \| u_i^{n+1} - u_i^n \| < \epsilon.
\]

(38)

Thus, for all \(i \in \{1, 2, \ldots, m\} \), we have \(\| u_i^{n+1} - u_i^n \| < \epsilon (n > N, p = 1, 2, \ldots); \) that is, \(\{u_i^n\} \subset X_i \) is also Cauchy sequence; thus \(\lim_{n \to \infty} u_i^n = u_i \in X_i \) for \(i = 1, 2, \ldots, m \); we get \((u_1, u_2, \ldots, u_m) \in X_1 \times X_2 \times \cdots \times X_m \) and \((u_1, u_2, \ldots, u_m) \) is a cluster point on the \((X_1 \times X_2 \times \cdots \times X_m, \| \cdot \|_* \) space).

Now, by (34), for any given \(\rho_i > 0 \), define mapping \(F: X_1 \times X_2 \times \cdots \times X_m \to X_1 \times X_2 \times \cdots \times X_m \) by

\[
F\left(u_1, u_2, \ldots, u_m\right) = \left(P_{\rho_1}(u_1, u_2, \ldots, u_m), P_{\rho_2}(u_1, u_2, \ldots, u_m), \ldots, P_{\rho_m}(u_1, u_2, \ldots, u_m)\right),
\]

(39)

where \(u_i \in X_i \) for \(i = 1, 2, \ldots, m \).

In the sequel, we prove that \(F \) is a contractive mapping on the \((X_1 \times X_2 \times \cdots \times X_m, \| \cdot \|_* \) space). In fact, for any \(u_i, v_i \in X_i \) and \(i = 1, 2, \ldots, m \), it follows from (34) and Lemma 7 that

\[
\| P_{\rho_i}(u_1, u_2, \ldots, u_m) - P_{\rho_i}(v_1, v_2, \ldots, v_m) \|
\]

\[
= \| f_{\rho_i}^1\left[u_i - \rho_iN_i\right](u_1, u_2, \ldots, u_m) - f_{\rho_i}^1\left[v_i - \rho_iN_i\right](v_1, v_2, \ldots, v_m) \|
\]

\[
\leq \frac{\tau_i}{\delta_i} \| u_i - v_i - \rho_i\left(N_i(u_1, u_2, \ldots, u_m) - N_i(v_1, v_2, \ldots, v_m)\right) \|
\]

\[
\leq \frac{\tau_i}{\delta_i} \| u_i - v_i \|
\]

(40)

By assumptions and Lemma 8, we have

\[
\| u_i - v_i - \rho_i\left(N_i(u_1, u_2, \ldots, u_m) - N_i(v_1, v_2, \ldots, v_m)\right) \|
\]

\[
\leq \| u_i - v_i \|_{q_i}
\]

\[
+ c_{q_i}F_{q_i} \| N_i(u_1, u_2, \ldots, u_m) - N_i(v_1, v_2, \ldots, v_m) \|_{q_i}
\]

\[
- \| u_i - \rho_i\left(N_i(u_1, u_2, \ldots, u_m) - N_i(v_1, v_2, \ldots, v_m)\right) \|
\]

\[
- \| N_i(u_1, u_2, \ldots, u_m) - N_i(v_1, v_2, \ldots, v_m) \|_{q_i}
\]

\[
\leq \left(1 - \rho_i\sigma_i + \rho_i c_{q_i}F_{q_i} \right) \| u_i - v_i \|_{q_i},
\]

(41)
\[\| N_i(u_1, \ldots, u_{i-1}, v_i, u_{i+1}, \ldots, u_m) \| = N_i(v_1, \ldots, v_{i-1}, v_i, v_{i+1}, \ldots, v_m) \leq \sum_{j=1, j \neq i}^m \zeta_{ij} \| u_j - v_j \|. \]

