Exponential Stability of Periodic Solutions for Inertial Type BAM Cohen-Grossberg Neural Networks

Chunfang Miao and Yunquan Ke

Department of Mathematics, Shaoxing University, Shaoxing, Zhejiang 312000, China

Correspondence should be addressed to Yunquan Ke; keyunquan@usx.edu.cn

Received 6 February 2014; Revised 22 March 2014; Accepted 3 April 2014; Published 19 May 2014

Academic Editor: Zidong Wang

Copyright © 2014 C. Miao and Y. Ke. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The existence and exponential stability of periodic solutions for inertial type BAM Cohen-Grossberg neural networks are investigated. First, by properly choosing variable substitution, the system is transformed to first order differential equation. Second, some sufficient conditions that ensure the existence and exponential stability of periodic solutions for the system are obtained by constructing suitable Lyapunov functional and using differential mean value theorem and inequality technique. Finally, two examples are given to illustrate the effectiveness of the results.

1. Introduction

The Cohen-Grossberg-type BAM neural networks model is initially proposed by Cohen and Grossberg [1], has their promising potential for the tasks of parallel computation, associative memory, and has great ability to solve difficult optimization problems. Thus, the analysis of the dynamical behaviors of bidirectional associative memory neural networks and Cohen-Grossberg neural networks is important and necessary. In recent years, many researchers have studied the stability and other dynamical behaviors of the Cohen-Grossberg-type BAM neural networks; see [2–10].

On the other hand, some authors studied neural networks, added the inertia, and obtained some results. For example, Li et al. [11] added the inertia to a delay differential equation which can be described by

\[
\ddot{x} = a\dot{x} - bx + cf (x - hx (t - \tau))
\]

and obtained obvious chaotic behavior. Liu et al. [12, 13] found chaotic behavior of the inertial two-neuron system with time through numerical simulation and gave that the system will lose its stability when the time delay is increased and will rise a quasiperiodic motion and chaos under the interaction of the periodic excitation. Wheeler and Scheive [14] added the inertia to a continuous-time Hopfield effective-neuron system which is shown to exhibit chaos. They explain that the chaos is confirmed by Lyapunov exponents, power spectra, and phase space plot this system is described by

\[
\begin{align*}
\ddot{x}_1 &= -a_{11}\dot{x}_1 - a_{12}x_1 + a_{13}\tanh(x_1) + a_{14}\tanh(x_2), \\
\ddot{x}_2 &= -b_{11}\dot{x}_2 - b_{12}x_2 + b_{13}\tanh(x_1) + b_{14}\tanh(x_2).
\end{align*}
\]

Babcock and Westervelt [15] studied the electronic neural networks with added inertia and found that when the neuron couplings are of an inertial nature, the dynamics can be complex, in contrast to the simpler behavior displayed when they of the standard resistor-capacitor variety. For various values of the neuron gain and the quality factor of the couplings, they find ringing about the stationary points, instability and spontaneous oscillation, intertwined basins of attraction, and chaotic response to a harmonic drive. Ge and Xu [16] considered an inertial four-neuron delayed bidirectional associative memory model. Weak resonant double Hopf bifurcations are completely analyzed in the parameter space of the coupling weight and the coupling delay by the perturbation-incremental scheme. Others, Liu et al. [17, 18], investigated the Hopf bifurcation and dynamics of an inertial two-neuron system or in a single inertial neuron mode. Zhao et al. [19] investigated the stability and the bifurcation of a class of inertial neural networks. The authors Ke and Miao [20, 21] investigated stability of equilibrium point and periodic solutions in inertial BAM neural networks with
time delays, respectively. From the above, the inertia can be considered a useful tool that is added to help in the generation of chaos in neural systems. Horikawa and Kitajima [22] investigated a kinematic description of traveling waves of the oscillations in neural networks with inertia. When the inertia is below a critical value and the state of each neuron is overdamped, properties of the networks are the same as those without inertia. The duration of the transient oscillations increases with inertia, and the increasing rate of the logarithm of the duration becomes more than double. When the inertia exceeds a critical value and the state of each neuron becomes underdamped, properties of the networks qualitatively change. The periodic solution is stabilized through the pitchfork bifurcation as inertia increases. More bifurcations occur so that various periodic solutions are generated, and the stability of the periodic solutions changes alternately. Ke and Miao [23] investigated the stability of inertial Cohen-Grossberg-type neural networks with time delays. To the best of our knowledge, the question on the periodic solutions of inertial type BAM Cohen-Grossberg neural networks is still open. To provide the theoretical basis of practical application, this paper is devoted to present a sufficient criterion to ensure the existence and exponential stability of the periodicsolutions for inertialCohen-Grossberg-typeBAM neural networks. Throughout this paper, we make the following assumptions.

(H1) For each \(i = 1, 2, \ldots, n \), \(j = 1, 2, \ldots, m \), the functions \(a_i(u), d_j(v), b_i(u) \), and \(e_j(v) \) are differentiable and satisfy
\[
0 < a_i \leq a_i(u) \leq a_i^*, \quad 0 < d_j \leq d_j(v) \leq d_j^*,
\]
\[
0 < b_i \leq b_i(u) \leq b_i^*, \quad 0 < e_j \leq e_j(v) \leq e_j^*,
\]
for all \(u, v \in R \).

(H2) For each \(i = 1, 2, \ldots, n, j = 1, 2, \ldots, m \), the activation functions \(f_j, g_i \) satisfy Lipschitz condition, and there exist constants \(l_j > 0, \bar{f}_j > 0, k_i > 0, \) and \(\bar{g}_i > 0 \), such that
\[
|f_j(v_1) - f_j(v_2)| \leq l_j|v_1 - v_2|, \quad |g_i(u)| \leq \bar{g}_i,
\]
\[
|g_i(u_1) - g_i(u_2)| \leq k_i|u_1 - u_2|, \quad g_i(u) \in R,
\]
for all \(i, v \in R \).

(H3) For each \(i = 1, 2, \ldots, n, j = 1, 2, \ldots, m \), \(I_i(t), J_i(t) \) are continuously periodic functions defined on \(t \in [0, \infty) \) with common period \(\omega > 0 \) and satisfy
\[
0 < \bar{L}_i \leq I_i(t) \leq \bar{T}_i, \quad 0 < \bar{J}_j \leq J_j(t) \leq \bar{J}_j.
\]

(H4) Let \(B_i(u) = a_i(u_i)b_i(u_i) \); there exist constants \(T_i > 0 \) and \(K_i > 0 \), such that
\[
0 < T_i \leq B_i'(u) \leq K_i, \quad i = 1, 2, \ldots, n, u_i \in R.
\]

(H5) Let \(E_j(v) = d_j(v)e_j(v) \); there exist constants \(T_j^* > 0 \) and \(K_j^* > 0 \), such that
\[
0 < T_j^* \leq E_j'(v) \leq K_j^*, \quad j = 1, 2, \ldots, m, v_j \in R.
\]
\(\tau_{ij}(t) \) and \(\sigma_{ji}(t) \) are continuously differentiable periodic functions, and there exist constants \(0 < \tau_{ij} < 1 \) and \(0 < \sigma_{ji} < 1 \), such that
\[
\tau'_{ij}(t) \leq \tau_{ij} < 1, \quad \sigma'_{ji}(t) \leq \sigma_{ji} < 1,
\]
where \(i = 1, 2, \ldots, n, \) \(j = 1, 2, \ldots, m, \) and \(\tau'_{ij}(t) \) and \(\sigma'_{ji}(t) \) express the derivative of \(\tau_{ij}(t) \) and \(\sigma_{ji}(t) \).

Introducing variable transformation
\[
\begin{align*}
x_i(t) &= \frac{d u_i(t)}{dt} + u_i(t), & i = 1, 2, \ldots, n, \\
y_j(t) &= \frac{d v_j(t)}{dt} + v_j(t), & j = 1, 2, \ldots, m,
\end{align*}
\]
then (3) and (4) can be rewritten as
\[
\frac{d u_i(t)}{dt} = -u_i(t) + x_i(t),
\]
\[
\frac{d x_i(t)}{dt} = -\left(1 - \alpha_i \right) u_i(t) - \left(\alpha_i - 1 \right) x_i(t) - \nu_i(t),
\]
\[
\frac{d v_j(t)}{dt} = -v_j(t) + y_j(t),
\]
\[
\frac{d y_j(t)}{dt} = -\left(1 - \beta_j \right) v_j(t) - \left(\beta_j - 1 \right) y_j(t) - \sigma_j(t),
\]
be an \(\omega \)-periodic solution of system (3) with initial value
\[
\begin{align*}
\overline{u}_i(s) &= \overline{u}_i(s), & \frac{d \overline{u}_i(s)}{dt} &= \overline{u}_i(s), & -\tau \leq s \leq 0, \\
\overline{v}_j(s) &= \overline{v}_j(s), & \frac{d \overline{v}_j(s)}{dt} &= \overline{v}_j(s), & -\sigma \leq s \leq 0,
\end{align*}
\]
for every solution
\[
\begin{align*}
u(t) &= (u_1(t), u_2(t), \ldots, u_n(t))^T, \\
\nu(t) &= (v_1(t), v_2(t), \ldots, v_m(t))^T
\end{align*}
\]
of system (3) with any initial value
\[
\begin{align*}
u_i(t) &= \varphi_{ui}(s), & \frac{d \nu_i(s)}{dt} &= \varphi_{ui}(s), & -\tau \leq s \leq 0, \\
v_j(t) &= \varphi_{vj}(s), & \frac{d v_j(s)}{dt} &= \varphi_{vj}(s), & -\sigma \leq s \leq 0.
\end{align*}
\]
If there exist constants \(\delta > 0 \) and \(M > 0 \), such that
\[
\sum_{i=1}^{n} (u_i(t) - \overline{u}_i(t))^2 + \sum_{j=1}^{m} (v_j(t) - \overline{v}_j(t))^2
\]
\[
\leq Me^{-\delta t} \left[\| \varphi_{ui} - \overline{u}_i \|^2 + \| \varphi_{vj} - \overline{v}_j \|^2 \right],
\]
for \(i = 1, 2, \ldots, n, \) \(j = 1, 2, \ldots, m, \) and \(t \geq 0, \) then solutions \(\overline{u}(t), \overline{v}(t) \) are said to be exponentially stable, where
\[
\| \varphi_{ui} - \overline{u}_i \|^2 = \sup_{-\tau \leq t \leq 0} \sum_{i=1}^{n} \| \varphi_{ui}(t) - \overline{u}_i(t) \|^2,
\]
\[
\| \varphi_{vj} - \overline{v}_j \|^2 = \sup_{-\sigma \leq t \leq 0} \sum_{j=1}^{m} \| \varphi_{vj}(t) - \overline{v}_j(t) \|^2.
\]

3. Main Results

In this section, we can derive some sufficient conditions which ensure the existence and exponential stability of periodic solutions for system (3).

