Research Article

Research on Third-Party Collecting Game Model with Competition in Closed-Loop Supply Chain Based on Complex Systems Theory

Junhai Ma¹ and Yuehong Guo¹,²

¹ College of Management and Economics, Tianjin University, Tianjin 300072, China
² School of Economics and Management, Tianjin University of Technology and Education, Tianjin 300072, China

Correspondence should be addressed to Junhai Ma; lzqsly@126.com

Received 20 December 2013; Revised 14 March 2014; Accepted 20 March 2014; Published 19 June 2014

Academic Editor: Ivanka Stamova

Copyright © 2014 J. Ma and Y. Guo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper studied system dynamics characteristics of closed-loop supply chain using repeated game theory and complex system theory. It established decentralized decision-making game model and centralized decision-making game model and then established and analyzed the corresponding continuity system. Drew the region local stability of Nash equilibrium and Stackelberg equilibrium, and a series of chaotic system characteristics, have and detail analysis of the Lyapunov index which is under the condition of different parameter combination. According to the limited rational expectations theory, it established repeated game model based on collection price and marginal profits. Further, this paper analyzed the influence of the parameters by numerical simulations and concluded three conclusions. First, when the collection price is to a critical value, the system will be into chaos state. Second, when the sale price of remanufacturing products is more than a critical value, the system will be in chaos state. Last, the initial value of the collection price is sensitive, small changes may cause fluctuations of market price. These conclusions guide enterprises in making the best decisions in each phase to achieve maximize profits.

1. Introduction

The product life cycle becomes shorter with the rapid development of market economy. A lot of products have been washed out before life end. Such condition not only creates a tremendous waste of resources but also brings great harm to people. Therefore, the “resources-products-waste products-remanufacturing product” closed-loop type of economic growth mode appears. It realizes the economic development and utilization of resources and environmental protection in coordination strategy of sustainable development goals. Enterprise began to take a positive attitude to collect products from customers. The research on collecting control problem becomes inevitable.

This paper draws on and contributes to several streams of literature, each of whom we review below. A growing body of literature in operations management addresses reverse logistics management issues for remanufacturable products. References [1, 2] defined as the supply chain to reverse supply chain which formed a complete closed-loop system (closed-loop supply chain, hereinafter referred to as CLSC.) Reference [3] studied the pricing methods under three collecting channels which manufacturer, retailer, and third-party collector collected products, respectively. Reference [4] studied manufacturers should be responsible for the management of that collecting based on Xerox corporation and Kodak corporation. Reference [5] studied three kinds of collecting channels of manufacturers collecting, retailer collecting, and the third-party collecting in closed-loop supply chain. They found that the collecting distance was closer from consumers and the collecting efforts were more effective. References [6–8] described reverse logistics management mode of the third party. In this collecting mode, manufacturers entrust a third party to perform extended producer responsibility and manage used products.

References [9, 10] studied pricing analysis of reverse supply chain using the game theory method under retailers collecting mode and concluded the optimal strategy of single
stage. Reference [11] established the demand model of new products and remanufacturing products from social environmental protection consciousness and consumers’ utility function to new products and remanufacturing products and drew the conclusions. The first is the optimal pricing strategy in different collecting channels in decentralized decision-making. The second is the influence of social environmental protection consciousness. Reference [12] research shows that the channel of manufacturers collecting directly is more favorable to consumers and social environment. In the autoindustry, independent third parties are handling used-product collection activities for the original equipment manufacturers (OEMs). The “big three” automanufacturers in the United States started to invest in joint research and remanufacturing partnerships with dismantling centers to benefit from their scale economies and experience. Third parties such as GENCO Distribution System are also preferred by some consumer goods manufacturers for their experience in used-product collection. In references [13–15] Analyzed the complexity of model for a class of delay complex dynamics, and some valuable conclusions are obtained.

The existing literatures studied major in a single phase of the mathematical model using game theory under the assumption that the closed-loop supply chain contains a manufacturer and a retailer and concludes equilibrium in perfectly rational state. However, market uncertainty caused enterprise not to be able to make decisions in perfectly rational. At present, many manufacturers devote themselves to the core competitiveness; they contract the collection of used products to a third party. So this paper sets up multistage game model of closed-loop supply chain which consists of a manufacturer and two competition collectors business based on limited rationality with China’s remanufacturing development and studies its complex dynamic characteristics.

2. Model Assumptions and Notation

2.1. Assumption. First, this paper considers only remanufacturing products market. That means new products and remanufacturing product do not form a competitive market. It is more in line with the actual conditions of China. The manufacturer manufactures new products and remanufacturing products.

Second, the closed-loop supply chain includes a manufacturer and two competitive collecting corporations, the collecting corporations collect waste products from consumers and return the manufacturer. The manufacturer transfers payments to the collectors, and she sales directly to consumers. The manufacturers and two collectors are independent decision makers, and their strategic space is to choose the best collecting price. Their goal is to maximize returns in discrete time period as $t = 0, 1, 2, \ldots$.

Third, the number of the collection is increasing function of collecting price. The collecting capability and manufacturing capability are unlimited. In order to simplify the problem and emphasize main parameters influence of the system, all the collecting products can be manufactured, as shown in the MCTM collecting mode (Figure 1).

2.2. Notation. p_0 denotes the retail price of the product, a constant, and c_i the unit cost of remanufacturing a returned product into a new one, a constant. $p_m(t)$ is the collection price of the manufacturer transfer payment to collectors in the t period, a decision variable of the manufacturer. $p_i(t)$ is the collection price of collectors in the t period. $r_i(t)$ is a decision variable of the collectors; that is, $p_i = p_m(1 - r_i)$. A_i is the collecting cost of collectors including logistics cost and so forth, a constant. G_j is the collecting numbers for the waste product in the market as a function of collecting price, $G_j = k_i + \beta_j p_m(t) - \delta_j p_i(t), i = 1, 2, j = 1, 2, 1, 2$. Figure 2: The change of $l_1(\alpha_1, \alpha_2)\alpha_1, \alpha_2,$ and α_3.

