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We discuss a stochastic SIR epidemicmodel with vaccination.We investigate the asymptotic behavior according to the perturbation
and the reproduction number 𝑅

0
. We deduce the globally asymptotic stability of the disease-free equilibrium when 𝑅

0
≤ 1 and the

perturbation is small, which means that the disease will die out. When 𝑅
0
> 1, we derive that the disease will prevail, which is

measured through the difference between the solution and the endemic equilibrium of the deterministic model in time average.
The key to our analysis is choosing appropriate Lyapunov functions.

1. Introduction

Epidemiology is the study of the spread of diseases with
the objective to trace factors that are responsible for or
contribute to their occurrence.Mathematicalmodels are used
extensively in the study of epidemiological phenomena.Most
models for the transmission of infectious diseases descend
from the classical SIR model of Kermack and McKendrick
established in 1927; see [1]. In recent years, many researchers
have discussed the SIR model allowing vaccination, that is,
the SVIR model. In the epidemiology, vaccines are extremely
important and widely used in the modern day world and
have been proved to be the most effective and cost-efficient
method of preventing infectious diseases such as measles,
polio, diphtheria, tetanus, pertussis, and tuberculosis. Rou-
tine vaccination is now provided in all developing countries
against all these diseases. Li and Ma [2] discuss an SIS
model with vaccination. The results in [2] show that the
system always has the disease-free equilibrium 𝑃

0
. If the

basic reproduction number 𝑅
0
⩽ 1, then 𝑃

0
is the unique

equilibrium and it is globally stable. If 𝑅
0
> 1, then 𝑃

0
is

unstable and there is an endemic equilibrium 𝑃
∗ which is

globally asymptotically stable under a sufficient condition.
In addition, much research has been done on SVIR models;

see [3–6]. In light of these results, complete determination
of the global dynamics of these models is essential for their
application and further development.

In fact, epidemic models are inevitably affected by envi-
ronmental white noise which is an important component
in realism, because it can provide an additional degree of
realism in comparison to their deterministic counterparts.
Recent advances in stochastic differential equations enable
us to introduce stochasticity into the model of biological
phenomena, whether it is a random noise in the system
of differential equations or environmental fluctuations in
parameters. Modeling population dynamics in random envi-
ronments is a way of studying the fluctuations of population
size that has been affected by the stochasticity of external
factors. Recently several authors have studied stochastic
biological systems; see [7–9]. In addition, some stochastic
epidemic models have been studied by many authors; see
[10–15]. Parameter perturbations on the transmission rate
are considered in [10, 12, 14, 16]. Tornatore et al. [12] study
the stability of disease-free equilibrium of a stochastic SIR
model with or without distributed time delay, and the same
discussion is extended to a SIRS model by Lu [10]. To
our knowledge, due to the complexity of stochastic SVIR
models, this is the first time that a stability analysis for such
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system with white noise stochastic perturbations around the
transmission rate 𝛽 is performed.

In this paper, we will discuss the stochastic SVIR model
as follows:

𝑑𝑆 (𝑡) = (Λ − 𝛽𝑆 (𝑡) 𝐼 (𝑡) − (𝜇 + 𝑝) 𝑆 (𝑡) + 𝜀𝑉 (𝑡)) 𝑑𝑡

− 𝜎𝑆 (𝑡) 𝐼 (𝑡) 𝑑𝐵 (𝑡) ,

𝑑𝐼 (𝑡) = (𝛽𝑆 (𝑡) 𝐼 (𝑡) − (𝜇 + 𝛾 + 𝛼) 𝐼 (𝑡)) 𝑑𝑡

+ 𝜎𝑆 (𝑡) 𝐼 (𝑡) 𝑑𝐵 (𝑡) ,

𝑑𝑉 (𝑡) = (𝑝𝑆 (𝑡) − (𝜇 + 𝜀)𝑉 (𝑡)) 𝑑𝑡,

𝑑𝑅 (𝑡) = (𝛾𝐼 (𝑡) − 𝜇𝑅 (𝑡)) 𝑑𝑡.

(1)

SVIR models are formulated by dividing the population size
𝑁(𝑡) into four distinct groups, 𝑆(𝑡),𝑉(𝑡), 𝐼(𝑡), and𝑅(𝑡), where
𝑆(𝑡) is the numbers of a population susceptible to the disease,
𝐼(𝑡) is the number of infective members, 𝑉(𝑡) is the number
of vaccinated members, and 𝑅(𝑡) is the number of who have
been removed from the possibility of infection through full
immunity. The parameters in the model are summarized in
the following list:

Λ: a constant input of new members into the population
per unit time;

𝛽: transmission coefficient between compartments 𝑆

and 𝐼;
𝜇: natural death rate of 𝑆, 𝐼, and 𝑉 compartments;

𝑝: the proportional coefficient of vaccinated individuals
for the susceptible;

𝛾: recovery rate of infectious individuals;
𝜀: the rate of losing their immunity for vaccinated
individuals;

𝛼: disease-caused death rate of infectious individuals.