Theorem 2. For system (3), under the hypotheses (H1)–(H3), then \(u_i(t), u'_i(t), v_j(t), \) and \(v'_j(t) \) are bounded, \(i = 1, 2, \ldots, n, \) \(j = 1, 2, \ldots, m, \) and \(t \geq 0. \)

Proof. If \(u_i(t) > 0 \), then we have
\[
\frac{d |u_i(t)|}{dt} = \frac{d u_i(t)}{dt},
\]
if \(u_i(t) < 0 \), then
\[
\frac{d |u_i(t)|}{dt} = -\frac{d u_i(t)}{dt}.
\]
Hence, \(d|u_i(t)|/dt = \text{sgn}(u_i(t))(du_i(t)/dt) \). Similarly, we can get
\[
\frac{d|v_j(t)|}{dt} = \text{sgn}(v_j(t)) \frac{dv_j(t)}{dt},
\]
\[
\frac{d^2|u_i(t)|}{dt^2} = \text{sgn}(u_i(t)) \frac{d^2u_i(t)}{dt^2},
\]
\[
\frac{d^2|v_j(t)|}{dt^2} = \text{sgn}(v_j(t)) \frac{d^2v_j(t)}{dt^2}.
\]
(19)

Since \(b_i(u_i) \) are differentiable on \(u_i \) \((i = 1, 2, \ldots, n)\), and then we have
\[
b_i'(u_i(t)) - b_i(0) = b_i'(u_i^*) u_i(t),
\]
where \(u_i^* \) lies between \(u_i \) and \(0 \).

It follows from (3) that
\[
\frac{d^2|u_i(t)|}{dt^2} = -\alpha_i \frac{d|u_i(t)|}{dt} - \text{sgn}(u_i(t)) a_i(u_i(t)) \times \left[b_i(u_i(t)) - b_i(0) + b_i'(u_i^*) u_i(t) \right]
\]
\[
\frac{d^2|u_i(t)|}{dt^2} = -\alpha_i \frac{d|u_i(t)|}{dt} - \text{sgn}(u_i(t)) a_i(u_i(t)) \times \left[b_i(u_i(t)) - b_i(0) \right]
\]
\[
- \sum_{j=1}^{m_i} g_{ij} f_j \left(v_j(t - \tau_{ij}(t)) \right) + I_i(t)
\]
\[
\leq -\alpha_i \frac{d|u_i(t)|}{dt} - a_i b_i |u_i(t)| + \pi_i
\]
\[
\times \left[b_i(0) + \sum_{j=1}^{m_i} |c_{ij}| \mathcal{F}_j + \mathcal{T}_i \right].
\]
(20)

Similarly, we can obtain
\[
\frac{d^2|v_j(t)|}{dt^2} \leq -\beta_j \frac{d|v_j(t)|}{dt} - d_j \varepsilon_j |v_j(t)|
\]
\[
+ a_j \left[e_j(0) + \sum_{i=1}^{n_j} |h_{ji}| \mathcal{G}_j + \mathcal{T}_j \right].
\]
(21)

From (21), (22), we can obtain
\[
|u_i(t)| \leq C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t} + \frac{\alpha_i}{\beta_i} \left[b_i(0) + \sum_{j=1}^{n_i} |c_{ij}| \mathcal{F}_j + \mathcal{T}_i \right],
\]
(23)

where \(\lambda_{1,2} = (-\alpha_i \pm \sqrt{\alpha_i^2 - 4\alpha_i b_i})/2 \) and \(C_1, C_2 \) are any real constants.

Similarly, we can obtain
\[
|v_j(t)| \leq C_1^* e^{\lambda_1^* t} + C_2^* e^{\lambda_2^* t} + \frac{d_j}{a_j} \left[e_j(0) + \sum_{i=1}^{n_j} |h_{ji}| \mathcal{G}_j + \mathcal{T}_j \right],
\]
(24)

where \(\lambda_{1,2}^* = (-\beta_j \pm \sqrt{\beta_j^2 - 4d_j \varepsilon_j})/2 \) and \(C_1^*, C_2^* \) are any real constants.

Since \(\alpha_i > 0, \beta_j > 0 \), we have \(\text{Re}(\lambda_{1,2}) < 0, \text{Re}(\lambda_{1,2}^*) < 0 \), \(\text{Re}(\lambda_{1,2}^*) < 0, \text{Re}(\lambda_{1,2}^*) < 0 \), and formula (23) shows that all solutions \(u_i(t) \) to (3) are bounded for \(i = 1, 2, \ldots, n, t \geq 0 \).

Formula (24) shows that all solutions \(v_j(t) \) to (3) are bounded for \(j = 1, 2, \ldots, m, t \geq 0 \).

On the other hand, from (3) we also can obtain
\[
\frac{du_i(t)}{dt} = e^{-\alpha_i t} u_i(0) - e^{-\alpha_i t} \int_0^t e^{\alpha_i(s)} a_i(u_i(s)) \times \left[b_i(u_i(s)) \right]
\]
\[
- \sum_{j=1}^{m_i} c_{ij} f_j \left(u_j(s - \sigma_{ij}(t)) \right) + I_i(s) \right] ds,
\]
\[
i = 1, 2, \ldots, n,
\]
(25)

\[
\frac{dv_j(t)}{dt} = e^{-\beta_j t} v_j(0) - e^{-\beta_j t} \int_0^t e^{\beta_j(s)} d_j(v_j(s))
\]
\[
\times \left[e_j(v_j(s)) - \sum_{i=1}^{n_j} h_{ji} g_i \right]
\]
\[
\times \left(u_i(s - \sigma_{ji}(t)) \right) + I_j(s) \right] ds,
\]
\[
j = 1, 2, \ldots, m.
\]
(26)

Since \(u_i(t), v_j(t) \) are bounded, we may assume that \(|u_i(t)| \leq R_i, |v_j(t)| \leq R_j^* \), where \(R_i > 0, R_j^* > 0 \) are constants, \(i = 1, 2, \ldots, n, j = 1, 2, \ldots, m \).

From (25), we have
\[
\left| \frac{du_i(t)}{dt} \right| \leq \left| \psi_{ui}(0) \right| + \frac{\pi_i}{\alpha_i} \left[b_i R_i + |b_i(0)| + \sum_{j=1}^{n_i} |c_{ij}| \mathcal{F}_j + \mathcal{T}_i \right].
\]
(27)

Formula (27) shows that all solutions \(u_i(t) \) are bounded for \(i = 1, 2, \ldots, n, t \geq 0 \).
From (26), we have
\[
\left| \frac{dV_j(t)}{dt} \right| \leq |\psi_j(0)| + \frac{\bar{d}_j}{\beta_j} \left(\epsilon_j R_j^* + |e_j(0)| + \sum_{i=1}^{n} |h_{ji}| \bar{g}_i + \bar{T}_j \right).
\tag{28}
\]
Formula (28) shows that all solutions \(v_j'(t) \) are bounded for \(j = 1, 2, \ldots, m, t \geq 0 \).

Theorem 3. Under the hypotheses (H1)–(H3), if \(\alpha_i - K_i > 0, \beta_j - K_j^* > 0 \), and
\[
\alpha_i - T_i - 2 + A_i \left(\sum_{j=1}^{m} c_{ij} \bar{f}_j + \bar{T}_i \right) + \sum_{j=1}^{m} \bar{d}_j \frac{|h_{ji}|}{1 - \bar{g}_j} k_i < 0,
\]
\[
2 - \alpha_i - T_i + A_i \sum_{j=1}^{m} c_{ij} l_j + A_i \left(\sum_{j=1}^{m} c_{ij} \bar{f}_j + \bar{T}_i \right) < 0,
\]
\[
\beta_j - T_j^* - 2 + D_j \sum_{i=1}^{n} |h_{ji}| \bar{g}_i + \bar{T}_j + \sum_{i=1}^{n} \bar{d}_i \frac{|h_{ji}|}{1 - \bar{g}_i} l_j < 0,
\]
\[
2 - \beta_j - T_j^* + D_j \sum_{i=1}^{n} |h_{ji}| k_i + D_j \left(\sum_{i=1}^{n} |h_{ji}| \bar{g}_i + \bar{T}_j \right) < 0,
\tag{29}
\]
for \(i = 1, 2, \ldots, n, j = 1, 2, \ldots, m \), then system (3) has one \(\omega \)-periodic solution, which is exponentially stable.

Proof. If \(u_i^*(t), x_i^*(t), v_i^*(t), \) and \(y_i^*(t) \) are \(\omega \)-periodic solution of (11), which are exponentially stable, then we can obtain that \(u_i'(t), v_i'(t) \) are \(\omega \)-periodic solution of system (3), which is exponentially stable. In the following we only prove that (11) has one \(\omega \)-periodic solution, which is exponentially stable.