Figure 3: The change of $l_i(\alpha_3)$ with α_3 when $\alpha_1 = 0.02, \alpha_2 = 0.048$. Figure 1: MCTM collecting mode.
environmental awareness; β denotes consumers sensitive degree to collecting price; δ is competition coefficient in the two collectors, which satisfies $\beta \geq \delta$. The collecting function of the two collectors is, respectively, as follows:

$$
G_1 = k_1 + \beta_1 p_{r_1} (t) - \delta_1 p_{r_2} (t),
$$

$$
G_2 = k_2 + \beta_2 p_{r_2} (t) - \delta_2 p_{r_1} (t).
$$

Π_m is the profits function of the manufacturer; its marginal profits are concluded by the first-order conditions, which are $\partial \Pi_m / \partial p_m(t)$. Π_m can be stated as

$$
\prod = (p_0 - p_m - c_r)
$$

\times (k_1 + \beta_1 p_{r_1} (t) - \delta_1 p_{r_2} (t))

+ k_2 + \beta_2 p_{r_2} (t) - \delta_2 p_{r_1} (t))

(2)

$$
\Pi_{r_1}$ is the profits function of the two collectors; marginal profits are concluded by the first-order conditions, which are $\partial \Pi_{r_1} / \partial r_1(t)$. Π_{r_1} can be stated as

$$
\prod_r = (p_m - p_{r_1} (t) - A_1) (k_1 + \beta_1 p_{r_1} (t) - \delta_1 p_{r_2} (t)).
$$

$$
\prod_r = (p_m - p_{r_2} (t) - A_2) (k_2 + \beta_2 p_{r_2} (t) - \delta_2 p_{r_1} (t)).
$$

$$
\Pi = \prod + \prod_{r_1} + \prod_{r_2}.
$$

(4)

(p_m, r_1, r_2) is a pricing strategy, which can be obtained by (2) and (3). Furthermore they are satisfied with $\partial^2 \Pi_m / \partial p_m^2 = 2(1 - r_2)(\beta_2 - \delta_2) < 0$, $\partial^2 \Pi_{r_1} / \partial r_1^2 = -2\beta_1 p_{r_1}^2 (t) < 0$, and $\partial^2 \Pi_{r_2} / \partial r_2^2 = -2\beta_2 p_{r_2}^2 (t) < 0$. It can be proved that Π_j is concave function for r_j.

The manufacturer and collectors are equal in closed-loop supply chain; that is, the two sides make decision at the same time: manufacturer’s decision is to choose the collection price p_0 to maximize returns, and collectors’ decision is to choose p_i, to maximize their returns.

Nash equilibrium can be concluded by the first-order conditions of three reaction functions, which meet $\partial \Pi_m / \partial p_m = 0, \partial \Pi_{r_1} / \partial r_1 = 0$ simultaneously. The Nash equilibrium is the optimal decision of a game in all kinds of may guess, thus make it to gain maximum benefit. The Nash equilibrium is

$$
(p^*_m, r^*_1, r^*_2) = \left(\frac{B + \sqrt{B^2 - 4AC}}{2A}, t_1 + \frac{t_2}{p^*_m}, t_3 + \frac{t_4}{p^*_m} \right),
$$

(5)

where A, B, and C are

$$
A = 2 (\beta_1 + \beta_2 - \delta_1 - \delta_2) (p_0 - c_r)
$$

$$
- 2 t_1 (\beta_1 - \delta_2) - 2 t_3 (\beta_2 - \delta_1),
$$

$$
B = k_1 + k_2 - (\beta_1 + \beta_2 - \delta_1 - \delta_2) (p_0 - c_r)
$$

$$
+ (p_0 - c_r) (t_1 (\beta_1 - \delta_2) + t_3 (\beta_2 - \delta_1))
$$

$$
- 2 t_2 (\beta_1 - \delta_2) - 2 t_4 (\beta_2 - \delta_1),
$$

$$
C = (p_0 - c_r) t_2 (\beta_1 - \delta_2) + t_4 (\beta_2 - \delta_1).
$$

(6)

In formula (6), t_1, t_2, t_3, t_4 can be expressed as

$$
t_1 = \frac{2 \beta_1 \beta_2 - 2 \beta_2 \delta_2 + \delta_1 \beta_2 - \delta_1 \delta_2}{4 \beta_1 \beta_2 - \delta_1 \delta_2},
$$

$$
t_2 = \frac{2 \beta_2 k_1 + 2 \beta_2 \beta_1 A_1 + \delta_1 k_2 - \delta_1 \beta_2 A_2}{4 \beta_1 \beta_2 - \delta_1 \delta_2},
$$

$$
t_3 = \frac{2 \beta_1 \beta_2 - 2 \beta_1 \delta_2 + \delta_2 \beta_1 - \delta_2 \delta_1}{4 \beta_1 \beta_2 - \delta_1 \delta_2},
$$

$$
t_4 = \frac{2 \beta_1 k_2 + 2 \beta_1 \beta_1 A_2 + \delta_2 k_1 - \delta_2 \beta_1 A_1}{4 \beta_1 \beta_2 - \delta_1 \delta_2}.
$$

(7)
In reality, the game between node enterprises in closed-loop supply chain is continuous, enterprises’ decision-making is a long-term repeated process, and its action has long-term memory. And each node enterprise does not completely control the market information and also cannot fully expect future market changes, so based on limited rational expectations decision we adjust process with marginal gains. They can make the next-period price decision on the basis of the local estimate to his marginal profits in current period. Their price adjustment processes are

\[
p_m(t+1) = p_m(t) + \alpha_1 p_m(t) \\
\times \left((1 - r_1(t)) (\beta_1 - \delta_2) \\
+ (1 - r_2(t)) (\beta_2 - \delta_1) \right) \\
\times (p_0 - 2p_m(t) - c_r - k_1 - k_2),
\]

\[
r_i(t+1) = r_i(t) + \alpha_i r_i(t) \\
\times \left(-2\beta_i r_i(t) p_m^*(t) + p_m(t) \\
\times (k_1 + (\beta_1 - \delta_1 + \delta_1 r_2(t)) \\
\times p_m(t) + \beta_1 A_1) \right),
\]

where \(p_i(t+1), r_1(t+1), r_2(t+1), \) and \(p_i(t), r_1(t), r_2(t) \) are used to present the price in the \((t+1)\)th period and in the \(t\)th period. Where \(\alpha_i \) are positive parameters, \(i = 1, 2, 3 \), which denotes adjustment speed, respectively, for the manufacturer and two collectors.

From the system (8) we can be conclude that the optimal collecting price of the manufacturer is related to the collection price adjustment coefficient, the two collectors’ collecting price, sale price, and consumers’ environmental protection awareness. Similarly, the optimal collecting price of collectors is related to collecting price adjustment parameters, collecting price of the manufacturer, collecting function, consumer’s environmental protection awareness, and collecting costs.

(2) Model Analysis. In closed-loop supply chain, any enterprise decision-making is all according to the maximum profits, the equilibrium less than zero is not practical significance, such as manufacturers to make power mainly because of benefits, collecting business is also benefit with collecting. So only research system (8) is the equilibrium; system (8) of the eight fixed points, respectively, is \(E_0(0,0,0), E_1(p_m^*,0,0), E_2(0,r_1^*,0), E_3(0,0,r_2^*), E_4(p_m^*,r_1^*,0), \)
Figure 10: The change of $l_1(\alpha_1, \alpha_2, \alpha_3)$ with α_3, α_1, and α_2.

Figure 11: The change of $l_1(\alpha_2)$ with α_2 when $\alpha_1 = 0.01$, $\alpha_3 = 0.03$.

Figure 12: The change of $l_1(\alpha_2)$ with α_2 when $\alpha_1 = 0.02$, $\alpha_3 = 0.03$.

Figure 13: The change of $l_1(\alpha_2)$ with α_2 when $\alpha_1 = 0.03$, $\alpha_3 = 0.03$.

