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Abstract. 
We discuss the existence and uniqueness of positive solutions for the following fractional switched system: (
	
		
			

				𝑐
			

			

				𝐷
			

			
				𝛼
				0
				+
			

			
				𝑢
				(
				𝑡
				)
				+
				𝑓
			

			
				𝜎
				(
				𝑡
				)
			

			
				(
				𝑡
				,
				𝑢
				(
				𝑡
				)
				)
				+
				𝑔
			

			
				𝜎
				(
				𝑡
				)
			

			
				(
				𝑡
				,
				𝑢
				(
				𝑡
				)
				)
				=
				0
				,
				𝑡
				∈
				𝐽
				=
				[
				0
				,
				1
				]
			

		
	
); 
	
		
			
				(
				𝑢
				(
				0
				)
				=
				𝑢
			

			
				
				
			

			
				∫
				(
				0
				)
				=
				0
				,
				𝑢
				(
				1
				)
				=
			

			
				1
				0
			

			
				𝑢
				(
				𝑠
				)
				𝑑
				𝑠
				)
			

		
	
, where 
	
		
			

				𝑐
			

			

				𝐷
			

			
				𝛼
				0
				+
			

		
	
 is the Caputo fractional derivative with 
	
		
			
				2
				<
				𝛼
				≤
				3
			

		
	
, 
	
		
			
				𝜎
				(
				𝑡
				)
				∶
				𝐽
				→
				{
				1
				,
				2
				,
				…
				,
				𝑁
				}
			

		
	
 is a piecewise constant function depending on 
	
		
			

				𝑡
			

		
	
, and 
	
		
			

				ℝ
			

			

				+
			

			
				=
				[
				0
				,
				+
				∞
				)
			

		
	
,
	
		
			

				𝑓
			

			

				𝑖
			

			
				,
				𝑔
			

			

				𝑖
			

			
				∈
				𝐶
				[
				𝐽
				×
				ℝ
			

			

				+
			

			
				,
				ℝ
			

			

				+
			

		
	
], 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑁
			

		
	
. Our results are based on a fixed point theorem of a sum operator and contraction mapping principle. Furthermore, two examples are also given to illustrate the results.


1. Introduction
Fractional differential equations arise in various areas of science and engineering. Due to their applications, fractional differential equations have gained considerable attention (cf., e.g., [1–15] and references therein). Moreover, the theory of boundary value problems with integral boundary conditions has various applications in applied fields. For example, heat conduction, chemical engineering, underground water flow, thermoelasticity, and population dynamics can be reduced to the nonlocal problems with integral boundary conditions. In [2], Cabada and Wang considered the following m-point boundary value problem for fractional differential equation 
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			

				𝑐
			

			

				𝐷
			

			
				𝛼
				0
				+
			

			
				𝑢
				(
				𝑡
				)
				+
				𝑓
				(
				𝑡
				,
				𝑢
				(
				𝑡
				)
				)
				=
				0
				,
				0
				<
				𝑡
				<
				1
				,
				𝑢
				(
				0
				)
				=
				𝑢
			

			
				
				
			

			
				
				(
				0
				)
				=
				0
				,
				𝑢
				(
				1
				)
				=
				𝜆
			

			
				1
				0
			

			
				𝑢
				(
				𝑠
				)
				𝑑
				𝑠
				,
			

		
	

					where 
	
		
			
				2
				<
				𝛼
				≤
				3
			

		
	
, 
	
		
			

				𝑐
			

			

				𝐷
			

			
				𝛼
				0
				+
			

		
	
 is the Caputo fractional derivative, and 
	
		
			
				𝑓
				∶
				[
				0
				,
				1
				]
				×
				[
				0
				,
				∞
				)
				→
				[
				0
				,
				∞
				)
			

		
	
 is a continuous function.
On the other hand, a switched system consists of a family of subsystems described by differential or difference equations, which has many applications in traffic control, switching power converters, network control, multiagent consensus, and so forth (see [16–18]). When we consider a switched system, we always suppose that the solution is unique. So it is important to study the uniqueness of solution for a switched system. In [1], Li and Liu investigated the uniqueness of positive solution for the following switched system: 
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			

				𝑥
			

			
				
				
			

			
				(
				𝑡
				)
				+
				𝑓
			

			
				𝜎
				(
				𝑡
				)
			

			
				[
				]
				,
				
				(
				𝑡
				,
				𝑥
				(
				𝑡
				)
				)
				=
				0
				,
				𝑡
				∈
				𝐽
				=
				0
				,
				1
				𝑥
				(
				0
				)
				=
				0
				,
				𝑥
				(
				1
				)
				=
			

			
				1
				0
			

			
				𝑎
				(
				𝑠
				)
				𝑥
				(
				𝑠
				)
				𝑑
				𝑠
				,
			

		
	

					where 
	
		
			
				𝜎
				(
				𝑡
				)
				∶
				𝐽
				→
				{
				1
				,
				2
				,
				…
				,
				𝑁
				}
			

		
	
 is a piecewise constant function depending on 
	
		
			

				𝑡
			

		
	
, and 
	
		
			

				ℝ
			

			

				+
			

			
				=
				[
				0
				,
				+
				∞
				)
			

		
	
, 
	
		
			

				𝑓
			

			

				𝑖
			

			
				∈
				𝐶
				[
				𝐽
				×
				ℝ
			

			

				+
			

			
				,
				ℝ
			

			

				+
			

			

				]
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑁
			

		
	
.
In this paper, we discuss the existence and uniqueness of positive solutions for the following fractional switched system: 
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			

				𝑐
			

			

				𝐷
			

			
				𝛼
				0
				+
			

			
				𝑢
				(
				𝑡
				)
				+
				𝑓
			

			
				𝜎
				(
				𝑡
				)
			

			
				(
				𝑡
				,
				𝑢
				(
				𝑡
				)
				)
				+
				𝑔
			

			
				𝜎
				(
				𝑡
				)
			

			
				[
				]
				,
				(
				𝑡
				,
				𝑢
				(
				𝑡
				)
				)
				=
				0
				,
				𝑡
				∈
				𝐽
				=
				0
				,
				1
				𝑢
				(
				0
				)
				=
				𝑢
			

			
				
				
			

			
				
				(
				0
				)
				=
				0
				,
				𝑢
				(
				1
				)
				=
			

			
				1
				0
			

			
				𝑢
				(
				𝑠
				)
				𝑑
				𝑠
				,
			

		
	

					where 
	
		
			

				𝑐
			

			

				𝐷
			

			
				𝛼
				0
				+
			

		
	
 is the Caputo fractional derivative with 
	
		
			
				2
				<
				𝛼
				≤
				3
			

		
	
, 
	
		
			
				𝜎
				(
				𝑡
				)
				∶
				𝐽
				→
				{
				1
				,
				2
				,
				…
				,
				𝑁
				}
			

		
	
 is a piecewise constant function depending on 
	
		
			

				𝑡
			

		
	
, and 
	
		
			

				ℝ
			

			

				+
			

			
				=
				[
				0
				,
				+
				∞
				)
			

		
	
, 
	
		
			

				𝑓
			

			

				𝑖
			

			
				,
				𝑔
			

			

				𝑖
			

			
				∈
				𝐶
				[
				𝐽
				×
				ℝ
			

			

				+
			

			
				,
				ℝ
			

			

				+
			

			

				]
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑁
			

		
	
.
The paper is organized as follows. In Section 2, we present some background materials and preliminaries. Section 3 deals with some existence results. In Section 4, two examples are given to illustrate the results.
2. Background Materials and Preliminaries
Definition 1 (see [3, 4]). The fractional integral of order 
	
		
			

				𝛼
			

		
	
 with the lower limit 
	
		
			

				𝑡
			

			

				0
			

		
	
 for a function 
	
		
			

				𝑓
			

		
	
 is defined as 
							
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			

				𝐼
			

			

				𝛼
			

			
				1
				𝑓
				(
				𝑡
				)
				=
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			
				𝑡
				𝑡
			

			

				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			
				𝑓
				(
				𝑠
				)
				𝑑
				𝑠
				,
				𝑡
				>
				𝑡
			

			

				0
			

			
				,
				𝛼
				>
				0
				,
			

		
	

						where 
	
		
			

				Γ
			

		
	
 is the gamma function.
Definition 2 (see [3, 4]). For a function 
	
		
			
				𝑓
				∶
				[
				0
				,
				∞
				)
				→
				ℝ
			

		
	
, the Caputo derivative of fractional order is defined as 
							
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			

				𝑐
			

			

				𝐷
			

			
				𝛼
				0
				+
			

			
				1
				𝑓
				(
				𝑡
				)
				=
			

			
				
			
			
				
				Γ
				(
				𝑛
				−
				𝛼
				)
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑛
				−
				𝛼
				−
				1
			

			

				𝑓
			

			
				(
				𝑛
				)
			

			
				[
				𝛼
				]
				(
				𝑠
				)
				𝑑
				𝑠
				,
				𝛼
				>
				0
				,
				𝑛
				=
				+
				1
				.
			

