Research Article

New Difference Sequence Spaces Defined by Musielak-Orlicz Function

M. Mursaleen, 1 Sunil K. Sharma, 2 S. A. Mohiuddine, 3 and A. Kilicman 4

1 Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India
2 Department of Mathematics, Model Institute of Engineering & Technology, Kot Bhalwal, Jammu and Kashmir 181122, India
3 Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
4 Department of Mathematics, University Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia

Correspondence should be addressed to A. Kilicman; akilic@upm.edu.my

Received 17 March 2014; Revised 11 July 2014; Accepted 11 July 2014; Published 22 July 2014

Academic Editor: Feyzi Basar

Copyright © 2014 M. Mursaleen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We introduce new sequence spaces by using Musielak-Orlicz function and a generalized B^μ-difference operator on n-normed space. Some topological properties and inclusion relations are also examined.

1. Introduction and Preliminaries

The notion of the difference sequence space was introduced by Kizmaz [1]. It was further generalized by Et and Çolak [2] as follows: $Z(\Delta^\mu) = \{x = (x_k) \in \omega : (\Delta^\mu x_k) \in z\}$ for $z = \ell_{\infty}$, ℓ_1, and ℓ_0, where μ is a nonnegative integer and

$$\Delta^\mu x_k = \Delta^{\mu-1} x_k - \Delta^{\mu-1} x_{k+1}, \quad \Delta^0 x_k = x_k \quad \forall k \in \mathbb{N} \quad (1)$$

or equivalent to the following binomial representation:

$$\Delta^\mu x_k = \sum_{v=0}^{\mu} (-1)^v \binom{\mu}{v} x_{k+v} \quad (2)$$

These sequence spaces were generalized by Et and Basarir [3] taking $z = \ell_{\infty}(p)$, $c(p)$, and $c_0(p)$.

Dutta [4] introduced the following difference sequence spaces using a new difference operator:

$$Z(\Delta^\eta) = \{x = (x_k) \in \omega : \Delta^\eta x_k \in z\} \quad \text{for } z = \ell_{\infty}, c, c_0. \quad (3)$$

where $\Delta^\eta x_k = (\Delta^\eta x_k) = (x_k - x_{k-\eta})$ for all $k, \eta \in \mathbb{N}$.

In [5], Dutta introduced the sequence spaces $c_0(\|\cdot\|, \|\Delta^\mu\|, p)$, $c_0(\|\cdot\|, \|\Delta^\eta\|, p)$, $\ell_{\infty}(\|\cdot\|, \|\Delta^\mu\|, p)$, $m(\|\cdot\|, \|\Delta^\mu\|, p)$, Δ^μ, and $m_0(\|\cdot\|, \|\Delta^\eta\|, p)$, where $\eta, \mu \in \mathbb{N}$ and $\Delta^\eta x_k = \Delta^{\eta-1} x_k - \Delta^{\eta-1} x_{k-\eta}$ and $\Delta^0 x_k = x_k$ for all $k, \eta \in \mathbb{N}$, which is equivalent to the following binomial representation:

$$\Delta^\mu x_k = \sum_{v=0}^{\mu} (-1)^v \binom{\mu}{v} x_{k-v} \quad (4)$$

The difference sequence spaces have been studied by authors [6–14] and references therein. Başar and Altay [15] introduced the generalized difference matrix $B = (b_{mk})$ for all $k, m \in \mathbb{N}$, which is a generalization of Δ^1-difference operator by

$$b_{mk} = \begin{cases} r, & k = m \\ s, & k = m - 1 \\ 0, & (k > m) \text{ or } (0 \leq k < m - 1). \end{cases} \quad (5)$$

Başar and Kayıkçı [16] defined the matrix $B^\mu(b_{mk}^\mu)$ which reduced the difference matrix Δ^μ in case $r = 1$, $s = -1$. The generalized B^μ-difference operator is equivalent to the following binomial representation:

$$B^\mu x = B^\mu(x_k) = \sum_{v=0}^{\mu} r^v \binom{\mu}{v} x_{k-v} \quad (6)$$
Let $\land = (\land_k)$ be a sequence of nonzero scalars. Then, for a sequence space E_\land, the multiplier sequence space E_\land, associated with the multiplier sequence \land, is defined as

$$E_\land = \{ x = (x_k) \in \ell^\infty : (\land_k x_k) \in E \}. \quad (7)$$

An Orlicz function M is a function, $M : [0, \infty) \rightarrow [0, \infty)$, which is continuous, nondecreasing, and convex with $M(0) = 0$, $M(x) > 0$ for $x > 0$, and $M(x) \rightarrow \infty$ as $x \rightarrow \infty$.

We say that an Orlicz function M satisfies the Δ_2-condition if there exists $K > 2$ and $x_0 \geq 0$ such that $M(2x) \leq KM(x)$ for all $x \geq x_0$. The Δ_2-condition is equivalent to $M(Lx) \leq KLM(x)$ for all $x > x_0$ and for $L, K > 1$.

Lindenstrauss and Tzafriri [17] used the idea of Orlicz function to define the following sequence space:

$$\ell_M = \left\{ x \in \ell^\infty : \sum_{k=1}^{\infty} M \left(\frac{|x_k|}{\rho} \right) < \infty \right\}. \quad (8)$$

which is called an Orlicz sequence space. The space ℓ_M is a Banach space with the norm

$$\|x\| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M \left(\frac{|x_k|}{\rho} \right) \leq 1 \right\}. \quad (9)$$

It is shown in [17] that every Orlicz sequence space ℓ_M contains a subspace isomorphic to $\ell_p (\rho \geq 1)$.

