Large Time Behavior for Weak Solutions of the 3D Globally Modified Navier-Stokes Equations

1. Introduction

It is well known that the motion of the viscous incompressible fluids is governed by the following classic Navier-Stokes equations [1]:

$$\partial_t u + (u \cdot \nabla u) - \Delta u + \nabla p = 0,$$
$$\nabla \cdot u = 0.$$ (1)

Here u and π denote the unknown velocity and pressure of the fluid motion, respectively. This motion essentially presumes that the derivatives of the components of the velocity are small.

In Leray’s pioneer work [2] in 1930, for any initial data in L^2, Navier-Stokes equations (1) exits a global weak solution u satisfying

$$u \in L^\infty \left(0, T^* ; L^2 \right) \cap L^2 \left(0, T^* ; H^1 \right),$$ (2)

However, the question of global existence for smooth solutions of the 3D Navier-Stokes equations is still a big open problem. In order to overcome this large difficulty, many efforts have been made to study some related modified Navier-Stokes equations (see [3, 4]). Recently, Caraballo et al. [5] (see also Kloeden et al. [6, 7]) introduced an interesting and important mathematical model which is the so-called global modification of the Navier-Stokes equations

$$\partial_t u + F_N \left(\|\nabla u\|_{L^2} \right) (u \cdot \nabla u) - \nu \Delta u + \nabla p = 0,$$
$$\nabla \cdot u = 0.$$ (3)

associated with

$$u(x, 0) = u_0,$$ (4)

where F_N (for some $N \in \mathbb{R}^+$) is defined by

$$F_N(r) = \min \left\{1, \frac{N}{r} \right\}, \quad r \in \mathbb{R}^+.$$ (5)

Let us give a profile analysis to this globally defined model. The modifying factor $F_N(\|\nabla u\|_{L^2})$ is a function of $\|\nabla u\|_{L^2}$. Essentially, it prevents large gradients dominating flux and leading to explosions. What is the most important is that this model exhibits a unique global weak solution for the system (1) in bounded domain (see [5]).

However, it should be mentioned that although the presence of $F_N(\|\nabla u\|_{L^2})$ actually canceled some singularities of the nonlinear term $u \cdot \nabla u$, it cannot increase the effect of low frequency of the solutions of the system (3). Therefore, it is interesting to consider the time decay issue of this model which largely depended on the effect of low frequency of the solutions. In this paper, we are focused on the L^2 decay
of weak solutions for the modified Navier-Stokes equations (3). To carry out this issue, it is necessary to recall some classic time decay results of the fluid dynamical models. \(L^2\) decay of weak solutions for the Navier-Stokes equations was first studied by Schonbek [8] (see also [9]). She first posed decay of weak solutions for the Navier-Stokes equations was associated with the finitenergy weak solutions decay as
\[
c(1 + t)^{-n/4} \leq \|u(t)\|_{L^2} \leq c_1(1 + t)^{-n/4}.
\]
(6)
Later on there are large good results to develop the Fourier splitting methods on the incompressible Navier-Stokes equations [10]. One may also refer to some interesting decay issues of the related fluid models [11–13].

Motivated by the upper and lower decay estimates of non-linear fluid models [14], in this study, we will develop another splitting methods and auxiliary decay estimates together with the \(L^p - L^q\) estimates of heat semigroup in whole space \(\mathbb{R}^3\). We can get the optimal time decay rate, since it coincides with that of linear equations.

2. Preliminaries and Main Result

In this paper, we denote by \(C\) a generic positive constant which may vary from line to line.

\(L^p(\mathbb{R}^3)\) with \(1 \leq p \leq \infty\) is denoted by the Lebesgue space associated with the norm
\[
\|g\|_{L^p} = \left(\int_{\mathbb{R}^3} |g(x)|^p \, dx \right)^{1/p}, \quad 1 \leq p < \infty,
\]
\[
\|g\|_{L^\infty} = \text{ess sup}_{x \in \mathbb{R}^3} |g(x)|, \quad q = \infty.
\]
(7)

\(H^s(\mathbb{R}^3)\) with \(s \in \mathbb{R}\) is denoted by the fractional Sobolev space with the norm
\[
\|g\|_{H^s} = \left(\int_{\mathbb{R}^3} \left| \xi^{2s} \hat{g}(\xi) \right|^2 \, d\xi \right)^{1/2},
\]
where \(\hat{g}\) is the Fourier transformation
\[
\mathcal{F}g(\xi) = \hat{g}(\xi) = \int_{\mathbb{R}^3} e^{-ix \cdot \xi} g(x) \, dx.
\]
(9)

