Research Article

Monotonicity of the Ratio of the Power and Second Seiffert Means with Applications

Zhen-Hang Yang, Ying-Qing Song, and Yu-Ming Chu

School of Mathematics and Computation Science, Hunan City University, Yiyang 413000, China

Correspondence should be addressed to Yu-Ming Chu; chuyuming2005@126.com

Received 1 June 2014; Accepted 13 July 2014; Published 20 July 2014

Academic Editor: Chuanzhi Bai

Copyright © 2014 Zhen-Hang Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We present the necessary and sufficient condition for the monotonicity of the ratio of the power and second Seiffert means. As applications, we get the sharp upper and lower bounds for the second Seiffert mean in terms of the power mean.

1. Introduction

Throughout this paper, we assume that \(a, b > 0\) with \(a \neq b\). The second Seiffert mean \(T(a, b)\) and \(r\)th power mean \(M_r(a, b)\) of \(a\) and \(b\) are defined by

\[
T(a, b) = \frac{a - b}{2 \arctan ((a - b) / (a + b))},
\]

\[
M_r(a, b) = \left(\frac{a^r + b^r}{2} \right)^{1/r} (r \neq 0), \quad M_0(a, b) = \sqrt{ab},
\]

respectively.

It is well-known that the power mean \(M_r(a, b)\) is strictly increasing with respect to \(r \in \mathbb{R}\) for fixed \(a, b > 0\) with \(a \neq b\). In the recent past, both mean values have been the subject of intensive research. In particular, many remarkable inequalities for \(T\) and \(M_r\) can be found in literature [1–5].

Seiffert [6] proved that the double inequality

\[
M_1(a, b) < T(a, b) < M_2(a, b)
\]

holds for all \(a, b > 0\) with \(a \neq b\).

In [7], Hăstă proved that the function \(T(1, x)/M_p(1, x)\) is strictly increasing on \([0, 1)\) if \(p \leq 1\) and presented an improvement for the first inequality in (3).

Costin and Toader [8] proved that the inequality

\[
T(a, b) > M_{3/2}(a, b)
\]

holds for all \(a, b > 0\) with \(a \neq b\).

In [9], Witkowski proved that the double inequality

\[
\frac{2 \sqrt{7}}{\pi} M_2(a, b) < T(a, b) < \frac{4}{\pi} M_1(a, b)
\]

holds for all \(a, b > 0\) with \(a \neq b\).

Recently, the following optimal estimations for the second Seiffert mean by power means were obtained independently in [10, 11]:

\[
M_{\log 2/(\log \pi - \log 2)}(a, b) < T(a, b) < M_{5/3}(a, b)
\]

for all \(a, b > 0\) with \(a \neq b\).

The main purpose of this paper is to give the necessary and sufficient condition for the monotonicity of the function \(T(1, x)/M_p(1, x)\) on \((0, 1)\) and present the best possible parameters \(\alpha\) and \(\beta\) such that the double inequality

\[
\alpha M_{5/3}(a, b) < T(a, b) \leq \beta M_{\log 2/(\log \pi - \log 2)}(a, b)
\]

holds for all \(a, b > 0\) with \(a \neq b\).

2. Main Results

In order to prove our main results we first establish a lemma.

Lemma 1. Let \(f(p, x)\) be defined on \(\mathbb{R} \times (0, 1)\) by

\[
f(p, x) = \frac{(1 - x)(1 + x^p)}{(1 + x^2)(1 + x^p - 1)} - \arctan \frac{1 - x}{1 + x}
\]

In [9], Witkowski proved that the double inequality

\[
\frac{2 \sqrt{7}}{\pi} M_2(a, b) < T(a, b) < \frac{4}{\pi} M_1(a, b)
\]

holds for all \(a, b > 0\) with \(a \neq b\).