		
	

In the following, let us recall some basic information on cone (see more from [19, 20]). Let 
	
		
			

				𝐸
			

		
	
 be a real Banach space and let 
	
		
			

				𝑃
			

		
	
 be a cone in 
	
		
			

				𝐸
			

		
	
 which defined a partial ordering in 
	
		
			

				𝐸
			

		
	
 by 
	
		
			
				𝑥
				≤
				𝑦
			

		
	
 if and only if 
	
		
			
				𝑦
				−
				𝑥
				∈
				𝑃
			

		
	
. 
	
		
			

				𝑃
			

		
	
 is said to be normal if there exists a positive constant 
	
		
			

				𝑁
			

		
	
 such that 
	
		
			
				𝜃
				≤
				𝑥
				≤
				𝑦
			

		
	
 implies 
	
		
			
				‖
				𝑥
				‖
				≤
				𝑁
				‖
				𝑦
				‖
			

		
	
. 
	
		
			

				𝑃
			

		
	
 is called solid if its interior 
	
		
			

				∘
			

			

				𝑃
			

		
	
 is nonempty. If 
	
		
			
				𝑥
				≤
				𝑦
			

		
	
 and 
	
		
			
				𝑥
				≠
				𝑦
			

		
	
, we write 
	
		
			
				𝑥
				<
				𝑦
			

		
	
. We say that an operator 
	
		
			

				𝐴
			

		
	
 is increasing if 
	
		
			
				𝑥
				≤
				𝑦
			

		
	
 implies 
	
		
			
				𝐴
				𝑥
				≤
				𝐴
				𝑦
			

		
	
.
For all 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝐸
			

		
	
, the notation 
	
		
			
				𝑥
				∼
				𝑦
			

		
	
 means that there exist 
	
		
			
				𝜆
				>
				0
			

		
	
 and 
	
		
			
				𝜇
				>
				0
			

		
	
 such that 
	
		
			
				𝜆
				𝑥
				≤
				𝑦
				≤
				𝜇
				𝑥
			

		
	
. Clearly, 
	
		
			

				∼
			

		
	
 is an equivalence relation. Given 
	
		
			
				ℎ
				>
				𝜃
			

		
	
 (i.e., 
	
		
			
				ℎ
				≥
				𝜃
			

		
	
 and 
	
		
			
				ℎ
				≠
				𝜃
			

		
	
), we denote by 
	
		
			

				𝑃
			

			

				ℎ
			

		
	
 the set 
	
		
			

				𝑃
			

			

				ℎ
			

			
				=
				{
				𝑥
				∈
				𝐸
				∣
				𝑥
				∼
				ℎ
				}
			

		
	
. It is easy to see that 
	
		
			

				𝑃
			

			

				ℎ
			

			
				⊂
				𝑃
			

		
	
.
Definition 3. Let 
	
		
			
				𝐷
				=
				𝑃
			

		
	
 or 
	
		
			
				𝐷
				=
			

			

				∘
			

			

				𝑃
			

		
	
 and let 
	
		
			

				𝛾
			

		
	
 be a real number with 
	
		
			
				0
				≤
				𝛾
				<
				1
			

		
	
. An operator 
	
		
			
				𝐴
				∶
				𝑃
				→
				𝑃
			

		
	
 is said to be 
	
		
			

				𝛾
			

			

				-
			

		
	
concave if it satisfies 
							
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			
				𝐴
				(
				𝑡
				𝑥
				)
				≥
				𝑡
			

			

				𝛾
			

			
				𝐴
				𝑥
				,
				∀
				𝑡
				∈
				(
				0
				,
				1
				)
				,
				𝑥
				∈
				𝐷
				.
			

		
	

Definition 4. An operator 
	
		
			
				𝐴
				∶
				𝐸
				→
				𝐸
			

		
	
 is said to be homogeneous if it satisfies 
							
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				𝐴
				(
				𝑡
				𝑥
				)
				=
				𝑡
				𝐴
				𝑥
				,
				∀
				𝑡
				>
				0
				,
				𝑥
				∈
				𝐸
				.
			

		
	

						An operator 
	
		
			
				𝐴
				∶
				𝑃
				→
				𝑃
			

		
	
 is said to be subhomogeneous if it satisfies 
							
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				𝐴
				(
				𝑡
				𝑥
				)
				≥
				𝑡
				𝐴
				𝑥
				,
				∀
				𝑡
				∈
				(
				0
				,
				1
				)
				,
				𝑥
				∈
				𝑃
				.
			

		
	

From [2], we have the following result.
Lemma 5.  Assume that 
	
		
			
				2
				<
				𝛼
				≤
				3
			

		
	
 and 
	
		
			

				𝑓
			

			

				𝑖
			

			
				,
				𝑔
			

			

				𝑖
			

			
				∈
				𝐶
				[
				𝐽
				×
				ℝ
			

			

				+
			

			
				,
				ℝ
			

			

				+
			

			

				]
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑁
			

		
	
. Then the problem (3) has a solution if and only if 
	
		
			

				𝑢
			

		
	
 is a solution of the integral equation 
							
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				
				𝑢
				(
				𝑡
				)
				=
			

			
				1
				0
			

			
				
				𝑓
				𝐺
				(
				𝑡
				,
				𝑠
				)
			

			
				𝜎
				(
				𝑠
				)
			

			
				(
				𝑠
				,
				𝑢
				(
				𝑠
				)
				)
				+
				𝑔
			

			
				𝜎
				(
				𝑠
				)
			

			
				
				(
				𝑠
				,
				𝑢
				(
				𝑠
				)
				)
				𝑑
				𝑠
				,
			

		
	

						where 
							
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				𝐺
				=
				⎧
				⎪
				⎨
				⎪
				⎩
				(
				𝑡
				,
				𝑠
				)
				2
				𝑡
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			
				(
				𝛼
				−
				1
				+
				𝑠
				)
				−
				𝛼
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			
				
			
			
				Γ
				(
				𝛼
				+
				1
				)
				,
				0
				≤
				𝑠
				≤
				𝑡
				≤
				1
				,
				2
				𝑡
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			
				(
				𝛼
				−
				1
				+
				𝑠
				)
			

			
				
			
			
				Γ
				(
				𝛼
				+
				1
				)
				,
				0
				≤
				𝑡
				≤
				𝑠
				≤
				1
				.
			

		
	

Lemma 6.  
	
		
			
				𝐺
				(
				𝑡
				,
				𝑠
				)
			

		
	
 in Lemma 5 has the following property: (i)
	
		
			
				𝐺
				(
				𝑡
				,
				𝑠
				)
				>
				0
				𝑓
				𝑜
				𝑟
				𝑎
				𝑙
				𝑙
				𝑡
				,
				𝑠
				∈
				(
				0
				,
				1
				)
			

		
	
. 								(ii)
	
		
			
				(
				1
				/
				Γ
				(
				𝛼
				+
				1
				)
				)
				ℎ
				(
				𝑡
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			
				(
				𝛼
				−
				2
				+
				2
				𝑠
				)
				≤
				𝐺
				(
				𝑡
				,
				𝑠
				)
				≤
				(
				2
				/
				Γ
				(
				𝛼
				+
				1
				)
				)
				ℎ
				(
				𝑡
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			
				(
				𝛼
				−
				1
				+
				𝑠
				)
				,
				𝑡
				,
				𝑠
				∈
				[
				0
				,
				1
				]
				,
				2
				<
				𝛼
				≤
				3
				,
				ℎ
				(
				𝑡
				)
				=
				𝑡
				.
			

		
	

Proof. From [2], we know that 
	
		
			

				(
			

			

				i
			

			

				)
			

		
	
is obvious. For 
	
		
			
				0
				≤
				𝑠
				≤
				𝑡
				≤
				1
			

		
	
, 
	
		
			
				2
				<
				𝛼
				≤
				3
			

		
	
, we have 
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				2
				𝑡
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			
				(
				𝛼
				−
				1
				+
				𝑠
				)
				−
				𝛼
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			
				=
				2
				𝑡
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			
				(
				𝛼
				−
				1
				+
				𝑠
				)
				−
				𝛼
				𝑡
			

			
				𝛼
				−
				1
			

			
				
				𝑠
				1
				−
			

			
				
			
			
				𝑡
				
			

			
				𝛼
				−
				1
			

			
				≥
				2
				𝑡
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			
				(
				𝛼
				−
				1
				+
				𝑠
				)
				−
				𝛼
				𝑡
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			
				=
				𝑡
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			
				(
				𝛼
				−
				2
				+
				2
				𝑠
				)
				.
			