Let
\[
\bar{u}(t) = (\bar{u}_1(t), \bar{u}_2(t), \ldots, \bar{u}_n(t))^T,
\]
\[
\bar{v}(t) = (\bar{v}_1(t), \bar{v}_2(t), \ldots, \bar{v}_m(t))^T
\tag{30}
\]
be solution of system (3) with initial value (IV1), and let
\[
u(t) = (u_1(t), u_2(t), \ldots, u_n(t))^T, \quad v(t) = (v_1(t), v_2(t), \ldots, v_m(t))^T
\tag{31}
\]
be solution of system (3) with any initial value (IV2).

Let
\[
\bar{x}_i(t) = \frac{d\bar{u}_i(t)}{dt} + \bar{u}_i(t), \quad \bar{y}_j(t) = \frac{d\bar{v}_j(t)}{dt} + \bar{v}_j(t),
\]
\[
z_i(t) = u_i(t) - \bar{u}_i(t), \quad w_i(t) = x_i(t) - \bar{x}_i(t),
\]
\[
p_j(t) = v_j(t) - \bar{v}_j(t), \quad q_j(t) = y_j(t) - \bar{y}_j(t),
\tag{32}
\]
for \(i = 1, 2, \ldots, n, j = 1, 2, \ldots, m \).

From (11), we can obtain
\[
\frac{dz_i(t)}{dt} = -z_i(t) + w_i(t),
\]
\[
\frac{du_i(t)}{dt} = -(1 - \alpha_i) z_i(t) - (\alpha_i - 1) w_i(t) + a_i(u_i(t)) \left(\sum_{j=1}^{m} c_{ij} \left[f_j(v_j(t - \tau_{ij}(t))) - f_j(\bar{v}_j(t - \tau_{ij}(t))) \right] \right)
\]
\[
+ a_i(\bar{u}_i(t) - a_i(\bar{u}_i(t)))
\]
\[
\times \left[\sum_{j=1}^{m} c_{ij} f_j(\bar{v}_j(t - \tau_{ij}(t))) + I_i(t) \right]
\]
\[
- \left[a_i(u_i(t)) b_i(u_i(t)) - a_i(\bar{u}_i(t)) b_i(\bar{u}_i(t)) \right],
\tag{33}
\]
for \(i = 1, 2, \ldots, n \)
\[
\frac{dp_i(t)}{dt} = -p_i(t) + q_i(t),
\]
\[
\frac{dq_i(t)}{dt} = -(1 - \beta_i) p_i(t) - (\beta_i - 1) q_i(t)
\]
\[
+ d_j(v_j(t)) \left[\sum_{i=1}^{n} h_{ji}(u_i(t - \sigma_{ji}(t))) - g_j(\bar{u}_i(t - \sigma_{ji}(t))) \right]
\]
\[
+ \left(d_j(v_j(t)) - d_j(\bar{v}_j(t)) \right)
\]
\[
\times \left[\sum_{i=1}^{n} h_{ji}(u_i(t - \sigma_{ji}(t))) + f_j(t) \right]
\]
\[
- \left[d_j(v_j(t)) e_j(v_j(t)) - d_j(\bar{v}_j(t)) e_j(\bar{v}_j(t)) \right],
\tag{34}
\]
for \(j = 1, 2, \ldots, m \).

Since functions \(a_i(u) \) and \(b_i(u) \) are differentiable, using differential mean value theorem, we have
\[
a_i(u_i(t)) - a_i(\bar{u}_i(t)) = a'_i(\xi_i) z_i(t),
\]
\[
a_i(u_i(t)) b_i(u_i(t)) - a_i(\bar{u}_i(t)) b_i(\bar{u}_i(t)) = B_i(u_i(t)) - B_i(\bar{u}_i(t)) = B'_i(\xi_i) z_i(t),
\tag{35}
\]
where \(\xi_i \) lie between \(u_i \) and \(\bar{u}_i \).

Since \(0 < T_i \leq B'_i(u) \leq K_i \), if \(\alpha_i - K_i > 0 \), then we have
\[
\alpha_i - B'_i(\xi_i) \geq \alpha_i - K_i > 0 \text{ and } 0 < \alpha_i - B'_i(\xi_i) \leq \alpha_i - T_i.
\]
From (33) we get
\[
\frac{1}{2} \frac{dz_i^2(t)}{dt} = -z_i^2(t) + z_i(t) w_i(t),
\]
\[
\frac{1}{2} \frac{dw_i^2(t)}{dt} = -(1 - \alpha_i) z_i(t) w_i(t) - (\alpha_i - 1) w_i^2(t)
+ a_i(u_i(t)) w_i(t)
\]
\[
\times \left[\sum_{j=1}^m c_{ij} f_j \left(v_j(t - \tau_{ij}(t)) \right) \right]
- f_j \left(\bar{v}_j(t - \tau_{ij}(t)) \right) \right]
+ (a_i(u_i(t)) - a_i(\bar{u}_i(t))) w_i(t)
\]
\[
\times \left[\sum_{j=1}^m c_{ij} f_j \left(\bar{v}_j(t - \tau_{ij}(t)) \right) \right]
- f_j \left(\bar{v}_j(t - \tau_{ij}(t)) \right) \right]
+ \left\{ a_i(u_i(t)) \right\} w_i(t)
\]
\[
- a_i(\bar{u}_i(t)) b_i(u_i(t))
- a_i(\bar{u}_i(t)) b_i(\bar{u}_i(t)) w_i(t)
\]
\[
= -(1 - \alpha_i) z_i(t) w_i(t) - (\alpha_i - 1) w_i^2(t)
+ a_i(u_i(t)) w_i(t)
\]
\[
\times \left[\sum_{j=1}^m c_{ij} f_j \left(v_j(t - \tau_{ij}(t)) \right) \right]
- f_j \left(\bar{v}_j(t - \tau_{ij}(t)) \right) \right]
+ (a_i'(\xi_i)) z_i(t) w_i(t)
\]
\[
\times \left[\sum_{j=1}^m c_{ij} f_j \left(\bar{v}_j(t - \tau_{ij}(t)) \right) \right]
+ I_i(t)
\]
\[
- B_i'(\xi_i) z_i(t) w_i(t), \quad i = 1, 2, \ldots, n.
\]

From (36), we can obtain
\[
\frac{1}{2} \frac{dz_i^2(t)}{dt} + \frac{1}{2} \frac{dw_i^2(t)}{dt}
\leq -z_i^2(t) + \left[a_i - B_i'(\xi_i) \right] z_i(t) w_i(t) - (\alpha_i - 1) w_i^2(t)
+ a_i |w_i(t)| M_i \left| \sum_{j=1}^m c_{ij} l_j \right| + A_i |z_i(t)| |w_i(t)|
\]
\[
\times \left\{ \sum_{j=1}^m c_{ij} f_j \left(\bar{v}_j(t - \tau_{ij}(t)) \right) \right\}
+ I_i(t)
\]
\[
+ A_i |z_i(t)| |w_i(t)| \left\{ \sum_{j=1}^m c_{ij} f_j \left(\bar{v}_j(t - \tau_{ij}(t)) \right) \right\}
\]
\[
\leq -z_i^2(t) + \left[\alpha_i - B_i'(\xi_i) \right] \frac{z_i^2(t) + w_i^2(t)}{2}
- (\alpha_i - 1) w_i^2(t)
+ \alpha_i \sum_{j=1}^m |c_{ij}| l_j \left(w_i^2(t) + p_j^2(t - \tau_{ij}(t)) \right)
\]
\[
+ A_i \left\{ \sum_{j=1}^m |c_{ij}| f_j \right\} \left(z_i^2(t) + w_i^2(t) \right)
\]
\[
= \frac{1}{2} \left[\alpha_i - T_i(\xi_i) - 2 + A_i \left\{ \sum_{j=1}^m |c_{ij}| f_j \right\} \right] z_i^2(t)
+ \frac{1}{2} \left[2 - \alpha_i - T_i(\xi_i) + A_i \left\{ \sum_{j=1}^m |c_{ij}| f_j \right\} \right] w_i^2(t)
\]
\[
+ \frac{\alpha_i}{2} \sum_{j=1}^m |c_{ij}| l_j p_j^2(t - \tau_{ij}(t))
\]

for \(i = 1, 2, \ldots, n, t > 0. \)

Similar to the above derivation, from (34) we can get
\[
\frac{1}{2} \frac{dp_j^2(t)}{dt} + \frac{1}{2} \frac{dq_j^2(t)}{dt}
\leq \frac{1}{2} \left[\beta_j - T_j(\xi_i) - 2 + D_j \left\{ \sum_{i=1}^n |h_{ji}| g_i + T_j \right\} \right] p_j^2(t)
+ \frac{1}{2} \left[2 - \beta_j - T_j(\xi_i) + D_j \left\{ \sum_{i=1}^n |h_{ji}| g_i + T_j \right\} \right] q_j^2(t)
\]
\[
+ \frac{\alpha_i}{2} \sum_{j=1}^m |h_{ji}| k_j z_i^2(t - \sigma_{ji}(t))
\]

for \(j = 1, 2, \ldots, m, t > 0. \)

We consider the Lyapunov functional
\[
V(t) = \sum_{i=1}^n \left\{ \frac{z_i^2(t) + w_i^2(t)}{2} e^{\epsilon t} \right\}
\]
\[
+ \frac{\alpha_i}{2} \sum_{j=1}^m \left\{ \frac{|c_{ij}|}{1 - \tau_{ij}} \int_{t - \tau_{ij}(t)}^t e^{\epsilon(t - s)} p_j^2(s) ds \right\}
\]
\(+ \sum_{j=1}^{m} \left\{ \frac{p_j^2(t) + q_j^2(t)}{2} e^{\varepsilon t} + \frac{\varepsilon}{2} \sum_{j=1}^{m} \left| \frac{h_{ij}}{1 - \sigma_{ji}} \right| k_i \int_{t - \sigma_{ji}(t)}^{t} e^{\varepsilon(s+\sigma_{ji}(s))(s)} z_i^2(s) \, ds \right\} , \)

(39)

where \(\varepsilon > 0 \) is a small number.