All parameter values are assumed to be nonnegative and
𝜇, Λ > 0. Here𝐵(𝑡) is standardBrownianmotionswith𝐵(0) =
0 and with intensity of white noise 𝜎

2
> 0. Since the last

equation is independent of other equations, we investigated
the following equivalent system:

𝑑𝑆 (𝑡) = (Λ − 𝛽𝑆 (𝑡) 𝐼 (𝑡) − (𝜇 + 𝑝) 𝑆 (𝑡) + 𝜀𝑉 (𝑡)) 𝑑𝑡

− 𝜎𝑆 (𝑡) 𝐼 (𝑡) 𝑑𝐵 (𝑡) ,

𝑑𝐼 (𝑡) = (𝛽𝑆 (𝑡) 𝐼 (𝑡) − (𝜇 + 𝛾 + 𝛼) 𝐼 (𝑡)) 𝑑𝑡

+ 𝜎𝑆 (𝑡) 𝐼 (𝑡) 𝑑𝐵 (𝑡) ,

𝑑𝑉 (𝑡) = (𝑝𝑆 (𝑡) − (𝜇 + 𝜀)𝑉 (𝑡)) 𝑑𝑡.

(2)

Model (2) always has a disease-free equilibrium 𝐸
0

=

(𝑆
0
, 𝐼
0
, 𝑉
0
) = (Λ(𝜇 + 𝜀)/𝜇(𝜇 + 𝜀 + 𝑝), 0, Λ𝑝/𝜇(𝜇 + 𝜀 + 𝑝)).

Define a basic reproduction number 𝑅
0
= Λ𝛽(𝜇 + 𝜀)/𝜇(𝜇 +

𝛾 + 𝛼)(𝜇 + 𝜀 + 𝑝), which means the average new infections
produced by one infected individual during his lifespan
when the population is at 𝐸

0
. By (2), a positive equilibrium

𝐸
∗

= (𝑆
∗
, 𝐼
∗
, 𝑉
∗
) = ((𝜇 + 𝛾 + 𝛼)/𝛽, Λ/(𝜇 + 𝛾 + 𝛼)(1 −

1/𝑅
0
), 𝑝(𝜇+𝛾+𝛼)/𝛽(𝜇+𝜀)) satisfiesΛ−𝛽𝑆∗𝐼∗−(𝜇+𝑝)𝑆∗+𝜀𝑉∗,

𝛽𝑆
∗
𝐼
∗
= (𝜇 + 𝛾 + 𝛼)𝐼

∗, and 𝑝𝑆
∗
= (𝜇 + 𝜀)𝑉

∗.
In this paper, unless otherwise specified, we let

(Ω,F, {F
𝑡
}
𝑡≥0

, 𝑃) be a complete probability space with
a filtration {F

𝑡
}
𝑡≥0

satisfying the usual conditions (i.e., it is
increasing and right continuous whileF

0
contains all P-null

sets). Let 𝐵(𝑡) be the Brownian motions defined on this prob-
ability space. Also letR𝑛

+
= {𝑥 ∈ R𝑛, 𝑥

𝑖
> 0 for all 1 ⩽ 𝑖 ⩽ 𝑛}.

2. Existence and Uniqueness of
the Positive Solution

In this section, we prove that the solution of model (2) is
positive and global.

Theorem 1. There is a unique solution (𝑆(𝑡), 𝐼(𝑡), 𝑉(𝑡)) of
system (2) on 𝑡 ⩾ 0 for any initial value (𝑆(0), 𝐼(0), 𝑉(0)) ∈ R3

+
,

and the solution will remain in R3
+
with probability 1; namely,

(𝑆(𝑡), 𝐼(𝑡), 𝑉(𝑡)) ∈ R3
+
for all 𝑡 ⩾ 0 a.s.

Proof. Since the coefficient of the equation is locally Lipschitz
continuous, for any given initial value (𝑆(0), 𝐼(0), 𝑉(0)) ∈ R3

+

there is a unique local solution (𝑆(𝑡), 𝐼(𝑡), 𝑉(𝑡)) on 𝑡 ∈ [0, 𝜏
𝑒
),

where 𝜏
𝑒
is the explosion time [17]. To show that this solution

is global, we need to show that 𝜏
𝑒
= ∞ a.s.

Since the following argument is similar to that of [17], we
here only sketch the proof to point out the difference with it.
Let 𝑘
0
> 0 be sufficiently large for 𝑆(0), 𝐼(0), and 𝑉(0) all

lying within the interval [1/𝑘
0
, 𝑘
0
]. For each integer 𝑘 ⩾ 𝑘

0
,

define the stopping time

𝜏
𝑘
= inf {𝑡 ∈ [0, 𝜏

𝑒
) : min {𝑆 (𝑡) , 𝐼 (𝑡) , 𝑉 (𝑡)} ≤

1

𝑘
or

max {𝑆 (𝑡) , 𝐼 (𝑡) , 𝑉 (𝑡)} ≥ 𝑘} .

(3)

In the sequel, we need to show 𝜏
∞

:= lim
𝑘→∞

𝜏
𝑘
= ∞ a.s.