\(L^q(0, T; X)\) is the space of all measurable functions \(u : (0, T) \rightarrow X\) with the norm
\[
\|u\|_{L^q(0, T; X)} = \left(\int_0^T \|u(t)\|_X^q \, dt \right)^{1/q}, \quad 1 \leq q < \infty,
\]
and when \(q = \infty\),
\[
\|u\|_{L^\infty(0, T; X)} = \text{ess sup}_{t \in [0, T]} \|u\|_X.
\]
(10)
(11)

To state the main results of this paper, we first give the definition of the weak solutions of the three-dimensional globally modified Navier-Stokes equations (3) [5].

Definition 1. \(u(x, t)\) is called a weak solution for three-dimensional globally modified Navier-Stokes equations (3) associated with \(u_0 \in L^2(\mathbb{R}^3)\) if it possesses the following properties
\[
\begin{align*}
(i) & \quad u \in L^\infty(0, T; L^2(\mathbb{R}^3)) \cap L^2(0, T; H^1(\mathbb{R}^3)); \\
(ii) & \quad \text{for any } \phi \in C_0^\infty(\mathbb{R}^3 \times [0, T]) \text{ with } \nabla \cdot \phi = 0,
\end{align*}
\]
\[
\int_0^T \int_{\mathbb{R}^3} [u \cdot \partial_t \phi - \nabla u \cdot \nabla \phi + F_N(\|\nabla u\|_{L^2}) \nabla \phi : u \otimes u] \, dx \, dt
\]
\[
= - \int_{\mathbb{R}^3} u_0 \phi(0) \, dx;
\]
(12)
\[
\text{(iii) the energy inequality}
\]
\[
\|u(t)\|^2_{L^2} + 2 \int_0^t \int_{\mathbb{R}^3} |\nabla u(x, s)|^2 \, dx \, ds \leq \|u_0\|^2_{L^2},
\]
for \(0 \leq t \leq T\) hold true.

Our results read as follows.

Theorem 2. Suppose that \(u(x, t)\) is a weak solution for three-dimensional globally modified Navier-Stokes equations (3). Moreover, if the solution \(e^{\Delta t} u_0\) of the heat equation \(\partial_t u - \Delta u = 0\) satisfies
\[
C_1 (1 + t)^{-3/4} \leq \|e^{\Delta t} u_0\|_{L^2} \leq C_2 (1 + t)^{-3/4},
\]
then the weak solution \(u(x, t)\) of (1) possesses the following optimal upper and lower decay rate:
\[
C_1 (1 + t)^{-3/4} \leq \|u\|_{L^2} \leq C_2 (1 + t)^{-3/4}, \quad t > 1.
\]
(14)
(15)

Remark 3. The decay rate is optimal since it coincides with that of heat equation. The finding is mainly based on energy methods and auxiliary decay estimates together with \(L^p - L^q\) estimates of heat semigroup.

3. Auxiliary \(L^2\) Decay

In this section, we will first study auxiliary \(L^2\) decay of weak solutions for three-dimensional globally modified Navier-Stokes equations (3).

Lemma 4. Suppose that \(u(t)\) is a weak solution of three-dimensional globally modified Navier-Stokes equations (3); then one has
\[
\frac{d}{dt} \|\nabla u(t)\|^2_{L^2} + 2 \|\Delta u(t)\|^2_{L^2} \leq \left| \int_{\mathbb{R}^3} F_N(\|\nabla u\|_{L^2}) (u \cdot \nabla) u \Delta u \, dx \right|,
\]
(16)
(17)
Abstract and Applied Analysis

where we have used the following properties:

\[
\int_{\mathbb{R}^3} \nabla p \Delta u \, dx = \int_{\mathbb{R}^3} p \Delta (\text{div } u) \, dx = 0
\]

(18)
due to the divergence free of the velocity fields.