A sequence $\mathscr{A} = (M_k)$ of Orlicz functions is called a Musielak-Orlicz function; see [18, 19]. A sequence $\mathscr{N} = (N_k)$ defined by

$$N_k (v) = \sup \{ |v| u - M_k (u) : u \geq 0 \}, \quad k = 1, 2, \ldots, \quad (10)$$

called the complimentary function of a Musielak-Orlicz function \mathscr{A}. For a given Musielak-Orlicz function \mathscr{A}, the Musielak-Orlicz sequence space $t_{\mathscr{A}}$ and its subspace $h_{\mathscr{A}}$ are defined as follows:

$$t_{\mathscr{A}} = \left\{ x \in \ell^\infty : I_{\mathscr{A}} (cx) < \infty \text{ for some } c > 0 \right\},$$

$$h_{\mathscr{A}} = \left\{ x \in \ell^\infty : I_{\mathscr{A}} (cx) < \infty \text{ for all } c > 0 \right\},$$

where $I_{\mathscr{A}}$ is a convex modular defined by

$$I_{\mathscr{A}} (x) = \sum_{k=1}^{\infty} M_k (x_k), \quad x = (x_k) \in t_{\mathscr{A}}. \quad (12)$$

We consider $t_{\mathscr{A}}$ equipped with the Luxemburg norm

$$\|x\| = \inf \left\{ k > 0 : I_{\mathscr{A}} \left(\frac{x}{k} \right) \leq 1 \right\} \quad (13)$$

or equipped with the Orlicz norm

$$\|x\|_0 = \inf \left\{ \frac{1}{k} (1 + I_{\mathscr{A}} (kx)) : k > 0 \right\}. \quad (14)$$

By a lacunary sequence $\theta = (i_r)$, $r = 0, 1, 2, \ldots$, where $i_0 = 0$, we mean an increasing sequence of nonnegative integers $h_r = (i_r - r_{i_r}) \rightarrow \infty (r \rightarrow \infty)$. The intervals determined by θ are denoted by $L_r = (i_{r-1}, i_r]$ and the ratio i_r/i_{r-1} will be denoted by q_r. The space of lacunary strongly convergent sequences N_θ was defined by Freedman et al. [20] as follows:

$$N_\theta = \left\{ x = (x_k) : \lim_{r \rightarrow \infty} \frac{1}{h_r} \sum_{k \in L_r} |x_k - L| = 0, \text{ for some } L \right\}. \quad (15)$$

The concept of 2-normed spaces was initially developed by Gähler [21] in the mid-1960’s, while that of n-normed spaces one can see in Misiak [22]. Since then, many others have studied this concept and obtained various results; see Gunawan [23, 24] and Gunawan and Mashadi [25]. For more details about sequence spaces see [26–33] and references therein. Let $n \in \mathbb{N}$ and X be linear space over the field \mathbb{K}, where \mathbb{K} is the field of real or complex numbers of dimension d, where $d \geq n \geq 2$.

A real valued function $\|\cdot, \ldots, \cdot\|$ on X^n satisfying the following four conditions:

(1) $\|(x_1, x_2, \ldots, x_n)\| = 0$ if and only if x_1, x_2, \ldots, x_n are linearly dependent in X;

(2) $\|(x_1, x_2, \ldots, x_n)\|$ is invariant under permutation;

(3) $\|(\alpha x_1, x_2, \ldots, x_n)\| = |\alpha| \|(x_1, x_2, \ldots, x_n)\|$ for any $\alpha \in \mathbb{K}$;

(4) $\|(x_1 + x'_1, x_2, \ldots, x_n)\| \leq \|(x_1, x_2, \ldots, x_n)\| + \|(x'_1, x_2, \ldots, x_n)\|$ is called an n-norm on X and the pair $(X, \|\cdot, \ldots, \cdot\|)$ is called an n-normed space over the field \mathbb{K}. For example, we may take $X = \mathbb{R}^n$ being equipped with the Euclidean n-norm $\|(x_1, x_2, \ldots, x_n)\|_E = \sqrt{\sum_{i=1}^{n} x_i^2}$ of the n-dimensional parallelepiped spanned by the vectors x_1, x_2, \ldots, x_n which may be given explicitly by the formula

$$\|(x_1, x_2, \ldots, x_n)\|_E = \left| \det (x_i) \right|, \quad (16)$$

where $x_i = (x_1, x_2, x_3, \ldots, x_n) \in \mathbb{R}^n$ for each $i = 1, 2, 3, \ldots, n$ and $\|\cdot\|_E$ denotes the Euclidean norm. Let $(X, \|\cdot, \ldots, \cdot\|)$ be an n-normed space of dimension $d \geq n \geq 2$ and $\{a_1, a_2, \ldots, a_n\}$ linearly independent set in X. Then the following function $\|(\cdot, \ldots, \cdot)\|_{\infty}$ on X^{n-1} defined by

$$\|(x_1, x_2, \ldots, x_n)\|_{\infty} = \max \{ \|(x_1, x_2, \ldots, x_{n-1}, a_i)\| : i = 1, 2, \ldots, n \} \quad (17)$$

defines an $(n-1)$ norm on X with respect to $\{a_1, a_2, \ldots, a_n\}$.

A sequence (x_k) in an n-normed space $(X, \|\cdot, \ldots, \cdot\|)$ is said to converge to some $L \in X$ if

$$\lim_{k \rightarrow \infty} \|(x_k - L, z_1, \ldots, z_{n-1})\| = 0, \quad (18)$$

for every $z_1, \ldots, z_{n-1} \in X$.

A sequence (x_k) in a normed space $(X, \|\cdot, \ldots, \cdot\|)$ is said to be Cauchy if

$$\lim_{r \rightarrow \infty} \|(x_k - x_p, z_1, \ldots, z_{n-1})\| = 0, \quad (19)$$

for every $z_1, \ldots, z_{n-1} \in X$.