Recently, the following optimal estimations for the second Seiffert mean by power means were obtained independently in [10, 11]:

\[
M_{\log 2/(\log \pi - \log 2)}(a, b) < T(a, b) < M_{5/3}(a, b)
\]

for all \(a, b > 0\) with \(a \neq b\).

The main purpose of this paper is to give the necessary and sufficient condition for the monotonicity of the function \(T(1, x)/M_p(1, x)\) on \((0, 1)\) and present the best possible parameters \(\alpha\) and \(\beta\) such that the double inequality

\[
\alpha M_{5/3}(a, b) < T(a, b) \leq \beta M_{\log 2/(\log \pi - \log 2)}(a, b)
\]

holds for all \(a, b > 0\) with \(a \neq b\).
Then there exists \(\lambda \in (0, 1) \) such that \(f(p, x) \) is strictly decreasing with respect to \(x \) on \((0, \lambda] \) and strictly increasing with respect to \(x \) on \([\lambda, 1) \) if \(p \in (1, 5/3) \).

Proof. Let

\[
f_1(p, x) = (1 - p)x^p + (1 + p)x^{p-1} - (1 + p)x^{p-2} + (p - 1)x^{p-3} - 2x^{p-3} + 2.
\]

Then,

\[
f_1(p, 1) = 0, \quad f_1(p, 0^+) = \infty,
\]

\[
\frac{\partial f_1(p, x)}{\partial x} = -\frac{x}{(1 + x^2)(1 + x^{p-1})}f_1(p, x),
\]

\[
x^{4-p}\frac{\partial f_1(p, x)}{\partial x} = \begin{cases}
-2(2p-3)x^p - p(p-1)x^3 + (p-1)(p+1)x + (p-2)x + (p-1)(p-3) & \text{for } p \in (1, 5/3)
\end{cases}
\]

\[
:= f_2(p, x),
\]

\[
f_2(p, 0) = (p-1)(p-3) < 0,
\]

\[
f_2(p, 1) = 2(5-3p) > 0,
\]

\[
\frac{\partial f_2(p, x)}{\partial x} = -2p(2p-3)x^{p-1} - 3p(p-1)x^2 + 2(p-1)(p+1)x - (p+1)(p-2).
\]

We divide two cases to prove that \(\partial f_2(p, x)/\partial x > 0 \) for all \(x \in (0, 1) \) and \(p \in (1, 5/3) \).

Case 1. Consider that \(p \in (1, 3/2] \). From (14) we clearly see that

\[
\frac{\partial^3 f_2(p, x)}{\partial x^3} = -2p(p-1)[3 + (2-p)(3-2p)x^{p-3}] < 0,
\]

\[
\frac{\partial f_2(p, x)}{\partial x} = (p+1)(2-p) > 0,
\]

\[
\frac{\partial f_2(p, x)}{\partial x} = 2p(5-3p) > 0.
\]

Equation (15) implies that \(\partial f_2(p, x)/\partial x \) is strictly concave with respect to \(x \) on the interval \((0, 1)\). Then (16) and the basic properties of concave function lead to the conclusion that

\[
\frac{\partial f_2(p, x)}{\partial x} > (1-x)\frac{\partial f_2(p, x)}{\partial x}(p, 0) + x\frac{\partial f_2(p, x)}{\partial x}(p, 1) > 0.
\]

Case 2. Consider that \(p \in (3/2, 5/3) \). Making use of the weighted arithmetic-geometric inequality

\[
\lambda a + (1 - \lambda)b \geq \lambda^2 b^\lambda \quad (0 \leq \lambda \leq 1)
\]

we get

\[
x^{p-1} \leq (p-1)x + (2 - p).
\]

Equations (14) and (18) lead to

\[
\frac{\partial f_2(p, x)}{\partial x}
\]

\[
\geq -2p(2p-3)[(p-1)x + (2 - p)] - 3p(p-1)x^2 + 2(p-1)(p+1)x - (p+1)(p-2)
\]

\[
= -3p(p-1)x^2 - 2(p-1)(2p^2 - 4p - 1)x + (p-2)(4p^2 - 7p - 1) := f_3(p, x).
\]