From (40)-(41), we obtain
\[\| P_{\rho_1} (u_1, u_2, \ldots, u_m) - P_{\rho_1} (v_1, v_2, \ldots, v_m) \| \]
\[\leq \frac{\rho_i}{\delta_i} \sum_{j=1, j \neq i}^m \zeta_{ij} \| u_j - v_j \| + \frac{r_i}{\delta_i} \sqrt{1 - q_i \rho_i \sigma_i + c_{ij} \rho_i^q \zeta_{ij}^q} \| u_i - v_i \| \] for \(i = 1, 2, \ldots, m \). Equation (42) implies that
\[\sum_{j=1}^m \| P_{\rho_1} (u_1, u_2, \ldots, u_m) - P_{\rho_1} (v_1, v_2, \ldots, v_m) \| = \sum_{i=1}^m \| P_{\rho_1} (u_1, u_2, \ldots, u_m) - P_{\rho_1} (v_1, v_2, \ldots, v_m) \| \]
\[\leq \sum_{i=1}^m \left(\frac{r_i}{\delta_i} \sqrt{1 - q_i \rho_i \sigma_i + c_{ij} \rho_i^q \zeta_{ij}^q} \| u_i - v_i \| + \frac{\rho_i r_i}{\delta_i} \sum_{j=1, j \neq i}^m \zeta_{ij} \| u_j - v_j \| \right) \]
\[\leq \sum_{i=1}^m \frac{r_i}{\delta_i} \sqrt{1 - q_i \rho_i \sigma_i + c_{ij} \rho_i^q \zeta_{ij}^q} \| u_i - v_i \| + \sum_{i=1}^m \frac{\rho_i r_i}{\delta_i} \sum_{j=1, j \neq i}^m \zeta_{ij} \| u_j - v_j \| \]
\[= \sum_{i=1}^m \left(\sum_{j=1, j \neq i}^m \frac{\rho_i r_i}{\delta_i} \zeta_{ij} \| u_j - v_j \| \right) \]
\[\times \| u_i - v_i \| \]
\[\leq k \sum_{j=1}^m \| u_j - v_j \| , \] where \(k = \max_{1 \leq j \leq m} \{ (r_j / \delta_j) \sqrt{1 - q_j \rho_j \sigma_j + c_{ij} \rho_j^q \zeta_{ij}^q} + \sum_{i=1, i \neq j}^m (\zeta_{ij} \rho_j / \delta_i) \} \). By (33), we know that \(0 \leq k < 1 \). It follows from (43) that
\[\| F(u_1, u_2, \ldots, u_m) - F(v_1, v_2, \ldots, v_m) \| \]
\[\leq k \| (u_1, u_2, \ldots, u_m) - (v_1, v_2, \ldots, v_m) \| \] (44)

This proves that \(F : X_1 \times X_2 \times \cdots \times X_m \to X_1 \times X_2 \times \cdots \times X_m \) is a contraction mapping. Hence, there exists a unique \((x_1^*, x_2^*, \ldots, x_m^*) \in X_1 \times X_2 \times \cdots \times X_m \) such that
\[F(\rho_1, x_2, \ldots, x_m) = (x_1^*, x_2^*, \ldots, x_m^*) \] (45)
that is, \(P_{\rho_1}(x_1^*, x_2^*, \ldots, x_m^*) = x_i^* \) for \(i = 1, 2, \ldots, m \); that is,
\[x_i^* = P_{\rho_i}^0 [x_i^* - \rho_i N_i (x_1^*, x_2^*, \ldots, x_m^*)] \] (46)
By Lemma 11, \((x_1^*, x_2^*, \ldots, x_m^*) \) is the unique solution of problem (1). This completes the proof. \(\square \)

Corollary 14. Let \(\mathcal{H} \) be real Hilbert space and \(\eta_i : \mathcal{H} \times \mathcal{H} \to \mathcal{H} \) be \(\tau_i \)-Lipschitz continuous and \(\delta_i \)-strongly monotone for any \(i = 1, 2, \ldots, m \). Suppose that \(M_i : \mathcal{H} \to 2^{\mathcal{H}} \) is maximal \(\eta_i \)-monotone mapping, \(N_i : \mathcal{H} \times \mathcal{H} \times \cdots \times \mathcal{H} \to \mathcal{H} \) is \(\sigma_i \)-strongly monotone in the ith argument, and \((\zeta_{i1}, \ldots, \zeta_{im}) \)-Lipschitz continuous for \(i = 1, 2, \ldots, m \). If
\[\frac{\tau_i}{\delta_i} \sqrt{1 - 2 \rho_i \sigma_i + \rho_i^q \zeta_{ij}^q} + \sum_{j=1, j \neq i}^m \frac{\rho_i r_i}{\delta_j} \zeta_{ij} < 1 , \] (47)
then problem (1) has a unique solution \((x_1^*, x_2^*, \ldots, x_m^*) \in \mathcal{H}_1 \times \mathcal{H}_2 \times \cdots \times \mathcal{H}_m \).