Abstract and Applied Analysis
If every Cauchy sequence in X converges to some $L \in X$ then X is said to be complete with respect to the n-norm. Any complete n-normed space is said to be n-Banach space.

Let $(X, ||\cdot||)$ be an n-normed space and let $s(w-x)$ denote the space of X-valued sequences. Let $p = (p_k)$ be any bounded sequence of positive real numbers and $\mathcal{M} = (M_k)$ a Musielak-Orlicz function. We define the following sequence spaces in this paper:

\[
\begin{align*}
 w_0^\theta (\mathcal{M}, B_{\alpha}^\mu, p, ||\cdot||, \ldots, ||) & = \left\{ x = (x_k) \in s(w-x) : \lim_{r \to \infty} \frac{1}{h_r} \times \sum_{k \in I_r} M_k \left(\left\| \left(\frac{B_{\alpha}^\mu x_k - L}{\rho}, z_1, \ldots, z_{n-1} \right) \right\| \right)^{p_k} = 0, \ \rho > 0 \right\}, \\
 w_\infty^\theta (\mathcal{M}, B_{\alpha}^\mu, p, ||\cdot||, \ldots, ||) & = \left\{ x = (x_k) \in s(w-x) : \lim_{r \to \infty} \frac{1}{h_r} \times \sum_{k \in I_r} M_k \left(\left\| \left(\frac{B_{\alpha}^\mu x_k - L}{\rho}, z_1, \ldots, z_{n-1} \right) \right\| \right)^{p_k} < \infty, \ \rho > 0 \right\};
\end{align*}
\]

when $p_k = 1$, for all k, we get

\[
\begin{align*}
 w_0^\theta (\mathcal{M}, B_{\alpha}^\mu, ||\cdot||, \ldots, ||) & = \left\{ x = (x_k) \in s(w-x) : \lim_{r \to \infty} \frac{1}{h_r} \times \sum_{k \in I_r} M_k \left(\left\| \left(\frac{B_{\alpha}^\mu x_k - L}{\rho}, z_1, \ldots, z_{n-1} \right) \right\| \right) = 0, \ \rho > 0 \right\}, \\
 w_\infty^\theta (\mathcal{M}, B_{\alpha}^\mu, ||\cdot||, \ldots, ||) & = \left\{ x = (x_k) \in s(w-x) : \lim_{r \to \infty} \frac{1}{h_r} \times \sum_{k \in I_r} M_k \left(\left\| \left(\frac{B_{\alpha}^\mu x_k - L}{\rho}, z_1, \ldots, z_{n-1} \right) \right\| \right) < \infty, \ \rho > 0 \right\};
\end{align*}
\]

(21)
The following inequality will be used throughout the paper. If
\[0 \leq p_k \leq \sup_{k} p_k = H, \quad k = \max(1, 2^{H-1}) \],
then
\[|a_k + b_k|^{p_k} \leq K \left(|a_k|^{p_k} + |b_k|^{p_k} \right) \tag{23} \]
for all \(k \) and \(a_k, b_k \in \mathbb{C} \). Also \(|a|^{p_k} \leq \max(1, |a|^{|H|}) \) for all \(a \in \mathbb{C} \).

2. Main Results

Theorem 1. Let \(\mathcal{M} = (\mathcal{M}_k) \) be a Musielak-Orlicz function and \(p = (p_k) \) a bounded sequence of positive real numbers; the spaces \(\omega_0^p(\mathcal{M}, B^\mu_k, p, \|\cdot\|, \ldots, \|\cdot\|) \), \(\omega^p(\mathcal{M}, B^\mu_k, p, \|\cdot\|, \ldots, \|\cdot\|) \), and \(\omega_\infty^p(\mathcal{M}, B^\mu_k, p, \|\cdot\|, \ldots, \|\cdot\|) \) are linear over the field of complex numbers \(\mathbb{C} \).

Proof. Let \(x = (x_k), y = (y_k) \in \omega_0^p(\mathcal{M}, B^\mu_k, p, \|\cdot\|, \ldots, \|\cdot\|) \), and \(\alpha, \beta \in \mathbb{C} \). Then there exist positive real numbers \(\rho_1 \) and \(\rho_2 \) such that
\[
\lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in \mathbb{N}} M_k \left(\left\| \frac{B^\mu_k x_k}{\rho_1}, z_1, \ldots, z_{n-1} \right\| \right)^{p_k} = 0, \tag{24}
\]
Define \(\rho_3 = \max(2|\alpha|\rho_1, 2|\beta|\rho_2) \). Since \(\|\cdot\|, \ldots, \|\cdot\| \) is an \(n \)-norm on \(X \) and \(M_k \)'s are nondecreasing and convex functions so by using inequality (23) we have
\[
\lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in \mathbb{N}} M_k \left(\left\| \frac{B^\mu_k(\alpha x_k + \beta y_k)}{\rho_3}, z_1, \ldots, z_{n-1} \right\| \right)^{p_k} \\
\leq \lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in \mathbb{N}} M_k \left(\left\| \frac{B^\mu_k\alpha x_k}{\rho_3}, z_1, \ldots, z_{n-1} \right\| \right)^{p_k} \\
+ \left(\left\| \frac{B^\mu_k\beta y_k}{\rho_3}, z_1, \ldots, z_{n-1} \right\| \right)^{p_k} \\
\leq K \lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in \mathbb{N}} \frac{1}{2p_k} M_k \left(\left\| \frac{B^\mu_k x_k}{\rho_1}, z_1, \ldots, z_{n-1} \right\| \right)^{p_k} \\
+ K \lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in \mathbb{N}} \frac{1}{2p_k} M_k \left(\left\| \frac{B^\mu_k y_k}{\rho_2}, z_1, \ldots, z_{n-1} \right\| \right)^{p_k} \\
= 0. \tag{25}
\]
Thus, we have \(\alpha x + \beta y \in \omega_0^p(\mathcal{M}, B^\mu_k, p, \|\cdot\|, \ldots, \|\cdot\|) \). Hence \(\omega_0^p(\mathcal{M}, B^\mu_k, p, \|\cdot\|, \ldots, \|\cdot\|) \) is a linear space. Similarly, we can prove that \(\omega^p(\mathcal{M}, B^\mu_k, p, \|\cdot\|, \ldots, \|\cdot\|) \) and \(\omega_\infty^p(\mathcal{M}, B^\mu_k, p, \|\cdot\|, \ldots, \|\cdot\|) \) are linear spaces. This completes the proof of the theorem. \(\square \)