Calculating the upper right Dini-derivative \(D^+ V(t) \) of \(V(t) \) along the solution of (33) and (34), using (37) and (38), we have

\[
D^+ V(t) \leq \varepsilon \sum_{i=1}^{m} \left\{ \frac{z_i^2(t)}{2} \epsilon^a + \frac{1}{2} \alpha_i - T_i - 2 + A_i \left(\sum_{j=1}^{m} |c_{ij}| \bar{J}_j + \bar{T}_j \right) \right\} z_i^2(t) + \frac{1}{2} \left[\alpha_i - T_i - 2 + A_i \left(\sum_{j=1}^{m} |c_{ij}| \bar{J}_j + \bar{T}_j \right) \right] z_i^2(t)
\]

(40)
From condition of Theorem 3, we can choose a small $\epsilon > 0$ such that

$$
e + \alpha_i - T_i - 2 + A_i \left(\sum_{j=1}^{m} |c_{ij}| \bar{f}_j + \bar{f}_i \right) + \sum_{j=1}^{m} \frac{|h_{ij}|}{1 - \sigma_{ji}} k_i e^{t \sigma_{ji}} \leq 0,$$

$$
e + 2 - \alpha_i - T_i + \bar{a}_i \sum_{j=1}^{m} |c_{ij}| l_1 + A_i \left(\sum_{j=1}^{m} |c_{ij}| \bar{f}_j + \bar{f}_i \right) \leq 0,$$

$$
e + \beta_j - T_j^* - 2 + D_j \left(\sum_{i=1}^{n} |h_{ji}| \bar{g}_i + \bar{g}_j \right) + \sum_{i=1}^{n} \bar{a}_i \left| c_{ij} \right| l_2 e^{t \sigma_{ji}} \leq 0,$$

$$
e + 2 - \beta_j - T_j^* + \bar{d}_j \sum_{i=1}^{n} |h_{ji}| k_i + D_j \left(\sum_{i=1}^{n} |h_{ji}| \bar{g}_i + \bar{g}_j \right) \leq 0,$$

$$i = 1, 2, \ldots, n, \quad j = 1, 2, \ldots, m, \quad t > 0. \quad (41)$$

From (40), we get $D^* V(t) \leq 0$ and so $V(t) \leq V(0)$, for all $t \geq 0$. From (39), we have

$$V(t) \geq \frac{\sum_{i=1}^{n} z_i^2(t) + \sum_{j=1}^{m} p_j^2(t) + \sum_{j=1}^{m} q_j^2(t)}{2} e^{t^2} + \sum_{i=1}^{n} \frac{c_i^2(t)}{2} e^{t^2}$$

$$- \frac{\sum_{j=1}^{m} \bar{c}_j}{2} \sum_{j=1}^{m} \frac{|c_{ij}|}{1 - \sigma_{ji}} \int_{-\tau_{ji}}^{0} e^{t \tau_{ji} + \tau_{ji}(s)} \left(\psi_{ij}(s) - \bar{T}_{ij}(s) \right) d\sigma_{ji}$$

$$+ \frac{\sum_{j=1}^{m} \bar{a}_j}{2} \sum_{j=1}^{m} \frac{|h_{ij}|}{1 - \sigma_{ji}} k_i \int_{-\tau_{ji}}^{0} e^{t \tau_{ji} + \tau_{ji}(s)} \left(\bar{f}_{ij}(s) - \bar{T}_{ij}(s) \right) d\sigma_{ji}$$

$$\leq \frac{\sum_{i=1}^{n} \left(\phi_{ui}(0) - \bar{\phi}_{ui}(0) \right)^2 + \left(\phi_{ui}(0) - \bar{\phi}_{ui}(0) \right)^2}{2} + \frac{\sum_{i=1}^{n} \left(\chi_{ui}(0) - \bar{\chi}_{ui}(0) \right)^2 + \left(\chi_{ui}(0) - \bar{\chi}_{ui}(0) \right)^2}{2}$$

$$\leq M^* \left[\frac{\sum_{i=1}^{n} \left(\phi_{ui}(0) - \bar{\phi}_{ui}(0) \right)^2 + \left(\phi_{ui}(0) - \bar{\phi}_{ui}(0) \right)^2}{2} + \frac{\sum_{i=1}^{n} \left(\chi_{ui}(0) - \bar{\chi}_{ui}(0) \right)^2 + \left(\chi_{ui}(0) - \bar{\chi}_{ui}(0) \right)^2}{2} \right]$$

$$\leq \frac{M}{2} \left[\sum_{i=1}^{n} \left(\phi_{ui}(0) - \bar{\phi}_{ui}(0) \right)^2 + \left(\phi_{ui}(0) - \bar{\phi}_{ui}(0) \right)^2 \right] + \frac{M}{2} \left[\sum_{i=1}^{n} \left(\chi_{ui}(0) - \bar{\chi}_{ui}(0) \right)^2 + \left(\chi_{ui}(0) - \bar{\chi}_{ui}(0) \right)^2 \right].$$

(42)
where $M^* = \max\{1 + \sigma \sum_{j=1}^m \max_{1 \leq i \leq n} \{|(h_{ji}|/(1 - \overline{r}_{ji}))k_j\} e^{\alpha t}, 1 + \tau \sum_{j=1}^m \max_{1 \leq j \leq n} \{|(c_{ij}|/(1 - \overline{r}_{ij}))l_j\} e^{\alpha t}\}$,

$$M = M^* + \frac{\|\phi_{\omega} - \overline{\phi}_{\omega}\|}{\|\varphi_{\omega} - \overline{\varphi}_{\omega}\|}.$$ \hspace{1cm} (43)

Since $V(0) \geq V(t)$, from (42), we obtain

$$\sum_{i=1}^n \left[(u_i(t) - \overline{u}_i(t))^2 + (x_i(t) - \overline{x}_i(t))^2 \right]$$

$$+ \sum_{j=1}^m \left[(v_j(t) - \overline{v}_j(t))^2 + (y_j(t) - \overline{y}_j(t))^2 \right]$$

$$< Me^{-\varepsilon t} \left[\|\phi_{\omega} - \overline{\phi}_{\omega}\| + \|\varphi_{\omega} - \overline{\varphi}_{\omega}\| \right].$$ \hspace{1cm} (44)

From (44), we obtain

$$\sum_{i=1}^n \left[(u_i(t) - \overline{u}_i(t))^2 + \sum_{j=1}^m (v_j(t) - \overline{v}_j(t))^2 \right]$$

$$< Me^{-\varepsilon t} \left[\|\phi_{\omega} - \overline{\phi}_{\omega}\| + \|\varphi_{\omega} - \overline{\varphi}_{\omega}\| \right].$$ \hspace{1cm} (45)

For $i = 1, 2, \ldots, n$, $j = 1, 2, \ldots, m$, when $I_i(t)$, $J_i(t)$, $\tau_j(t)$, and σ_{ji} are continuously periodic functions defined on $t \in [0, \infty)$ with common period $\omega > 0$, if $u_i(t)$, $v_j(t)$ are the solutions of (3), then for any natural number k, $u_i(t + kw)$, $v_j(t + kw)$ are the solutions of (3). Thus, from (45), there exist constants $N > 0$ and $\delta > 0$, such that

$$|u_i(t + (k + 1)\omega) - u_i(t + kw)| \leq Ne^{-\delta(t+kw)},$$ \hspace{1cm} (46)

$$|v_j(t + (k + 1)\omega) - v_j(t + kw)| \leq Ne^{-\delta(t+kw)},$$ \hspace{1cm} (47)

for $i = 1, 2, \ldots, n$, $j = 1, 2, \ldots, m$, $t > 0$.

It is noted that, for any natural number p,

$$u_i(t + (p + 1)\omega) = u_i(t)$$

$$+ \sum_{k=0}^p (u_i(t + (k + 1)\omega) - u_i(t + kw)).$$ \hspace{1cm} (48)

Thus

$$|u_i(t + (p + 1)\omega)| \leq |u_i(t)|$$

$$+ \sum_{k=0}^p |u_i(t + (k + 1)\omega) - u_i(t + kw)|.$$ \hspace{1cm} (49)

Since $u_i(t)$ is bounded, it follows from (46) and (49) that $\{u(t + p\omega)\}$ uniformly converges to a continuous function $u^*(t) = (u_1^*(t), u_2^*(t), \ldots, u_n^*(t))$ on any compact set of R.

Similarly, since $v_j(t)$ is bounded, from (47), $\{v(t + p\omega)\}$ uniformly converges to a continuous function $v^*(t) = (v_1^*(t), v_2^*(t), \ldots, v_m^*(t))$ on any compact set of R.

When $u_i(t)$, $u_i'(t)$, $v_j(t)$, and $v_j'(t)$ are bounded, $x_i(t) = u_i(t) + u_i'(t)$, $y_j(t) = v_j(t) + v_j'(t)$, and we can obtain that $x_i(t)$, $y_j(t)$ are bounded. Similarly, from (44), they can be proved that $\{x(t + p\omega)\}$, $\{y(t + p\omega)\}$ uniformly converge to continuous functions $x^*(t) = (x_1^*(t), x_2^*(t), \ldots, x_n^*(t))$ and $y^*(t) = (y_1^*(t), y_2^*(t), \ldots, y_m^*(t))$ on any compact set of R, respectively.

Now we will show that $(u^*T(t), v^*T(t))^T$ is the ω-periodic solution of system (3).

First, $u^*(t)$, $v^*(t)$ are ω-periodic functions, since

$$u^*(t + \omega) = \lim_{p \to \infty} u(t + (p + 1)\omega) = u^*(t),$$

$$v^*(t + \omega) = \lim_{p \to \infty} v(t + (p + 1)\omega) = v^*(t).$$ \hspace{1cm} (50)

Second, we prove that $(u^*T(t), v^*T(t))^T$ is a solution of system (3).