		
	

						This means that 
	
		
			

				(
			

			
				i
				i
			

			

				)
			

		
	
holds.
Theorem 7 (see [19]).  Let 
	
		
			

				𝑃
			

		
	
 be a normal cone in a real Banach space 
	
		
			

				𝐸
			

		
	
, 
	
		
			
				𝐴
				∶
				𝑃
				→
				𝑃
			

		
	
 an increasing 
	
		
			

				𝛾
			

			

				-
			

		
	
concave operator, and 
	
		
			
				𝐵
				∶
				𝑃
				→
				𝑃
			

		
	
 an increasing subhomogeneous operator. Assume that (i)there is 
	
		
			
				ℎ
				>
				𝜃
			

		
	
 such that 
	
		
			
				𝐴
				ℎ
				∈
				𝑃
			

			

				ℎ
			

		
	
 and 
	
		
			
				𝐵
				ℎ
				∈
				𝑃
			

			

				ℎ
			

		
	
;(ii)there exists a constant 
	
		
			

				𝛿
			

			

				0
			

			
				>
				0
			

		
	
 such that 
	
		
			
				𝐴
				𝑥
				≥
				𝛿
			

			

				0
			

			
				𝐵
				𝑥
			

		
	
, 
	
		
			
				∀
				𝑥
				∈
				𝑃
			

		
	
.Then the operator equation 
	
		
			
				𝐴
				𝑥
				+
				𝐵
				𝑥
				=
				𝑥
			

		
	
 has a unique solution 
	
		
			

				𝑥
			

			

				∗
			

		
	
 in 
	
		
			

				𝑃
			

			

				ℎ
			

		
	
. Moreover, constructing successively the sequence 
	
		
			

				𝑦
			

			

				𝑛
			

			
				=
				𝐴
				𝑦
			

			
				𝑛
				−
				1
			

			
				+
				𝐵
				𝑦
			

			
				𝑛
				−
				1
			

		
	
, 
	
		
			
				𝑛
				=
				1
				,
				2
				,
				…
			

		
	
, for any initial value 
	
		
			

				𝑦
			

			

				0
			

			
				∈
				𝑃
			

			

				ℎ
			

		
	
, we have 
	
		
			

				𝑦
			

			

				𝑛
			

			
				→
				𝑥
			

			

				∗
			

		
	
 as 
	
		
			
				𝑛
				→
				∞
			

		
	
.
3. Main Results
In this section, we will deal with the existence and uniqueness of positive solutions for problem (3). Let 
						
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			

				𝐺
			

			

				1
			

			
				2
				(
				𝑠
				,
				𝑠
				)
				=
			

			
				
			
			
				Γ
				(
				𝛼
				+
				1
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			
				(
				𝛼
				−
				1
				+
				𝑠
				)
				.
			

		
	

					It is obvious that 
						
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				𝐺
				(
				𝑡
				,
				𝑠
				)
				≤
				𝐺
			

			

				1
			

			
				[
				]
				.
				(
				𝑠
				,
				𝑠
				)
				,
				𝑡
				,
				𝑠
				∈
				0
				,
				1
			

		
	

					We consider the Banach space 
	
		
			
				𝐸
				=
				𝐶
				[
				[
				0
				,
				1
				]
				,
				ℝ
				]
			

		
	
 endowed with the norm defined by 
	
		
			
				‖
				𝑢
				‖
				=
				s
				u
				p
			

			
				0
				≤
				𝑡
				≤
				1
			

			
				|
				𝑢
				(
				𝑡
				)
				|
			

		
	
. Letting 
	
		
			
				𝑃
				=
				{
				𝑢
				∈
				𝐸
				∣
				𝑢
				(
				𝑡
				)
				≥
				0
				}
			

		
	
, then 
	
		
			

				𝑃
			

		
	
 is a cone in 
	
		
			

				𝐸
			

		
	
. Define an operator 
	
		
			
				ϝ
				∶
				𝐸
				→
				𝐸
			

		
	
 as 
						
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				
				(
				ϝ
				𝑢
				)
				(
				𝑡
				)
				=
			

			
				1
				0
			

			
				
				𝑓
				𝐺
				(
				𝑡
				,
				𝑠
				)
			

			
				𝜎
				(
				𝑠
				)
			

			
				(
				𝑠
				,
				𝑢
				(
				𝑠
				)
				)
				+
				𝑔
			

			
				𝜎
				(
				𝑠
				)
			

			
				
				(
				𝑠
				,
				𝑢
				(
				𝑠
				)
				)
				𝑑
				𝑠
				.
			

		
	

					Then 
	
		
			

				ϝ
			

		
	
 has a solution if and only if the operator 
	
		
			

				ϝ
			

		
	
 has a fixed point.
Theorem 8.  Let 
	
		
			

				𝑓
			

			

				𝑖
			

			
				,
				𝑔
			

			

				𝑖
			

			
				∈
				𝐶
				[
				𝐽
				×
				ℝ
			

			

				+
			

			
				,
				ℝ
			

			

				+
			

			

				]
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑁
			

		
	
. Suppose that the following conditions are satisfied: 
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				|
				|
				𝑓
			

			

				𝑖
			

			
				(
				𝑡
				,
				𝑢
				(
				𝑡
				)
				)
				−
				𝑓
			

			

				𝑖
			

			
				|
				|
				(
				𝑡
				,
				𝑣
				(
				𝑡
				)
				)
				≤
				𝑙
			

			

				𝑖
			

			
				|
				|
				|
				|
				,
				|
				|
				𝑔
				(
				𝑡
				)
				𝑢
				(
				𝑡
				)
				−
				𝑣
				(
				𝑡
				)
			

			

				𝑖
			

			
				(
				𝑡
				,
				𝑢
				(
				𝑡
				)
				)
				−
				𝑔
			

			

				𝑖
			

			
				|
				|
				≤
				(
				𝑡
				,
				𝑣
				(
				𝑡
				)
				)
			

			
				
			
			

				𝑙
			

			

				𝑖
			

			
				|
				|
				|
				|
				,
				
				(
				𝑡
				)
				𝑢
				(
				𝑡
				)
				−
				𝑣
				(
				𝑡
				)
				0
				<
			

			
				1
				0
			

			

				𝐺
			

			

				1
			

			
				
				𝑙
				(
				𝑠
				,
				𝑠
				)
			

			

				𝑖
			

			
				(
				𝑠
				)
				+
			

			
				
			
			

				𝑙
			

			

				𝑖
			

			
				
				(
				𝑠
				)
				𝑑
				𝑠
				<
				1
				,
			

		
	

						where
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			

				𝑙
			

			

				𝑖
			

			

				,
			

			
				
			
			

				𝑙
			

			

				𝑖
			

			
				
				∈
				𝐶
				𝐽
				,
				ℝ
			

			

				+
			

			
				
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑁
				.
			

		
	

						Then the problem (3) has a unique solution on 
	
		
			
				[
				0
				,
				1
				]
			

		
	
.
Proof. It follows from Lemma 6 that 
	
		
			
				ϝ
				∶
				𝑃
				→
				𝑃
			

		
	
. For 
	
		
			
				𝑡
				∈
				𝐽
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑁
			

		
	
, we set 
	
		
			
				m
				a
				x
			

			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑁
			

			
				s
				u
				p
			

			
				𝑡
				∈
				𝐽
			

			
				|
				𝑓
			

			

				𝑖
			

			
				(
				𝑡
				,
				0
				)
				|
				=
				𝑀
			

		
	
, 
	
		
			
				m
				a
				x
			

			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑁
			

			
				s
				u
				p
			

			
				𝑡
				∈
				𝐽
			

			
				|
				𝑔
			

			

				𝑖
			

			
				(
				𝑡
				,
				0
				)
				|
				=
			

			
				
			
			

				𝑀
			

		
	
, and 
	
		
			

				𝐵
			

			

				𝑟
			

			
				=
				{
				𝑢
				∈
				𝐶
				[
				𝐽
				,
				ℝ
			

			

				+
			

			
				]
				∶
				‖
				𝑢
				‖
				≤
				𝑟
				}
			

		
	
, where 
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				
				𝑟
				≥
				𝑀
				+
			

			
				
			
			
				𝑀
				
				∫
			

			
				1
				0
			

			

				𝐺
			

			

				1
			

			
				(
				𝑠
				,
				𝑠
				)
				𝑑
				𝑠
			

			
				
			
			
				1
				−
				m
				a
				x
			

			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑁
			

			

				∫
			

			
				1
				0
			

			

				𝐺
			

			

				1
			

			
				
				𝑙
				(
				𝑠
				,
				𝑠
				)
			

			

				𝑖
			

			
				(
				𝑠
				)
				+
			

			
				
			
			

				𝑙
			

			

				𝑖
			

			
				
				.
				(
				𝑠
				)
				𝑑
				𝑠
			

		
	