Theorem 2. Let \(\mathcal{M} = (\mathcal{M}_k) \) be a Musielak-Orlicz function and \(p = (p_k) \) a bounded sequence of positive real numbers; the space \(\omega_0^p(\mathcal{M}, B^\mu_k, p, \|\cdot\|, \ldots, \|\cdot\|) \) is a topological linear space paranormed by
\[
g(x) = \inf \left\{ \rho_0^{p_k/M} : \left(\frac{1}{h_r} \sum_{k \in \mathbb{N}} M_k \left(\left\| \frac{B^\mu_k x_k}{\rho_k}, z_1, \ldots, z_{n-1} \right\| \right)^{p_k} \right)^{1/M} \leq 1 \right\}, \tag{26}
\]
where \(M = \max(1, \sup_k p_k < \infty) \).

Proof. Clearly \(g(x) \geq 0 \) for \(x = (x_k) \in \omega_0^p(\mathcal{M}, B^\mu_k, p, \|\cdot\|, \ldots, \|\cdot\|) \). Since \(M_k(0) = 0 \), we get \(g(0) = 0 \). Again, if \(g(x) = 0 \), then
\[
g(x) = \inf \left\{ \rho_0^{p_k/M} : \left(\frac{1}{h_r} \sum_{k \in \mathbb{N}} M_k \left(\left\| \frac{B^\mu_k x_k}{\rho_k}, z_1, \ldots, z_{n-1} \right\| \right)^{p_k} \right)^{1/M} \leq 1 \right\} = 0. \tag{27}
\]
This implies that, for a given \(\varepsilon > 0 \), there exist some \(\rho_\varepsilon \) (0 < \(\rho_\varepsilon < \varepsilon \)) such that
\[
\left(\frac{1}{h_r} \sum_{k \in \mathbb{N}} M_k \left(\left\| \frac{B^\mu_k x_k}{\rho_\varepsilon}, z_1, \ldots, z_{n-1} \right\| \right)^{p_k} \right)^{1/M} \leq 1. \tag{28}
\]
Thus
\[
\left(\frac{1}{h_r} \sum_{k \in \mathbb{N}} M_k \left(\left\| \frac{B^\mu_k x_k}{\varepsilon}, z_1, \ldots, z_{n-1} \right\| \right)^{p_k} \right)^{1/M} \leq 1 \tag{29}
\]
for each \(r \), and suppose that \(x_k \neq 0 \) for each \(k \in \mathbb{N} \). This implies that \(B^\mu_k x_k \neq 0 \) for each \(k \in \mathbb{N} \). Let \(\varepsilon \to 0 \), then
\[
\left(\left\| \frac{B^\mu_k x_k}{\rho_\varepsilon}, z_1, \ldots, z_{n-1} \right\| \right)^{p_k} \to \infty; \tag{30}
\]
Abstract and Applied Analysis

which is a contradiction. Therefore, $B^\mu_k x_k = 0$ for each k and thus $x_k = 0$ for each $k \in \mathbb{N}$. Let $\rho_1 > 0$ and $\rho_2 > 0$ be such that

\[
\left(\frac{1}{h_r k_e l_r} \sum_{k \in I_r} M_k \left(\left\| \left(\frac{B^\mu_k x_k}{\rho_1}, z_1, \ldots, z_{n-1} \right) \right\| \right)^{p_k} \right)^{1/M} \leq 1,
\]

\[
\left(\frac{1}{h_r k_e l_r} \sum_{k \in I_r} M_k \left(\left\| \left(\frac{B^\mu_k y_k}{\rho_2}, z_1, \ldots, z_{n-1} \right) \right\| \right)^{p_k} \right)^{1/M} \leq 1
\]

for each r.

Let $\rho = \rho_1 + \rho_2$; then by using Minkowski’s inequality, we have

\[
\left(\frac{1}{h_r k_e l_r} \sum_{k \in I_r} M_k \left(\left\| \left(\frac{B^\mu_k (x_k + y_k)}{\rho}, z_1, \ldots, z_{n-1} \right) \right\| \right)^{p_k} \right)^{1/M} \leq \left(\frac{1}{h_r k_e l_r} \sum_{k \in I_r} M_k \right)^{1/M}
\]

\[
\times \left(\left(\frac{\rho_1}{\rho_1 + \rho_2} \right) \left(\left\| \left(\frac{B^\mu_k x_k}{\rho_1}, z_1, \ldots, z_{n-1} \right) \right\| \right)^{p_k} \right)^{1/M} + \left(\frac{\rho_2}{\rho_1 + \rho_2} \right) \left(\left\| \left(\frac{B^\mu_k y_k}{\rho_2}, z_1, \ldots, z_{n-1} \right) \right\| \right)^{p_k} \leq 1
\]

(33)

Therefore, $g(x + y) \leq g(x) + g(y)$.