In fact, $I_i(t + p\omega) = I_i(t)$, $J_i(t + p\omega) = J_i(t)$, $\tau_j(t + p\omega) = \tau_j(t)$, $\sigma_{ji}(t + p\omega) = \sigma_{ji}(t)$, and

$$\frac{du_i(t + p\omega)}{dt} = -u_i(t + p\omega) + x_i(t + p\omega),$$

$$\frac{dx_i(t + p\omega)}{dt} = -\left(1 - \alpha_i\right) u_i(t + p\omega) - \alpha_i(1) x_i(t + p\omega)$$

$$- a_i(u_i(t + p\omega))$$

$$\times \left[b_i(u_i(t + p\omega)) - \sum_{j=1}^m c_{ij} \left(v_j(t + p\omega - \tau_j(t)) - I_j(t)\right)\right],$$

$$\frac{dv_j(t + p\omega)}{dt} = -v_j(t + p\omega) + y_j(t + p\omega),$$

$$\frac{dy_j(t + p\omega)}{dt} = -\left(1 - \beta_j\right) v_j(t + p\omega) - \left(\beta_j - 1\right) y_j(t + p\omega)$$

$$- d_j(v_j(t + p\omega))$$

$$\times \left[e_j(v_j(t + p\omega)) - \sum_{i=1}^n h_{ji} g_i(u_i(t + p\omega - \sigma_{ji}(t))) - J_j(t)\right],$$ \hspace{1cm} (51)

for $i = 1, 2, \ldots, n$, $j = 1, 2, \ldots, m$.

Since \(u(t + p\omega) \) and \(v(t + p\omega) \) uniformly converge to continuous function
\[
\begin{align*}
\mathcal{u}^* (t) &= (u_1^* (t), u_2^* (t), \ldots, u_n^* (t)), \\
\mathcal{v}^* (t) &= (v_1^* (t), v_2^* (t), \ldots, v_m^* (t)),
\end{align*}
\]
respectively, \(\{x(t + p\omega)\} \) and \(\{y(t + p\omega)\} \) uniformly converge to a continuous function
\[
\begin{align*}
x^* (t) &= (x_1^* (t), x_2^* (t), \ldots, x_n^* (t)), \\
y^* (t) &= (y_1^* (t), y_2^* (t), \ldots, y_m^* (t)),
\end{align*}
\]
respectively. Thus, \(\{x(t + p\omega)\} \) and \(\{y(t + p\omega)\} \) uniformly converge to a continuous function
\[
\begin{align*}
\mathcal{u}^* (t) &= \left(\begin{array}{c}
u_1^* (t) \\
u_2^* (t) \\
\vdots \\
u_n^* (t)
\end{array} \right), \\
\mathcal{v}^* (t) &= \left(\begin{array}{c}
v_1^* (t) \\
v_2^* (t) \\
\vdots \\
v_m^* (t)
\end{array} \right),
\end{align*}
\]
uniformly converge to continuous functions on any compact set of \(R \), respectively. Thus, let \(p \to \infty \); we obtain
\[
\begin{align*}
&\frac{du_j^* (t)}{dt} = -u_j^* (t) + x_j^* (t), \\
&\frac{dx_j^* (t)}{dt} = -(1 - \alpha_j) u_j^* (t) - \alpha_j - 1 x_j^* (t) \\
&\quad - a_j (u_j^* (t)) \\
&\quad \times \left[b_j (u_j^* (t)) \\
&\quad - \sum_{i=1}^{m} c_{ij} f_j \left(v_j^* (t - \tau_{ij} (t)) \right) \right] - l_j (t), \\
&\frac{dv_j^* (t)}{dt} = -v_j^* (t) + y_j^* (t), \\
&\frac{dy_j^* (t)}{dt} = -(1 - \beta_j) v_j^* (t) - \beta_j - 1 y_j^* (t) \\
&\quad - d_j (v_j^* (t)) \\
&\quad \times \left[e_j (v_j^* (t)) \\
&\quad - \sum_{i=1}^{n} h_{ji} \left(u_i^* (t - \sigma_{ji} (t)) \right) \right] - f_j (t),
\end{align*}
\]
for \(i = 1, 2, \ldots, n, j = 1, 2, \ldots, m \).

Thus, \((\mathcal{u}^T(t), \mathcal{v}^T(t)) \) is a periodic solution of system (3). From (45), we obtain that system (3) has one \(\omega \)-periodic solution, which is exponentially stable. \(\square \)

Theorem 4. Under the hypotheses \((H_1)-(H_3)\), there is an \(\omega \)-periodic solution of system (3), which is exponentially stable, if the following conditions hold:
\[
\begin{align*}
\alpha_i - 1 - T_i &> 0, \\
\beta_j - 1 - T_j &> 0, \\
-T_i + A_i \sum_{j=1}^{m} T_j |c_{ij}| + A_i T_j + \alpha_i \sum_{j=1}^{m} I_j |d_{ij}| &< 0, \\
-T_j + D_j \sum_{i=1}^{n} |c_{ij}| + D_j T_j + \beta_j \sum_{i=1}^{n} k_i |h_{ji}| &< 0,
\end{align*}
\]
for \(i = 1, 2, \ldots, n, j = 1, 2, \ldots, m \).

Proof. Let
\[
\begin{align*}
\mathcal{u}(t) &= (\mathcal{u}_1 (t), \mathcal{u}_2 (t), \ldots, \mathcal{u}_n (t))^T, \\
\mathcal{v}(t) &= (\mathcal{v}_1 (t), \mathcal{v}_2 (t), \ldots, \mathcal{v}_m (t))^T
\end{align*}
\]
be solution of system (3) with initial value (IV1), and let
\[
\begin{align*}
u(t) &= (u_1 (t), u_2 (t), \ldots, u_n (t))^T, \\
v(t) &= (v_1 (t), v_2 (t), \ldots, v_m (t))^T
\end{align*}
\]
be solution of system (3) with any initial value (IV2).
From (33), we can obtain
\[
\begin{align*}
&\frac{d\{z_i (t)\}}{dt} = \text{sgn} (z_i (t)) (-z_i (t) + \omega_i (t)) \\
&\quad \leq -|z_i (t)| + |\omega_i (t)|, \quad i = 1, 2, \ldots, n, \\
&\frac{d\{\omega_i (t)\}}{dt} = \text{sgn} (\omega_i (t)) \left\{ -(1 - \alpha_i) z_i (t) - (\alpha_i - 1) \omega_i (t) \\
&\quad + a_i (u_i (t)) \\
&\quad \times \left[\sum_{j=1}^{m} c_{ij} f_j \left(v_j (t - \tau_{ij} (t)) \right) \\
&\quad - f_j (v_j (t - \tau_{ij} (t))) \right] \right\}
\end{align*}
\]
for \(i = 1, 2, \ldots, n, j = 1, 2, \ldots, m \).
\[\begin{align*}
+ (a_i(u_i(t)) - a_i(\overline{u}_i(t))) \\
\times & \left[\sum_{j=1}^{m} c_{ij} f_j(\overline{v}_j(t - \tau_{ij}(t))) + I_i(t) \right] \\
- & [a_i(u_i(t)) b_i(u_i(t)) \\
& - a_i(\overline{u}_i(t)) b_i(\overline{u}_i(t))] \\
= & \text{sgn}(w_i(t)) \left\{ - (1 - \alpha_i) z_i(t) - (\alpha_i - 1) w_i(t) \\
+ & a_i(u_i(t)) \right. \\
\times & \left[\sum_{j=1}^{m} c_{ij} f_j(\overline{v}_j(t - \tau_{ij}(t))) \\
- & f_j(\overline{v}_j(t - \tau_{ij}(t))) \right] \\
& + a'_i(\xi_i) z_i(t) \\
	imes & \left[\sum_{j=1}^{m} c_{ij} f_j(\overline{v}_j(t - \tau_{ij}(t))) + I_i(t) \right] \\
- & B'_i(\overline{\xi}_i) z_i(t) \right\} \\
\le & (\alpha_i - 1 - B'_i(\overline{\xi}_i)) |z_i(t)| - (\alpha_i - 1) |w_i(t)| \\
& + \alpha_i \sum_{j=1}^{m} |c_{ij}| \overline{l_j} |p_j(t - \tau_{ij}(t))| \\
& + A_i \left[\sum_{j=1}^{m} |c_{ij}| \overline{f}_j + \overline{l_i} \right] |z_i(t)| \\
\le & \left[\alpha_i - 1 - T_i + A_i \left(\sum_{j=1}^{m} |c_{ij}| \overline{f}_j + \overline{l_i} \right) \right] |z_i(t)| \\
- & (\alpha_i - 1) |w_i(t)| + \alpha_i \sum_{j=1}^{m} |c_{ij}| \overline{l_j} |p_j(t - \tau_{ij}(t))|, \tag{60}
\end{align*}\]

for \(i = 1, 2, \ldots, n\).

From (34), we can obtain
\[\begin{align*}
\frac{d}{dt} |p_j(t)| &= \text{sgn}(p_j(t)) (-p_j(t) + q_j(t)) \\
& \le - |p_j(t)| + |q_j(t)|, \quad j = 1, 2, \ldots, m, \tag{61}
\end{align*}\]

for \(j = 1, 2, \ldots, m\).
From (60) and (62), we can obtain
\[|w_i(t)| \leq e^{1-\alpha_i t} |w_i(0)| \]
\[+ \left[\alpha_i - 1 - T_i + A_i \left(\sum_{j=1}^{m} c_{ij} T_j + T_i \right) \right] \times \int_0^t e^{(\alpha_i-1)(s-t)} |z_i(s)| \, ds \]
\[+ \tilde{a_i} \sum_{j=1}^{m} |c_{ij}| l_j \int_0^t e^{(\alpha_i-1)(s-t)} |p_j(s - \tau_j(t))| \, ds, \]
for \(i = 1, 2, \ldots, n \).

\[|q_j(t)| \leq e^{1-\beta_j t} |q_j(0)| \]
\[+ \left[\beta_j - 1 - T_j^* + D_j \left(\sum_{i=1}^{n} |h_{ij}| \tilde{g}_i + \tilde{T}_i \right) \right] \times \int_0^t e^{(\beta_j-1)(s-t)} |p_j(s)| \, ds \]
\[+ \tilde{d_j} \sum_{i=1}^{m} |h_{ij}| k_i \int_0^t e^{(\beta_j-1)(s-t)} |z_i(s - \sigma_{ji}(t))| \, ds, \]
for \(j = 1, 2, \ldots, m \).