Define a 𝐶2-function𝑊: R3
+
→ R
+
as follows:

𝑊(𝑆, 𝐼, 𝑉) = (𝑠 − 𝑎 − 𝑎 log 𝑆

𝑎
) + (𝐼 − 1 − log 𝐼)

+ (𝑉 − 1 − log𝑉) .
(4)

Let 𝑘 ⩾ 𝑘
0
and 𝑇 > 0 be arbitrary. Applying the Itô’s formula,

we obtain

𝑑𝑊 (𝑆, 𝐼, 𝑉) = 𝐿𝑊𝑑𝑡 − 𝜎 (𝑆 − 𝑎) 𝐼𝑑𝐵 (𝑡) + 𝜎 (𝐼 − 1) 𝑆𝑑𝐵 (𝑡) ,

(5)

where 𝐿𝑊 : R3
+
→ R
+
is defined by

𝐿𝑊 (𝑆, 𝐼, 𝑉) = −𝜇𝑆 − (𝜇 + 𝛾 + 𝛼) 𝐼 − 𝜇𝑉 − 𝑎
Λ

𝑆
+ 𝑎𝛽𝐼

− 𝑎𝜀
𝑉

𝑆
− 𝛽𝑆 − 𝑝

𝑆

𝑉
+ Λ +

1

2
𝑎𝜎
2
𝐼
2
+
1

2
𝜎
2
𝑆
2

+ 𝑎 (𝜇 + 𝑝) + (𝜇 + 𝛾 + 𝛼) + (𝜇 + 𝜀)
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= − (𝜇 + 𝛽) 𝑆 + [𝑎𝛽 − (𝜇 + 𝛾 + 𝛼)] 𝐼 − 𝜇𝑉

− 𝑎
Λ

𝑆
− 𝑎𝜀

𝑉

𝑆
− 𝑝

𝑆

𝑉
+ Λ +

1

2
𝑎𝜎
2
𝐼
2
+
1

2
𝜎
2
𝑆
2

+ 𝑎 (𝜇 + 𝑝) + (𝜇 + 𝛾 + 𝛼) + (𝜇 + 𝜀) .

(6)

Let 𝑎 = (𝜇 + 𝛾 + 𝛼)/𝛽, such that 𝑎𝛽 − (𝜇 + 𝛾 + 𝛼) = 0; then
substituting this into (6), we get

𝐿𝑊 (𝑆, 𝐼, 𝑉) ≤ Λ +
1

2
(𝑎 + 1) 𝜎

2
(
Λ

𝑆
)

2

+ 𝑎 (𝜇 + 𝑝)

+ (𝜇 + 𝛾 + 𝛼) + (𝜇 + 𝜀) := 𝐾.

(7)

The remainder of the proof follows that inMao et al. [17].

Remark 2. From Theorem 1 for any initial value
(𝑆(0), 𝐼(0), 𝑉(0)) ∈ R3

+
, there is a unique global solution

(𝑆(𝑡), 𝐼(𝑡), 𝑉(𝑡)) ∈ R3
+
a.s. of system (2). Hence

𝑑 (𝑆 + 𝐼 + 𝑉) ≤ [Λ − 𝜇 (𝑆 + 𝐼 + 𝑉)] 𝑑𝑡,

𝑆 (𝑡) + 𝐼 (𝑡) + 𝑉 (𝑡) ≤
Λ

𝜇
+ 𝑒
−𝜇𝑡

(𝑆 (0) + 𝐼 (0) + 𝑉 (0) −
Λ

𝜇
) .

(8)

If 𝑆(0) + 𝐼(0) + 𝑉(0) ≤ Λ/𝜇, then 𝑆(𝑡) + 𝐼(𝑡) + 𝑉(𝑡) ≤ Λ/𝜇 a.s.
and so the region

Γ
∗
= {(𝑆, 𝐼, 𝑉) : 𝑆 > 0, 𝐼 > 0, 𝑉 > 0, 𝑆 + 𝐼 + 𝑉 ≤

Λ

𝜇
a.s.}

(9)

is a positively invariant set of system (2).

3. Asymptotic Behavior of
the Disease-Free Equilibrium

It is clear that 𝑃
0
= (Λ(𝜇 + 𝜀)/𝜇(𝜇 + 𝜀 + 𝑝), 0, Λ𝑝/𝜇(𝜇 + 𝜀 +

𝑝)) is a solution of system (2), which is called the disease-
free equilibrium. As mentioned in the introduction, if 𝑃

0
is

globally asymptotically stable, the disease will die out after
some period of time. Obviously, it is interesting to study the
disease-free equilibrium for controlling infectious disease. In
this section, we obtain the stability of this point mainly by
stochastic Lyapunov function.

In general, consider 𝑑-dimensional stochastic differential
equation

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑡) 𝑑𝑡 + 𝑔 (𝑥 (𝑡) , 𝑡) 𝑑𝐵 (𝑡) , 𝑡 ≥ 𝑡
0 (10)

with initial value 𝑥(𝑡
0
) = 𝑥

0
∈ 𝑅
𝑑. Consider (10), assume

𝑓(0, 𝑡) = 0 and 𝑔(0, 𝑡) = 0 for all 𝑡 ≥ 𝑡
0
. So 𝑥(𝑡) ≡ 0 is

a solution to (10), called the trivial solution or equilibrium
position. The following theorems give conditions for the
stability of the trivial solution of (10) in terms of Lyapunov
function (see [18]).