Note that

\[
\frac{\partial^2 f_3(p, x)}{\partial x^2} = -6p(p-1) < 0,
\]

\[
f_3(p, 1) = 2p(5-3p) > 0,
\]

\[
f_3(p, 0) = 4(p-2)(p-\sqrt{65+7}/8)(p+\sqrt{65+7}/8) > 0.
\]

It follows from (20) and the concavity of the function \(f_3(p, x) \) with respect to \(x \) on the interval \((0, 1)\) that

\[
f_3(p, x) > (1-x)f_3(p, 0^+) + xf_3(p, 1) > 0.
\]

Therefore, \(\partial f_2(p, x)/\partial x > 0 \) follows from (19) and (21).

Next we prove the desired result. From (12) and (13) together with the fact that \(\partial f_2(p, x)/\partial x > 0 \) we clearly see that there exists \(\lambda_1 \in (0, 1) \) such that \(f_1(p, x) \) is strictly decreasing with respect to \(x \) on \((0, \lambda_1] \) and strictly increasing with respect to \(x \) on \([\lambda_1, 1) \). Therefore, Lemma 1 follows easily from (10) and (11) together with the piecewise monotonicity of \(f_1(p, x) \) with respect to \(x \) on the interval \((0, 1)\).

Theorem 2. Let \(F(p, x) \) be defined on \(\mathbb{R} \times (0, 1) \) by

\[
F(p, x) = \log \frac{T(1, x)}{M_p(1, x)} = \log \frac{1-x}{2 \arctan((1-x)/(1+x))} - \frac{1}{p} \log \frac{1 + x^p}{2} \quad (p \neq 0),
\]

\[
F(0, x) = \lim_{p \to 0} F(p, x) = \log \frac{1-x}{2 \arctan((1-x)/(1+x))} - \frac{1}{2} \log x.
\]

Then the following statements are true.

(1) \(F(p, x) \) is strictly increasing with respect to \(x \) on \((0, 1)\) if and only if \(p \geq 5/3 \).
(2) \(F(p, x) \) is strictly decreasing with respect to \(x \) on \((0, 1)\) if and only if \(p \leq 1 \).

(3) If \(p \in (1, 5/3) \), then there exists \(\mu \in (0, 1) \) such that \(F(p, x) \) is strictly increasing with respect to \(x \) on \((0, \mu)\) and strictly decreasing with respect to \(x \) on \([\mu, 1)\).

Proof. It follows from (22) and (23) that
\[
\frac{\partial F(p, x)}{\partial x} = \frac{1 + x^{p-1}}{x(1-x)(1+x^p) \arctan((1-x)/(1+x))} f(p, x),
\]
where \(f(p, x) \) is defined by (8). And
\[
\frac{\partial f(p, x)}{\partial x} = \frac{-(1-x)}{(1+x^p)^3(1+x^{p-1})} g(p, x),
\]
where
\[
g(p, x) = (1-p)x^p + (1+p)x^{p-1} - 2x^{2p-3} - (1+p)x^{p-2} + (p-1)x^{p-3} + 2.
\]

Proof. Let \(\mu \) be the constant defined by (8). And then (24) leads to \(f(p, x) > 0 \) for all \(x \in (0, 1) \). Making use of L'Hôpital's rule and (8) we get
\[
\lim_{x \to 1^-} \frac{f(p, x)}{(1-x)^p} = \frac{1}{24} (3p-5) \geq 0,
\]
which implies that \(p \geq 5/3 \).