We obtain
\[|z_i(t)| \leq (L+\varepsilon) e^{-\delta t}, \quad |w_i(t)| \leq (L+\varepsilon) e^{-\delta t}, \quad |q_j(t)| \leq (L+\varepsilon) e^{-\delta t}, \quad |p_j(t)| \leq (L+\varepsilon) e^{-\delta t}, \]
for \(i = 1, 2, \ldots, n, j = 1, 2, \ldots, m, \) and \(t \geq 0 \).

Considering proof of contradiction, if (69) does not hold, there are 15 possible situations; here we only discuss the following four cases; that is,
\[|z_i(t)| = (L+\varepsilon) e^{-\delta t}, \quad \frac{d^*}{dt} |z_k(t_1)| \geq 0, \]
\[|w_i(t)| < (L+\varepsilon) e^{-\delta t}, \quad t \in [0, t_1], \]
\[|p_j(t)| < (L+\varepsilon) e^{-\delta t}, \quad t \in [0, t_1], \]
\[|q_j(t)| < (L+\varepsilon) e^{-\delta t}, \quad t \in [0, t_1], \]
for \(i = 1, 2, \ldots, n, j = 1, 2, \ldots, m, \) and \(t \geq 0 \).
or
\[|q_i(t)| = (L + \epsilon) e^{-\delta t}, \]
\[|z_i(t)| < (L + \epsilon) e^{-\delta t}, \quad t \in [0, t_1], \]
\[|w_i(t)| < (L + \epsilon) e^{-\delta t}, \quad t \in [0, t_1], \]
\[|p_j(t)| < (L + \epsilon) e^{-\delta t}, \quad t \in [0, t_1], \]
\[|q_j(t)| < (L + \epsilon) e^{-\delta t}, \quad t \in [0, t_1], \]

where \(k \in \{1, 2, \ldots, n\}, l \in \{1, 2, \ldots, m\}, \) and \(t_1 \geq 0, i = 1, 2, \ldots, n, \) and \(j = 1, 2, \ldots, m. \)

Therefore, by (59) and (70), we have
\[
\frac{d^+ |z_k(t_1)|}{dt} \leq |z_k(t_1)| + |w_k(t_1)|
\]
\[
< -(L + \epsilon) e^{-\delta t_1} + (L + \epsilon) e^{-\delta t_1} = 0,
\]
which is a contradiction with \(d^+ |z_k(t_1)|/dt \geq 0. \)

By (63) and (71), we obtain
\[
|w_k(t_1)| = (L + \epsilon) e^{-\delta t_1},
\]
\[
\leq e^{1-(\alpha_k)_1} |w_k(0)| + \left[\alpha_k - 1 - T_k + A_k \sum_{j=1}^m \bar{f}_j |c_k| + A_k T_k \right]
\times \int_0^{t_1} e^{(\alpha_k-1)(s-t_1)} \left| z_k(s) \right| ds + \tilde{a}_k \sum_{j=1}^m l_j |c_k| \]
\times \int_0^{t_1} e^{(\alpha_k-1)(s-t_1)} \left| p_j(s - \tau_{kj}(s)) \right| ds
\]
\[
\leq (L + \epsilon) \left[e^{1-(\alpha_k)_1} + \left[\alpha_k - 1 - T_k + A_k \sum_{j=1}^m \bar{f}_j |c_k| + A_k T_k \right]
\times \int_0^{t_1} e^{(\alpha_k-1)(s-t_1)-\delta s} ds + \tilde{a}_k \sum_{j=1}^m l_j |c_k| \right]
\times \int_0^{t_1} e^{(\alpha_k-1)(s-t_1)-\delta s + \delta \tau_{kj}(s)} ds \right)
\]
\[
\leq (L + \epsilon) \left[e^{1-(\alpha_k)_1} + \left[\alpha_k - 1 - T_k + A_k \sum_{j=1}^m \bar{f}_j |c_k| + A_k T_k \right]
\times e^{-\delta t_1 - e^{1-(\alpha_k)_1}} \frac{\alpha_k - 1 - \delta}{\alpha_k - 1 - \delta} \right].
\]

Since
\[
\alpha_k - 1 - \delta > \alpha_k - 1 - T_k + A_k \sum_{j=1}^m \bar{f}_j |c_k| + A_k T_k + \tilde{a}_k \sum_{j=1}^m l_j |c_k| e^{\delta s} > 0,
\]

we have
\[
\left[\alpha_k - 1 - T_k + A_k \sum_{j=1}^m \bar{f}_j |c_k| + A_k T_k + \tilde{a}_k \sum_{j=1}^m l_j |c_k| e^{\delta s} \right] (\alpha_k - 1 - \delta)
\]
\[
< 1.
\]

From (75), we have
\[
L + \epsilon < L + \epsilon,
\]
which is a contradiction.

Therefore, by (61) and (75), we have
\[
\frac{d^+ |p_i(t_1)|}{dt} \leq |p_i(t_1)| + |q_i(t_1)|
\]
\[
< -(L + \epsilon) e^{-\delta t_1} + (L + \epsilon) e^{-\delta t_1} = 0,
\]
which is a contradiction with \(d^+ |p_i(t_1)|/dt \geq 0. \)

By (70) and (80), we obtain
\[
|q_i(t_1)|
\]
\[
= (L + \epsilon) e^{-\delta t_1} \leq e^{1-(\beta_i)_1} |q_i(0)|
\]
\[
+ \left[\beta_i - 1 - T_i^* + D_i \sum_{i=1}^n \bar{g}_i |h_i| + D_i T_i \right]
\times \int_0^{t_1} e^{(\beta_i-1)(s-t_1)} \left| p_i(s) \right| ds + \tilde{d}_i \sum_{i=1}^n k_i |h_i| \]
\times \int_0^{t_1} e^{(\beta_i-1)(s-t_1)} \left| z_i(s - \sigma_{i}(s)) \right| ds
\]
\[
\leq (L + \epsilon) \left[e^{1-(\beta_i)_1} + \left[\beta_i - 1 - T_i^* + D_i \sum_{i=1}^n \bar{g}_i |h_i| + D_i T_i \right]
\times \int_0^{t_1} e^{(\beta_i-1)(s-t_1)-\delta s} ds + \tilde{d}_i \sum_{i=1}^n k_i |h_i| \right]
\times \int_0^{t_1} e^{(\beta_i-1)(s-t_1)-\delta s + \delta \sigma_{i}(s)} ds \right].
\]
\[\leq (L + \varepsilon) \left\{ e^{(1-\beta)t_1} + \left[\beta_1 - 1 - T_1^* + D_1 \sum_{i=1}^{n} \bar{g}_i |h_i| \right] + D_1 \bar{h}_1 + \bar{d}_1 \sum_{i=1}^{n} k_i |h_i| e^{\sigma \delta} \right\} \times e^{-\delta t_1} - e^{(1-\beta)t_1} \frac{\beta_1 - 1 - \delta}{\beta_1 - 1 - \delta}. \]

(80)

Since

\[\beta_1 - 1 - \delta > \beta_1 - 1 - T_1^* \]

\[+ D_1 \sum_{i=1}^{n} \bar{g}_i |h_i| + D_1 \bar{h}_1 + \bar{d}_1 \sum_{i=1}^{n} k_i |h_i| e^{\sigma \delta} > 0, \]

(81)

we have

\[\frac{[\beta_1 - 1 - T_1^* + D_1 \sum_{i=1}^{n} \bar{g}_i |h_i| + D_1 \bar{h}_1 + \bar{d}_1 \sum_{i=1}^{n} k_i |h_i| e^{\sigma \delta}]}{(\beta_1 - 1 - \delta)} < 1. \]

(82)

From (80), we have

\[L + \varepsilon < L + \varepsilon, \]

(83)

which is a contradiction.

Similarly, we can prove that the other 11 possible situations; thus (69) holds; let \(\varepsilon \to 0 \); we have

\[|z_i(t)| \leq Le^{-\delta t}, \quad |w_i(t)| \leq Le^{-\delta t}, \]

\[|p_j(t)| \leq Le^{-\delta t}, \quad |q_j(t)| \leq Le^{-\delta t}, \]

(84)

for \(i = 1, 2, \ldots, n, j = 1, 2, \ldots, m, \) and \(t \geq 0. \)

From (84), there exist constants \(\delta > 0 \) and \(M > 0 \) such that

\[\sum_{i=1}^{n} (u_i(t) - \bar{u}_i(t))^2 + \sum_{j=1}^{m} (v_j(t) - \bar{v}_j(t))^2 \leq Me^{-\delta t} \left[\|q_{\alpha ij} - \bar{q}_{\alpha ij}\|^2 + \|q_{\beta ij} - \bar{q}_{\beta ij}\|^2 \right], \quad t > 0. \]

(85)

Using (85), similarly with the proof of Theorem 3, we know that system (3) has one \(\omega \)-periodic solution, which is exponentially stable. \(\square \)

4. Numerical Examples

In this section, we give two examples for showing our results.