Lemma 3. If there exists a positive definite decrescent radially
unbounded function 𝑉(𝑥, 𝑡) ∈ 𝐶

2,1
(𝑅
𝑑
× [𝑡
0
,∞); [0,∞)) such

that 𝐿𝑉(𝑥, 𝑡) is negative definite, then the trivial solution of
(10) is stochastically asymptotically stable in the large.

Lemma 4 (strong law of large numbers). Let 𝑀 = {𝑀
𝑡
}
𝑡≥0

be a real-value continuous local martingale vanishing at 𝑡 = 0.
Then

lim
𝑡→∞

⟨𝑀,𝑀⟩𝑡 = ∞ 𝑎.𝑠. ⇒ lim
𝑡→∞

𝑀
𝑡

⟨𝑀,𝑀⟩𝑡

= 0 𝑎.𝑠. (11)

and also

lim sup
𝑡→∞

⟨𝑀,𝑀⟩𝑡

𝑡
< ∞ 𝑎.𝑠. ⇒ lim

𝑡→∞

𝑀
𝑡

𝑡
= 0 𝑎.𝑠. (12)

Based on these lemmas, now we give out the main
theorems.

Theorem5. If𝑅
0
⩽ 1 and 𝜎2 < (𝛾+𝛼)𝜇

2
/Λ
2, then the disease-

free equilibrium𝑃
0
of system (2) is stochastically asymptotically

stable in the large.

Proof. let 𝑥 = 𝑆 − Λ(𝜇 + 𝜀)/𝜇(𝜇 + 𝜀 + 𝑝), 𝑦 = 𝐼, 𝑧 = 𝑉 −

Λ𝑝/𝜇(𝜇 + 𝜀 + 𝑝), and 𝑚 = Λ/𝜇(𝜇 + 𝜀 + 𝑝); then

𝑑𝑥 (𝑡) = [− (𝜇 + 𝑝) 𝑥 (𝑡) − 𝛽𝑥 (𝑡) 𝑦 (𝑡) − 𝛽 (𝜇 + 𝜀)𝑚𝑦 (𝑡)

+ 𝜀𝑧 (𝑡)] 𝑑𝑡 − 𝜎 [𝑥 (𝑡) + (𝜇 + 𝜀)𝑚] 𝑦 (𝑡) 𝑑𝐵 (𝑡) ,

𝑑𝑦 (𝑡) = {𝛽𝑥 (𝑡) 𝑦 (𝑡) − [(𝜇 + 𝛾 + 𝛼) − 𝛽 (𝜇 + 𝜀)𝑚] 𝑦 (𝑡)} 𝑑𝑡

+ 𝜎 [𝑥 (𝑡) + (𝜇 + 𝜀)𝑚] 𝑦 (𝑡) 𝑑𝐵 (𝑡) ,

𝑑𝑧 (𝑡) = [𝑝𝑥 (𝑡) − (𝜇 + 𝜀) 𝑧 (𝑡)] 𝑑𝑡.

(13)

Define a 𝐶2-function𝑊: R3
+
→ R
+
by

𝑊(𝑥, 𝑦, 𝑧) = 𝑞 (
1

2
𝑥
2
+ 𝑐
1
𝑦 +

1

2
𝑐
2
𝑧
2
) +

1

2
(𝑥 + 𝑦 + 𝑧)

2

= 𝑞𝑊
1
+𝑊
2
,

(14)

where

𝑊
1
(𝑥, 𝑦, 𝑧) =

1

2
𝑥
2
+ 𝑐
1
𝑦 +

1

2
𝑐
2
𝑧
2
,

𝑊
2
(𝑥, 𝑦, 𝑧) =

1

2
(𝑥 + 𝑦 + 𝑧)

2
.

(15)

From Itô’s formula, we compute

𝑑𝑊
1
(𝑥, 𝑦, 𝑧) = 𝐿𝑊

1
𝑑𝑡 + 𝜎𝑥𝑦 [𝑥 + (𝜇 + 𝜀)𝑚] 𝑑𝐵 (𝑡)

+ 𝑐
1
𝜎 [𝑥 + (𝜇 + 𝜀)𝑚] 𝑦𝑑𝐵 (𝑡) ,

(16)
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where

𝐿𝑊
1
= 𝑥𝑑𝑥 +

1

2
(𝑑𝑥)
2
+ 𝑐
1
𝑑𝑦 + 𝑐

2
𝑧𝑑𝑧 +

1

2
𝑐
2
(𝑑𝑧)
2

= − (𝜇 + 𝑝) 𝑥
2
− 𝛽𝑥
2
𝑦 − 𝛽 (𝜇 + 𝜀)𝑚𝑥𝑦 + 𝜀𝑥𝑧

+
1

2
𝜎
2
[𝑥 + (𝜇 + 𝜀)𝑚]