Corollary 15. Let \(\mathcal{H} \) be real Hilbert space for any \(i = 1, 2, \ldots, m \). Suppose that \(\phi_i : \mathcal{H} \to (-\infty, +\infty) \) is convex and lower semicontinuous functional on \(\mathcal{H} \) and \(N_i : \mathcal{H} \times \mathcal{H} \times \cdots \times \mathcal{H} \to \mathcal{H} \) is \(\sigma_i \)-strongly monotone in the ith argument and \((\zeta_{i1}, \ldots, \zeta_{im}) \)-Lipschitz continuous for \(i = 1, 2, \ldots, m \). If
\[\sqrt{1 - 2 \rho_i \sigma_i + \rho_i^q \zeta_{ij}^q} + \sum_{j=1, j \neq i}^m \rho_i \zeta_{ij} < 1 , \] (48)
then problem (2) has a unique solution \((x_1^*, x_2^*, \ldots, x_m^*) \in \mathcal{H}_1 \times \mathcal{H}_2 \times \cdots \times \mathcal{H}_m \).

4. Perturbed Iterative Algorithms

In this section, by using Definition 9 and Lemma 10, we construct a new perturbed iterative algorithm with mixed errors for solving problem (1) and prove the convergence and stability of the iterative sequence generated by the algorithm.

Algorithm 16. Let \(\eta_i : X_1 \times X_2 \to X_1^* \) and \(N_i : X_1 \times X_2 \times \cdots \times X_m \to X_i \) be single-valued mappings and let \(M_i : X_i \to 2^{X_i} \).
be generalized m-accretive mapping for $i = 1, 2, \ldots, m$. For any given initial point $(x_1^0, x_2^0, \ldots, x_m^0) \in X_1 \times X_2 \times \cdots \times X_m$, the perturbed iterative sequence $\{(x_1^n, x_2^n, \ldots, x_m^n)\}$ for problem (1) is defined by
\[
x_i^{n+1} = (1 - \alpha_n) x_i^n + \alpha_n \rho_{M_i} \left[x_i^n - \rho_i N_i \left(x_1^n, x_2^n, \ldots, x_m^n \right) \right] + \alpha_n u_i^n + w_i^n, \tag{49}
\]
where $n \geq 0, i = 1, 2, \ldots, m$, and define $\{(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_m)\}$ by
\[
\varepsilon_i^n = \left\| z_i^{n+1} - \left\{ (1 - \alpha_n) z_i^n + \alpha_n \rho_{M_i} \left[z_i^n - \rho_i N_i \left(z_1^n, z_2^n, \ldots, z_m^n \right) \right] + \alpha_n u_i^n + w_i^n \right\| \tag{50}
\]
for $i = 1, 2, \ldots, m$.

Algorithm 17. Let $\eta_i : \mathcal{H}_i \times \mathcal{H}_i \to \mathcal{H}_i$ and $N_i : \mathcal{H}_i \times \mathcal{H}_i \to \mathcal{H}_i$ be single-valued mappings and let $M_i : \mathcal{H}_i \to 2_{\mathcal{H}_i}$ be maximal η_i-monotone mapping for $i = 1, 2, \ldots, m$. For any given initial point $(x_1^0, x_2^0, \ldots, x_m^0) \in \mathcal{H}_1 \times \mathcal{H}_2 \times \cdots \times \mathcal{H}_m$, the perturbed iterative sequence $\{(x_1^n, x_2^n, \ldots, x_m^n)\}$ for problem (1) is defined by
\[
x_i^{n+1} = (1 - \alpha_n) x_i^n + \alpha_n \rho_{M_i} \left[x_i^n - \rho_i N_i \left(x_1^n, x_2^n, \ldots, x_m^n \right) \right] + \alpha_n u_i^n + w_i^n, \tag{51}
\]
where $n \geq 0, i = 1, 2, \ldots, m$, and define $\{(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_m)\}$ by
\[
\varepsilon_i^n = \left\| z_i^{n+1} - \left\{ (1 - \alpha_n) z_i^n + \alpha_n \rho_{M_i} \left[z_i^n - \rho_i N_i \left(z_1^n, z_2^n, \ldots, z_m^n \right) \right] + \alpha_n u_i^n + w_i^n \right\| \tag{52}
\]
for $i = 1, 2, \ldots, m$.