Since

\[
F_N(\|u\|_{L^2}) = \min \left\{ 1, \frac{N}{\|u\|_{L^2}} \right\} \leq 1,
\]

(19)
then the right hand side of inequality (17) can be estimated after by applying Hölder inequality

\[
\left| \int_{\mathbb{R}^3} F_N(\|u\|_{L^2}) (u \cdot \nabla) u \Delta u \, dx \right| \leq C \|\Delta u\|_{L^2} \|u\|_{L^2} \|u\|_{L^2}^{1/2}.
\]

(20)

With the aid of the Gagliardo-Nirenberg inequality,

\[
\|u\|_{L^\infty} \leq C \|\Delta u\|_{L^2}^{1/4} \|u\|_{L^2}^{1/4},
\]

(21)
\[
\|\nabla u\|_{L^2} \leq C \|\Delta u\|_{L^2} \|u\|_{L^2}^{1/2} \|\Delta u\|_{L^2}^{1/2}.
\]

Plugging (21) into (20), one shows that

\[
\left| \int_{\mathbb{R}^3} F_N(\|u\|_{L^2}) (u \cdot \nabla) u \Delta u \, dx \right| \leq C \|\Delta u\|_{L^2} \|u\|_{L^2} \|\nabla u\|_{L^2} \|\Delta u\|_{L^2}^{1/2}.
\]

(22)

Then inserting the above inequality into (17), one gets

\[
\frac{d}{dt} \|u\|_{L^2}^2 + 2 \|\Delta u\|_{L^2}^2 \leq C \|\Delta u\|_{L^2} \|u\|_{L^2} \|\nabla u\|_{L^2} \|\Delta u\|_{L^2}^{1/2}.
\]

(23)

Thus we rewrite inequality (23) as

\[
\frac{d}{dt} \|u\|_{L^2}^2 \leq 2 \|\Delta u\|_{L^2}^2 \left(C \|u\|_{L^2} \|\nabla u\|_{L^2} \|\Delta u\|_{L^2}^{1/2} - 1 \right).
\]

(24)

Now for any small \(\varepsilon > 0 \), there exists a large \(M > 0 \), such that, for \(t \geq M \),

\[
\|u\|_{L^2} \|\nabla u\|_{L^2} \leq \varepsilon.
\]

(25)

Otherwise, there exists a positive constant \(\varepsilon_0 \), such that, for all \(t \geq 0 \)

\[
\|u\|_{L^2} \|\nabla u\|_{L^2} > \varepsilon \varepsilon_0
\]

(26)

from which and together with energy inequality we have

\[
\|u_0\|_{L^2} \|\nabla u_0\|_{L^2} > \varepsilon \varepsilon_0
\]

(27)

which implies that

\[
\|u\|_{L^2} > C \varepsilon_0.
\]

(28)

On the other hand, from energy inequality we have

\[
\int_0^\infty \|u\|_{L^2} \, dt < \infty,
\]

(29)

which contradicts (28).

Hence, we have

\[
\|u\|_{L^2} \|\nabla u\|_{L^2} \leq \varepsilon, \quad \text{for large } t.
\]

(30)

We now choose \(\varepsilon = 1/C \) in (24) and apply (30) to yield

\[
\frac{d}{dt} \|u\|_{L^2} \leq 0,
\]

(31)

from which and together with the energy inequality we have

\[
(t - M) \|u\|_{L^2}^2 \leq \frac{1}{2} \|u(M)\|_2^2 \leq \frac{1}{2} \|u_0\|_2^2 = C
\]

(32)

which implies that

\[
t \|u\|_{L^2} \to 0, \quad t \to \infty.
\]

(33)

4. Optimal Upper and Lower Decay Estimates

4.1. Upper Decay Estimate. Consider the integral equations of (3)

\[
u(t) = e^{\Delta t} u_0 - \int_0^t e^{\Delta (t-s)} \mathcal{P} F_N(\|u\|_{L^2}) (u \cdot \nabla) u \, ds,
\]

(34)

where

\[
\mathcal{P} g = g - \nabla \Delta^{-1} \nabla \cdot g.
\]

(35)

Taking the \(L^2 \) norm of the integral equation and applying the \(L^p - L^q \) estimates of heat equation, it follows that together with Hölder inequality

\[
\|u(t)\|_{L^2} \leq \|e^{\Delta t} u_0\|_{L^2} + C \int_0^t \|e^{\Delta (t-s)} \mathcal{P} F_N(\|u\|_{L^2}) (u \cdot \nabla) u\|_{L^2} \, ds,
\]

(36)

where we have used the properties

\[
\|\mathcal{P}\| \leq 1,
\]

(37)

\[
F_N(\|u\|_{L^2}) \leq 1.
\]