Step  1. We show that 
	
		
			
				ϝ
				(
				𝐵
			

			

				𝑟
			

			
				)
				⊂
				𝐵
			

			

				𝑟
			

		
	
.For 
	
		
			
				𝑢
				∈
				𝐵
			

			

				𝑟
			

		
	
 and 
	
		
			
				𝑡
				∈
				𝐽
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑁
			

		
	
, 
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			

				
			

			
				1
				0
			

			
				|
				|
				𝑓
				𝐺
				(
				𝑡
				,
				𝑠
				)
			

			

				𝑖
			

			
				(
				𝑠
				,
				𝑢
				(
				𝑠
				)
				)
				+
				𝑔
			

			

				𝑖
			

			
				|
				|
				≤
				
				(
				𝑠
				,
				𝑢
				(
				𝑠
				)
				)
				𝑑
				𝑠
			

			
				1
				0
			

			

				𝐺
			

			

				1
			

			
				
				|
				|
				𝑓
				(
				𝑠
				,
				𝑠
				)
			

			

				𝑖
			

			
				(
				𝑠
				,
				𝑢
				(
				𝑠
				)
				)
				−
				𝑓
			

			

				𝑖
			

			
				|
				|
				+
				|
				|
				𝑓
				(
				𝑠
				,
				0
				)
			

			

				𝑖
			

			
				|
				|
				
				+
				
				(
				𝑠
				,
				0
				)
				𝑑
				𝑠
			

			
				1
				0
			

			

				𝐺
			

			

				1
			

			
				(
				
				|
				|
				𝑔
				𝑠
				,
				𝑠
				)
			

			

				𝑖
			

			
				(
				𝑠
				,
				𝑢
				(
				𝑠
				)
				)
				−
				𝑔
			

			

				𝑖
			

			
				(
				|
				|
				+
				|
				|
				𝑔
				𝑠
				,
				0
				)
			

			

				𝑖
			

			
				(
				|
				|
				
				𝑠
				,
				0
				)
				𝑑
				𝑠
				≤
				𝑟
				m
				a
				x
			

			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑁
			

			

				
			

			
				1
				0
			

			

				𝐺
			

			

				1
			

			
				
				𝑙
				(
				𝑠
				,
				𝑠
				)
			

			

				𝑖
			

			
				(
				𝑠
				)
				+
			

			
				
			
			

				𝑙
			

			

				𝑖
			

			
				
				+
				
				(
				𝑠
				)
				𝑑
				𝑠
				𝑀
				+
			

			
				
			
			
				𝑀
				
				
			

			
				1
				0
			

			

				𝐺
			

			

				1
			

			
				(
				𝑠
				,
				𝑠
				)
				𝑑
				𝑠
				≤
				𝑟
				,
			

		
	

						which implies that 
	
		
			
				|
				(
				ϝ
				𝑢
				)
				(
				𝑡
				)
				|
				≤
				𝑟
			

		
	
. Thus, 
	
		
			
				‖
				ϝ
				𝑢
				‖
				≤
				𝑟
			

		
	
. Therefore, 
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				ϝ
				
				𝐵
			

			

				𝑟
			

			
				
				⊂
				𝐵
			

			

				𝑟
			

			

				.
			

		
	
Step  2. We show that 
	
		
			

				ϝ
			

		
	
 is a contraction mapping.For 
	
		
			
				𝑢
				,
				𝑣
				∈
				𝐵
			

			

				𝑟
			

		
	
 and for each 
	
		
			
				𝑡
				∈
				𝐽
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑁
			

		
	
, we have 
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			

				
			

			
				1
				0
			

			
				|
				|
				𝑓
				𝐺
				(
				𝑡
				,
				𝑠
				)
			

			

				𝑖
			

			
				(
				𝑠
				,
				𝑢
				(
				𝑠
				)
				)
				−
				𝑓
			

			

				𝑖
			

			
				|
				|
				+
				
				(
				𝑠
				,
				𝑣
				(
				𝑠
				)
				)
				𝑑
				𝑠
			

			
				1
				0
			

			
				|
				|
				𝑔
				𝐺
				(
				𝑡
				,
				𝑠
				)
			

			

				𝑖
			

			
				(
				𝑠
				,
				𝑢
				(
				𝑠
				)
				)
				−
				𝑔
			

			

				𝑖
			

			
				|
				|
				≤
				
				(
				𝑠
				,
				𝑣
				(
				𝑠
				)
				)
				𝑑
				𝑠
			

			
				1
				0
			

			

				𝐺
			

			

				1
			

			
				(
				𝑠
				,
				𝑠
				)
				𝑙
			

			

				𝑖
			

			
				(
				|
				|
				|
				|
				+
				
				𝑠
				)
				𝑢
				(
				𝑠
				)
				−
				𝑣
				(
				𝑠
				)
				𝑑
				𝑠
			

			
				1
				0
			

			

				𝐺
			

			

				1
			

			
				(
				𝑠
				,
				𝑠
				)
			

			
				
			
			

				𝑙
			

			

				𝑖
			

			
				|
				|
				|
				|
				≤
				
				(
				𝑠
				)
				𝑢
				(
				𝑠
				)
				−
				𝑣
				(
				𝑠
				)
				𝑑
				𝑠
			

			
				1
				0
			

			

				𝐺
			

			

				1
			

			
				
				𝑙
				(
				𝑠
				,
				𝑠
				)
			

			

				𝑖
			

			
				(
				𝑠
				)
				+
			

			
				
			
			

				𝑙
			

			

				𝑖
			

			
				
				(
				𝑠
				)
				𝑑
				𝑠
				‖
				𝑢
				−
				𝑣
				‖
				.
			

		
	

						This, together with 
	
		
			
				∫
				0
				<
			

			
				1
				0
			

			

				𝐺
			

			

				1
			

			
				(
				𝑠
				,
				𝑠
				)
				(
				𝑙
			

			

				𝑖
			

			
				(
				𝑠
				)
				+
			

			
				
			
			

				𝑙
			

			

				𝑖
			

			
				(
				𝑠
				)
				)
				𝑑
				𝑠
				<
				1
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑁
			

		
	
, yields that 
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				(
				ϝ
				𝑢
				)
				(
				𝑡
				)
				−
				(
				ϝ
				𝑣
				)
				(
				𝑡
				)
				≤
				𝑘
				‖
				𝑢
				−
				𝑣
				‖
				,
			

		
	

						where
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				0
				<
				𝑘
				=
				m
				a
				x
			

			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑁
			

			

				
			

			
				1
				0
			

			

				𝐺
			

			

				1
			

			
				
				𝑙
				(
				𝑠
				,
				𝑠
				)
			

			

				𝑖
			

			
				(
				𝑠
				)
				+
			

			
				
			
			

				𝑙
			

			

				𝑖
			

			
				
				(
				𝑠
				)
				𝑑
				𝑠
				<
				1
				.
			

		
	

						Thus,
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				‖
				ϝ
				𝑢
				−
				ϝ
				𝑣
				‖
				≤
				𝑘
				‖
				𝑢
				−
				𝑣
				‖
				.
			

		
	

						This means that 
	
		
			

				ϝ
			

		
	
 is a contraction mapping.It follows from Banach’s contraction mapping that 
	
		
			

				ϝ
			

		
	
 has a unique fixed point in 
	
		
			

				𝐵
			

			

				𝑟
			

		
	
. Therefore, the problem (3) has a unique solution.
Corollary 9.  Let 
	
		
			

				𝑓
			

			

				𝑖
			

			
				∈
				𝐶
				[
				𝐽
				×
				ℝ
			

			

				+
			

			
				,
				ℝ
			

			

				+
			

			

				]
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑁
			

		
	
. Suppose that the following conditions are satisfied: 
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				|
				|
				𝑓
			

			

				𝑖
			

			
				(
				𝑡
				,
				𝑢
				(
				𝑡
				)
				)
				−
				𝑓
			

			

				𝑖
			

			
				|
				|
				(
				𝑡
				,
				𝑣
				(
				𝑡
				)
				)
				≤
				𝑙
			

			

				𝑖
			

			
				|
				|
				|
				|
				,
				
				(
				𝑡
				)
				𝑢
				(
				𝑡
				)
				−
				𝑣
				(
				𝑡
				)
				0
				<
			

			
				1
				0
			

			

				𝐺
			

			

				1
			

			
				(
				𝑠
				,
				𝑠
				)
				𝑙
			

			

				𝑖
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				<
				1
				,
			

		
	

						where 
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			

				𝑙
			

			

				𝑖
			

			
				
				∈
				𝐶
				𝐽
				,
				ℝ
			

			

				+
			

			
				
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑁
				.
			