At present, only a few simple dynamic systems are analyzed with analytical method, but complex dynamic system mainly uses the numerical analysis method. This paper processes numerical simulation on system (8) by Matlab to express the dynamic characteristics. Because remanufacturing is still initial stage in china, consumers environmental protection awareness is lower, and manufacturing cost (including the fixed and variable cost) is higher; for autoparts collecting, the parameters of system (8) can be defined as $p_0 = 70, c_r = 30, A_1 = 1, A_2 = 0.8, k_1 = 1, k_2 = 1, \beta_1 = 0.6, \beta_2 = 0.55, \delta_1 = 0.2, \delta_2 = 0.2$ to study the local stability of equilibrium point. Get the parameter value into $E_7(p_0^*, r_1^*, r_2^*)$ and formula (10) to conclude the value for $(17.385, 0.491, 0.489)$.

\begin{align*}
F(1) &= 1 + A + B + C > 0, \\
(-1)^3F(-1) &= 1 - A + B - C > 0, \\
1 - C^2 &> |B - AC|.
\end{align*}
Change the discrete system (8) into a continuous system and the points of Jacobimatrix for
\[
J = \begin{bmatrix}
-13.317\alpha_1 & -17.755\alpha_1 & -15.562\alpha_1 \\
-0.775\alpha_2 & -177.888\alpha_2 & 29.68\alpha_2 \\
-0.821\alpha_3 & 29.599\alpha_3 & -164.65\alpha_3 \\
\end{bmatrix}.
\]
(11)

Consider the continuous-time nonlinear dynamical system
\[\dot{x} = Ax + N(x), \quad A = (a_{ij})_{n\times n}, \quad x \in \mathbb{R}^n.\]
(12)

Let the function \(N(x)\) be written as
\[N(x) = \frac{1}{2}B(x, x) + \frac{1}{6}C(x, x, x) + O(\|x\|^4),\]
(13)
where \(B(x, y)\) and \(C(x, y, z)\) are bilinear and trilinear functions, respectively. In coordinates, we have
\[
B_i(x, y) = \sum_{j=1}^n \left. \frac{\partial^2 N_j(\xi)}{\partial \xi_j \partial \xi_k} \right|_{\xi=0} x_j y_k,
\]
\[
C_i(x, y, z) = \sum_{j,k,l=1}^n \left. \frac{\partial^3 N_j(\xi)}{\partial \xi_j \partial \xi_k \partial \xi_l} \right|_{\xi=0} x_j y_k z_l.
\]
(14)

Supposing that \(A\) has a pair of complex eigenvalues on the imaginary axis, they are \(\lambda_{1,2} = \pm i\omega (\omega > 0)\), and these eigenvalues are the only eigenvalues with \(\text{Re} \lambda = 0\). Let \(q \in \mathbb{C}^n\) be a complex eigenvector to \(\lambda_1 = i\omega\):
\[Aq = i\omega q, \quad \overline{Aq} = -i\omega \overline{q}.
\]
(15)

And the adjoint eigen vector \(p \in \mathbb{C}^n\) admits the properties
\[A^T p = -i\omega p, \quad A^T \overline{p} = i\omega \overline{p}\]
(16)
and satisfies the normalization \(\langle q, p \rangle = 1\).

The first Lyapunov coefficient at the origin is defined by
\[
l_1 = \frac{1}{2\omega} \text{Re} \left[\langle p, C(q, q, \overline{q}) \rangle - 2 \langle p, B(q, A^{-1}B(q, \overline{q})) \rangle + \langle p, B(\overline{q}, (2i\omega E - A)^{-1}B(q, \overline{q})) \rangle \right].
\]
(17)

Next, we calculate \(i\omega q, \overline{i\omega q}, J^T p = -i\omega p, \) and \(J^T \overline{p} = i\omega \overline{p}; \) If \(q = (q_1, q_2, q_3)^T \neq 0,\) calculate \(q, \overline{q}, p, \overline{p};\)
\[
\begin{bmatrix}
-13.317\alpha_1 - i\omega & -17.755\alpha_1 & -15.562\alpha_1 \\
-0.775\alpha_2 & -177.888\alpha_2 & 29.68\alpha_2 \\
-0.821\alpha_3 & 29.599\alpha_3 & -164.65\alpha_3 \\
\end{bmatrix}
\times
\begin{bmatrix}
q_1 \\
q_2 \\
q_3
\end{bmatrix} =
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}.
\]
(18)

having nonzero solutions.
It means
\[
\begin{vmatrix}
-13.317\alpha_1 - iw & -17.755\alpha_1 & -15.562\alpha_1 \\
-0.775\alpha_2 & -177.888\alpha_2 - iw & 29.68\alpha_2 \\
-0.821\alpha_3 & 29.599\alpha_3 & -164.65\alpha_3 - iw
\end{vmatrix} = 0.
\]
(19)

It can be got from calculating
\[
f_1 (w) = -375716.354\alpha_1\alpha_2\alpha_3 + 117.7775\alpha_2^2\alpha_3 \\
+ 13.317\alpha_1 w^2 + 177.888\alpha_2^2 w^2 + 164.65\alpha_3 w = 0, \\
f_2 (w) = -2368.9345\alpha_1\alpha_2 w + 0.6\alpha_2^2 w \\
- 28410.761\alpha_2\alpha_3 w - 2179.87\alpha_4\alpha_3 w + w^3 = 0.
\]
(20)

The result is as follows.
\[
L_2 (\alpha_1, \alpha_2, \alpha_3) \\
= \frac{1}{2\omega} \left[\langle p, C (q, q, \bar{q}) \rangle - 2 \langle p, B (q, A^{-1} B (q, \bar{q})) \rangle \\
+ \langle p, B (B (2i\omega E - A)^{-1} B (q, \bar{q})) \rangle \right] \\
= \frac{(408.75 - 29.6i)\alpha_1\alpha_3}{(0.82\alpha_1 - 168.9853\alpha_2)\alpha_2} \\
- 2 \left[\frac{(408.75 - 29.6i)\alpha_1\alpha_2}{(0.82\alpha_1 - 168.9853\alpha_2)\alpha_2} \\
- \frac{2179.87\alpha_1}{375716.354\alpha_1\alpha_2 - 117.7775\alpha_2^2} \\
+ \left(\frac{61899.185 - 4510.5i}{\alpha_2} \right) \\
\times (584697.898\alpha_2^2) \right] \\
+ \left(\frac{1.24 \times 10^9 + 1832.854i}{\alpha_2} \right) \\
\times (388107.8\alpha_2) \\
+ \left(\frac{1.2i\alpha_2 + (375716.354 + 56821.52i)\alpha_3}{\alpha_2} \right) \right]^{-1}
\]
(21)

where \(L_1 (\alpha_1, \alpha_2, \alpha_3)\) is the Lyapunov exponent function about \(\alpha_1\), \(\alpha_2\), and \(\alpha_3\) and \(l_1 (\alpha_1, \alpha_2, \alpha_3)\) is the real part. The following is the figure of \(l_1 (\alpha_1, \alpha_2, \alpha_3)\).
Figure 20: The change of $l_2(\alpha_1)$ with α_1 when $\alpha_2 = 0.004, \alpha_3 = 0.03$.