(38)
According to Lemma 4, we let
\[\eta(t) \equiv t^{1/2} \| \nabla u(t) \| _{L^2} \] (38)
and it is obvious that
\[\eta(t) \to 0, \quad t \to \infty. \] (39)
Thus we rewrite (36) as
\[
\| u(t) \| _{L^2} \leq e^{\Delta t} u_0 + c \int_0^t e^{\Delta (t-s)} \partial F_N (\| \nabla u \| _{L^2}) (u \cdot \nabla u) \| _{L^2} ds \\
\leq C (1 + t)^{-3/4} + C \int_0^t (t-s)^{-1/2} (1 + s)^{-1/2} \| u \| _{L^2} \eta(s) ds.
\] (40)
That is to say,
\[
(1 + t)^{3/4} \| u(t) \| _{L^2} \leq C + C \theta(t) \sup_{0 \leq s \leq t} (1 + s)^{3/4} \| u(s) \| _{L^2}
\] (41)
with
\[\theta(t) = (1 + t)^{3/4} \int_0^t (t-s)^{-1/2} (1 + s)^{-5/4} \eta(s) ds. \] (42)
It is easy to check that
\[\theta(t) \to 0, \quad t \to \infty, \] (43)
or for large \(t > 0, \)
\[\theta(t) \leq \frac{1}{2C}. \] (44)
Thus we obtain the optimal upper decay estimates of the weak solution for three-dimensional globally modified Navier-Stokes equations (3) as
\[\| u(t) \| _{L^2} \leq C (1 + t)^{-3/4}. \] (45)

4.2. Lower Decay Estimate. From the integral equations (34), we will investigate the error estimates of solutions between three-dimensional globally modified Navier-Stokes equations (3) and the heat equation:
\[
\| u(t) - e^{\Delta t} u_0 \| _{L^2} \\
\leq \int_0^t \| e^{\Delta (t-s)} \partial F_N (\| \nabla u \| _{L^2}) (u \cdot \nabla u) \| _{L^2} ds \\
\leq \int_0^t \| e^{\Delta (t-s)} (u \cdot \nabla u) \| _{L^2} ds \\
\leq \int_0^{t/2} \| \nabla e^{\Delta (t-s)} (u \cdot u) \| _{L^2} ds \\
\quad + \int_{t/2}^t \| \nabla e^{\Delta (t-s)} (u \cdot u) \| _{L^2} ds \\
= I + J.
\] (46)

For \(I \), employing the \(L^p - L^q \) estimates of heat semigroup and upper decay estimates gives
\[
I \leq C \int_0^{t/2} (t-s)^{-5/4} \| u \| _{L^2}^2 ds \\
\leq C \int_0^{t/2} (t-s)^{-5/4} (1 + s)^{-3/2} ds
\] (47)
\[
\leq C (1 + t)^{-3/2}.
\]

For \(J \), similarly,
\[
J \leq \int_{t/2}^t \| \nabla e^{\Delta (t-s)} (u \cdot u) \| _{L^2} ds \\
\leq \int_{t/2}^t (t-s)^{-7/8} \| u \cdot u \| _{L^2}^{5/4} ds \\
\leq \int_{t/2}^t (t-s)^{-7/8} \| u \| _{L^4}^{5/4} \| \nabla u \| _{L^2}^{1/4} ds \\
\leq \int_{t/2}^t (t-s)^{-7/8} (1 + s)^{-21/16} \eta^{3/4} (t) ds \\
= o \left((1 + t)^{-19/16} \right), \quad t \to \infty.
\] (48)

Thus we have from the estimates \(I \) and \(J \)
\[\| u(t) - e^{\Delta t} u_0 \| _{L^2} = o \left((1 + t)^{-19/16} \right), \quad t \to \infty. \] (49)
Hence by the triangle inequality, one shows that
\[
\| u(t) \| _{L^2} \geq \| e^{\Delta t} u_0 \| _{L^2} - \| u(t) - e^{\Delta t} u_0 \| _{L^2} \\
\geq C (1 + t)^{-3/4}, \quad \text{for large} \ t.
\] (50)

Combination of the upper and lower decay estimates for weak solutions of three-dimensional globally modified Navier-Stokes equations (3) completes the proof of Theorem 2.

Conflict of Interests
The author declares that there is no conflict of interests regarding the publication of this paper.

Acknowledgment
This work is partially supported by the NSF of China nos. 11361026, 11161022, and 71161013.

References

Submit your manuscripts at http://www.hindawi.com