Finally, we prove that the scalar multiplication is continuous. Let ν be any complex number. By definition,

\[
g(\nu x) = \inf \left\{ \rho^{p/M} : \frac{1}{h_r k_e l_r} \sum_{k \in I_r} M_k \left(\left\| \left(\frac{\nu B^\mu_k x_k}{\rho}, z_1, \ldots, z_{n-1} \right) \right\| \right)^{p_k} \right\}^{1/M} \leq 1
\]

(34)
Then
\[g(\|t\|) = \inf \left\{ \left(\frac{1}{t_r} \sum_{k \in I_r} M_k \right)^{p/M} : \frac{1}{t_r} \sum_{k \in I_r} M_k \sup_{t \in B} \left(\left\| \frac{B_x^k t - L}{t} - z_1, \ldots, z_{n-1} \right\| \right)^{p_k} \leq 1 \right\}. \]

(35)

where \(t = \rho / \|t\| \). Since \(\|t\| \leq \max(1, \|t\| \sup p_k) \), we have
\[g(\|x\|) = \max \left(1, \|x\| \sup p_k \right) \inf \left\{ \left(\frac{1}{t_r} \sum_{k \in I_r} M_k \right)^{p/M} \times \left(\left\| \frac{B_x^k t - L}{t} - z_1, \ldots, z_{n-1} \right\| \right)^{p_k} \right\}. \]

(36)

So, the fact that scalar multiplication is continuous follows from the above inequality. This completes the proof of theorem. □

Theorem 3. Let \(\mathcal{M} = (M_k) \) be a Musielak-Orlicz function. If \(\sup_m (M_k(x))^{p_k} < \infty \) for all fixed \(x > 0 \), then \(w^\beta(\mathcal{M}, B^\mu_k, p, \| \cdot \|, \cdot, \cdot, \cdot) \subset w^\beta(\mathcal{M}, B^\mu_k, p, \| \cdot \|, \cdot, \cdot, \cdot) \) if and only if
\[\lim_{r \to \infty} \frac{1}{h_r(m)} \sum_{k \in I_r} M_k(t)^{p_k} = \infty, \quad \text{for some } t > 0. \]

(40)

Proof. Let \(x = (x_k) \in w^\beta(\mathcal{M}, B^\mu_k, p, \| \cdot \|, \cdot, \cdot, \cdot). \) Then there exists some positive number \(\rho_1 \) such that
\[\lim_{r \to \infty} \frac{1}{h_r(m)} \sum_{k \in I_r} M_k \left(\left\| \frac{B_x^k t - L}{t} - z_1, \ldots, z_{n-1} \right\| \right)^{p_k} = 0. \]

(37)

Define \(\rho = 2\rho_1 \). Since \(M_k \) is nondecreasing and convex by using inequality (23), we have
\[\lim_{r \to \infty} \frac{1}{h_r(m)} \sum_{k \in I_r} M_k \left(\left\| \frac{B_x^k t - L}{t} - z_1, \ldots, z_{n-1} \right\| \right)^{p_k} \leq K \left\{ \lim_{r \to \infty} \frac{1}{h_r(m)} \sum_{k \in I_r} M_k \left(\left\| \frac{B_x^k t - L}{t} - z_1, \ldots, z_{n-1} \right\| \right)^{p_k} \right\}. \]

(38)

Hence \(x = (x_k) \in w^\beta(\mathcal{M}, B^\mu_k, p, \| \cdot \|, \cdot, \cdot, \cdot, \cdot, \cdot). \) This completes the proof of the theorem. □

Theorem 4. Let \(\mathcal{M} = (M_k) \) be a Musielak-Orlicz function and \(0 < h = \inf p_k \). Then
\[w^\beta(\mathcal{M}, B^\mu_k, p, \| \cdot \|, \cdot, \cdot, \cdot, \cdot, \cdot) \subset w^\beta(\mathcal{M}, B^\mu_k, p, \| \cdot \|, \cdot, \cdot, \cdot, \cdot, \cdot) \]

if and only if
\[\lim_{r \to \infty} \frac{1}{h_r(m)} \sum_{k \in I_r} M_k(t)^{p_k} = \infty, \quad \text{for some } t > 0. \]

Proof. Let \(w^\beta(\mathcal{M}, B^\mu_k, p, \| \cdot \|, \cdot, \cdot, \cdot, \cdot, \cdot) \subset w^\beta(\mathcal{M}, B^\mu_k, p, \| \cdot \|, \cdot, \cdot, \cdot, \cdot, \cdot) \). Suppose (40) does not hold. Therefore there is a subinterval \(I_{(m)} \) of the set of intervals \(I \), and a number \(n_0 \), where \(n_0 = \| (B_x^k t - L, z_1, \ldots, z_{n-1}) \| \) for all \(k \), such that
\[\frac{1}{h_r(m)} \sum_{k \in I_{(m)}} M_k(t)^{p_k} \leq N < \infty, \quad m = 1, 2, 3, \ldots. \]

(41)

Let us define \(x = (x_k) \) as follows:
\[B_x^k t_k = \begin{cases} \rho n_0, & k \in I_{(m)}, \\ 0, & k \notin I_{(m)}. \end{cases} \]

(42)

Thus by (41), \(x = (x_k) \in w^\beta(\mathcal{M}, B^\mu_k, p, \| \cdot \|, \cdot, \cdot, \cdot, \cdot, \cdot) \). But \(x = (x_k) \notin w^\beta(\mathcal{M}, B^\mu_k, p, \| \cdot \|, \cdot, \cdot, \cdot, \cdot, \cdot) \). Hence (40) must hold.