		
	

						Then the following fractional switched system 
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			

				𝑐
			

			

				𝐷
			

			
				𝛼
				0
				+
			

			
				𝑢
				(
				𝑡
				)
				+
				𝑓
			

			
				𝜎
				(
				𝑡
				)
			

			
				[
				]
				,
				(
				𝑡
				,
				𝑢
				(
				𝑡
				)
				)
				=
				0
				,
				𝑡
				∈
				𝐽
				=
				0
				,
				1
				𝑢
				(
				0
				)
				=
				𝑢
			

			
				
				
			

			
				
				(
				0
				)
				=
				0
				,
				𝑢
				(
				1
				)
				=
			

			
				1
				0
			

			
				𝑢
				(
				𝑠
				)
				𝑑
				𝑠
				,
			

		
	

						has a unique solution on 
	
		
			
				[
				0
				,
				1
				]
			

		
	
.
Theorem 10.  Assume that; 
	
		
			

				(
			

			

				H
			

			

				1
			

			

				)
			

		
	

	
		
			

				𝑓
			

			

				𝑖
			

			
				,
				𝑔
			

			

				𝑖
			

			
				∈
				𝐶
				[
				𝐽
				×
				ℝ
			

			

				+
			

			
				,
				ℝ
			

			

				+
			

			

				]
			

		
	
 and 
	
		
			

				𝑓
			

			

				𝑖
			

			
				(
				𝑡
				,
				𝑥
				)
			

		
	
, 
	
		
			

				𝑔
			

			

				𝑖
			

			
				(
				𝑡
				,
				𝑥
				)
			

		
	
 are increasing in 
	
		
			

				𝑥
			

		
	
 for 
	
		
			
				𝑥
				∈
				ℝ
			

			

				+
			

		
	
, 
	
		
			

				𝑔
			

			

				𝑖
			

			
				(
				𝑡
				,
				0
				)
				≠
				0
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑁
			

		
	
;
	
		
			

				(
			

			

				H
			

			

				2
			

			

				)
			

		
	

	
		
			

				𝑔
			

			

				𝑖
			

			
				(
				𝑡
				,
				𝜆
				𝑥
				)
				≥
				𝜆
				𝑔
			

			

				𝑖
			

			
				(
				𝑡
				,
				𝑥
				)
			

		
	
 for 
	
		
			
				𝜆
				∈
				(
				0
				,
				1
				)
				,
				𝑡
				∈
				𝐽
				,
				𝑥
				∈
				ℝ
			

			

				+
			

		
	
, and there exists a constant 
	
		
			
				𝛾
				∈
				(
				0
				,
				1
				)
			

		
	
 such that 
	
		
			

				𝑓
			

			

				𝑖
			

			
				(
				𝑡
				,
				𝜆
				𝑥
				)
				≥
				𝜆
			

			

				𝛾
			

			

				𝑓
			

			

				𝑖
			

			
				(
				𝑡
				,
				𝑥
				)
				,
				∀
				𝑡
				∈
				𝐽
				,
				𝜆
				∈
				(
				0
				,
				1
				)
				,
				𝑥
				∈
				ℝ
			

			

				+
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑁
			

		
	
;
	
		
			

				(
			

			

				H
			

			

				3
			

			

				)
			

		
	
there exists a constant 
	
		
			

				𝛿
			

			

				0
			

			
				>
				0
			

		
	
 such that 
	
		
			

				𝑓
			

			

				𝑖
			

			
				(
				𝑡
				,
				𝑥
				)
				≥
				𝛿
			

			

				0
			

			

				𝑔
			

			

				𝑖
			

			
				(
				𝑡
				,
				𝑥
				)
			

		
	
, 
	
		
			
				𝑡
				∈
				𝐽
				,
				𝑥
				∈
				ℝ
			

			

				+
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑁
			

		
	
.Then problem (3) has a unique solution 
	
		
			

				𝑢
			

			

				∗
			

		
	
 in 
	
		
			

				𝑃
			

			

				ℎ
			

		
	
, where 
	
		
			
				ℎ
				(
				𝑡
				)
				=
				𝑡
				,
				𝑡
				∈
				𝐽
			

		
	
. Moreover, for any initial value 
	
		
			

				𝑢
			

			

				0
			

			
				∈
				𝑃
			

			

				ℎ
			

		
	
, constructing successively the sequence 
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			

				𝑢
			

			
				𝑛
				+
				1
			

			
				
				(
				𝑡
				)
				=
			

			
				1
				0
			

			
				
				𝑓
				𝐺
				(
				𝑡
				,
				𝑠
				)
			

			
				𝜎
				(
				𝑠
				)
			

			
				
				𝑠
				,
				𝑢
			

			

				𝑛
			

			
				
				(
				𝑠
				)
				+
				𝑔
			

			
				𝜎
				(
				𝑠
				)
			

			
				
				𝑠
				,
				𝑢
			

			

				𝑛
			

			
				(
				𝑠
				)
				
				
				𝑑
				𝑠
				,
				𝑛
				=
				0
				,
				1
				,
				2
				,
				…
				,
			

		
	

						we have 
	
		
			

				𝑢
			

			

				𝑛
			

			
				(
				𝑡
				)
				→
				𝑢
			

			

				∗
			

			
				(
				𝑡
				)
			

		
	
 as 
	
		
			
				𝑛
				→
				∞
			

		
	
.
Proof. Define the two operators 
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			
				
				𝐴
				𝑢
				(
				𝑡
				)
				=
			

			
				1
				0
			

			
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝑓
			

			
				𝜎
				(
				𝑠
				)
			

			
				
				(
				𝑠
				,
				𝑢
				(
				𝑠
				)
				)
				𝑑
				𝑠
				,
				𝐵
				𝑢
				(
				𝑡
				)
				=
			

			
				1
				0
			

			
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝑔
			

			
				𝜎
				(
				𝑠
				)
			

			
				(
				𝑠
				,
				𝑢
				(
				𝑠
				)
				)
				𝑑
				𝑠
				.
			

		
	

						From Lemma 6, we have 
	
		
			
				𝐴
				∶
				𝑃
				→
				𝑃
			

		
	
 and 
	
		
			
				𝐵
				∶
				𝑃
				→
				𝑃
			

		
	
. It is obvious that 
	
		
			

				𝑢
			

		
	
 is the solution of problem (3) if and only if 
	
		
			
				𝑢
				=
				𝐴
				𝑢
				+
				𝐵
				𝑢
			

		
	
. It follows from 
	
		
			

				(
			

			

				H
			

			

				1
			

			

				)
			

		
	
 that 
	
		
			

				𝐴
			

		
	
 and 
	
		
			

				𝐵
			

		
	
 are two increasing operators. Thus, for 
	
		
			
				𝑢
				,
				𝑣
				∈
				𝑃
				,
				𝑢
				≥
				𝑣
			

		
	
, we have 
	
		
			
				𝐴
				𝑢
				≥
				𝐴
				𝑣
			

		
	
 and 
	
		
			
				𝐵
				𝑢
				≥
				𝐵
				𝑣
			

		
	
.Step 1. We show that 
	
		
			

				𝐴
			

		
	
 is a 
	
		
			

				𝛾
			

		
	
-
	
		
			
				c
				o
				n
				c
				a
				v
				e
			

		
	
operator and 
	
		
			

				𝐵
			

		
	
 is a subhomogeneous operator.In fact, for 
	
		
			
				𝜆
				∈
				(
				0
				,
				1
				)
				,
				𝑢
				∈
				𝑃
				,
				𝑡
				∈
				𝐽
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑁
			

		
	
, from 
	
		
			

				(
			

			

				H
			

			

				2
			

			

				)
			

		
	
, we have 
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			

				
			

			
				1
				0
			

			
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝑓
			

			

				𝑖
			

			
				(
				𝑠
				,
				𝜆
				𝑢
				(
				𝑠
				)
				)
				𝑑
				𝑠
				≥
				𝜆
			

			

				𝛾
			

			

				
			

			
				1
				0
			

			
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝑓
			

			

				𝑖
			

			
				(
				𝑠
				,
				𝑢
				(
				𝑠
				)
				)
				𝑑
				𝑠
				,
			

		
	

						which yields that 
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				𝐴
				(
				𝜆
				𝑢
				)
				(
				𝑡
				)
				≥
				𝜆
			

			

				𝛾
			

			
				𝐴
				𝑢
				(
				𝑡
				)
				.
			