Figure 21: The change of $l_2(\alpha_1)$ with α_1 when $\alpha_2 = 0.004, \alpha_3 = 0.05$.

(1) Fix the value of α_1 and $\alpha_2 \in (0, 0.05), \alpha_3 \in (0, 0.05)$.

(i) $\alpha_1 = 0.02, \alpha_2 = 0.048$, and $\alpha_3 \in (0, 0.05)$ (see Figure 3).

(ii) $\alpha_1 = 0.02, \alpha_2 \in (0, 0.05)$, and $\alpha_3 \in (0, 0.05)$ (see Figure 2).

We can know from Figure 3 that when $\alpha_1 = 0.02, \alpha_2 = 0.048$, and α_3 is between zero and 0.05, $l_2(\alpha_3)$ is always equal to 1.375.

(iii) $\alpha_1 = 0.02, \alpha_3 = 0.02$, and $\alpha_3 \in (0, 0.05)$ (see Figure 4).

(iv) $\alpha_1 = 0.02, \alpha_2 = 0.004$, and $\alpha_3 \in (0, 0.05)$ (see Figure 5).

From Figures 4 and 5 we can observe the same change of $l_1(\alpha_3)$ as in Figures 2 and 3.

(2) Fix the value of α_2 and $\alpha_1 \in (0, 0.05), \alpha_3 \in (0, 0.05)$.

$\alpha_2 = 0.004, \alpha_1 \in (0, 0.05)$, and $\alpha_3 \in (0, 0.05)$ (see Figure 6).

$\alpha_2 = 0.004, \alpha_3 = 0.01$, and $\alpha_1 \in (0, 0.05)$ (see Figure 7).

$\alpha_2 = 0.004, \alpha_3 = 0.03$, and $\alpha_1 \in (0, 0.05)$ (see Figure 8).

$\alpha_2 = 0.004, \alpha_3 = 0.05$, and $\alpha_1 \in (0, 0.05)$ (see Figure 9).

(3) Fix the value of α_3 and $\alpha_1 \in (0, 0.05), \alpha_2 \in (0, 0.05)$.

(i) $\alpha_2 = 0.03, \alpha_1 \in (0, 0.05)$, and $\alpha_2 \in (0, 0.05)$ (see Figure 10).

(ii) $\alpha_2 = 0.03, \alpha_1 = 0.01$, and $\alpha_2 \in (0, 0.05)$ (see Figure 11).

(iii) $\alpha_2 = 0.03, \alpha_1 = 0.02$, and $\alpha_2 \in (0, 0.05)$ (see Figure 12).

(iv) $\alpha_2 = 0.03, \alpha_1 = 0.03$, and $\alpha_2 \in (0, 0.05)$ (see Figure 13).

$\mathbf{L}_2 (\alpha_1, \alpha_2, \alpha_3)
= \frac{1}{2\omega} \left[\langle p, C(q, q, \bar{q}) \rangle - 2 \langle p, B(q, A^{-1}B(q, \bar{q})) \rangle + \langle p, B(\bar{q}, (2\omega E - A)^{-1}B(q, q)) \rangle \right]
= (0.000851 - 0.175i)
+ \frac{37.57 + 0.18i}{375716.354 - 117.80 \alpha_2}
+ \frac{2.42 + 0.012 i}{375716.354 \alpha_1 - 117.78 \alpha_2}.

Figure 22: The change of $l_2(\alpha_1, \alpha_2, \alpha_3)$ with $\alpha_2, \alpha_1, \text{ and } \alpha_3$.

Figure 23: The change of $l_2(\alpha_1)$ with α_2 when $\alpha_1 = 0.01, \alpha_3 = 0.03$.
Abstract and Applied Analysis

\[l_2(\alpha_2) \approx 15 \quad \alpha_2 \in (0.004, 16.09) \]

Figure 24: The change of \(l_2(\alpha_2) \) with \(\alpha_2 \) when \(\alpha_1 = 0.02, \alpha_3 = 0.03 \).

\[l_3(\alpha_3) \approx 1.38 \quad \alpha_3 \in (0, 1.38) \]

Figure 27: The change of \(l_3(\alpha_3) \) with \(\alpha_3 \) when \(\alpha_1 = 0.02, \alpha_2 = 0.048 \).

(1) Fix the value of \(\alpha_1 \) and \(\alpha_2 \in (0, 0.05), \alpha_3 \in (0, 0.05) \).

(i) \(\alpha_1 = 0.02, \alpha_2 \in (0, 0.05), \) and \(\alpha_3 \in (0, 0.05) \) (see Figure 14).

(ii) \(\alpha_1 = 0.02, \alpha_2 = 0.048, \) and \(\alpha_3 \in (0, 0.05) \) (see Figure 15).

(iii) \(\alpha_1 = 0.02, \alpha_2 = 0.02, \) and \(\alpha_3 \in (0, 0.05) \) (see Figure 16).

(iv) \(\alpha_1 = 0.02, \alpha_2 = 0.004, \) and \(\alpha_3 \in (0, 0.05) \) (see Figure 17).

(2) Fix the value of \(\alpha_2 \) and \(\alpha_1 \in (0, 0.05), \alpha_3 \in (0, 0.05) \).

(i) \(\alpha_2 = 0.004, \alpha_1 \in (0, 0.05), \) and \(\alpha_3 \in (0, 0.05) \) (see Figure 18).

(ii) \(\alpha_2 = 0.004, \alpha_3 = 0.01, \) and \(\alpha_1 \in (0, 0.05) \) (see Figure 19).

(iii) \(\alpha_2 = 0.004, \alpha_1 \in (0, 0.05), \) and \(\alpha_3 = 0.03 \) (see Figure 20).

(iv) \(\alpha_2 = 0.004, \alpha_3 = 0.05, \) and \(\alpha_1 \in (0, 0.05) \) (see Figure 21).

(3) Fix the value of \(\alpha_3 \) and \(\alpha_1 \in (0, 0.05), \alpha_3 \in (0, 0.05) \).

(i) \(\alpha_3 = 0.03, \alpha_1 \in (0, 0.05), \) and \(\alpha_2 \in (0, 0.05) \) (see Figure 22).

\[\begin{align*}
\frac{d \mathbf{x}}{dt} = & \begin{pmatrix}
4359.74 \alpha_1 \\
375716.354 \alpha_1 \alpha_2 - 117.77755 \alpha_2^2 \\
+ \left(\alpha_2^2 \left(-0.014 + 0.00066i \right) \right. \\
+ \left(-4 + 0.19i \right) \alpha_3 + (18.784 + 329.2i) \alpha_3 \\
+ \left(26.6 \alpha_2 + 2179.87 \alpha_2 \right) \\
\left. \times \left(-53.268 + 4737.87i \right) \alpha_1 \alpha_2 \\
- (711.552 + 9.2i) \alpha_2^2 \\
+ (375716.354 + 4359.74i) \alpha_1 \alpha_3 \\
- (776.38 - 56821.52i) \alpha_2 \alpha_3 \right) \\
\end{align*} \]

where \(L_2(\alpha_1, \alpha_2, \alpha_3) \) is the Lyapunov exponent function about \(\alpha_1, \alpha_2, \) and \(\alpha_3 \) and \(l_2(\alpha_1, \alpha_2, \alpha_3) \) is the real part. The following is the figure of \(l_2(\alpha_1, \alpha_2, \alpha_3) \).