2
𝑦
2
+ 𝑐
1
𝛽𝑥𝑦

− 𝑐
1
𝛽 (𝜇 + 𝜀)𝑚(

1

𝑅
0

− 1)𝑦 + 𝑐
2
𝑝𝑥𝑧 − 𝑐

2
(𝜇 + 𝜀) 𝑧

2

⩽ − (𝜇 + 𝑝) 𝑥
2
− [(𝜇 + 𝜀)𝑚 − 𝑐

1
] 𝛽𝑥𝑦 + (𝜀 + 𝑐

2
𝑝) 𝑥𝑧

− 𝑐
2
(𝜇 + 𝜀) 𝑧

2
+
1

2
𝜎
2
(
Λ

𝜇
)𝑦
2
,

(17)

where 𝑅
0
≤ 1 is used. Here we choose 𝑐

1
= (𝜇+𝜀)𝑚, such that

(𝜇 + 𝜀)𝑚 − 𝑐
1
= 0. Choose 𝑐

2
= 𝜀/𝑝 and 𝜌 = ((𝜇 + 𝜀)(𝜇 + 𝑝) +

𝜀𝑝)/2𝑝(𝜇 + 𝑝); substituting this into (17) yields

𝐿𝑊
1
⩽ −[(𝜇 + 𝑝) −

𝜀

𝜌
] 𝑥
2
− [

𝜀

𝑝
(𝜇 + 𝜀) − 𝜌𝜀] 𝑧

2

+
1

2
𝜎
2
(
Λ

𝜇
)𝑦
2

= −
𝜇 (𝜇 + 𝜀 + 𝑝) (𝜇 + 𝑝)

(𝜇 + 𝜀) (𝜇 + 𝑝) + 𝜀𝑝
𝑥
2
−
𝜇𝜀 (𝜇 + 𝜀 + 𝑝)

2𝑝 (𝜇 + 𝑝)
𝑧
2

+
1

2
𝜎
2
(
Λ

𝜇
)𝑦
2
.

(18)

Similarly, applying Itô’s formula to𝑊
2
(𝑥, 𝑦, 𝑧), we get

𝐿𝑊
2
= (𝑥 + 𝑦 + 𝑧) (𝑑𝑥 + 𝑑𝑦 + 𝑑𝑧) +

1

2
(𝑑𝑥 + 𝑑𝑦 + 𝑑𝑧)

2

= (𝑥 + 𝑦 + 𝑧) [−𝜇𝑥 − (𝜇 + 𝛾 + 𝛼) 𝑦 − 𝜇𝑧]

= −𝜇𝑥
2
− (𝜇 + 𝛾 + 𝛼) 𝑦

2
− 𝜇𝑧
2
− (2𝜇 + 𝛾 + 𝛼) 𝑥𝑦

− (2𝜇 + 𝛾 + 𝛼) 𝑦𝑧 − 2𝜇𝑥𝑧

⩽ (2𝜇 + 𝛾 + 𝛼) 𝑥
2
−
𝛾 + 𝛼

2
𝑦
2
+ (2𝜇 + 𝛾 + 𝛼) 𝑧

2
.

(19)

Therefore, we can obtain

𝐿𝑊 = 𝑞𝑊
1
+𝑊
2

⩽ −[𝑞
𝜇 (𝜇 + 𝜀 + 𝑝) (𝜇 + 𝑝)

(𝜇 + 𝜀) (𝜇 + 𝑝) + 𝜀𝑝
− (2𝜇 + 𝛾 + 𝛼)] 𝑥

2

− [
𝛾 + 𝛼

2
−
1

2
𝜎
2
(
Λ

𝜇
)

2

]𝑦
2

− [𝑞
𝜇𝜀 (𝜇 + 𝜀 + 𝑝)

2𝑝 (𝜇 + 𝑝)
− (2𝜇 + 𝛾 + 𝛼)] 𝑧

2

:= −𝑎𝑥
2
− 𝑏𝑦
2
− 𝑐𝑧
2
,

(20)

where 𝑞 = max{((𝜇 + 𝜀)(𝜇 + 𝑝) + 𝜀𝑝)(2𝜇 + 𝛾 + 𝛼)/𝜇(𝜇 + 𝜀 +

𝑝)(𝜇 + 𝑝), (2𝜇 + 𝛾 + 𝛼)2𝑝(𝜇 + 𝑝)/𝜇𝜀(𝜇 + 𝜀 + 𝑝)}, such that
𝑎, 𝑐 ≥ 0. When 𝜎2 < (𝛾+𝛼)𝜇

2
/Λ
2, 𝐿𝑊 is negative definite. By

Lemma 3, we conclude that, under the condition 𝑅
0
⩽ 1, the

trivial solution of system (13) is stochastically asymptotically
stable in the large; that is, the disease-free equilibrium 𝑃

0
of

system (2) is stochastically asymptotically stable in the large.

4. Asymptotic Behavior around the Endemic
Equilibrium of the Deterministic Model

When studying the dynamic of an epidemic system, we are
interested in two problems: one is when the disease will die
out which has been shown in Section 3 and the other is
when the disease will prevail and persist in a population.
In the deterministic models, this is solved by showing that
the endemic equilibrium to the corresponding model is a
global attractor or is globally asymptotically stable under
some conditions. But there is no endemic equilibrium in
system (2). It is plausible by studying the behavior around
𝐸
∗ to reflect whether the disease will prevail. We get the

following result.