Example 1. We consider the following inertial Cohen-Grossberg-type BAM neural networks with time delays \(n = m = 3 \):

\[\frac{d^2u_i(t)}{dt^2} = -a_i \frac{du_i(t)}{dt} - a_i (u_i(t)) \times \left[b_i (u_i(t)) - \sum_{j=1}^{3} c_{ij} f_j (v_j(t - \tau_{ij}(t))) - I_i (t) \right], \]

\[\frac{d^2v_j(t)}{dt^2} = -b_j \frac{dv_j(t)}{dt} - d_j (v_j(t)) \times \left[e_j (v_j(t)) - \sum_{i=1}^{3} h_{ji} g_i (u_i(t - \sigma_{ji}(t))) - J_j (t) \right], \]

(86)

for \(i, j = 1, 2, 3 \), where

\[a_1 = 1.7, \quad a_2 = 1.9, \quad a_3 = 1.8, \quad \beta_1 = 2.3, \]

\[\beta_2 = 2, \quad \beta_3 = 2.2, \quad c_{11} = \frac{1}{16}, \quad c_{12} = \frac{1}{16}, \]

\[c_{13} = \frac{1}{24}, \quad c_{21} = \frac{1}{8}, \quad c_{22} = \frac{1}{8}, \quad c_{23} = \frac{1}{32}, \]

\[c_{31} = \frac{1}{32}, \quad c_{32} = \frac{1}{32}, \quad c_{33} = \frac{1}{64}, \quad h_{11} = \frac{1}{32}, \]

\[h_{12} = \frac{1}{32}, \quad h_{13} = \frac{1}{64}, \quad h_{21} = \frac{1}{32}, \quad h_{22} = \frac{1}{32}, \]

\[h_{23} = \frac{1}{32}, \quad h_{31} = \frac{1}{64}, \quad h_{32} = \frac{1}{64}, \quad h_{33} = \frac{1}{32}, \]

\[a_1 (u_1) = 2 + \frac{1}{1 + u_1^2}, \quad a_2 (u_2) = 2 - \frac{1}{1 + u_2^2}, \]

\[a_3 (u_3) = 1.6 + \frac{2}{1 + u_3^2}, \]

\[b_1 (u_1) = \frac{8}{15} u_1, \quad b_2 (u_2) = \frac{1}{2} u_2, \quad b_3 (u_3) = \frac{10}{20} u_3, \]

\[d_1 (v_1) = 1 + \frac{1}{1 + v_1^2}, \quad d_2 (v_2) = 2 - \frac{1}{1 + v_2^2}, \]

\[d_3 (v_3) = 2 + \frac{1}{1 + v_3^2}, \]

\[e_1 (v_1) = \frac{4}{7} v_1, \quad e_2 (v_2) = \frac{1}{3} v_2, \quad e_3 (v_3) = \frac{4}{15} v_3, \]

\[f_j (v_j) = \frac{e^{v_j} - e^{-v_j}}{8 (e^{v_j} + e^{-v_j})}, \quad g_i (u_i) = \frac{e^{u_i}}{8 (e^{u_i} + e^{-u_i})}. \]
\[
\begin{align*}
\tau_{ij} &= \frac{1 + \sin t}{6}, \quad \sigma_{ij} = \frac{1 + \cos t}{6}, \\
I_i(t) &= \frac{1}{32} (2 + \sin t), \quad J_j(t) = \frac{1}{32} (2 + \cos t), \\
i, j &= 1, 2, 3.
\end{align*}
\]
\[\text{(87)}\]

Obviously,
\[
\begin{align*}
2 &\leq a_1(u_i) \leq 3, \quad |a'_1(u_i)| \leq 1, \quad 1 \leq a_2(u_2) \leq 2, \\
|a'_2(u_2)| &\leq 1, \quad 1.6 \leq a_3(u_3) \leq 3.6, \quad |a'_3(u_3)| \leq 1, \\
1 &\leq d_1(v_i) \leq 2, \quad |d'_1(v_i)| \leq 1, \quad 1 \leq d_2(v_2) \leq 2, \\
|d'_2(v_2)| &\leq 1, \quad 2 \leq d_3(v_3) \leq 3, \quad |d'_3(v_3)| \leq 1, \\
b'_1(u_i) &= \frac{8}{15}, \quad b'_2(u_2) = \frac{1}{2}, \quad b'_3(u_3) = \frac{10}{20}, \\
e'_1(v_1) &= \frac{4}{7}, \quad e'_2(v_2) = \frac{1}{3}, \quad e'_3(v_3) = \frac{4}{15}, \\
|f_j(x) - f_j(y)| &\leq \frac{|x - y|}{8}, \quad |f_j(x)| \leq \frac{1}{8}, \\
&\quad j = 1, 2, 3, \quad x, y \in R, \\
|g_i(x) - g_i(y)| &\leq \frac{|x - y|}{16}, \quad |g_i(x)| \leq \frac{1}{8}, \\
&\quad i = 1, 2, 3, \quad x, y \in R, \\
0 &\leq r_{ij} \leq \frac{1}{3}, \quad 0 \leq \sigma_{ij} = \frac{1}{3}, \quad i = j = 1, 2, 3, \\
0 &\leq e_i', \quad e'_i \leq \frac{1}{6}, \quad e'_i \leq \frac{1}{6}, \quad i = j = 1, 2, 3, \\
\frac{1}{32} &< I_i(t) < \frac{3}{32}, \quad \frac{1}{32} < J_j(t) < \frac{3}{32}, \quad i, j = 1, 2, 3, \\
B_1(u_i) &= a_1(u_i) b_1(u_i) = \frac{8}{15} \left(2u_i + \frac{u_i}{1 + u_i^2}\right), \\
1 &\leq B'_1(u_i) = \frac{8}{15} \left(2 + \frac{1 - u_i^2}{(1 + u_i^2)^2}\right) \leq \frac{8}{5}, \\
B_2(u_2) &= a_2(u_2) b_2(u_2) = \frac{1}{2} \left(2u_2 - \frac{u_2}{1 + u_2^2}\right), \\
\frac{1}{2} &\leq B'_2(u_2) = \frac{1}{2} \left(2 + \frac{u_2^2 - 1}{(1 + u_2^2)^2}\right) \leq \frac{17}{16}, \\
B_3(u_3) &= a_3(u_3) b_3(u_3) = \frac{10}{27} \left(1.6u_3 + \frac{2u_3}{1 + u_3^2}\right), \\
\frac{1}{2} &\leq B'_3(u_3) = \frac{10}{27} \left(1.6 + 2 + \frac{1 - u_3^2}{(1 + u_3^2)^2}\right) \leq \frac{4}{3}, \\
E_1(v_1) &= d_1(v_1) e_1(v_1) = \frac{4}{7} \left(v_1 + \frac{v_1}{1 + v_1^2}\right), \\
\frac{1}{2} &\leq E'_1(v_1) = \frac{4}{7} \left(1 + \frac{1 - v_1^2}{(1 + v_1^2)^2}\right) \leq \frac{8}{7}, \\
E_2(v_2) &= d_2(v_2) e_2(v_2) = \frac{1}{3} \left(2v_2 - \frac{v_2}{1 + v_2^2}\right), \\
\frac{1}{3} &\leq E'_2(v_2) = \frac{1}{3} \left(2 + \frac{v_2^2 - 1}{(1 + v_2^2)^2}\right) \leq \frac{17}{24}, \\
E_3(v_3) &= d_3(v_3) e_3(v_3) = \frac{4}{15} \left(2v_3 + \frac{v_3}{1 + v_3^2}\right), \\
\frac{1}{2} &\leq E'_3(v_3) = \frac{4}{15} \left(2 + \frac{1 - v_3^2}{(1 + v_3^2)^2}\right) \leq \frac{4}{5}.
\end{align*}
\]
\[\text{(88)}\]

By assumptions \((H_1)-(H_5)\), we select
\[
\begin{align*}
\alpha_1 &= 2, \quad \alpha_2 = 3, \quad \alpha_3 = 1, \quad \alpha_4 = 2, \quad \alpha_5 = 1.6, \\
\alpha_3 &= 3.6, \quad A_1 = 1, \quad A_2 = 1, \quad A_3 = 2, \\
\bar{d}_1 &= 1, \quad \bar{d}_2 &= 1, \quad \bar{d}_3 &= 2, \\
\bar{d}_3 &= 2, \quad \bar{d}_3 = 3, \quad D_1 = 1, \quad D_2 = 1, \quad D_3 = 1, \\
\bar{b}_1 &= \bar{b}_1 = \frac{8}{15}, \quad \bar{b}_2 = \bar{b}_2 = \frac{1}{2}, \quad \bar{b}_3 = \bar{b}_3 = \frac{10}{27}, \\
\bar{e}_1 &= \bar{e}_1 = \frac{4}{7}, \quad \bar{e}_2 = \bar{e}_2 = \frac{1}{3}, \quad \bar{e}_3 = \bar{e}_3 = \frac{4}{15}, \\
l_j = \bar{f}_j = \frac{1}{8}, \quad k_1 = \frac{1}{16}, \quad \bar{g}_i = \frac{1}{8}, \quad \bar{L}_i = \frac{1}{32}, \\
\bar{L}_i &= \frac{3}{32}, \quad \bar{L}_j = \frac{1}{32}, \quad \bar{J}_j = \frac{3}{32}, \quad i, j = 1, 2, 3, \\
T_1 &= 1, \quad k_1 = \frac{8}{5}, \quad T_2 = \frac{1}{2}, \quad k_2 = \frac{17}{16}, \\
T_3 &= \frac{1}{2}, \quad k_3 = \frac{4}{3}, \quad T_3^* = \frac{1}{2}, \quad k_3^* = \frac{8}{7}, \\
T_2^* &= \frac{1}{3}, \quad k_2^* = \frac{17}{24}, \quad T_3^* = \frac{1}{2}, \quad k_3^* = \frac{4}{5}, \\
\sigma &= \frac{1}{3}, \quad \bar{\sigma}_{ij} = \frac{1}{6}, \quad \bar{\sigma}_{ii} = \frac{1}{3}.
\end{align*}
\]
\[\text{(89)}\]

Thus, hypotheses \((H_1)-(H_5)\) hold.