(22)
\[\langle q, (2i\omega E - A)\rangle = (117.78 + 1.2i)\alpha_1^2\alpha_3 - (53.3 - 4359.74i)\alpha_1\alpha_2\alpha_3 - (658.6 + 8i)\alpha_1^3 \]

\[\times \left\{ (3295.26\alpha_1\alpha_2 + 15.562i\alpha_1\alpha_3) \right\}^{-1} \]

\[-2 \left[\frac{2179.8667\alpha_1}{375716.354\alpha_1\alpha_2 - 117.78\alpha_2^2} + \frac{408.75\alpha_1\alpha_3 - 29.6i\alpha_2\alpha_3}{\alpha_2 (-168.9853\alpha_2 + 0.821i\alpha_3)} \right] \]

\[+ \left(61899.185\alpha_1\alpha_2 - 4510.5i\alpha_2\alpha_3 \right) \times ((-375716.354\alpha_1 + 117.78\alpha_2) \times (3295.26\alpha_1\alpha_2 - 15.562i\alpha_1\alpha_3))^{-1} \]

\[= l_3 (\alpha_1, \alpha_2, \alpha_3) + m_3 (\alpha_1, \alpha_2, \alpha_3), \quad (23) \]

where \(L_3 (\alpha_1, \alpha_2, \alpha_3) \) is the Lyapunov exponent function about \(\alpha_1, \alpha_2, \) and \(\alpha_3 \) and \(l_3 (\alpha_1, \alpha_2, \alpha_3) \) is the real part. The following is the figure of \(l_3 (\alpha_1, \alpha_2, \alpha_3) \).

(1) Fix the value of \(\alpha_1 \) and \(\alpha_2 \in (0, 0.05), \alpha_3 \in (0, 0.05). \)

(i) \(\alpha_1 = 0.02, \alpha_2 \in (0, 0.05), \) and \(\alpha_3 \in (0, 0.05) \) (see Figure 26).
Abstract and Applied Analysis

Figure 31: The change of $l_3(\alpha_1)$ with α_1, when $\alpha_2 = 0.004, \alpha_3 = 0.01$.

Figure 32: The change of $l_3(\alpha_1)$ with α_1, when $\alpha_2 = 0.004, \alpha_3 = 0.03$.

Figure 33: The change of $l_3(\alpha_1)$ with α_1, when $\alpha_2 = 0.004, \alpha_3 = 0.05$.

Figure 34: The change of $l_3(\alpha_1, \alpha_2)$ with α_1, α_2, and α_3.

(ii) $\alpha_1 = 0.02, \alpha_2 = 0.048$, and $\alpha_3 \in (0, 0.05)$ (see Figure 27).

(iii) $\alpha_1 = 0.02, \alpha_2 = 0.02$, and $\alpha_3 \in (0, 0.05)$ (see Figure 28).

(iv) $\alpha_1 = 0.02, \alpha_2 = 0.004$, and $\alpha_3 \in (0, 0.05)$ (see Figure 29).

(2) Fix the value of α_2 and $\alpha_3 \in (0, 0.05), \alpha_3 \in (0, 0.05)$.

(i) $\alpha_2 = 0.004, \alpha_3 \in (0, 0.05)$, and $\alpha_3 \in (0, 0.05)$ (see Figure 30).

(ii) $\alpha_2 = 0.004, \alpha_3 = 0.01$, and $\alpha_1 \in (0, 0.05)$ (see Figure 31).

(iii) $\alpha_2 = 0.004, \alpha_3 = 0.03, \alpha_1 \in (0, 0.05)$ (see Figure 32).

(iv) $\alpha_2 = 0.004, \alpha_3 = 0.05$, and $\alpha_1 \in (0, 0.05)$ (see Figure 33).

(3) Fix the value of α_3 and $\alpha_1 \in (0, 0.05), \alpha_2 \in (0, 0.05)$.

(i) $\alpha_3 = 0.03, \alpha_1 \in (0, 0.05)$, and $\alpha_2 \in (0, 0.05)$ (see Figure 34).

(ii) $\alpha_3 = 0.03, \alpha_1 = 0.01$, and $\alpha_2 \in (0, 0.05)$ (see Figure 35).

(iii) $\alpha_3 = 0.03, \alpha_1 = 0.02$, and $\alpha_2 \in (0, 0.05)$ (see Figure 36).

(iv) $\alpha_3 = 0.03, \alpha_1 = 0.03$, and $\alpha_2 \in (0, 0.05)$ (see Figure 37).

Premising $\alpha_3 = 0.01$, the stable area in the α_1, α_2 plane is determined by inequality group (10). Figure 38 shows the system fixed point in the area of the asymptotic stability.

3.1.2. Numerical Simulation. Using Matlab, parameters influence on the system (8) can be analyzed through numerical simulation.

(1) $\alpha_1, \alpha_2, \alpha_3$ Influence on the Collecting Market. The second collector on the assumption that the manufacturer and the first collector stem variables parameters is fixed with $\alpha_1 = 0.01, \alpha_3 = 0.01$, her system variables parameters α_2 is at $[0, 0.05]$. Manufacturers’ initial collecting price p_m, collector 1 and 2 for manufacturers of the collecting price of depreciate rate for 20, 0.35, respectively, 0.3. And, as shown in Figure 39 changes Figures 39(a), 39(b), and 39(c) shows, the corresponding Lyapunov index as shown in Figure 39(d). Figure 39 showing, when $0 < \alpha_2 < 0.0097$, the system is in stable state. after multi game, p_m, r_1 and r_2 is stable at the point of $(17.4, 0.4904, 0.4825)$. When $\alpha_3 = 0.01, \alpha_2 = 0.0097, \alpha_3 = 0.0097$, the system (8) occurs the first bifurcation, then after cycle 2, 4 cycle, and so forth, the system is gradually into the chaotic state. Figure 39(d) is Lyapunov index spectrum distribution which can also confirmed the phenomena. at $\alpha_2 = 0.0099$, the max Lyapunov index is zero, the system is in critical condition. At $\alpha_2 = 0.0133$, most of Lyapunov index greater than zero which explains system at chaos state (Figure 39 and Figure 44).
When initial setup and other parameters are the same and \(\alpha_1\), \(\alpha_3\), and \(\alpha_3\) are adjusted in the interval \([0,0.05]\) simultaneously, system variables of the manufacturers and two collectors change as shown in Figures 40(a), 40(b), and 40(c), and Lyapunov index is as in Figure 40(d). When \(0 < \alpha_2 < 0.0098\), the system is in stable state at the point of \((17.4, 0.4904, 0.4825)\). When the value of \(\alpha_1\), \(\alpha_2\), and \(\alpha_3\) is 0.0098, the system (8) occurs the first bifurcation, then after cycle 2, 4 cycle, and so forth, the system is gradually into the chaotic state. Figure 40(d) is Lyapunov index spectrum distribution which can also confirm the phenomena. At \(\alpha_2 = 0.0099\), the max Lyapunov index is zero, and the system is in critical condition. Comparing with Figure 39, system steady equilibrium does not change, keeps for \((17.4, 0.4904, 0.4825)\).