Theorem 6. Let (𝑆(𝑡), 𝐼(𝑡), 𝑉(𝑡)) be the solution of system (2)
with initial value (𝑆(0), 𝐼(0), 𝑉(0)) ∈ R3

+
. If 𝑅
0
> 1, then

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

{[𝑙
𝜇 (𝜇 + 𝜀 + 𝑝) (𝜇 + 𝑝)

(𝜇 + 𝜀) (𝜇 + 𝑝) + 𝜀𝑝
− (2𝜇 + 𝛾 + 𝛼)]

× (𝑆(𝑟) − 𝑆
∗
)
2
+
𝛾 + 𝛼

2
(𝐼 (𝑟) − 𝐼

∗
)
2

+ [𝑙
𝜇𝜀 (𝜇 + 𝜀 + 𝑝)

2𝑝 (𝜇 + 𝑝)
− (2𝜇 + 𝛾 + 𝛼)]

× (𝑉 (𝑟) − 𝑉
∗
)
2
}𝑑𝑟

⩽
1

4
𝜎
2
(
Λ

𝜇
)

2

(1 + (
Λ

𝜇
)

2

) 𝑎.𝑠.,

(21)

where 𝑙 is a positive constant defined as (29).

Proof. Define a 𝐶2-function𝑊: R3
+
→ R
+
by

𝑊(𝑆, 𝐼, 𝑉)

= 𝑙 [
1

2
(𝑆 − 𝑆

∗
)
2
+ 𝑎 (𝐼 − 𝐼

∗
− 𝐼
∗ log 𝐼

𝐼∗
) +

1

2
𝑏(𝑉 − 𝑉

∗
)
2
]

+
1

2
[(𝑆 − 𝑆

∗
) + (𝐼 − 𝐼

∗
) + (𝑉 − 𝑉

∗
)]
2
= 𝑙𝑊
1
+𝑊
2
,

(22)
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where

𝑊
1
(𝑆, 𝐼, 𝑉) =

1

2
(𝑆 − 𝑆

∗
)
2
+ 𝑎 (𝐼 − 𝐼

∗
− 𝐼
∗ log 𝐼

𝐼∗
)

+
1

2
𝑏(𝑉 − 𝑉

∗
)
2
,

𝑊
2
(𝑆, 𝐼, 𝑉) =

1

2
[(𝑆 − 𝑆

∗
) + (𝐼 − 𝐼

∗
) + (𝑉 − 𝑉

∗
)]
2
.

(23)

By Itô’s formula, we compute

𝑑𝑊
1
= 𝐿𝑊

1
𝑑𝑡 − 𝜎𝑆𝐼 (𝑆 − 𝑆

∗
) 𝑑𝐵 (𝑡) + 𝑎𝜎𝑆 (𝐼 − 𝐼

∗
) 𝑑𝐵 (𝑡) ,

(24)

where

𝐿𝑊
1
= (𝑆 − 𝑆

∗
) 𝑑𝑆 +

1

2
(𝑑𝑆)
2
+ 𝑎(1 −

𝐼
∗

𝐼
) 𝑑𝐼

+ 𝑏 (𝑉 − 𝑉
∗
) 𝑑𝑉 +

1

2
𝑏(𝑑𝑉)

2

= (𝑆 − 𝑆
∗
) (Λ − 𝛽𝑆𝐼 − (𝜇 + 𝑝) 𝑆 + 𝜀𝑉) +

1

2
𝜎
2
𝑆
2
𝐼
2

+ 𝑎 (𝐼 − 𝐼
∗
) [𝛽𝑆 − (𝜇 + 𝛾 + 𝛼)] +

1

2
𝜎
2
𝑆
2

+ 𝑏 (𝑉 − 𝑉
∗
) [𝑝𝑆 − (𝜇 + 𝜀)𝑉]

= (𝑆 − 𝑆
∗
) [−𝛽 (𝑆 − 𝑆

∗
) 𝐼 − 𝛽𝑆

∗
(𝐼 − 𝐼

∗
)

− (𝜇 + 𝑝) (𝑆 − 𝑆
∗
) + 𝜀 (𝑉 − 𝑉

∗
)]

+ 𝑎𝛽 (𝑆 − 𝑆
∗
) (𝐼 − 𝐼

∗
)

+ 𝑏 (𝑉 − 𝑉
∗
) [𝑝 (𝑆 − 𝑆

∗
) − (𝜇 + 𝜀) (𝑉 − 𝑉

∗
)]

+
1

2
𝜎
2
𝑆
2
𝐼
2
+
1

2
𝜎
2
𝑆
2

= − (𝜇 + 𝑝) (𝑆 − 𝑆
∗
)
2
+ (𝜀 + 𝑏𝑝) (𝑆 − 𝑆

∗
) (𝑉 − 𝑉

∗
)

− 𝑏 (𝜇 + 𝜀) (𝑉 − 𝑉
∗
)
2
− 𝛽(𝑆 − 𝑆

∗
)
2
𝐼

+ 𝛽 (𝑎 − 𝑆
∗
) (𝑆 − 𝑆

∗
) (𝐼 − 𝐼

∗
) +

1

2
𝜎
2
𝑆
2
𝐼
2
+
1

2
𝜎
2
𝑆
2
.