Algorithm 18. Let $N_i : \mathcal{H}_i \times \mathcal{H}_i \to \mathcal{H}_i$ and $\rho_i : \mathcal{H}_i \to (-\infty, +\infty)$ be proper, convex, and lower semi-continuous functional on \mathcal{H}_i for $i = 1, 2, \ldots, m$. For any given initial point $(x_1^0, x_2^0, \ldots, x_m^0) \in \mathcal{H}_1 \times \mathcal{H}_2 \times \cdots \times \mathcal{H}_m$, the perturbed iterative sequence $\{(x_1^n, x_2^n, \ldots, x_m^n)\}$ for problem (2) is defined by
\[
x_i^{n+1} = (1 - \alpha_n) x_i^n + \alpha_n \rho_{M_i} \left[x_i^n - \rho_i N_i \left(x_1^n, x_2^n, \ldots, x_m^n \right) \right] + w_i^n, \tag{53}
\]
where $n \geq 0, i = 1, 2, \ldots, m$, and define $\{(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_m)\}$ by
\[
\varepsilon_i^n = \left\| z_i^{n+1} - \left\{ (1 - \alpha_n) z_i^n + \alpha_n \rho_{M_i} \left[z_i^n - \rho_i N_i \left(z_1^n, z_2^n, \ldots, z_m^n \right) \right] + \alpha_n u_i^n + w_i^n \right\| \tag{54}
\]
for $i = 1, 2, \ldots, m$.

Remark 19. If $m = 2$, then Algorithm 16 reduces to Algorithm 4.3 of Lan [19].

Next we will show the convergence and stability of Algorithm 16.

Theorem 20. Suppose that X_i, η_i, N_i, and M_i ($i = 1, 2, \ldots, m$) are the same as in Theorem 12. If $\sum_{n=0}^{\infty} \alpha_n = +\infty$ and condition (33) holds, then the perturbed iterative sequence $\{(x_1^n, x_2^n, \ldots, x_m^n)\}$ defined by Algorithm 16 converges strongly to the unique solution $(x_1^*, x_2^*, \ldots, x_m^*) \in X_1 \times X_2 \times \cdots \times X_m$ of the problem (1). Moreover, if there exists $a \in (0, \alpha_n]$ for all $n \geq 0$, then
\[
\lim_{n\to\infty} \varepsilon_1^n = (x_1^*, x_2^*, \ldots, x_m^*) \tag{55}
\]
if and only if
\[
\lim_{n\to\infty} \varepsilon_1^n, \varepsilon_2^n, \ldots, \varepsilon_m^n = (0, 0, \ldots, 0), \tag{56}
\]
where $\varepsilon_1^n, \varepsilon_2^n, \ldots, \varepsilon_m^n$ is defined by (50).

Proof. From Theorem 12, we know that problem (1) has a unique solution
\[
(x_1^*, x_2^*, \ldots, x_m^*) \in X_1 \times X_2 \times \cdots \times X_m. \tag{57}
\]
It follows from (49) and the proof of (42) in Theorem 12 that, for $i = 1, 2, \ldots, m$,

\[
\|x_{n+1}^i - x^*_i\| \\
\leq (1 - \alpha_n) \|x_i^n - x^*_i\| \\
+ \alpha_n \left\{ \frac{\tau_j}{\delta_j} \sqrt{1 - q_i \rho_j} \sigma_j + c_q \rho_j q_{ij} \|x_i^n - x^*_i\| \\
+ \frac{\beta \tau_j}{\delta_j} \sum_{j=1,j \neq i}^m \xi_{ij} \|x_j^n - x^*_j\| \right\} \\
+ \alpha_n \|u_i^n\| + (\|u_i''\| + \|w_i^n\|). \tag{58}
\]