(2) System Variables Power Spectrum. According to the numerical simulation, not only system variables graph in the phase space along with time can be drawn, but also power spectrum graph of system variables can be estimated by period chart method. When \(\alpha_1 = 0.01\), \(\alpha_2 = 0.014\), and \(\alpha_3 = 0.01\), power spectrum graph of the manufacturer and two collectors is shown as in Figures 41(a), 41(b), and 41(c).

According to the numerical results, no matter how large the collection price adjustment parameters are, the collection price traverses the whole value area over time, but \(p_m\), \(r_1\), and \(r_2\) in the system (10) always limit in a certain range, which also verifies boundedness and ergodicity of chaos. Because \(\alpha_2 > \alpha_3\) and \(r_1\) amplitude is larger than \(r_2\), the adjustment of system variables must be limited in a certain range.

(3) The Influence of Initial Setup. The butterfly effect is an important symbol of chaotic motions, which is sensitive to initial state, and small changes of the initial conditions may cause the adjacent orbital evolution to index form separate after multiple episodes. For the above conditions, when \(\alpha_1 = 0.01\), \(\alpha_2 = 0.014\), and \(\alpha_3 = 0.01\), sensitive dependence on initial value of \(p_m\), \(r_1\), and \(r_2\) is as shown in Figures 42(a), 42(b), and 42(c). \(p_m\) value is, respectively, taken 20 and 20.001, after 96 cycles iteration, \(p_m\) difference value is 0.1335 which is 133.5 times than the initial difference value. \(r_1\) and \(r_2\) value is, respectively, taken 0.35 and 0.351, 0.3 and 0.301, respectively, experience in 44 and 45 iteration, \(r_1\) and \(r_2\) difference values is respective 0.2826 and 0.1364 which are 282 times and 136 times than the initial difference values. Furthermore, from Figure 42 we can conclude that system variables values are approximate in the first period, with increase of iterations the difference increase obviously.
3.2. Stackelberg Equilibrium

3.2.1. Model and the Analysis. Suppose that the manufacturer and collectors have principal and subordinate relationship, the manufacturer is Stackelberg leader, and collectors are followers; then they process sequential dynamic game; the game equilibrium is Stackelberg equilibrium. In this game, the manufacturer makes the decision of sales price and collection price according to the market information Lyapunov exponent function about it; then two collectors make decision according to the decision-making of the manufacturer:

\[
\begin{align*}
\max_{r_1} & \quad (p_m - p_{r_1}(t) - A_1) (k_1 + \beta_1 p_{r_1}(t) - \delta_1 p_{r_2}(t)) \\
\max_{r_2} & \quad (p_m - p_{r_2}(t) - A_2) (k_2 + \beta_2 p_{r_2}(t) - \delta_2 p_{r_1}(t))
\end{align*}
\]

s.t. \(p_m \in \arg \max_{r_1} \prod_{r_1} \) \\
\hspace{1cm} \text{s.t.} \quad p_m \in \arg \max_{r_2} \prod_{r_2}. \tag{24}

The result is

\[
r_{1}^{**} = (p_m (2\beta_1 \beta_2 - 2\beta_2 \delta_1 + \delta_1 \beta_2 - \delta_1 \delta_2) + 2\beta_2 k_1 + 2\beta_1 \beta_2 A_1 + k_2 \delta_1 + \beta_2 A_2 \delta_1) \\
\times (p_m (4\beta_1 \beta_2 - \delta_1 \delta_2))^{-1},
\]

Figure 39: The max Lyapunov index.
Figure 40: (a) $\alpha_1, \alpha_2, \alpha_3$ is $[0, 0.05], p_1$, (b) $\alpha_1, \alpha_2, \alpha_3$ is $[0, 0.05], r_1$, (c) $\alpha_1, \alpha_2, \alpha_3$ is $[0, 0.05], r_2$, and (d) $\alpha_1, \alpha_2, \alpha_3$ is $[0, 0.05]$, the max Lyapunov index.

\begin{align*}
r_2^{**} &= \left(p_m \left(2\beta_1\beta_2 - 2\beta_1\delta_2 + \delta_1\beta_2 - \delta_1\delta_2 \right) \\
&\quad + 2\beta_1k_2 + 2\beta_1\beta_2A_2 + k_1\delta_2 + \delta_1A_2\delta_2 \right) \\
&\quad \times \left(p_m \left(4\beta_1\beta_2 - \delta_1\delta_2 \right) \right)^{-1}.
\end{align*}

(25)

Formula (25) is reaction function of the collectors. Put formula (25) into formula (2) and the following can be obtained:

\begin{align*}
p_m^{**} &= \left(p_0 - c_r \right) \left(k_1 + k_2 \right) \left(2\beta_1\beta_2 - \delta_1\delta_2 \right) \\
&\quad \times \left((2\beta_1\beta_2 + 2\beta_1\delta_1 - \delta_1\beta_2) \right)^{-1}.
\end{align*}

(26)

With Nash equilibrium value the parameters values are $p_0 = 70, c_r = 30, A_1 = 1, A_2 = 0.8, k_1 = 1, k_2 = 1, \beta_1 = 0.6, \beta_2 = 0.55, \delta_1 = 0.2, \delta_2 = 0.2$. Then we put the values into Stackelberg equilibrium $(p_m^{**}, r_1^{**}, r_2^{**})$; the equilibrium value is $(19.17, 0.48, 0.48)$.

The manufacturer makes decision based on limited rational expectations. She adjusts the game process on the basis of marginal gains. If the marginal profits of t period are positive, in the $t + 1$ period this strategy action will be used. And if
Figure 41: (a) $\alpha_1 = 0.01$, $\alpha_2 = 0.014$, and $\alpha_3 = 0.01$, power spectrum of p_m; (b) $\alpha_1 = 0.01$, $\alpha_2 = 0.014$, and $\alpha_3 = 0.01$, power spectrum of r_1; and (c) $\alpha_1 = 0.01$, $\alpha_2 = 0.014$, and $\alpha_3 = 0.01$, power of spectrum r_2.

Figure 42: (a) $\alpha_1 = 0.01$, $\alpha_2 = 0.014$, and $\alpha_3 = 0.01$, the initial value sensitivity of p_m; (b) $\alpha_1 = 0.01$, $\alpha_2 = 0.014$, and $\alpha_3 = 0.01$, the initial value sensitivity of r_1; and (c) $\alpha_1 = 0.01$, $\alpha_2 = 0.014$, and $\alpha_3 = 0.01$, the initial value sensitivity r_2.
Figure 43: (a) $\alpha = [0, 0.05], p_m$, (b) $\alpha = [0, 0.05], r_1$; and (c) $\alpha = [0, 0.05], r_2$.