		
	

						Thus, 
	
		
			

				𝐴
			

		
	
 is a 
	
		
			

				𝛾
			

			
				-
				c
				o
				n
				c
				a
				v
				e
			

		
	
operator. By a closely similar way, we can see that 
	
		
			

				𝐵
			

		
	
 is a subhomogeneous operator. Step 2. We show that 
	
		
			
				𝐴
				ℎ
				∈
				𝑃
			

			

				ℎ
			

		
	
 and 
	
		
			
				𝐵
				ℎ
				∈
				𝑃
			

			

				ℎ
			

		
	
.From Lemma 6 and 
	
		
			

				(
			

			

				H
			

			

				1
			

			

				)
			

		
	
, we have, for 
	
		
			
				𝑡
				∈
				𝐽
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑁
			

		
	
, 
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			

				
			

			
				1
				0
			

			
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝑓
			

			

				𝑖
			

			
				≤
				2
				(
				𝑠
				,
				ℎ
				(
				𝑠
				)
				)
				𝑑
				𝑠
			

			
				
			
			
				×
				
				Γ
				(
				𝛼
				+
				1
				)
				ℎ
				(
				𝑡
				)
			

			
				1
				0
			

			
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			
				(
				𝛼
				−
				1
				+
				𝑠
				)
				𝑓
			

			

				𝑖
			

			
				
				(
				𝑠
				,
				1
				)
				𝑑
				𝑠
				,
			

			
				1
				0
			

			
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝑓
			

			

				𝑖
			

			
				≥
				1
				(
				𝑠
				,
				ℎ
				(
				𝑠
				)
				)
				𝑑
				𝑠
			

			
				
			
			
				×
				
				Γ
				(
				𝛼
				+
				1
				)
				ℎ
				(
				𝑡
				)
			

			
				1
				0
			

			
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			
				(
				𝛼
				−
				2
				+
				2
				𝑠
				)
				𝑓
			

			

				𝑖
			

			
				(
				𝑠
				,
				0
				)
				𝑑
				𝑠
				.
			

		
	

						For 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑁
			

		
	
, let 
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			

				𝑚
			

			

				𝑖
			

			
				=
				1
			

			
				
			
			
				
				Γ
				(
				𝛼
				+
				1
				)
			

			
				1
				0
			

			
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			
				(
				𝛼
				−
				2
				+
				2
				𝑠
				)
				𝑓
			

			

				𝑖
			

			
				(
				𝑠
				,
				0
				)
				𝑑
				𝑠
				,
			

			
				
			
			

				𝑚
			

			

				𝑖
			

			
				=
				2
			

			
				
			
			
				Γ
				
				(
				𝛼
				+
				1
				)
			

			
				1
				0
			

			
				1
				−
				𝑠
			

			
				𝛼
				−
				1
			

			
				(
				𝛼
				−
				1
				+
				𝑠
				)
				𝑓
			

			

				𝑖
			

			
				(
				𝑠
				,
				1
				)
				𝑑
				𝑠
				.
			

		
	

						It follows from 
	
		
			
				𝑔
				(
				𝑡
				,
				0
				)
				≠
				0
			

		
	
 that 
	
		
			

				∫
			

			
				1
				0
			

			

				𝑓
			

			

				𝑖
			

			
				∫
				(
				𝑠
				,
				1
				)
				𝑑
				𝑠
				≥
			

			
				1
				0
			

			

				𝑓
			

			

				𝑖
			

			
				(
				𝑠
				,
				0
				)
				𝑑
				𝑠
				≥
				𝛿
			

			

				0
			

			

				∫
			

			
				1
				0
			

			

				𝑔
			

			

				𝑖
			

			
				(
				𝑠
				,
				0
				)
				𝑑
				𝑠
				>
				0
			

		
	
.Thus, 
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			

				𝑚
			

			

				𝑖
			

			
				>
				0
				,
			

			
				
			
			

				𝑚
			

			

				𝑖
			

			
				>
				0
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑁
				.
			

		
	

						Letting 
	
		
			

				∼
			

			
				𝑚
				=
				m
				i
				n
				{
				𝑚
			

			

				𝑖
			

			
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑁
				}
			

		
	
 and 
	
		
			
				
				𝑚
				=
				m
				a
				x
				{
			

			
				
			
			

				𝑚
			

			

				𝑖
			

			
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑁
				}
			

		
	
, then 
	
		
			

				∼
			

			
				𝑚
				>
				0
			

		
	
 and 
	
		
			
				
				𝑚
				>
				0
			

		
	
. Therefore, 
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			

				∼
			

			
				𝑚
				ℎ
				(
				𝑡
				)
				≤
				𝐴
				ℎ
				(
				𝑡
				)
				≤
				
				𝑚
				ℎ
				(
				𝑡
				)
				,
			

		
	

						which implies that 
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				𝐴
				ℎ
				∈
				𝑃
			

			

				ℎ
			

			

				.
			

		
	

						Similarly, we have 
	
		
			
				𝐵
				ℎ
				∈
				𝑃
			

			

				ℎ
			

		
	
.Step 3. There exists a constant 
	
		
			

				𝛿
			

			

				0
			

			
				>
				0
			

		
	
 such that 
	
		
			
				𝐴
				𝑢
				≥
				𝛿
			

			

				0
			

			
				𝐵
				𝑢
			

		
	
, 
	
		
			
				∀
				𝑢
				∈
				𝑃
			

		
	
.For 
	
		
			
				𝑢
				∈
				𝑃
			

		
	
 and 
	
		
			
				𝑡
				∈
				𝐽
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑁
			

		
	
, by 
	
		
			

				(
			

			

				H
			

			

				3
			

			

				)
			

		
	
, we have 
							
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			

				
			

			
				1
				0
			

			
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝑓
			

			

				𝑖
			

			
				(
				𝑠
				,
				𝑢
				(
				𝑠
				)
				)
				𝑑
				𝑠
				≥
				𝛿
			

			

				0
			

			

				
			

			
				1
				0
			

			
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝑔
			

			

				𝑖
			

			
				(
				𝑠
				,
				𝑢
				(
				𝑠
				)
				)
				𝑑
				𝑠
				.
			

		
	

						This means that 
							
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			
				𝐴
				𝑢
				≥
				𝛿
			

			

				0
			

			
				𝐵
				𝑢
				,
				𝑢
				∈
				𝑃
				.
			

		
	

						Therefore, the conditions of Theorem 7 are satisfied. By means of Theorem 7, we obtain that the operator equation 
	
		
			
				𝐴
				𝑢
				+
				𝐵
				𝑢
				=
				𝑢
			

		
	
 has a unique solution 
	
		
			

				𝑢
			

			

				∗
			

		
	
 in 
	
		
			

				𝑃
			

			

				ℎ
			

		
	
. Moreover, for any initial value 
	
		
			

				𝑢
			

			

				0
			

			
				∈
				𝑃
			

			

				ℎ
			

		
	
, constructing successively the sequence 
							
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			

				𝑢
			

			
				𝑛
				+
				1
			

			
				
				(
				𝑡
				)
				=
			

			
				1
				0
			

			
				
				𝑓
				𝐺
				(
				𝑡
				,
				𝑠
				)
			

			
				𝜎
				(
				𝑠
				)
			

			
				
				𝑠
				,
				𝑢
			

			

				𝑛
			

			
				
				(
				𝑠
				)
				+
				𝑔
			

			
				𝜎
				(
				𝑠
				)
			

			
				
				𝑠
				,
				𝑢
			

			

				𝑛
			

			
				(
				𝑠
				)
				
				
				𝑑
				𝑠
				,
				𝑛
				=
				0
				,
				1
				,
				2
				,
				…
				,
			

		
	

						we have 
	
		
			

				𝑢
			

			

				𝑛
			

			
				(
				𝑡
				)
				→
				𝑢
			

			

				∗
			

			
				(
				𝑡
				)
			

		
	
 as 
	
		
			
				𝑛
				→
				∞
			

		
	
.
In Theorem 10, if we let 
	
		
			

				𝐵
			

		
	
 be a null operator, we have the following conclusion.
Corollary 11.  Assume that; 
	
		
			

				(
			

			

				H
			

			

				4
			

			

				)
			

		
	

	
		
			

				𝑓
			

			

				𝑖
			

			
				∈
				𝐶
				[
				𝐽
				×
				ℝ
			

			

				+
			

			
				,
				ℝ
			

			

				+
			

			

				]
			

		
	
 and 
	
		
			

				𝑓
			

			

				𝑖
			

			
				(
				𝑡
				,
				𝑥
				)
			

		
	
 is increasing in 
	
		
			

				𝑥
			

		
	
 for 
	
		
			
				𝑥
				∈
				ℝ
			

			

				+
			

		
	
, 
	
		
			

				𝑓
			

			

				𝑖
			

			
				(
				𝑡
				,
				0
				)
				≠
				0
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑁
			

		
	
;
	
		
			

				(
			

			

				H
			

			

				5
			

			

				)
			

		
	
there exists a constant 
	
		
			
				𝛾
				∈
				(
				0
				,
				1
				)
			

		
	
 such that 
	
		
			

				𝑓
			

			

				𝑖
			

			
				(
				𝑡
				,
				𝜆
				𝑥
				)
				≥
				𝜆
			

			

				𝛾
			

			

				𝑓
			

			

				𝑖
			

			
				(
				𝑡
				,
				𝑥
				)
				,
				∀
				𝑡
				∈
				𝐽
				,
				𝜆
				∈
				(
				0
				,
				1
				)
				,
				𝑥
				∈
				ℝ
			