Conversely, suppose that (40) holds and let \(x = (x_k) \in w^\beta(\mathcal{M}, B^\mu_k, p, \| \cdot \|, \cdot, \cdot, \cdot, \cdot, \cdot) \). Then,
\[\frac{1}{h_r(m)} \sum_{k \in I_r} M_k \left(\left\| \frac{B_x^k t - L}{t} - z_1, \ldots, z_{n-1} \right\| \right)^{p_k} \leq N < \infty. \]

(43)

Suppose that \(x = (x_k) \notin w^\beta(\mathcal{M}, B^\mu_k, p, \| \cdot \|, \cdot, \cdot, \cdot, \cdot, \cdot) \). Then for some number \(\varepsilon > 0 \), there is a number \(N_0 \) such that, for a subinterval \(I_{(m)} \) of the set of intervals \(I_r \),
\[\left\| \frac{B_x^k t - L}{t} - z_1, \ldots, z_{n-1} \right\| > \varepsilon \quad \text{for } N \geq N_0. \]

(44)
We have \(M_k(\|\langle B^{\mu}\wedge x_k/\rho, z_1, \ldots, z_{n-1} \rangle \|) \geq M(\varepsilon)^{p_k} \), which contradicts (40) by using (43). Hence we get
\[
w^0_{\infty}(\mathcal{M}, B^{\mu}, p, \|, \|, \|) \subset w^0_{\infty}(\mathcal{M}, B^{\mu}, p, \|, \|, \|).
\]
This completes the proof.

Theorem 5. Let \(0 < h = \inf p_k \leq \sup p_k = H < \infty \). For any Musielak-Orlicz function \(\mathcal{M} = (M_k) \) which satisfies \(\Delta_2 \)-condition, one has

\[
\begin{align*}
(i) & \quad w^0_0(\langle B^{\mu}, p, \|, \|, \| \rangle) \subset w^0_0(\mathcal{M}, B^{\mu}, p, \|, \|, \|) \\
(ii) & \quad w^0(\langle B^{\mu}, p, \|, \|, \| \rangle) \subset w^0(\mathcal{M}, B^{\mu}, p, \|, \|, \|) \\
(iii) & \quad w^0_0(\langle B^{\mu}, p, \|, \|, \| \rangle) \subset w^0_0(\mathcal{M}, B^{\mu}, p, \|, \|, \|).
\end{align*}
\]

Proof. Let \(x = (x_k) \in u^0_0(\langle B^{\mu}, p, \|, \|, \| \rangle) \). Then, we have
\[
\frac{1}{h_r} \sum_{k \in I_r} \left(\left\| \frac{B^{\mu}_x}{\rho} x_k, z_1, \ldots, z_{n-1} \right\| \right)^{p_k} \to 0 \quad \text{as} \quad r \to \infty.
\]

(46)

Let \(\varepsilon > 0 \), and choose \(\delta \) with \(0 < \delta \leq 1 \) such that \(M_k < \varepsilon \) for \(0 < t \leq \delta \). We can write
\[
\begin{align*}
\frac{1}{h_r} \sum_{k \in I_r} \left(\left\| \frac{B^{\mu}_x}{\rho} x_k, z_1, \ldots, z_{n-1} \right\| \right)^{p_k}
= & \quad \frac{1}{h_r} \sum_{k \in I_r, \|B^{\mu}_x(x_k/\rho, z_1, \ldots, z_{n-1})\| \leq \delta} \left(\left\| \frac{B^{\mu}_x}{\rho} x_k, z_1, \ldots, z_{n-1} \right\| \right)^{p_k} \\
& + \frac{1}{h_r} \sum_{k \in I_r, \|B^{\mu}_x(x_k/\rho, z_1, \ldots, z_{n-1})\| > \delta} \left(\left\| \frac{B^{\mu}_x}{\rho} x_k, z_1, \ldots, z_{n-1} \right\| \right)^{p_k}.
\end{align*}
\]

(47)

For the first summation above, we can write
\[
\frac{1}{h_r} \sum_{k \in I_r, \|B^{\mu}_x(x_k/\rho, z_1, \ldots, z_{n-1})\| \leq \delta} \left(\left\| \frac{B^{\mu}_x}{\rho} x_k, z_1, \ldots, z_{n-1} \right\| \right)^{p_k} < \max(\varepsilon, \varepsilon^h).
\]

(48)

By using continuity of \(M_k \), for the second summation we can write
\[
\left\| \frac{B^{\mu}_x}{\rho} x_k, z_1, \ldots, z_{n-1} \right\| < 1 + \frac{\left\| \langle B^{\mu}_x(x_k/\rho, z_1, \ldots, z_{n-1}) \rangle \right\|}{\delta}.
\]

(49)

Since each \(M_k \) is nondecreasing and convex and satisfies \(\Delta_2 \)-condition, it follows that
\[
\begin{align*}
\frac{1}{h_r} \sum_{k \in I_r} M_k \left(\left\| \frac{B^{\mu}_x}{\rho} x_k, z_1, \ldots, z_{n-1} \right\| \right)^{p_k} & \leq \max(\varepsilon, \varepsilon^h) \\
& + \max \left\{ 1, \left[\frac{2M_k \left(\left\| \langle B^{\mu}_x(x_k/\rho, z_1, \ldots, z_{n-1}) \rangle \right\| \right)}{\delta} \right]^h \right\} \left(\frac{1}{h_r} \sum_{k \in I_r} \left(\left\| \frac{B^{\mu}_x}{\rho} x_k, z_1, \ldots, z_{n-1} \right\| \right)^{p_k} \right) \\
& \times \left(\frac{1}{h_r} \sum_{k \in I_r} \left(\left\| \frac{B^{\mu}_x}{\rho} x_k, z_1, \ldots, z_{n-1} \right\| \right)^{p_k} \right).
\end{align*}
\]

(50)

Taking limit as \(\varepsilon \to 0 \) and \(r \to \infty \), it follows that \(x = (x_k) \in u^0_0(\mathcal{M}, B^{\mu}, p, \|, \|, \|) \). Hence \(u^0_0(\langle B^{\mu}, p, \|, \|, \| \rangle) \subset u^0_0(\mathcal{M}, B^{\mu}, p, \|, \|, \|) \). Similarly, we can prove (ii) and (iii). This completes the proof of the theorem.