Figure 44: $\alpha = [0, 0.05]$, max Lyapunov spectrum.
the t period marginal profits are negative, in the $t+1$ period the collection price will be lowered. The repeated game model of dynamic adjustment is

$$p_m(t+1) = p_m(t) + \alpha p_m(t) \times ((1-r_2)(\beta_1 - \delta_2) + (1-r_2)(\beta_2 - \delta_1)) \times (p_0 - 2p_m(t) - c_r - k_1 - k_2).$$ \hfill (27)

In formula (27), α is adjustment coefficient of collection price and r_1, r_2 are as follows:

$$r_1(t) = (p_m(t)(2\beta_1\beta_2 - 2\beta_2\delta_1 + \delta_1\beta_2 - \delta_1\delta_2) + 2\beta_1k_1 + 2\beta_1k_2A_1 + k_2\delta_1 + \beta_2A_2\delta_1)
\times (p_m(t)(4\beta_1\beta_2 - \delta_1\delta_2))^{-1},$$ \hfill (28)

$$r_2(t) = (p_m(t)(2\beta_1\beta_2 - 2\beta_1\delta_2 + \delta_2\beta_1 - \delta_1\delta_2) + 2\beta_1k_2 + 2\beta_1k_2A_2 + k_1\delta_2 + \beta_1A_2\delta_2)
\times (p_m(t)(4\beta_1\beta_2 - \delta_1\delta_2))^{-1}.$$ \hfill (29)

Substitution parameters value into system (17) can be concluded which is as follows:

$$p_m(t+1) = p_m(t) + \alpha p_m(t)(17.403 - 0.908p_m(t)),$$

$$r_1(t) = 0.398 + \frac{1.617}{p_m(t)},$$ \hfill (30)

$$r_2(t) = 0.391 + \frac{1.703}{p_m(t)}.$$ \hfill (30)

From system (30) it can be concluded that the manufacture firstly makes decision and the decision variables directly relate to α. But collectors' decision variables directly relate to p_m. The following simulates complex dynamics characteristics of system (30) through numerical simulation.

Figure 45: (a) $\alpha = 0.15$, the power spectrum of p_m; (b) $\alpha = 0.15$, the spectrum of r_1; and (c) $\alpha = 0.15$, the power spectrum of r_2.
3.2.2. Numerical Simulation

(1) Influence on the Collecting Market. When $\alpha = [0, 0.05]$, the initial values of p_m, r_1, and r_2 are 20, 0.4, and 0.5; p_m, r_1, and r_2 are as shown in Figures 43(a), 43(b), and 43(c). From the figures, we can conclude that the system is in stable state when $0 < \alpha < 0.113$, and the stable values of p_m, r_1, and r_2 are 19.17, 0.4824, and 0.4799. When $\alpha = 0.113$, the system occurs the first bifurcation, then after cycle 2, 4 cycle, and so forth, the system is gradually into the chaotic state.

(2) System Variables Power Spectrum. According to the numerical simulation, not only system variables graph in the phase space along with time can be drew, but also power spectrum graph of system variables can be estimated by period chart method. When $\alpha = 0.15$, power spectrum graph of the manufacturer and two collectors is shown in Figures 45(a), 45(b), and 45(c). According to the numerical results, no matter how large the collection price adjustment parameters are, the collection price traverses the whole value area over time, but p_m, r_1, and r_2 in the system (19) always limit in a certain range, which also verifies boundedness and ergodicity of chaos.

(3) The Influence of Initial Setup. When $\alpha = 0.15$, sensitive dependence on initial value of p_m, r_1, and r_2 is as shown in Figures 46(a), 46(b), and 46(c). p_m values are, respectively, taken to be 20 and 20.001, after 36 cycles iteration, p_m difference value is 3.35 which is 3350 times the initial difference value. r_1 and r_2 difference values are 69 times and 73 times the initial difference values. Furthermore, from Figure 46 we can conclude that system variables values are approximate in the first period; with increase of iterations the difference increases obviously. The influence to the manufacturer is far greater than collectors because of the collectors’ decision-making later than the manufacturer’s. After the collectors observe action of the manufacturer, they make decision. The collectors’ decision-making is superior to the manufacturer.

3.3. Model Comparison and Analysis

(1) Profits Analysis of Nash Equilibrium. When $\alpha = [0, 0.05]$, profits of the manufacturer and two collectors are as shown in Figures 47(a), 47(b), 47(c), and 47(d). Figure 47(a) shows that profits of the manufacturer in the stable state are not the best; it means Nash equilibrium is not optimal solution; the optimal solution of single cycle may not bring enterprise maximum returns. Furthermore, from Figure 47(a) it can be concluded that, with collecting price increasing, profits state instead into chaos state, the optimal price is 19.64 in the chaotic state, and the corresponding profits are 208.6. Compared to Figure 47(b), profits of the manufacture before chaotic state are 216.4, so the internal randomness of chaotic system cannot react to the actual situation of the market.

(2) Profits Analysis of Stackelberg Equilibrium. When $\alpha = [0, 0.05]$, profits of the manufacturer and two collectors are as shown in Figures 48(a), 48(b), 48(c), and 48(d). Figure 48 shows that profits of the manufacturer in the stable state are the best; it means Stackelberg equilibrium is the optimal solution, and the optimal solution of the closed-loop supply chain is optimal. Figures 48(a), 48(b), 48(c), and 48(d) are consistent.

Figure 46: (a) $\alpha = 0.15$, the initial value sensitivity of p_m (b) $\alpha = 0.15$, the initial value sensitivity of r_1, and (c) $\alpha = 0.15$, the initial value sensitivity of r_2.

Figure 47(a) shows that profits of the manufacturer in the stable state are not the best; it means Nash equilibrium is not optimal solution; the optimal solution of single cycle may not bring enterprise maximum returns. Furthermore, from Figure 47(a) it can be concluded that, with collecting price increasing, profits state instead into chaos state, the optimal price is 19.64 in the chaotic state, and the corresponding profits are 208.6. Compared to Figure 47(b), profits of the manufacture before chaotic state are 216.4, so the internal randomness of chaotic system cannot react to the actual situation of the market.

Figure 48 shows that profits of the manufacturer in the stable state are the best; it means Stackelberg equilibrium is the optimal solution, and the optimal solution of the closed-loop supply chain is optimal. Figures 48(a), 48(b), 48(c), and 48(d) are consistent.
Through numerical simulation and comparison analysis, it can be concluded that Stackelberg game equilibrium is better than Nash equilibrium from the point of view of the profits and collecting price. Three conclusions can be summarized as follows. First, when the manufacturer and the two collectors make decision by static game, the collection price and profits of the three parties are lower than the optimal of dynamic game equilibrium. Second, as the manufacturer and the two collectors independently make decisions, the three parties will try to lower the collecting price in order to obtain the maximum profits. Third, as the manufacturer and the two collectors independently make decisions, the system more easily reaches chaos, and the cycle of stable state is shorter.