			

				+
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑁
			

		
	
. Then the following fractional switched system 
							
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			

				𝑐
			

			

				𝐷
			

			
				𝛼
				0
				+
			

			
				𝑢
				(
				𝑡
				)
				+
				𝑓
			

			
				𝜎
				(
				𝑡
				)
			

			
				[
				]
				,
				(
				𝑡
				,
				𝑢
				(
				𝑡
				)
				)
				=
				0
				,
				𝑡
				∈
				𝐽
				=
				0
				,
				1
				𝑢
				(
				0
				)
				=
				𝑢
			

			
				
				
			

			
				
				(
				0
				)
				=
				0
				,
				𝑢
				(
				1
				)
				=
			

			
				1
				0
			

			
				𝑢
				(
				𝑠
				)
				𝑑
				𝑠
				,
			

		
	

						has a unique solution 
	
		
			

				𝑢
			

			

				∗
			

		
	
 in 
	
		
			

				𝑃
			

			

				ℎ
			

		
	
, where 
	
		
			
				ℎ
				(
				𝑡
				)
				=
				𝑡
				,
				𝑡
				∈
				𝐽
			

		
	
. Moreover, for any initial value 
	
		
			

				𝑢
			

			

				0
			

			
				∈
				𝑃
			

			

				ℎ
			

		
	
, constructing successively the sequence 
							
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			

				𝑢
			

			
				𝑛
				+
				1
			

			
				
				(
				𝑡
				)
				=
			

			
				1
				0
			

			
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝑓
			

			
				𝜎
				(
				𝑠
				)
			

			
				
				𝑠
				,
				𝑢
			

			

				𝑛
			

			
				
				(
				𝑠
				)
				𝑑
				𝑠
				,
				𝑛
				=
				0
				,
				1
				,
				2
				,
				…
				,
			

		
	

						we have 
	
		
			

				𝑢
			

			

				𝑛
			

			
				(
				𝑡
				)
				→
				𝑢
			

			

				∗
			

			
				(
				𝑡
				)
			

		
	
 as 
	
		
			
				𝑛
				→
				∞
			

		
	
.
4. Examples
Example 1. Consider the following boundary value problem:
							
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			

				𝑐
			

			

				𝐷
			

			
				𝛼
				0
				+
			

			
				𝑢
				(
				𝑡
				)
				+
				𝑓
			

			
				𝜎
				(
				𝑡
				)
			

			
				(
				𝑡
				,
				𝑢
				(
				𝑡
				)
				)
				+
				𝑔
			

			
				𝜎
				(
				𝑡
				)
			

			
				[
				]
				,
				(
				𝑡
				,
				𝑢
				(
				𝑡
				)
				)
				=
				0
				,
				𝑡
				∈
				𝐽
				=
				0
				,
				1
				𝑢
				(
				0
				)
				=
				𝑢
			

			
				
				
			

			
				
				(
				0
				)
				=
				0
				,
				𝑢
				(
				1
				)
				=
			

			
				1
				0
			

			
				𝑢
				(
				𝑠
				)
				𝑑
				𝑠
				,
			

		
	

						where 
	
		
			
				𝛼
				=
				5
				/
				2
			

		
	
, 
	
		
			
				𝜎
				(
				𝑡
				)
				∶
				𝐽
				→
				𝑀
				=
				{
				1
				,
				2
				}
			

		
	
 is a finite switching signal,
							
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			

				𝑓
			

			

				1
			

			
				1
				(
				𝑡
				,
				𝑥
				)
				=
			

			
				
			
			
				4
				(
				𝑡
				+
				2
				)
			

			

				2
			

			

				𝑥
			

			
				
			
			
				𝑔
				1
				+
				𝑥
				+
				1
				,
			

			

				1
			

			
				1
				(
				𝑡
				,
				𝑥
				)
				=
			

			
				
			
			
				1
				6
				s
				i
				n
			

			

				2
			

			
				𝑥
				+
				𝑡
			

			

				2
			

			
				,
				𝑓
			

			

				2
			

			
				1
				(
				𝑡
				,
				𝑥
				)
				=
			

			
				
			
			
				8
				(
				𝑡
				+
				2
				)
			

			

				2
			

			

				𝑥
			

			
				
			
			
				𝑔
				1
				+
				𝑥
				+
				1
				,
			

			

				2
			

			
				1
				(
				𝑡
				,
				𝑥
				)
				=
			

			
				
			
			
				3
				2
				s
				i
				n
			

			

				2
			

			
				𝑥
				+
				𝑡
			

			

				2
			

			

				.
			

		
	

						Thus, 
							
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			

				𝑓
			

			

				𝑖
			

			
				,
				𝑔
			

			

				𝑖
			

			
				
				∈
				𝐶
				𝐽
				×
				ℝ
			

			

				+
			

			
				,
				ℝ
			

			

				+
			

			
				
				,
				𝑖
				=
				1
				,
				2
				.
			

		
	

						By computation, we deduce that 
							
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			
				|
				|
				𝑓
			

			

				1
			

			
				
				𝑡
				,
				𝑥
			

			

				1
			

			
				
				−
				𝑓
			

			

				1
			

			
				
				𝑡
				,
				𝑥
			

			

				2
			

			
				
				|
				|
				≤
				1
			

			
				
			
			
				|
				|
				𝑥
				1
				6
			

			

				2
			

			
				−
				𝑥
			

			

				1
			

			
				|
				|
				,
				|
				|
				𝑔
			

			

				1
			

			
				
				𝑡
				,
				𝑥
			

			

				1
			

			
				
				−
				𝑔
			

			

				1
			

			
				
				𝑡
				,
				𝑥
			

			

				2
			

			
				
				|
				|
				≤
				1
			

			
				
			
			
				|
				|
				𝑥
				1
				6
			

			

				2
			

			
				−
				𝑥
			

			

				1
			

			
				|
				|
				,
				|
				|
				𝑓
			

			

				2
			

			
				
				𝑡
				,
				𝑥
			

			

				1
			

			
				
				−
				𝑓
			

			

				2
			

			
				
				𝑡
				,
				𝑥
			

			

				2
			

			
				
				|
				|
				≤
				1
			

			
				
			
			
				|
				|
				𝑥
				3
				2
			

			

				2
			

			
				−
				𝑥
			

			

				1
			

			
				|
				|
				,
				|
				|
				𝑔
			

			

				2
			

			
				
				𝑡
				,
				𝑥
			

			

				1
			

			
				
				−
				𝑔
			

			

				2
			

			
				
				𝑡
				,
				𝑥
			

			

				2
			

			
				
				|
				|
				≤
				1
			

			
				
			
			
				|
				|
				𝑥
				3
				2
			

			

				2
			

			
				−
				𝑥
			

			

				1
			

			
				|
				|
				.
			

		
	

						On the other hand, 
							
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			

				
			

			
				1
				0
			

			

				𝐺
			

			

				1
			

			
				
				𝑙
				(
				𝑠
				,
				𝑠
				)
			

			

				1
			

			
				(
				𝑠
				)
				+
			

			
				
			
			

				𝑙
			

			

				1
			

			
				
				=
				
				(
				𝑠
				)
				𝑑
				𝑠
			

			
				1
				0
			

			
				2
				(
				1
				−
				𝑠
				)
			

			
				(
				5
				/
				2
				)
				−
				1
			

			
				(
				(
				5
				/
				2
				)
				−
				1
				+
				𝑠
				)
			

			
				
			
			
				Γ
				
				1
				(
				(
				5
				/
				2
				)
				+
				1
				)
			

			
				
			
			
				+
				1
				1
				6
			

			
				
			
			
				
				=
				1
				1
				6
				𝑑
				𝑠
			

			
				
			
			
				
				4
				Γ
				(
				7
				/
				2
				)
			

			
				1
				0
			

			
				(
				1
				−
				𝑠
				)
			

			
				3
				/
				2
			

			
				
				3
			

			
				
			
			
				2
				
				≤
				1
				+
				𝑠
				𝑑
				𝑠
			

			
				
			
			
				
				4
				Γ
				(
				7
				/
				2
				)
			

			
				1
				0
			

			
				(
				1
				−
				𝑠
				)
			

			
				3
				/
				2
			

			
				
				3
			

			
				
			
			
				2
				
				=
				1
				+
				1
				𝑑
				𝑠
			

			
				
			
			
				3
				√
			

			
				
			
			
				𝜋
				×
				2
			

			
				
			
			
				5
				
				<
				1
				,
			

			
				1
				0
			

			

				𝐺
			

			

				1
			

			
				
				𝑙
				(
				𝑠
				,
				𝑠
				)
			

			

				1
			

			
				(
				𝑠
				)
				+
			

			
				
			
			

				𝑙
			

			

				1
			

			
				
				=
				
				(
				𝑠
				)
				𝑑
				𝑠
			

			
				1
				0
			

			
				2
				(
				1
				−
				𝑠
				)
			

			
				(
				5
				/
				2
				)
				−
				1
			

			
				(
				(
				5
				/
				2
				)
				−
				1
				+
				𝑠
				)
			

			
				
			
			
				
				1
				Γ
				(
				(
				5
				/
				2
				)
				+
				1
				)
			

			
				
			
			
				+
				1
				3
				2
			

			
				
			
			
				
				=
				1
				3
				2
				𝑑
				𝑠
			

			
				
			
			
				3
				√
			

			
				
			
			
				𝜋
				×
				1
			

			
				
			
			
				5
				<
				1
				.
			