(25)

Here we choose = 𝑆
∗, such that 𝛽(𝑎−𝑆∗) = 0. Choose 𝑏 = 𝜀/𝑝

and let ℎ = ((𝜇 + 𝜀)(𝜇 + 𝑝) + 𝜀𝑝)/2𝑝(𝜇 + 𝑝); substituting this
into (25) yields

𝐿𝑊
1
⩽ − [(𝜇 + 𝑝) −

𝜀

ℎ
] (𝑆 − 𝑆

∗
)
2

− [
𝜀

𝑝
(𝜇 + 𝜀) − ℎ𝜀] (𝑉 − 𝑉

∗
)
2
+
1

2
𝜎
2
𝑆
2
𝐼
2
+
1

2
𝜎
2
𝑆
2

⩽ −
𝜇 (𝜇 + 𝜀 + 𝑝) (𝜇 + 𝑝)

(𝜇 + 𝜀) (𝜇 + 𝑝) + 𝜀𝑝
(𝑆 − 𝑆

∗
)
2

−
𝜇𝜀 (𝜇 + 𝜀 + 𝑝)

2𝑝 (𝜇 + 𝑝)
(𝑉 − 𝑉

∗
)
2

+
1

2
𝜎
2
[(

Λ

𝜇
)

4

+ (
Λ

𝜇
)

2

] .

(26)

Similarly, applying Itô’s formula to𝑊
2
(𝑆, 𝐼, 𝑉), we get

𝐿𝑊
2
= [(𝑆 − 𝑆

∗
) + (𝐼 − 𝐼

∗
) + (𝑉 − 𝑉

∗
)] (𝑑𝑆 + 𝑑𝐼 + 𝑑𝑉)

+
1

2
((𝑑𝑆) + (𝑑𝐼) + (𝑑𝑉))

2

= [(𝑆 − 𝑆
∗
) + (𝐼 − 𝐼

∗
) + (𝑉 − 𝑉

∗
)]

× [−𝜇 (𝑆 − 𝑆
∗
) − (𝜇 + 𝛾 + 𝛼) (𝐼 − 𝐼

∗
) − 𝜇 (𝑉 − 𝑉

∗
)]

= −𝜇(𝑆 − 𝑆
∗
)
2
− (𝜇 + 𝛾 + 𝛼) (𝐼 − 𝐼

∗
)
2
− 𝜇(𝑉 − 𝑉

∗
)
2

− (2𝜇 + 𝛾 + 𝛼) (𝑆 − 𝑆
∗
) (𝐼 − 𝐼

∗
)

− (2𝜇 + 𝛾 + 𝛼) (𝐼 − 𝐼
∗
) (𝑉 − 𝑉

∗
)

− 2𝜇 (𝑆 − 𝑆
∗
) (𝑉 − 𝑉

∗
)

⩽ (2𝜇 + 𝛾 + 𝛼) (𝑆 − 𝑆
∗
)
2
−
𝛾 + 𝛼

2
(𝐼 − 𝐼

∗
)
2

+ (2𝜇 + 𝛾 + 𝛼) (𝑉 − 𝑉
∗
)
2
.

(27)

Therefore, we can obtain

𝐿𝑊 (𝑆, 𝐼, 𝑉) = 𝑙𝐿𝑊
1
+ 𝐿𝑊
2

⩽ −[𝑙
𝜇 (𝜇 + 𝜀 + 𝑝) (𝜇 + 𝑝)

(𝜇 + 𝜀) (𝜇 + 𝑝) + 𝜀𝑝
− (2𝜇 + 𝛾 + 𝛼)]

× (𝑆 − 𝑆
∗
)
2
−
𝛾 + 𝛼

2
(𝐼 − 𝐼

∗
) 2

− [𝑙
𝜇𝜀 (𝜇 + 𝜀 + 𝑝)

2𝑝 (𝜇 + 𝑝)
− (2𝜇 + 𝛾 + 𝛼)]

× (𝑉 − 𝑉
∗
)
2
+
1

2
𝜎
2
[(

Λ

𝜇
)

4

+ (
Λ

𝜇
)

2

]

:= 𝐹 (𝑡) .

(28)

Let us choose

𝑙 > max{
(𝜇 + 𝜀) (𝜇 + 𝑝) + 𝜀𝑝

𝜇 (𝜇 + 𝜀 + 𝑝) (𝜇 + 𝑝)
(2𝜇 + 𝛾 + 𝛼) ,

2𝑝 (𝜇 + 𝑝) (2𝜇 + 𝛾 + 𝛼)

𝜇𝜀 (𝜇 + 𝜀 + 𝑝)
} ,

(29)
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such that
𝑙𝜇 (𝜇 + 𝜀 + 𝑝) (𝜇 + 𝑝)

(𝜇 + 𝜀) (𝜇 + 𝑝) + 𝜀𝑝
− (2𝜇 + 𝛾 + 𝛼) > 0,

𝑙𝜇𝜀 (𝜇 + 𝜀 + 𝑝)

2𝑝 (𝜇 + 𝑝) (2𝜇 + 𝛾 + 𝛼)
− (2𝜇 + 𝛾 + 𝛼) > 0.