It follows from (58), we have

\[
\sum_{i=1}^m \|x_{n+1}^i - x^*_i\| \\
\leq (1 - \alpha_n) \sum_{i=1}^m \|x_i^n - x^*_i\| \\
+ \alpha_n \sum_{i=1}^m \left\{ \frac{\tau_j}{\delta_j} \sqrt{1 - q_i \rho_j} \sigma_j + c_q \rho_j q_{ij} \|x_i^n - x^*_i\| \\
+ \frac{\beta \tau_j}{\delta_j} \sum_{j=1,j \neq i}^m \xi_{ij} \|x_j^n - x^*_j\| \right\} \\
\times \|x_i^n - x^*_i\| + \alpha_n \sum_{i=1}^m \|u_i^n\| + \sum_{i=1}^m \|u_i''\| + \sum_{i=1}^m \|w_i^n\| \\
= (1 - \alpha_n) \sum_{i=1}^m \|x_i^n - x^*_i\| \\
+ \alpha_n \sum_{i=1}^m \left\{ \frac{\tau_j}{\delta_j} \sqrt{1 - q_i \rho_j} \sigma_j + c_q \rho_j q_{ij} \|x_i^n - x^*_i\| \\
+ \frac{\beta \tau_j}{\delta_j} \sum_{j=1,j \neq i}^m \xi_{ij} \|x_j^n - x^*_j\| \right\} \\
\times \|x_i^n - x^*_i\| + \alpha_n \sum_{i=1}^m \|u_i^n\| + \sum_{i=1}^m \|u_i''\| + \sum_{i=1}^m \|w_i^n\| \\
\leq [1 - \alpha_n (1 - k)] \sum_{i=1}^m \|x_i^n - x^*_i\| \\
+ \alpha_n (1 - k) \cdot \frac{1}{1 - k} \sum_{i=1}^m \|u_i^n\| \\
+ \left(\sum_{i=1}^m \|u_i''\| + \sum_{i=1}^m \|w_i^n\| \right). \tag{59}
\]

where k is the same as in (43). Letting $t_n = \alpha_n (1 - k) \in [0, 1]$, $b_n = (1/(1 - k)) \sum_{j=1}^m \|u_j''\|$, and $c_n = \sum_{j=1}^m \|u_j''\| + \sum_{j=1}^m \|w_j^n\| (n \geq 0)$, then it follows from $\sum_{n=0}^{\infty} a_n = +\infty$ and (i)–(iii) of Algorithm 16 that

\[
\sum_{n=0}^{\infty} t_n = +\infty, \quad \lim_{n \to \infty} b_n = \frac{1}{1 - k} \sum_{j=1}^m \lim_{n \to \infty} \|u_j''\| = 0, \\
\sum_{n=0}^{\infty} c_n = \sum_{j=1}^m \|u_j^n\| + \sum_{j=1}^m \|w_j^n\| < +\infty. \tag{60}
\]

Setting $a_n = \sum_{j=1}^m \|x_j^n - x_j^*\|$, then (59) can be rewritten as

\[
a_{n+1} \leq (1 - t_n) a_n + b_n + c_n, \quad n = 0, 1, 2, \ldots. \tag{61}
\]

It follows from Lemma 10 that $\lim_{n \to \infty} a_n = 0$; that is,

\[
\lim_{n \to \infty} \sum_{j=1}^m \|x_j^n - x_j^*\| = 0; \tag{62}
\]

thus

\[
x_j^n \longrightarrow x_j^* \quad (n \to \infty), \quad (j = 1, 2, \ldots, m). \tag{63}
\]

Hence, we know that the sequence $\{(x_1^n, x_2^n, \ldots, x_m^n)\}$ converges strongly to the unique solution $(x_1^*, x_2^*, \ldots, x_m^*)$ of the problem (1).

Now we prove the second conclusion. By (50), now we know

\[
\|\tilde{x}_{n+1}^i - x^*_i\| \\
\leq (1 - \alpha_n) \|x_i^n - x^*_i\| \\
+ \alpha_n \sum_{i=1}^m \left\{ \frac{\tau_j}{\delta_j} \sqrt{1 - q_i \rho_j} \sigma_j + c_q \rho_j q_{ij} \|x_i^n - x^*_i\| \\
+ \frac{\beta \tau_j}{\delta_j} \sum_{j=1,j \neq i}^m \xi_{ij} \|x_j^n - x^*_j\| \right\} \\
\times \|x_i^n - x^*_i\| + \alpha_n \sum_{i=1}^m \|u_i^n\| + \sum_{i=1}^m \|u_i''\| + \sum_{i=1}^m \|w_i^n\| \\
\leq [1 - \alpha_n (1 - k)] \sum_{i=1}^m \|x_i^n - x^*_i\| \\
+ \alpha_n (1 - k) \cdot \frac{1}{1 - k} \sum_{i=1}^m \|u_i^n\| \\
+ \left(\sum_{i=1}^m \|u_i''\| + \sum_{i=1}^m \|w_i^n\| \right), \tag{64}
\]