		
	

						Hence, by Theorem 8, BVP (41) has a unique positive solution on 
	
		
			
				[
				0
				,
				1
				]
			

		
	
.
Example 2. Consider the following boundary value problem:
							
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			
				𝑐
				𝐷
			

			
				𝛼
				0
				+
			

			
				𝑢
				(
				𝑡
				)
				+
				𝑓
			

			
				𝜎
				(
				𝑡
				)
			

			
				(
				𝑡
				,
				𝑢
				(
				𝑡
				)
				)
				+
				𝑔
			

			
				𝜎
				(
				𝑡
				)
			

			
				[
				]
				,
				(
				𝑡
				,
				𝑢
				(
				𝑡
				)
				)
				=
				0
				,
				𝑡
				∈
				𝐽
				=
				0
				,
				1
				𝑢
				(
				0
				)
				=
				𝑢
			

			
				
				
			

			
				
				(
				0
				)
				=
				0
				,
				𝑢
				(
				1
				)
				=
			

			
				1
				0
			

			
				𝑢
				(
				𝑠
				)
				𝑑
				𝑠
				,
			

		
	

						where 
	
		
			
				𝛼
				=
				5
				/
				2
			

		
	
, 
	
		
			
				𝜎
				(
				𝑡
				)
				∶
				𝐽
				→
				{
				1
				,
				2
				,
				3
				}
			

		
	
 is a finite switching signal, 
							
	
 		
 			
				(
				4
				7
				)
			
 		
	

	
		
			

				𝑓
			

			

				1
			

			
				(
				𝑡
				,
				𝑥
				)
				=
				𝑥
			

			
				1
				/
				3
			

			
				+
				𝑡
			

			

				2
			

			
				𝑔
				+
				𝑐
				,
			

			

				1
			

			
				𝑥
				(
				𝑡
				,
				𝑥
				)
				=
			

			
				
			
			
				
				1
				+
				𝑡
			

			

				2
			

			
				
				𝑓
				(
				1
				+
				𝑥
				)
				+
				𝑏
				−
				𝑐
				,
			

			

				2
			

			
				(
				𝑡
				,
				𝑥
				)
				=
				2
				𝑥
			

			
				1
				/
				3
			

			
				+
				𝑡
			

			

				2
			

			
				𝑔
				+
				2
				𝑐
				,
			

			

				2
			

			
				(
				𝑡
				,
				𝑥
				)
				=
				2
				𝑥
			

			
				
			
			
				
				1
				+
				𝑡
			

			

				2
			

			
				
				𝑓
				(
				1
				+
				𝑥
				)
				+
				2
				(
				𝑏
				−
				𝑐
				)
				,
			

			

				3
			

			
				(
				𝑡
				,
				𝑥
				)
				=
				3
				𝑥
			

			
				1
				/
				3
			

			
				+
				𝑡
			

			

				2
			

			
				𝑔
				+
				3
				𝑐
				,
			

			

				3
			

			
				(
				𝑡
				,
				𝑥
				)
				=
				3
				𝑥
			

			
				
			
			
				
				1
				+
				𝑡
			

			

				2
			

			
				
				(
				1
				+
				𝑥
				)
				+
				3
				(
				𝑏
				−
				𝑐
				)
				.
			

		
	

						Let 
	
		
			
				𝛾
				=
				1
				/
				3
			

		
	
 and 
	
		
			
				0
				<
				𝑐
				<
				𝑏
			

		
	
. It is obvious that 
	
		
			

				𝑓
			

			

				𝑖
			

			
				,
				𝑔
			

			

				𝑖
			

			
				∈
				𝐶
				[
				𝐽
				×
				ℝ
			

			

				+
			

			
				,
				ℝ
			

			

				+
			

			

				]
			

		
	
 and are increasing with respect to the second argument, 
	
		
			

				𝑔
			

			

				𝑖
			

			
				(
				𝑡
				,
				0
				)
				=
				𝑏
				−
				𝑐
				>
				0
				,
				𝑖
				=
				1
				,
				2
				,
				3
			

		
	
. On the other hand, for 
	
		
			
				𝜆
				∈
				(
				0
				,
				1
				)
				,
				𝑡
				∈
				𝐽
				,
				𝑥
				∈
				[
				0
				,
				+
				∞
				)
				,
				𝑖
				=
				1
				,
				2
				,
				3
			

		
	
, we have 
							
	
 		
 			
				(
				4
				8
				)
			
 		
	

	
		
			

				𝑔
			

			

				𝑖
			

			
				(
				𝑡
				,
				𝜆
				𝑥
				)
				=
				𝑖
				𝜆
				𝑥
			

			
				
			
			
				
				1
				+
				𝑡
			

			

				2
			

			
				
				≥
				(
				1
				+
				𝜆
				𝑥
				)
				+
				𝑖
				(
				𝑏
				−
				𝑐
				)
				𝑖
				𝜆
				𝑥
			

			
				
			
			
				
				1
				+
				𝑡
			

			

				2
			

			
				
				(
				1
				+
				𝜆
				𝑥
				)
				+
				𝑖
				𝜆
				(
				𝑏
				−
				𝑐
				)
				=
				𝜆
				𝑔
			

			

				𝑖
			

			
				𝑓
				(
				𝑡
				,
				𝑥
				)
				,
			

			

				𝑖
			

			
				(
				𝑡
				,
				𝜆
				𝑥
				)
				=
				𝑖
				𝜆
			

			
				1
				/
				3
			

			

				𝑥
			

			
				1
				/
				3
			

			
				+
				𝑡
			

			

				2
			

			
				+
				𝑖
				𝑐
				≥
				𝜆
			

			
				1
				/
				3
			

			
				
				𝑖
				𝑥
			

			
				1
				/
				3
			

			
				+
				𝑡
			

			

				2
			

			
				
				+
				𝑖
				𝑐
				=
				𝜆
			

			

				𝛾
			

			

				𝑓
			

			

				𝑖
			

			
				(
				𝑡
				,
				𝑥
				)
				.
			

		
	

						Moreover, for 
	
		
			
				𝑡
				∈
				𝐽
				,
				𝑥
				∈
				ℝ
			

			

				+
			

			
				,
				𝑖
				=
				1
				,
				2
				,
				3
			

		
	
, we have 
							
	
 		
 			
				(
				4
				9
				)
			
 		
	

	
		
			

				𝑓
			

			

				𝑖
			

			
				(
				𝑡
				,
				𝑥
				)
				=
				𝑖
				𝑥
			

			
				1
				/
				3
			

			
				+
				𝑡
			

			

				2
			

			
				𝑐
				+
				𝑖
				𝑐
				≥
				𝑖
				𝑐
				≥
			

			
				
			
			
				≥
				𝑐
				3
				+
				(
				𝑏
				−
				𝑐
				)
				(
				𝑖
				+
				𝑖
				(
				𝑏
				−
				𝑐
				)
				)
			

			
				
			
			
				
				3
				+
				(
				𝑏
				−
				𝑐
				)
				𝑖
				𝑥
			

			
				
			
			
				
				1
				+
				𝑡
			

			

				2
			

			
				
				
				(
				1
				+
				𝑥
				)
				+
				𝑖
				(
				𝑏
				−
				𝑐
				)
				=
				𝛿
			

			

				0
			

			

				𝑔
			

			

				𝑖
			

			
				(
				𝑡
				,
				𝑥
				)
				,
			

		
	

						where 
							
	
 		
 			
				(
				5
				0
				)
			
 		
	

	
		
			

				𝛿
			

			

				0
			

			
				=
				𝑐
			

			
				
			
			
				.
				3
				+
				(
				𝑏
				−
				𝑐
				)
			

		
	

						Hence all the conditions of Theorem 10 are satisfied. Thus, BVP (46) has a unique positive solution in 
	
		
			

				𝑃
			

			

				ℎ
			

		
	
, where 
	
		
			
				ℎ
				(
				𝑡
				)
				=
				𝑡
			

		
	
, 
	
		
			
				𝑡
				∈
				[
				0
				,
				1
				]
			

		
	
.
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