(30)

Therefore, we have
𝑑𝑊 ⩽ 𝐹 (𝑡) 𝑑𝑡 + 𝜎𝑆 [𝑆

∗
(𝐼 − 𝐼

∗
) − (𝑆 − 𝑆

∗
) 𝐼] 𝑑𝐵 (𝑡) . (31)

Integrating it from 0 to 𝑡 yields

𝑊(𝑡) − 𝑊 (0) ⩽ ∫

𝑡

0

𝐹 (𝑠) 𝑑𝑠

+ ∫

𝑡

0

𝜎𝑆 [𝑆
∗
(𝐼 − 𝐼

∗
) − (𝑆 − 𝑆

∗
) 𝐼] 𝑑𝐵 (𝑠) .

(32)
Let

𝑀(𝑡) = ∫

𝑡

0

𝜎𝑆 [𝑆
∗
(𝐼 − 𝐼

∗
) − (𝑆 − 𝑆

∗
) 𝐼] 𝑑𝐵 (𝑠) , (33)

which is a continuous local martingale and 𝑀(0) = 0.
Moreover,

⟨𝑀,𝑀⟩𝑡 = ∫

𝑡

0

𝜎
2
𝑆
2
[𝑆
∗
(𝐼 − 𝐼
∗
) − (𝑆 − 𝑆

∗
)𝐼]
2
𝑑𝑡 (34)

and by (9) then

lim sup
𝑡→∞

1

𝑡
⟨𝑀,𝑀⟩𝑡 ⩽ lim sup

𝑡→∞

𝜎
2
𝑆
2
[𝑆
∗
(𝐼 − 𝐼
∗
) − (𝑆 − 𝑆

∗
)𝐼]
2

⩽ 16𝜎
2
(
Λ

𝜇
)

6

< ∞ a.s.

(35)
This together with Lemma 4 implies

lim sup
𝑡→∞

𝑀(𝑡)

𝑡

=

∫
𝑡

0
𝜎𝑆 [𝑆
∗
(𝐼 − 𝐼

∗
) − (𝑆 − 𝑆

∗
) 𝐼] 𝑑𝐵 (𝑠)

𝑡
= 0 a.s.

(36)

Consequently, combining (36), from (32) we get

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

{[𝑙
𝜇 (𝜇 + 𝜀 + 𝑝) (𝜇 + 𝑝)

(𝜇 + 𝜀) (𝜇 + 𝑝) + 𝜀𝑝
− (2𝜇 + 𝛾 + 𝛼)]

× (𝑆(𝑟) − 𝑆
∗
)
2
+
𝛾 + 𝛼

2
(𝐼(𝑟) − 𝐼

∗
)
2

+ [𝑙
𝜇𝜀 (𝜇 + 𝜀 + 𝑝)

2𝑝 (𝜇 + 𝑝)
− (2𝜇 + 𝛾 + 𝛼)]

× (𝑉(𝑟) − 𝑉
∗
)
2
}𝑑𝑟

⩽
1

4
𝜎
2
(
Λ

𝜇
)

2

(1 + (
Λ

𝜇
)

2

) a.s.

(37)
Thus, the proof of Theorem 6 is completed.

Remark 7. For system (2), if 𝜎 = 0, fromTheorem 6, then

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

{[𝑙
𝜇 (𝜇 + 𝜀 + 𝑝) (𝜇 + 𝑝)

(𝜇 + 𝜀) (𝜇 + 𝑝) + 𝜀𝑝
− (2𝜇 + 𝛾 + 𝛼)]

× (𝑆(𝑟) − 𝑆
∗
)
2
+
𝛾 + 𝛼

2
(𝐼(𝑟) − 𝐼

∗
)
2

+ [𝑙
𝜇𝜀 (𝜇 + 𝜀 + 𝑝)

2𝑝 (𝜇 + 𝑝)
− (2𝜇 + 𝛾 + 𝛼)]

× (𝑉(𝑟) − 𝑉
∗
)
2
}𝑑𝑟 = 0,

(38)

which implies

lim
𝑡→∞

𝑆 (𝑡) = 𝑆
∗
, lim

𝑡→∞

𝐼 (𝑡) = 𝐼
∗
, lim

𝑡→∞

𝑉 (𝑡) = 𝑉
∗

(39)

which also shows that the solution tends to 𝐸
∗ if 𝑅

0
> 1.

Moreover, the result of Theorem 6 tells us the difference
between (𝑆(𝑡), 𝐼(𝑡), 𝑉(𝑡)) and 𝐸∗ is proportional to the inten-
sity of the white noise in time average. The smaller the white
noise is, the closer the solution getting to 𝐸∗ is.
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