If \(p \geq 5/3 \), then from (8) and (26) together with the fact that the function \(p \to (1+x^p)/(1+x^{p-1}) \) is strictly increasing on \(\mathbb{R} \) we get
\[
f(p, x) \geq f\left(\frac{5}{3}, x\right), \quad (28)
\]
\[
g\left(\frac{5}{3}, x\right) = \frac{2}{3} x^{-4/3}(1-x^{1/3})^3 (1+x^{2/3}) \times (1 + 3x^{1/3} + 5x^{2/3} + 3x + x^{4/3}) > 0
\]
for all \(x \in (0, 1) \).

Equations (8) and (25) together with inequality (29) lead to the conclusion that
\[
f\left(\frac{5}{3}, x\right) > f\left(\frac{5}{3}, 1\right) = 0
\]
for all \(x \in (0, 1) \).

Therefore, \(F(p, x) \) is strictly increasing with respect to \(x \) on \((0, 1)\) which follows easily from (24), (28), and (30).

(2) If \(F(p, x) \) is strictly decreasing with respect to \(x \) on \((0, 1)\), then (24) implies that \(f(p, x) < 0 \) for all \(x \in (0, 1) \). In particular, we have \(f(p, 0^+) \leq 0 \) and \(p \leq 1 \). Indeed, if \(p > 1 \), then (8) leads to the conclusion that \(f(p, 0^+) = 1 - \pi/4 \).
Making use of MATHEMATICA software, numerical computations show that

\[0.186930110570624 < \mu < 0.186930110570625, \]

\[e^{F(\log 2/(\log \pi - \log 2), \mu)} = 1.0136 \ldots \]

Therefore, the second inequality in (35) with the best possible constant \(\beta = e^{F(\log 2/(\log \pi - \log 2), \mu)} = 1.0136 \ldots \) follows from (36) and (38) together with the piecewise monotonicity of \(F(\log 2/(\log \pi - \log 2), x) \).

Corollary 4. The double inequality

\[\frac{Q^2(a, b)}{L_{p-1}(a, b)} < T(a, b) < \frac{Q^2(a, b)}{L_{q-1}(a, b)} \]

holds for all \(a, b > 0 \) with \(a \neq b \) if and only if \(p \geq 5/3 \) and \(q \leq 1 \), where \(Q(a, b) = \sqrt{a^2 + b^2}/2 \) and \(L_p(a, b) = (a^{p+1} + b^{p+1})/(a^p + b^p) \) are, respectively, the quadratic and \(p \)th Lehmer means of \(a \) and \(b \).

Proof. Without loss of generality, we assume that \(a > b > 0 \). Let \(x = b/a \in (0, 1) \). Then from Theorem 2 and (24) we clearly see that the \(f(p, x) > 0 \) if and only if \(p \geq 5/3 \) and \(f(p, x) < 0 \) if and only if \(p \leq 1 \). Then (8) leads to the conclusion that the inequalities

\[\frac{(1-x)(1+x^p)}{(1+x^2)(1+x^{p-1})} > \arctan \frac{1-x}{1+x}, \]

\[\frac{(1-x)(1+x^q)}{(1+x^2)(1+x^{q-1})} < \arctan \frac{1-x}{1+x} \]

hold for all \(x \in (0, 1) \) if and only \(p \geq 5/3 \) and \(q \leq 1 \).

Therefore, Corollary 4 follows easily from inequalities (41) and (42) together with (1).

Corollary 5. Let \(a_1, b_1, a_2, b_2 > 0 \) with \(a_1/b_1 < a_2/b_2 \). Then Theorem 2 leads to the following Ky Fan type inequality:

\[\frac{T(a_1, b_1)}{T(a_2, b_2)} > \frac{M_p(a_1, b_1)}{M_p(a_2, b_2)} \]

if \(p \geq 5/3 \) (\(p \leq 1 \)).

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This research was supported by the Natural Science Foundation of China under Grants 61374086, 11371125, and 11171307, the Natural Science Foundation of Hunan Province under Grant 12C0577, and the Natural Science Foundation of Zhejiang Province under Grant LY13A010004.

References