4. Centralized Control Decision-Making Model

Centralized control is that the manufacturers and the collectors codetermine to realize profits maximization of the supply chain system. We get formulas (2) and (3) into the formula (4) and attain the profits function of supply chain as follows:

$$\Pi = \prod_m + \prod_{r1} + \prod_{r2}$$

$$= k_1 (p_0 - c_r - A_1) + k_2 (p_0 - c_r - A_2)$$

$$+ p_m(t) (1 - r_1(t))$$

$$\times ((p_0 - c_r) (1 - \delta_2) - k_1 - A_1 - A_2 \delta_2)$$

$$- p_m(t)^2 (\beta_1 (1 - r_1(t))^2 + \beta_2 (1 - r_2(t))^2)$$

$$+ p_m(t) (1 - r_2(t))$$

$$\times ((p_0 - c_r) (1 - \delta_1) - k_2 - A_2 - A_1 \delta_1)$$

$$+ p_m(t)^2 (\delta_1 + \delta_2) (1 - r_1(t)) (1 - r_2(t)).$$

(31)
Figure 48: (a) Π_m graph with p_m, (b) Π_m graph with α_1, (c) Π_{r1} graph with α_2, and (d) Π_{r2} graph with α_3.

Figure 49: (a) p_m, r_1, and r_2 conditions with time and (b) Π, r_1, r_2 condition with time.
The second-order derivatives about p_m, r_1, and r_2 in formula (31) are
$$
\frac{\partial^2 \Pi}{\partial p_m(t)^2} = -2(\beta_1(1 - r_1(t))^2 + \beta_2(1 - r_2(t))^2) + 2(\delta_1 + \delta_2)(1 - r_1(t))(1 - r_2(t)) \frac{\partial^2 \Pi}{\partial r_1(t)^2}
$$
$$
+ 2 \frac{\partial^2 \Pi}{\partial r_2(t)^2} > 0,
$$
when meeting the condition of $(\delta_1 + \delta_2)(1 - r_1(t))(1 - r_2(t)) < \beta_1(1 - r_1(t))^2 + \beta_2(1 - r_2(t))^2,$ Π is strictly concave function about $p_m, r_1,$ and r_2. Therefore, the optimal solutions of $p_m, r_1,$ and r_2 can be obtained by $\frac{\partial \Pi}{\partial p_m(t)} = 0, \frac{\partial \Pi}{\partial r_1(t)} = 0, \delta_1, \delta_2$ and $\frac{\partial \Pi}{\partial r_2(t)} = 0$ The process is as follows:

$$
\frac{\partial \Pi}{\partial p_m} = (1 - r_1(t)) \left((p_0 - c_1) (1 - \delta_2) - k_1 - A_1 - A_2 \delta_2\right)
$$
$$
+ (1 - r_2(t)) \left((p_0 - c_1) (1 - \delta_1) - k_2 - A_2 - A_1 \delta_1\right)
$$
$$
- 2p_m(t) \left(\beta_1(1 - r_1(t))^2 + \beta_2(1 - r_2(t))^2\right)
$$
$$
+ 2p_m(t) \left(\delta_1 + \delta_2\right)(1 - r_1(t))(1 - r_2(t)) = 0,
$$

$$
\frac{\partial \Pi}{\partial r_1} = -p_m(t) \left((p_0 - c_1) (1 - \delta_2) - k_1 - A_1 - A_2 \delta_2\right)
$$
$$
+ 2p_m(t) \beta_1 (1 - r_1(t))
$$
$$
- p_m(t) \left(\delta_1 + \delta_2\right) (1 - r_2(t)) = 0,
$$

$$
\frac{\partial \Pi}{\partial r_2} = -p_m(t) \left((p_0 - c_1) (1 - \delta_1) - k_2 - A_2 - A_1 \delta_1\right)
$$
$$
+ 2p_m(t) \beta_2 (1 - r_2(t))
$$
$$
- p_m(t) \left(\delta_1 + \delta_2\right) (1 - r_1(t)) = 0.
$$

Value with above the top: $p_0 = 90, c_1 = 30, A_1 = 1, A_2 = 0.8, k_1 = 1, k_2 = 1, \beta_1 = 0.6, \beta_2 = 0.55, \delta_1 = 0.2, \delta_2 = 0.2, p_m(1) = 20, r_1(1) = 0.35, and r_2(1) = 0.3$. The equilibrium solution of formula (32) is $(p_m, r_1, r_2) = (20, 0.35, 0.35)$.

Manufacturers and collecting business make decision based on rational expectations, and the decision-making basis is marginal profits. Figure 16 indicates that $p_m, r_1,$ and r_2 three-dimensional changes with time. $X, Y,$ and $Z,$ respectively, show $r_1, r_2,$ and p_m. Figure 49 describes system profits $\Pi; r_1$ and r_2 change with time. Maximum system profits are $919.3.$ In this condition, r_1, r_2 are, respectively, 0.1411 and 0.1411. In the centralized control decision-making model, we can conclude that the collecting business profits are suffered, but the manufacturer profits are superior to decentralized control decision-making model. Therefore, not only the system profits maximization but also business profits are considered in reality.

5. Conclusions

This paper researches on that used products collecting pricing game model and complexity analysis in a closed-loop supply chain which consist of a manufacturer and two collectors. Corresponding to the discrete system, we have established and analyzed in detail the corresponding continuity system.

Through quantitative analysis of collecting price, time sequence diagram, and Lyapunov index, the paper describes game evolution rule in the closed-loop supply chain. We describe a series of chaotic system characteristics, based on which, we have a detailed analysis of the Lyapunov index which is under the condition of different parameter combination, and draw the figure under different conditions. The analysis found that, first, when the collection price is to a critical value, the system into chaos state. Second, the sale price of remanufacturing products are more than a critical value, the system into chaos state. Last, the collection price system of the initial value which is sensitive, small changes in the initial value may cause market price fluctuations.

It also draws conclusions that business profits, supply chain system profits, collecting price in Stackelberg game model are superior to Nash game model. In Nash equilibrium, the manufacturer and the collectors all lower the collecting price to gain, respectively, maximum profits. The system is easier into chaos state than Stackelberg, and stable state period is shorter.

Through comparing centralized decision-making with decentralized decision-making, we have concluded that the collecting price and system profits of the latter are lower. This conclusion for the supply chain guide enterprises sure each phase of the best provide decision basis for the collection price, in order to achieve maximize returns.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

The authors thank the reviewers for their careful reading and providing some pertinent suggestions. The research was supported by the National Natural Science Foundation of China (no. 61273231), Doctoral Fund of Ministry of Education of China (Grant no. 2013032110073), and Tianjin University innovation fund.

References

[10] Y.-Y. Wang, B.-Y. Li, and F.-F. Yue, "The research on two price decision models of closed-loop supply chain," *Forecasting*, vol. 25, no. 6, pp. 70–73, 2006.