where $i = 1, 2, \ldots, m$. As the proof of inequality (59), we have

\[
\sum_{j=1}^m \left\{ (1 - \alpha_n) \|x_j^n - x_j^*\| \\
+ \alpha_n \sum_{i=1}^m \left\{ \frac{\tau_j}{\delta_j} \sqrt{1 - q_i \rho_j} \sigma_j + c_q \rho_j q_{ij} \|x_i^n - x^*_i\| \\
+ \frac{\beta \tau_j}{\delta_j} \sum_{j=1,j \neq i}^m \xi_{ij} \|x_j^n - x^*_j\| \right\} \\
\times \|x_j^n - x_j^*\| + \alpha_n \sum_{i=1}^m \|u_i^n\| + \sum_{i=1}^m \|u_i''\| + \sum_{i=1}^m \|w_i^n\| \\
\leq [1 - \alpha_n (1 - k)] \sum_{i=1}^m \|x_i^n - x^*_i\| \\
+ \alpha_n (1 - k) \cdot \frac{1}{1 - k} \sum_{i=1}^m \|u_i^n\| \\
+ \left(\sum_{i=1}^m \|u_i''\| + \sum_{i=1}^m \|w_i^n\| \right), \tag{65}
\]
Since $0 < a \leq \alpha_n$ ($n = 0, 1, 2, \ldots$), it follows from (64) and (65) that
\[
\sum_{j=1}^{m} \| z_{j+1}^{n} - x_j^* \| \\
\leq \left[1 - \alpha_n (1 - k) \right] \sum_{j=1}^{m} \| x_j^n - x_j^* \| \\
+ \alpha_n (1 - k) \cdot \frac{1}{1 - k} \left(\sum_{j=1}^{m} \| u_j^n \| + \frac{1}{a} \sum_{j=1}^{m} \| w_j^n \| \right) \\
+ \left(\sum_{j=1}^{m} \| u_j^n \| + \sum_{j=1}^{m} \| w_j^n \| \right).
\]

Suppose that $\lim_{n \to \infty} (e_1^n, e_2^n, \ldots, e_m^n) = (0, 0, \ldots, 0)$. Letting $b'_i = (1/(1-k))(\sum_{j=1}^{m} \| u_j^n \| + (1/a) \sum_{j=1}^{m} e_j^n)$ and $a_n = \sum_{j=1}^{m} \| x_j^n - x_j^* \|$, then (66) implies that
\[
a_{n+1}^i \leq (1 - t_n) a_n^i + b'_n t_n + c_n, \quad n = 0, 1, 2, \ldots,
\]
where t_n, c_n are the same as previously. Since $\lim_{n \to \infty} \| u_j^n \| = 0$ and $\lim_{n \to \infty} e_j^n = 0$ ($j = 1, 2, \ldots, m$),
\[
\lim_{n \to \infty} b'_n = \frac{1}{1 - k} \left(\sum_{j=1}^{m} \left(\lim_{n \to \infty} \| u_j^n \| \right) + \frac{1}{a} \sum_{j=1}^{m} \left(\lim_{n \to \infty} e_j^n \right) \right) = 0.
\]

It again follows from Lemma 10, we have $\lim_{n \to \infty} a_{n+1}^i = 0$ and so
\[
\lim_{n \to \infty} (z_1^n, z_2^n, \ldots, z_m^n) = (x_1^*, x_2^*, \ldots, x_m^*).
\]

Conversely, if $\lim_{n \to \infty} (z_1^n, z_2^n, \ldots, z_m^n) = (x_1^*, x_2^*, \ldots, x_m^*)$, it follows from (50), then we get
\[
e_i^n \leq \| z_i^{n+1} - x_i^* \| \\
+ \left[(1 - \alpha_n) z_i^n + \alpha_n t_n \right] \left(z_i^n - \rho_i N_i (z_1^n, z_2^n, \ldots, z_m^n) \right) \\
+ \alpha_n u_i^n + w_i^n - x_i^*, \quad \forall i = 1, 2, \ldots, m.
\]

Combining (65) with (70), we have
\[
\sum_{i=1}^{m} e_i^n \leq \sum_{i=1}^{m} \| z_i^{n+1} - x_i^* \| + \left[1 - \alpha_n (1 - k) \right] \sum_{j=1}^{m} \| x_j^n - x_j^* \| \\
+ \alpha_n (1 - k) \cdot \frac{1}{1 - k} \sum_{j=1}^{m} \| u_j^n \| \\
+ \left(\sum_{j=1}^{m} \| u_j^n \| + \sum_{j=1}^{m} \| w_j^n \| \right) \to 0 \quad (n \to \infty).
\]

This completes the proof.