Theorem 6. Let \(\mathcal{M} = (M_k) \) be a Musielak-Orlicz function. Then the following statements are equivalent:

\[
\begin{align*}
(i) & \quad w^0_0(\langle B^{\mu}, p, \|, \|, \| \rangle) \subset w^0_0(\mathcal{M}, B^{\mu}, p, \|, \|, \|) \\
(ii) & \quad w^0(\langle B^{\mu}, p, \|, \|, \| \rangle) \subset w^0(\mathcal{M}, B^{\mu}, p, \|, \|, \|) \\
(iii) & \quad \sup \{1/h_r \sum_{k \in I_r} M_k(\varepsilon)^{p_k} < \infty \text{ for all } t > 0, \text{ where } t = \|B^{\mu}_x(x_k/\rho, z_1, \ldots, z_{n-1})\| \}.
\end{align*}
\]

Proof. (i) \(\Rightarrow\) (ii) Suppose (i) holds. In order to prove (ii) we have to show that
\[
w^0(\langle B^{\mu}, p, \|, \|, \| \rangle) \subset w^0(\mathcal{M}, B^{\mu}, p, \|, \|, \|).
\]

(51)

Let \(x = (x_k) \in w^0_0(\mathcal{M}, B^{\mu}, p, \|, \|, \|) \). Then for a given \(\varepsilon > 0 \) there exists \(s > s_\varepsilon \) such that
\[
\frac{1}{h_r} \sum_{k \in I_r} \left(\left\| \frac{B^{\mu}_x}{\rho} x_k, z_1, \ldots, z_{n-1} \right\| \right)^{p_k} < \varepsilon.
\]

(52)

Hence there exists \(K > 0 \) such that
\[
\sup \left\{ \frac{1}{h_r} \sum_{k \in I_r} \left(\left\| \frac{B^{\mu}_x}{\rho} x_k, z_1, \ldots, z_{n-1} \right\| \right)^{p_k} \right\} < K.
\]

(53)

This shows that \(x = (x_k) \in w^0_0(\mathcal{M}, B^{\mu}, p, \|, \|, \|) \).

(ii) \(\Rightarrow\) (iii) Suppose (ii) holds and (iii) fails to hold. Then for some \(t > 0 \),
\[
\sup \left\{ \frac{1}{h_r} \sum_{k \in I_r} M_k(\varepsilon)^{p_k} = \infty \right\}.
\]

(54)

and, therefore, we can find a subinterval \(I_{r(m)} \) of the set of intervals \(I_r \) such that
\[
\frac{1}{h_r(m)} \sum_{k \in I_{r(m)}} M_k \left(\frac{1}{m} \right)^{p_k} \geq m, \quad m = 1, 2, 3, \ldots
\]

(55)
Let us define \(x = (x_k) \) as follows:
\[
B^{\rho}_{r}x_k = \begin{cases}
\rho m, & k \in I_r(m) \\
0, & k \notin I_r(m).
\end{cases}
\] (56)

Thus \(x = (x_k) \in w_0^\theta(B^\rho_{r}, p, ||.||, ||.) \). But by (55), \(x = (x_k) \notin w_0^\theta(\mathcal{M}, B^\rho_{r}, p, ||.||, ||.) \) which contradicts (ii). Hence (iii) must hold.

(iii) \(\Rightarrow \) (i) Let (iii) hold. Suppose that \(x = (x_k) \notin w_0^\theta(\mathcal{M}, B^\rho_{r}, p, ||.||, ||.) \). Then for \(x = (x_k) \in w_0^\theta(B^\rho_{r}, p, ||.||, ||.) \)
\[
\sup_r \frac{1}{h_r} \sum_{k \in I_r} M_k \left(\left\| \frac{B^\rho_{r} x_k}{\rho} , z_1, \ldots, z_{n-1} \right\| \right)^p_k = \infty.
\] (57)

Let \(t = \frac{\|B^\rho_{r} x_k\|/\rho, z_1, \ldots, z_{n-1}}{\|B^\rho_{r} x_k\|/\rho \cdot z_1, \ldots, z_{n-1}} \) for each \(k \), and then by (57)
\[
\sup_r \frac{1}{h_r} \sum_{k \in I_r} M_k (M_k(t))_p^k > \infty, \text{ which contradicts (iii). Hence (i) must hold. This completes the proof of the theorem.} \]

Theorem 7. Let \(\mathcal{M} = (M_k) \) be a Musielak-Orlicz function. Then the following statements are equivalent:

(i) \(w_0^\theta(\mathcal{M}, B^\rho_{r}, p, ||.||, ||.) \subset w_0^\theta(B^\rho_{r}, p, ||.||, ||.) \);

(ii) \(w_0^\theta(\mathcal{M}, B^\rho_{r}, p, ||.||, ||.) \subset w_0^\theta(B^\rho_{r}, p, ||.||, ||.) \);

(iii) \(\inf_r (1/h_r) \sum_{k \in I_r} M_k (M_k(t)_p^k > 0 \text{ for all } t > 0.} \)