For numerical simulation, the following ten any intial values are given:
\[
\begin{align*}
[\varphi_{u1}(0), \varphi_{u2}(0), \varphi_{u3}(0), \varphi_{v1}(0), \varphi_{v2}(0), \varphi_{v3}(0), \varphi_{w1}(0), \varphi_{w2}(0), \varphi_{w3}(0)]
\end{align*}
\]
Figures 1, 2, 3, 4, 5, and 6 depict the time responses of state variables $u_1(t)$, $u_2(t)$, and $u_3(t)$ and $v_1(t)$, $v_2(t)$, and $v_3(t)$ of the system in Example 1, respectively.

\[
\begin{bmatrix}
0.4; -1; 1.5; 2; -1.3; 2; 0.5; 1.8; 3; 2; -3; 2 \\
0.1; 1.3; 0.5; 1.5; -2; 1.5; 1; 1.3; 1; 1.5; -2; 1.5 \\
-0.2; 1.5; -1; -1; -1; -1.5; 1.5; -1; 1.5; -2; 1.5 \\
-0.7; 1.8; 0.5; 0; -1.3; 0.2; -1.3; 2; 1.5; -2; 1.5 \\
-0.4; 0.5; 0.8; -2.3; 1; -2.3; -0.5; -1.5; -2; 1.5; -2; 1.5 \\
0.5; -0.2; 1; 1.3; 2; 1.3; 1.8; 2; 0.4; 1.5; -2; 1.5 \\
-0.5; 0.2; 2; -2.3; 1.3; -2.3; 0.6; -0.2; -0.4; 1.5; -2; 1.5 \\
0.8; -0.5; -2; -1.3; 2; -1.3; -1.5; 0.5; -2.6; 1.5; -2; 1.5 \\
-0.6; 0.9; -0.5; -2.3; -2; -2.3; -1.2 \\
-0.5; -2.3; 1.5; -2; 1.5; \\
0.7; -0.7; -1.5; -3; 0.5; -1; -1.1; -1.8; -0.2; 1.5; -2; 1.5
\end{bmatrix}
\]
On the other hand, we have the following results by simple calculation:

\[
\alpha_1 - K_1 = \frac{2}{5} > 0, \quad \alpha_2 - K_2 = \frac{67}{80} > 0,
\]

\[
\alpha_3 - K_3 = \frac{14}{30} > 0, \quad \beta_1 - K_1^* = \frac{81}{70} > 0,
\]

\[
\beta_2 - K_2^* = \frac{31}{24} > 0, \quad \beta_3 - K_3^* = -\frac{7}{5} > 0,
\]

\[
\alpha_1 - T_1 - 2 + A_1 \left(\sum_{j=1}^{3} |c_{1j}| \overline{f}_j + \overline{T}_1 \right) + \frac{3}{1 - \overline{\sigma}_{j1}} |h_{1j}| k_1 = \frac{218.5}{240} < 0,
\]

\[
\alpha_2 - T_2 - 2 + A_2 \left(\sum_{j=1}^{3} |c_{2j}| \overline{f}_j + \overline{T}_2 \right) + \frac{3}{1 - \overline{\sigma}_{j2}} |h_{1j}| k_2 = \frac{237.1}{768} < 0,
\]

\[
\alpha_3 - T_3 - 2 + A_3 \left(\sum_{j=1}^{3} |c_{3j}| \overline{f}_j + \overline{T}_3 \right) + \frac{3}{1 - \overline{\sigma}_{j3}} |h_{1j}| k_3 = -\frac{7.19}{128} < 0,
\]

\[
2 - \alpha_1 - T_1^* + \overline{a}_1 \sum_{j=1}^{3} |c_{1j}| I_j + A_1 \left(\sum_{j=1}^{3} |c_{1j}| \overline{f}_j + \overline{T}_1 \right) = \frac{25.1}{48} < 0,
\]

\[
2 - \alpha_2 - T_2^* + \overline{a}_2 \sum_{j=1}^{3} |c_{2j}| I_j + A_2 \left(\sum_{j=1}^{3} |c_{2j}| \overline{f}_j + \overline{T}_2 \right) = \frac{23}{320} < 0,
\]

\[
2 - \alpha_3 - T_3^* + \overline{a}_3 \sum_{j=1}^{3} |c_{3j}| I_j + A_3 \left(\sum_{j=1}^{3} |c_{3j}| \overline{f}_j + \overline{T}_3 \right) = -\frac{1.85}{32} < 0,
\]

\[
\beta_1 - T_1^* - 2 + D_1 \left(\sum_{j=1}^{3} |h_{1j}| \overline{g}_j + \overline{T}_1 \right) + \frac{3}{1 - \overline{\tau}_{1j}} |\tilde{c}_1| l_1 = \frac{2.3}{128} < 0,
\]

\[
\beta_2 - T_2^* - 2 + D_2 \left(\sum_{j=1}^{3} |h_{2j}| \overline{g}_j + \overline{T}_2 \right) + \frac{3}{1 - \overline{\tau}_{2j}} |\tilde{c}_2| l_2 = \frac{85.1}{384} < 0,
\]

\[
\beta_3 - T_3^* - 2 + D_3 \left(\sum_{j=1}^{3} |h_{3j}| \overline{g}_j + \overline{T}_3 \right) + \frac{3}{1 - \overline{\tau}_{3j}} |\tilde{c}_3| l_3 = \frac{-33.5}{128} < 0,
\]

Then, the conditions of Theorem 3 hold. From Theorem 3, system (86) has one 2\(\pi\)-periodic solution, and all other solutions of system (86) exponentially converge to it as \(t \to +\infty\).

Evidently, this consequence is coincident with the results of numerical simulation.

Example 2. For system (86), let \(\alpha_1 = 2.12, \alpha_2 = 1.6, \alpha_3 = 1.7, \beta_1 = 2.2, \beta_2 = 5/3, \) and \(\beta_3 = 1.6; \) the other parameters are the same as those in Example 1.

Through numerical simulation, Figures 7, 8, 9, 10, 11, and 12 depict the time responses of state variables of \(u_1(t), u_2(t), u_3(t), v_1(t), v_2(t), \) and \(v_3(t), \) of the system in Example 2, respectively.

On the other hand, we have the following results by simple calculation:

\[
\alpha_1 - 1 - T_1 = 0.1 > 0, \quad \alpha_2 - 1 - T_2 = 0.1 > 0,
\]

\[
\alpha_3 - 1 - T_3 = 0.2 > 0, \quad \beta_1 - 1 - T_1^* = 0.2 > 0,
\]

\[
\beta_2 - 1 - T_2^* = \frac{1}{3} > 0, \quad \beta_3 - 1 - T_3^* = 0.1 > 0,
\]

\[
-T_1 + A_1 \sum_{j=1}^{3} \overline{f}_j |c_{1j}| + A_1 \overline{T}_1 + \overline{a}_1 \sum_{j=1}^{3} |h_{1j}| |c_{1j}| = -\frac{83}{96} < 0,
\]

\[
-T_2 + A_2 \sum_{j=1}^{3} \overline{f}_j |c_{2j}| + A_2 \overline{T}_2 + \overline{a}_2 \sum_{j=1}^{3} |h_{2j}| |c_{2j}| = -\frac{77}{256} < 0,
\]

\[
-T_3 + A_3 \sum_{j=1}^{3} \overline{f}_j |c_{3j}| + A_3 \overline{T}_3 + \overline{a}_3 \sum_{j=1}^{3} |h_{3j}| |c_{3j}| = -\frac{165}{640} < 0,
\]

\[
-T_1^* + D_1 \sum_{j=1}^{3} |h_{1j}| + D_1 \overline{T}_1 + \overline{a}_1 \sum_{j=1}^{3} |h_{1j}| = -\frac{115}{256} < 0,
\]
Then, the conditions of Theorem 4 hold. From Theorem 4, system (86) has one 2π-periodic solution, and all other solutions of system (86) exponentially converge to it as $t \to +\infty$.

Evidently, this consequence is coincident with the results of numerical simulation.

Remark 5. Examples 1 and 2 showed that system (86) has one 2π-periodic solution, which is exponentially stable. In Example 1, there is

$$\alpha_1 - 1 - T_1 = -0.3 < 0.$$ \hfill (93)

But this condition does not satisfy Theorem 4. While in Example 2, there is

$$2 - \beta_3 - T_3^* + \bar{d}_3 \bar{\sum}_{i=1}^{3} |h_{3i}| k_3 + D_3 \left(\sum_{i=1}^{3} |h_{3i}| \bar{g}_i + \bar{T}_3 \right)$$

$$= \frac{35.25}{128} > 0.$$ \hfill (94)

This condition does not satisfy Theorem 3. It showed that Theorems 3 and 4 have different applications.
In fact, the parameter α_i, β_j in Theorem 3 must be satisfied
\[2 - T_i < \alpha_i < 2 + T_i, \quad 2 - T^*_j < \beta_j < 2 + T^*_j. \] (95)
For Theorem 4, it is only required to satisfy
\[\alpha_i > 1 + T_i, \quad \beta_j > 1 + T^*_j. \] (96)
Therefore, Theorems 3 and 4 can solve different problems.

5. Conclusion

In this paper, we give three theorems to ensure the existence and the exponential stability of the periodic solution for inertial Cohen-Grossberg-type BAM neural networks. Novel existence and stability conditions are stated with simple algebraic forms and their verification and applications are straightforward and convenient. Especially, we give different conditions in Theorems 3 and 4 to ensure the exponential stability of the periodic solution, which have different advantages in different problems and applications. Finally two examples illustrate the effectiveness in different conditions. The method used in this paper can be employed to study general neural network with time-varying delays.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

This work is supported by the Natural Science Foundation of Zhejiang Province (no. Y6100096).

References

Submit your manuscripts at
http://www.hindawi.com