*Proof. (i) \(\Rightarrow \) (ii) is obvious

(ii) \(\Rightarrow \) (iii) Let (ii) hold and let (iii) fail to hold. Then
\[
\inf_r \frac{1}{h_r} \sum_{k \in I_r} M_k (M_k(t)_p^k = 0 \text{ for some } t > 0,}
\] (58)

and we can find a subinterval \(I_{r(m)} \) of the set of intervals \(I_r \)
\[
\frac{1}{h_r} (m) \sum_{k \in I_{r(m)}} M_k (M_k(m)_p^m < \frac{1}{m}, \text{ } m = 1, 2, 3, \ldots}
\] (59)

Let us define \(x = (x_k) \) as follows:
\[
B^{\rho}_{r}x_k = \begin{cases}
\rho m, & k \in I_{r(m)} \\
0, & k \notin I_{r(m)}.
\end{cases}
\] (60)

Thus by (iii), \(x = (x_k) \in w_0^\theta(\mathcal{M}, B^\rho_{r}, p, ||.||, ||. ||) \). But \(x = (x_k) \notin w_0^\theta(\mathcal{M}, B^\rho_{r}, p, ||.||, ||. ||) \).

(iii) \(\Rightarrow \) (i) Let (iii) hold. Suppose that \(x = (x_k) \in w_0^\theta(\mathcal{M}, B^\rho_{r}, p, ||.||, ||. ||) \). Therefore,
\[
\frac{1}{h_r} \sum_{k \in I_r} M_k \left(\left\| \frac{B^\rho_{r} x_k}{\rho} , z_1, \ldots, z_{n-1} \right\| \right)^p_k \rightarrow 0 \text{ as } r \rightarrow \infty.
\] (61)

Again suppose \(x = (x_k) \notin w_0^\theta(B^\rho_{r}, p, ||.||, ||.) \) for some number \(\varepsilon > 0 \) and a subinterval \(I_{r(m)} \) of the set of intervals \(I_r \), we have
\[
\left\| \frac{B^\rho_{r} x_k}{\rho} , z_1, \ldots, z_{n-1} \right\| \geq \varepsilon \forall k.
\] (62)

Then, from properties of the Orlicz function, we can write
\[
M_k \left(\left\| \frac{B^\rho_{r} x_k}{\rho} , z_1, \ldots, z_{n-1} \right\| \right)^p_k \geq M_k (e)^p_k.
\] (63)

Consequently, by (61), we have \(\lim_{r \rightarrow \infty} \sum_{k \in I_r} M_k (e)^p_k = 0 \), which contradicts (iii). Hence (i) must hold. This completes the proof of the theorem. \(\square \)

Theorem 8. (i) If \(0 < \inf \ p_k \leq p_k \leq 1 \text{ for all } k \), then \(w_0^\theta(\mathcal{M}, B^\rho_{r}, p, ||.||, ||.) \subset w_0^\theta(\mathcal{M}, B^\rho_{r}, p, ||.||, ||.) \).

(ii) If \(1 \leq p_k \leq \sup p_k = H < \infty \), then \(w_0^\theta(\mathcal{M}, B^\rho_{r}, p, ||.||, ||.) \subset w_0^\theta(\mathcal{M}, B^\rho_{r}, p, ||.||, ||.) \).

*Proof. (i) Let \(x \in w_0^\theta(\mathcal{M}, B^\rho_{r}, p, ||.||, ||.) \). Since \(0 < \inf \ p_k \leq 1 \), we get
\[
\frac{1}{h_r} \sum_{k \in I_r} M_k \left(\left\| \frac{B^\rho_{r} x_k}{\rho} - L , z_1, \ldots, z_{n-1} \right\| \right)^p_k
\]
\[
\leq \frac{1}{h_r} \sum_{k \in I_r} M_k \left(\left\| \frac{B^\rho_{r} x_k}{\rho} , z_1, \ldots, z_{n-1} \right\| \right)^p_k,
\] (64)

and hence \(x \in w_0^\theta(\mathcal{M}, B^\rho_{r}, p, ||.||, ||.) \).

(ii) Let \(1 \leq p_k \leq \sup p_k = H < \infty \) and \(x = (x_k) \in w_0^\theta(\mathcal{M}, B^\rho_{r}, p, ||.||, ||.) \). Then for each \(0 < \varepsilon < 1 \) there exists a positive integer \(s_0 \) such that
\[
\frac{1}{h_r} \sum_{k \in I_r} M_k \left(\left\| \frac{B^\rho_{r} x_k}{\rho} - L , z_1, \ldots, z_{n-1} \right\| \right)^p_k
\]
\[
\leq \varepsilon < 1 \forall r > s_0.
\] (65)

This implies that
\[
\frac{1}{h_r} \sum_{k \in I_r} M_k \left(\left\| \frac{B^\rho_{r} x_k}{\rho} , z_1, \ldots, z_{n-1} \right\| \right)^p_k
\]
\[
\leq \frac{1}{h_r} \sum_{k \in I_r} M_k \left(\left\| \frac{B^\rho_{r} x_k}{\rho} , z_1, \ldots, z_{n-1} \right\| \right)^p_k.
\] (66)

Therefore \(x = (x_k) \in w_0^\theta(\mathcal{M}, B^\rho_{r}, ||.||, ||.) \). This completes the proof of the theorem. \(\square \)

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

The authors gratefully acknowledge that this research was partially supported by the University Putra Malaysia under the ERGS Grant Scheme having Project no. ERGS 1-2013/5527179. The authors are grateful also to the anonymous referees for a careful checking of the details and for helpful comments that improved the paper.
References
